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Abstract

Reinforcement learning (RL) algorithms struggle with learning optimal policies
for tasks where reward feedback is sparse and depends on a complex sequence of
events in the environment. Probabilistic reward machines (PRMs) are finite-state
formalisms that can capture temporal dependencies in the reward signal, along
with nondeterministic task outcomes. While special RL algorithms can exploit
this finite-state structure to expedite learning, PRMs remain difficult to modify
and design by hand. This hinders the already difficult tasks of utilizing high-level
causal knowledge about the environment, and transferring the reward formalism
into a new domain with a different causal structure. This paper proposes a novel
method to incorporate causal information in the form of Temporal Logic-based
Causal Diagrams into the reward formalism, thereby expediting policy learning
and aiding the transfer of task specifications to new environments.

1 Introduction

In RL the interaction between the agent and the environment happens step by step. Starting in state s
the agent chooses an action a with probability π(a | s) (the policy), and the environment transitions
into a new state s′ and gives a reward r. This interaction is formalized in the concept of an MDP,
a tuple M = (S,A,R, p, γ) where S is the set of states, A the set of actions available to the agent,
R : (S ×A)⋆ × S → R the reward function mapping trajectories in the MDP to rewards, p(s′ | s, a)
a probabilistic transition function, and γ ∈ (0, 1) the discount factor. The agent’s goal is to maximize
the expected discounted return, maxπ Eπ[

∑∞
i=0 γ

iri]. A labeling function L : S × A × S → 2AP

can be provided to attach descriptive propositional variables to transitions in the MDP. An MDP
together with a labeling function is called a labeled MDP.

Although MDPs can have a large number of states and a complex transition function, one often has
access to high-level causal knowledge of the environment. Figure 1a illustrates this point on a small
example MDP. To complete the task, the agent must choose to bring either coffee or a soda to the
office. The high-level knowledge one may supply is that any path from the soda to the office is
later blocked by a flower pot, which the agent must avoid. This is due to walls and a one-way door,
which constrain the agent’s movement. Although special RL algorithms can find the optimal policy
for this task, they will not take these temporal-causal constraints into account, and will explore the
environment in an inefficient manner. Unfortunately, employing high-level knowledge about causality
has shown to be a difficult task, as the current causal RL approaches (e.g., [1, 2, 3, 4, 5, 6, 7, 8])
mostly do not take into account the temporal aspect of the causal knowledge. This paper aims to
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address this issue by proposing a novel method that incorporates knowledge about causality directly
into the reward function.
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(a) A labeled 5x5 Gridworld with coffee (c), soda
(s), an office (o), and a flower pot (f). The agent
can move in the four cardinal directions, and starts
in the cell labeled Æ. Other shaded cells are im-
passable walls. One-way doors are represented by
the upwards arrow. The flower pot acts as a sink
state.
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(b) A PRM for the task in Figure 1a (left). Transi-
tions are labeled with propositional formulas and
reward outputs. Only transition probabilities differ-
ent from 1 are shown. State q4 is a terminal state
which ends the task. Formulas on transitions from
q0 to q1 and q2 (c ∧ ¬s) contain ¬s in order to
disambiguate the transition function in state q0 on
the input {c, s}. The same could be achieved by
using the formula ¬c ∧ s for the transition from
q0 to q3, and just c for transitions into q1, q2.

Figure 1: An MDP (left) and a PRM (right) that captures the task of bringing either coffee or soda
to the office. The coffee machine has a probability of 10% to malfunction and produce bad coffee,
leading to a reduced reward of 0.1 instead of 1. Bringing soda to the office results in a reward of 1
deterministically. An example input for the PRM is {c, s}, ∅, {o, c} (a sequence of three labels),
which will induce the run q0 7→ q3 7→ q3 7→ q4 with a reward of 1. It is important to note that inputs
for PRMs are sets of descriptive propositional variables that are true in a given step, hence why a
single label such as {c, s} can include multiple (or 0) variables.

1.1 Probabilistic Reward Machines

Common RL algorithms such as Q-learning struggle with tasks where rewards are sparse and depend
on a complex sequence of actions that the agent must perform in a specific order. Reward machines [9]
are a finite-state formalism that can capture the reward function in such cases. Q-learning for Reward
Machines (QRM) [9] can exploit this reward structure to expedite learning the optimal policy. A more
general variant of reward machines, called probabilistic reward machines [10], use a nondeterministic
transition function that can capture uncertainty in task outcomes. In the example from Figure 1,
uncertainty comes from the fact that the coffee machine may malfunction. Definition 1.1 formalizes
this notion of a finite-state representation of a temporally extended task with probabilistic outcomes.

Definition 1.1 (Probabilistic Reward Machine (PRM)). A PRM A = (U, uI , 2
AP,Γ, τ, σ, F ) is a

tuple where U is a finite set of states with a distinguished initial state uI ∈ U , AP is a set of atomic
propositions and 2AP is the set of labels, Γ ⊂ R is a finite set of rewards, τ : (U × 2AP × U)→ [0, 1]
is a probabilistic transition function, σ : (U × 2AP × U)→ Γ is a function mapping each transition
to a reward in Γ, and F ⊆ U is a finite set of terminal states that signal the end of the interaction.

The agent-environment interaction generates a trajectory s0, a0, s1, . . . , an−1, sn and the correspond-
ing label sequence ℓ0ℓ1 · · · ℓn−1, where L(si, ai, si+1) = ℓi for all i = 0, . . . , n − 1. The state s0
may be a unique initial state, or drawn from an initial distribution. After reading a label ℓ in state u,
the PRM executes a nondeterministic transition into a new state u′ with probability τ(u, ℓ, u′), and
the agent receives a reward r = σ(u, ℓ, u′). A run of a PRM A on a label sequence ℓ0ℓ1 · · · ℓn−1 is a
sequence u0, r0, u1, . . . , rn−1, un where u0 = uI , and for all i = 0, . . . , n− 1, τ(ui, ℓi, ui+1) > 0
and σ(ui, ℓi, ui+1) = ri.
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1.2 Temporal Logic-based Causal Diagrams

Linear temporal logic over finite sequences (LTLf ) is a formal reasoning system that can capture
causal and temporal properties of label sequences and labeled MDPs. Aside from Boolean operators
like ¬ and ∨, LTLf introduces temporal operators such as Gψ (true if and only if ψ holds for every
element in the sequence), Xψ (true iff. ψ holds for the next element of the sequence), and ψUφ (true
iff. ψ holds until φ becomes true, and φ is true in some element of the sequence). We also rely on the
weak until operator ψWφ (true iff. ψ holds until φ becomes true, but φ is not required to become
true).

In order to encode knowledge about causality in the underlying MDP, we rely on Temporal Logic-
based Causal Diagrams (TL-CDs) [11]. TL-CDs are a special notation that expresses the causal
relationship between formulas in LTLf . The first conjunct induced by the TL-CD in Figure 2a,
G(s→ ¬oWf), means that if the agent observes s (soda) in any step, then it will not observe o (the
office) before it observes f (the flower pot). This part of the TL-CD encodes knowledge that soda
may only be reached via a one-way door, and the only other exit towards the office will be blocked by
the flower pot.

s ¬oWf f G¬o

(a) G(s → ¬oWf) ∧ G(f → G¬o)

a G¬b

(b) G(a → G¬b)

Figure 2: Figure 2a (left) is the TL-CD which captures relevant causal information in the environment
from Figure 1a. Figure 2b (right) is a TL-CD that holds for the case study in Figure 6.

Formally, a TL-CD is a directed graph whose nodes are labeled with LTLf formulas. For a TL-CD C
one may construct an equivalent LTLf formula φC =

∧
φ▶ψ G(φ→ ψ), where φ ▶ ψ iterates over

edges that connect formulas φ and ψ in the TL-CD. If φC is true for a label sequence ℓ, we will write
ℓ |= φC . A label sequence ℓ = ℓ0ℓ1 · · · ℓn−1 is attainable in an MDP M = (S,A,R, p, γ) if there
exists a trajectory s0, a0, s1, . . . , an−1, sn inM such thatL(si, ai, si+1) = ℓi and p(si, ai, si+1) > 0
for all i = 0, 1, . . . , n − 1. We will say that a TL-CD C holds for an MDP M if for every label
sequence ℓ attainable in M , we have ℓ |= φC . In order to simplify working with TL-CDs, we leverage
the notion of deterministic finite automata (DFAs). We formalize this notion in Definition 1.2.
Definition 1.2 (Deterministic Finite Automaton (DFA)). A DFA is a tuple C = (Q, qI ,Σ, δ, F )
consisting of a finite set of states Q with an initial state qI , input alphabet Σ, deterministic transition
function δ : Q× Σ→ Q, and a finite set of accepting states F ⊆ Q.

If the run of the DFA C on an input string ℓ ends in an accepting state q ∈ F , we will write ℓ ∈ L(C).
Every TL-CD C can be converted into an equivalent DFA C, in the sense that for every ℓ, we have
ℓ ∈ L(C) ⇐⇒ ℓ |= φC . We will refer to C as the causal DFA.

2 Problem statement

One may use QRM to find the optimal policy for the task in Figure 1. However, the PRM in Figure 1b
does not take flower pots and one-way doors into account. Because the agent does not know that
knocking over flower pots is forbidden or that choosing soda causes him to enter a room blocked by
a flower pot, it will waste time exploring those fruitless trajectories. As PRMs are in essence task
specifications, and one may also wish to transfer them into a new environment while preserving the
overall goal. In both cases, high-level insights about causality, especially its temporal aspects, could
prove helpful by reflecting the dynamics of the MDP in condensed form.

Unfortunately, incorporating knowledge about causality into the reward function remains a difficult
and error-prone manual task. In PRMs, this would necessitate adding new states and reasoning about
a different, more complicated transition function. Some methods such as JIRP [12] and SRMI [13]
assume that a suitable but unknown representation of the reward function exists, and attempt to
recover it from interaction traces. This work proposes an alternative method that leverages TL-CDs in
order to automate the process of incorporating knowledge about causality into PRMs. More formally,
the problem can be stated as follows. Given a TL-CD C which holds for an MDP M and a PRM A,
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produce a PRM B that induces the same optimal policy as A, but utilizes causal information in C to
expedite learning.

3 Method

We first consider the equivalent causal DFA for a given TL-CD. As explained in Section 1.2, the
equivalent causal DFA captures the same semantics as the given TL-CD. While TL-CDs are an
intuitive notational tool, DFAs are easier to work with computationally. The causal DFA for the
TL-CD in Figure 2a is shown in Figure 3 (in two parts for convenience). State u3 is a sink state,
meaning that any run of the DFA which enters u3 will never leave it. It is also a rejecting state. Taken
together, this means that any label sequence for which the causal DFA enters u3 is not the prefix of
an attainable sequence in an MDP M if we assume that the TL-CD holds for M .

u0 u1 u2

u3

s f

o

¬s ¬f ∧ ¬o ⊤

⊤

(a) G(s → ¬oWf)

t0 t1 t2
f o

¬f ¬o ⊤

(b) G(f → G¬o)

Figure 3: Two factors of the causal DFA for the TL-CD in Figure 2a. Rejecting sink states are
rectangular. Their parallel composition is the true causal DFA, and its states come from the Cartesian
product of states in this Figure. For example, the initial state is (u0, t0).

In other words, when a causal DFA run reaches a rejecting sink state on some prefix of input labels,
then the entire input label sequence is unattainable. The reason is that there is no suffix of labels
which can cause the run to transition into an accepting state. From now on we will implicitly consider
causal DFAs to have at most one rejecting sink state, and that an accepting state is reachable from all
other states. This can be achieved by minimization [14].

We propose to incorporate causal information from a TL-CD C into a PRM A by computing state
values in a new PRM B1 = C × A, which is a product of the TL-CD (represented by the causal DFA
C) and A. The product PRM B1 synchronizes the runs of the original PRM A and the causal DFA C.
B1 mirrors the output of A, except when C transitions into a rejecting sink state. Then the output of
B1 is set to a minimal value m that is lesser than any possible immediate reward and resulting future
gain, and will remain there for the rest of the run as C will not leave the sink state. We also compute
state values in a “pessimistic” PRM B2 = C × (−A) in order to uncover temporal-causal information
about worst-case reward outcomes. While B1 outputs the same rewards as A, B2 negates outputs
of A (but also gives minimal outputs m for transitions into rejecting sink states). Because of the
minimal reward output m, value iteration in either B1 or B2 will disregard transitions that lead C into
a rejecting sink state, as explained under Figure 4. Due to negating reward outputs, label sequences
that maximize return in B2, minimize the return in B1. We combine state value information from B1

and B2 into a final PRM B. To obtain B, we start from B1, and add all states u ∈ UB1 that have 0
value in both the machine B1 and B2 (v⋆B1

(u) = v⋆B2
(u) = 0) into the set of terminal states FB1 . Such

states have the property that no matter the policy, the future return is constrained with 0 from above
and below (and thus, the choice of actions is of no consequence). The product C × A is formalized in
Definition 3.1. We define the value of a PRM state u via the Bellman optimality equation 1, where γ
matches the discount factor in the MDP.

v⋆(u) = max
ℓ∈2AP

∑
u′∈U

τ (u, ℓ, u′) · (σ (u, ℓ, u′) + γv⋆ (u′)) (1)

As Equation 1 is an optimality equation, v⋆(u) is the expected return of a PRM run starting in u and
following the most optimistic label sequence (which may or may not be attainable in the MDP). We
define the minimal reward output m as m = −1−maxr∈ΓA |r| −maxu∈UA v⋆(u).
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Definition 3.1 (PRM & TL-CD product). Let M = (S,A,R, p, γ) be an MDP where the reward
function R : (2AP)⋆ → Γ is given by the PRM A = (UA, uAI , 2

AP,ΓA, τA, σA, FA), C a TL-CD that
holds for M , and C = (Q, qI , 2

AP, δ, FC) its equivalent minimal causal DFA with states Q, initial
state qI , a set of accepting states FC ⊆ Q, and transition function δ. Let Qr.s. ⊆ Q \ FC be the set of
rejecting sink states of C.

We define the product C × A as a new PRM (U, uI , 2
AP,Γ, τ, σ, F ), where

1. U = UA ×Q, a state of C × A is a pair of states (u, q) with u ∈ UA and q ∈ Q;

2. uI = (uAI , qI), the initial state in C × A is the pair of initial states of A and C;

3. Γ = ΓA ∪ {m}, the output alphabet of C ×A is expanded with a possible reward output that
is lesser than any future gain in A;

4. τ((u, q), ℓ, (u′, q′)) = τA(u, ℓ, u′) ·1{δ(q,ℓ)=q′}, the probability of C ×A transitioning from
(u, q) to (u′, q′) upon reading ℓ is the same as the probability of A transitioning from u to
u′, given that C transitions from q to q′ (otherwise, the probability is 0);

5. σ((u, q), ℓ, (u′, q′)) =

{
σA(u, ℓ, u′) q′ ̸∈ Qr.s.

m = −1−maxr∈ΓA |r| −maxu∈UA v⋆(u) otherwise
, the out-

put of the product PRM agrees with A except when C transitions into a rejecting sink state;
and

6. F = {(u, q) : u ∈ FA}, terminal states in C × A correspond to terminal states in A.

Performing value iteration acts as a form of look-ahead in the product C × A, whose output function
is defined so that transitions which lead the causal DFA into a rejecting sink state do not contribute to
overall state value. The same is true for B2 = C × (−A), which is defined in the same way, except the
output function −σA(u, ℓ, u′) provides look-ahead information about the worst-case future outcome.
Our method, given in Algorithm 1, improves the convergence speed of QRM by utilizing information
about expected rewards that better reflects the temporal causal structure of the environment. See the
Appendix for further details about the function that computes the PRM and causal DFA intermediate
product.

x0 x1

x2

x3

x4
s, 0

o, −1

f, 0 o, −1

¬(o ∨ f), 0

¬o, 0

Figure 4: A fragment of the product of the PRM from Figure 1b and the TL-CD from Figure 2a.
Inheriting the q, u, and t names of PRM and causal DFA states from previous figures, x0 =
(q0, u0, t0), x1 = (q3, u1, t0), x2 = (q4, u3, t0), x3 = (q3, u2, t1), and x4 = (q4, u2, t2). Due to the
maximum in Equation 1, dashed transitions do not contribute to state value. Dashed states x1 and x3
have 0 value in both B1 (depicted) and B2, and will be added to the set of terminal states.

4 Case Studies

Our method shows promising results across two case studies. The first case study (results in Figure 5a)
is based on the coffee vs. soda example from Figure 1. The second case study (results in Figure 5b) is
described in Figure 6. We compared our method against QRM without access to knowledge about
causality. In both case studies, our method takes significantly fewer steps to converge to the optimal
policy.
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Algorithm 1 Reinforcement Learning With Temporal-Causal Information

Require: MDP M , PRM A, minimal causal DFA C with rejecting sink states Qr.s.
1: B1,B2 = computeProduct(A,C), computeProduct(−A,C)
2: v⋆B1

, v⋆B2
= valueIteration(B1, γ), valueIteration(B2, γ)

3: B = B1

4: for every state u ∈ UB do
5: if v⋆B1

(u) = v⋆B2
(u) = 0 then

6: Add u to the set of terminal states of B
7: end if
8: end for
9: Q = initializeQFunction()

10: while termination criteria not met do
11: Q = RunQRMEpisode(Q,B)
12: end while
13: return Q
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Figure 5: Reward per step averaged over 20 runs. “No causal” refers to using QRM with the original
PRM that does not account for additional causal information in the environment. “Causal” are the
results for our method. Both graphs showcase QRM convergence to the optimal policy.

5 Conclusion and Further Work

The method proposed in this paper addresses the difficult problem of accounting for knowledge
about temporal causality in the RL environment. We have shown that an expressive and concise
description of temporal and causal relations in the form of a Temporal Logic-based Causal Diagram
can be integrated into the reward function formalism. Furthermore, we have shown how the added
information about temporal and causal relations can be leveraged to expedite learning without
changing the optimal policy.

While our method performs well in case studies, we are convinced that this work can be continued
to integrate knowledge about causality even more tightly into the reward function. In particular,
look-ahead information contained in state-values of the product PRM may be further utilized by
methods like reward shaping. We are also interested in further exploring the interplay between
probabilistic outcomes and causal information.
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6 Appendix

Section 6.1 contains the algorithm for the computeProduct function used in Algorithm 1. In
Section 6.2 we present two additional case studies.

6.1 Computing the PRM and causal DFA product

Algorithm 2 computes the (intermediate) product B1 (B2) of a PRM A and causal DFA C. This
function is called in Line 1 of Algorithm 1 in Section 3. Note that this function does not perform
value iteration, this is done in Line 2 of Algorithm 1. The set of terminal states in the intermediate
product B1 is a subset of the set of terminal states in the final product B.

The transitions dictionary used in Algorithm 2 represents the transition and output functions
of B1. It maps triplets ((u, q), ℓ, (u′, q′)) to to pairs (p, r), where p = τB1((u, q), ℓ, (u′, q′)), and
r = σB1((u, q), ℓ, (u′, q′)).

Algorithm 2 computeProduct(A,C)

Require: PRM A, minimal causal DFA C with rejecting sink states Qr.s.
1: appears← A.appears ∪ C.appears ▷ M.appears is the set of relevant atomic propositions in M.
2: pairToSelfStateMap← {} ▷ Dictionary mapping pairs of states in A and C to a single state in B1

3: selfToPairStateMap← {}
4: nonTerminalStates← ∅ ▷ Contains non-terminal states of the intermediate product PRM.
5: terminalStates← ∅ ▷ Contains terminal states of the intermediate product PRM.
6: transitions← {} ▷ Dictionary representation of τ and σ functions of B1.
7: stateCounter← 0
8: for u in A.states do
9: for q in C.states do

10: pairToSelfStateMap[(u, q)]← stateCounter
11: selfToPairStateMap[stateCounter]← (u, q)
12: if u in A.terminalStates then
13: terminalStates← {stateCounter} ∪ terminalStates
14: else
15: nonTerminalStates← {stateCounter} ∪ nonTerminalStates
16: end if
17: stateCounter← stateCounter + 1
18: end for
19: end for
20: for u in A.nonTerminalStates do
21: for q in C.states do
22: state← pairToSelfStateMap[(u, q)]
23: transitions[state]← {}
24: for inputSymbol in GENERATEINPUTS(appears) do
25: inputSymbolPrm← A.appears ∩ inputSymbol
26: inputSymbolDfa← C.appears ∩ inputSymbol
27: transitions[state][inputSymbol]← {}
28: nextDfaState← C.transitions[q][inputSymbolDfa]
29: for nextPrmState in A.transitions[u][inputSymbolPrm] do
30: nextState← pairToSelfStateMap[(nextPrmState, nextDfaState)]
31: probability, reward← A.transitions[u][inputSymbolPrm][nextPrmState]
32: if nextDfaState in Qr.s. then
33: reward← m
34: end if
35: transitions[state][inputSymbol][nextState]← (probability, reward)
36: end for
37: end for
38: end for
39: end for
40: return PRM(transitions, appears, terminalStates)
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6.2 Additional Case Studies

For a more thorough comparison and analysis of the method’s efficiency, we implemented it across
two distinct case studies: a four-door task and a small office world domain.

6.2.1 Four Door Case Study

The four door case study entails an agent navigating through a scenario where it must open four doors
in any arbitrary order, as illustrated in Figure 7a. This task involves a significantly more complex
PRM owing to the number of possible orders. To evaluate the method’s performance and its efficacy
in this case study, we use a grid world configuration of 6 × 6.

Æ

d

c

ba

(a) 6x6 Gridworld environment where the agent
must open door A (a), door B (b), door C (c), and
door D (d) in any order. However, the cell with
door D traps the agent. The agent may fail to open
door B with a probability of 0.1, and it will go to
door D instead.

c G¬(a ∨ b ∨ c)

G(d → G¬(a ∨ b ∨ c))

(b) TL-CD that holds for the case study of four-doors
task.

Figure 7: The MDP and TL-CD for the third case study.

The agent here must open door A, door B, door C, and door D in any order. However, door D is a
trap, and the agent cannot see doors A, B, or even C after seeing door D. This knowledge, in fact,
is encoded in Figure 7b. As this task requires a complex Probabilistic Reward Machine (PRM), we
deemed it prudent to relegate its detailed explanation to the Appendix.

Furthermore, Figure 8 compares our method on the four-doors task to QRM without additional causal
information. It can be seen that QRM with causal information results in much higher rewards with
faster convergence. We exclude the PRM from the Four Door Case Study because it is substantial in
size.

6.2.2 Small Office World Case Study

Another case study in which we implemented this method is the small office world domain. For this
specific exploration, we took into consideration a small office world with a spatial layout of 17 × 9,
similar to the setup in [11]. Within the scope of this case study, the procedure to exit the grid entails
a two-step process for the agent: first, it must obtain one of the two available keys, denoted as k1
or k2, and then navigate to exit e1 or e2, correspondingly aligned with the key acquired. Through
one-way doors (indicated by blue arrows), keys, and walls, the agent interacts with the environment.
A graphical illustration of this environment, capturing the elements and challenges the agent faces, is
provided in Figure 9, providing a better understanding of the structural and operational complexities
of the small office world being explored.

As a result of c being a one-way door, the agent will not be able to pick up key k2 and exit at e2,
due to the information encoded in figure 10b. In addition, if the agent passes through the door b, it
will not be able to exit through the door e1. Furthermore, Figure 10a displays the PRM, omitting
the causal information regarding the small office world. In order to succeed in exiting the maze and
receiving reward 1, the agent must complete both sequences a−k1 − e1 (open door a, pick up key k1,
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Figure 8: Four-doors task results, using the same reward per step metric averaged over 20 runs as in
previous case studies.

and leave at e1) or b−k2 − e2 (open door b, pick up key k2, and exit at e2). However, a probability
of 0.9 suggests a likelihood of the agent exiting through e1, while a probability of 0.1 indicates a risk
of the agent getting stuck.

Figure 11 depicts the performance comparison of our method on the small office world scenario to
QRM without additional causal information. In the figure, it can be seen that if the RL agent knows
the causal DFA and learns never to open door b, the agent can obtain their optimal reward faster with
higher accumulated rewards.

Æ

e1 e2

k1

k2

ba c

Figure 9: Map of the small office world. Shaded cells are impassable walls
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(a) The PRM without causal info about the small
office world
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(b) TL-CD that holds for the case study of small office.

Figure 10: The PRM and TL-CD for the fourth case study.
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Figure 11: Small office world results, using the same reward per step metric averaged over 20 runs as
in previous case studies.
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