Under review as a conference paper at ICLR 2026

DIRECTED SEMI-SIMPLICIAL LEARNING
WITH APPLICATIONS TO BRAIN ACTIVITY DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) excel at learning from pairwise interactions
but often overlook multi-way and hierarchical relationships. Topological Deep
Learning (TDL) addresses this limitation by leveraging combinatorial topological
spaces, such as simplicial or cell complexes. However, existing TDL models are
restricted to undirected settings and fail to capture the higher-order directed patterns
prevalent in many complex systems, e.g., brain networks, where such interactions
are both abundant and functionally significant. To fill this gap, we introduce
Semi-Simplicial Neural Networks (SSNs), a principled class of TDL models that
operate on semi-simplicial sets—combinatorial structures that encode directed
higher-order motifs and their directional relationships. To enhance scalability, we
propose Routing-SSNs, which dynamically select the most informative relations
in a learnable manner. We theoretically characterize SSNs by proving they are
strictly more expressive than standard graph and TDL models, and they are able to
recover several topological descriptors. Building on previous evidence that such
descriptors are critical for characterizing brain activity, we then introduce a new
rigorous framework for brain dynamics representation learning centered on SSNs.
Empirically, we test SSNs on 4 distinct tasks across 13 datasets, spanning from brain
dynamics to node classification, showing competitive performance. Notably, SSNs
consistently achieve state-of-the-art performance on brain dynamics classification
tasks, outperforming the second-best model by up to 27%, and message passing
GNNs by up to 50% in accuracy. Our results highlight the potential of topological
models for learning from structured brain data, establishing a unique real-world
case study for TDL. Code and data are uploaded as supplementary material.

1 INTRODUCTION

Networks are commonly represented as graphs, i.e., a set of nodes and a set of unordered pairs
of nodes—the edges—modeling pairwise interactions (Barabasi, [2002)). Graph Neural Networks
(GNNs) (Scarselli et al.| [2008)), deep learning models operating on graph-structured data, have shown
remarkable performance on several tasks from different domains, such as computational chemistry
(Gilmer et al.| |2017; Jumper et al.}[2021), social network analysis (Xia et al., 2021} |Kipf & Welling,
2017), and neuroscience (Bessadok et al., 2022). The success of GNNs is mainly due to their ability
to synergize the flexibility of deep learning models with the inductive bias encoded in the graph
structure (Bruna et al., 2014} |Gori et al., |2005). Most GNNs are Message Passing Neural Networks
(MPNNs) (Gilmer et al., 2017), which learn meaningful representations of node or edge data via
local aggregation governed by the underlying graph connectivity.

However, many complex real-world systems exhibit higher-order interactions that go beyond simple
pairwise relationships (Battiston et al.l 2020; |[Millan et al., 2025). Such dependencies are naturally
modeled by Combinatorial Topological Spaces (CTSs)—mathematical objects such as simplicial or
cell complexes that generalize graphs by encoding multi-way interactions as sets of nodes, i.e., the
simplices/cells. CTSs induce set-containment relations among higher-order entities via hierarchical
inclusion, extending conventional adjacency in graphs (Grady & Polimenil 2010) and enabling pow-
erful algebraic topological tools (Barbarossa & Sardellitti, 2020). Topological Deep Learning (TDL)
(Battiloro} 2024} Bodnarj, 2023} [Hajij et al.l 2022bj; [Papamarkou et al.| 2024) builds on this structure,
extending GNNs into architectures that operate directly on CTSs. Compared to standard GNNs, TDL
models have demonstrated stronger expressivity within the Weisfeiler—-Leman (WL) hierarchy (Horn
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Figure 1: Overview of the Semi-Simplicial Neural Networks framework for Brain Dynamics
Classification. Given a structured brain sample and its corresponding response to external stimulation,
we jointly model them as an attributed semi-simplicial set /C that captures higher-order co-activation
patterns X'. A set of relations R induced by the complex’s topology is then selected, and the
structure, data, and relations are processed by Semi-Simplicial Neural Networks (SSNs)—a novel
class of architectures capable of leveraging higher-order directional information. Our experiments
demonstrate that this approach is essential for accurately predicting the originating stimulus.

et al.}2022; Bodnar et al.,[2021b)), improved ability to capture long-range dependencies (Battiloro
et al.| 2025a; |Giusti et al.| |2023bfja)), and robustness in heterophilic regimes (Bodnar et al.,[2022).

Yet, simplicial complexes and other commonly used CTSs (Battiloro et al., 2024b; |Bodnar et al.}
2021a; Hajij et al.l 2022b) remain limited when directionality governs system dynamics. Here,
directionality refers to structural asymmetry; for example, a directed edge has a source and a target,
and its reverse is a different edge, with one not implying the other—unlike orientation, which merely
assigns a sign to the same undirected edge (e.g., positive vs. negative flux; see App.[D.3HD.4). While
several GNN variants incorporate directionality at the level of directed graphs (digraphs) (Tong et al.|
2020a; Zhang et al., [2021}; |Rossi et al., 2024)), the challenge of modeling higher-order directional
structure in TDL remains largely unexplored. Building on the foundations of Rithimaki| (2023)), the
short paper of |Lecha et al.| (2025) introduced Directed Simplicial Neural Networks (Dir-SNN5s), based
on directed cliques —totally ordered node sequences— connected in a direction-preserving manner.
While this work formalized message passing on directed simplicial complexes, it is confined to a
narrow class of spaces, lacks theoretical guarantees, and provides only limited synthetic validation.

Brain networks are among the most notable real-world domains requiring methods capable of
processing higher-order, directional information (Giusti et al., [2016). Digraphs naturally capture
the asymmetric flow of information in neuronal communication—from presynaptic to postsynaptic
neurons—but fail to encode the higher-order co-activation patterns critical for understanding brain
function. Higher-order directed motifs are abundant across scales (Sizemore et al.| [2018};|2019)), carry
functional meaning (Nolte et al.,|2019)), and form spiking assemblies that enhance the representational
fidelity of neural activity (Reimann et al., 2017 |[Ecker et al., [2024). To capture such structures,
the emerging field of Neurotopology (Conceicao et al., [2022; Reimann et al. [2017) employed
semi-simplicial sets (Hatcher, 2005)—general CTSs exemplified by directed flag complexes and
tournaplexes (Govc et al.,[2021)). (Conceicao et al.| (2022) proposed a topological featurization pipeline
that aggregates invariants across meaningful neuron subpopulations, and —together with Reimann
et al.|(2022)— showed that such descriptors can recover stimulus identity in a biologically realistic
neocortical model (Markram et al., 2015)), even when traditional approaches fail. However, these
handcrafted pipelines are fundamentally limited: they fix representational power in advance through
predefined invariants, rely on carefully tuned sampling heuristics to select informative neuron subsets,
and lack robustness under perturbations or shuffled activity (Conceicao et al., [2022]).

Therefore, the lack of a general, formal, and exhaustive TDL framework leveraging higher-
order directionality motivates the methodological advancements in this work. Linking them with
Neurotopology—along with its limitations and open challenges— offers a unique opportunity to
learn meaningful representations of dynamical brain activity, and motivates the applied advancements
in this work. For a detailed discussion of related work, see Appendix
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Contribution. The methodological and applied advances of this work are listed below, and they
address several open problems in TDL as identified by Papamarkou et al.[ (2024).

C1. We introduce Semi-simplicial Neural Networks (SSNs), the first TDL models explicitly designed
for semi-simplicial sets. The rich variety of ways SSNs propagate information across simplices is
formalized via face-map—induced relations collected in a relational algebra and generalizing common
(directed) graph and topological adjacencies. To address scalability and efficiency (Open Problem 6
in (Papamarkou et al., [2024]))), we further propose Routing-SSNs (R-SSNs), which employ a learnable
routing mechanism (Shazeer et al., 2017 [Wang et al., 2023) to dynamically select the top-k most
relevant relations, reducing parameter count and inference time. Theoretically, we prove that SSNs
are strictly more expressive than message-passing GNNs (Gilmer et al., [2017), Directed GNNs (Dir-
GNNGs) (Rossi et al.|, [2024), and Message-Passing Simplicial Neural Networks (MPSNNSs) (Bodnar
et al.l 2021b) in the WL hierarchy (Section E])

C2. We propose a novel topology-grounded framework for higher-order representation learning
of brain dynamics. Its core elements are Dynamical Activity Complexes (DACs)—directed simpli-
cial complexes endowed with binary, time-evolving, features encoding neuronal co-activation: a
neuron group is active at time ¢ if all constituent neurons fire simultaneously at ¢. Critically, we
formally prove that SSNs operating on DACs are uniquely capable—among existing graph and TDL
models—of recovering a broader class of topological invariants known to characterize brain network
activity (Reimann et al.}[2022)), thanks to their ability to jointly encode directionality and higher-order
structure (Open Problem 9 in (Papamarkou et al.l[2024)). See Section @] for details.

C3. We test SSNs on 4 distinct tasks across 13 datasets, spanning from brain dynamics to node
classification, showing competitive performance. The brain dynamics classification tasks represent a
unique, meaningful, real-world case study for TDL, where SSNs consistently achieve state-of-the-art
results (see Figurem Open Problem 1 in (Papamarkou et al.| [2024)). As such, the data and tasks
also serve as a competitive public benchmark for graph-based and TDL models (Open Problem
2 of (Papamarkou et al.l 2024)). Specifically, following |Conceicao et al.| (2022); Reimann et al.
(2022), we leverage stimulus—response activity from a biologically realistic neocortical microcir-
cuit (Markram et al.l 2015), evaluating: (i) classification from fixed topological brain samples-i.e., a
feature classification task, and (ii) classification from randomly sampled neuron neighborhoods-i.e., a
graph/complex classification task. SSNs achieve accuracy gains of over 50% compared to baseline
MPNNs (Gilmer et al.,[2017). Full details are in Section [5}

2 PRELIMINARIES

In this section, we revisit the foundational building blocks of our framework. We begin with semi-
simplicial sets, which extend simplicial complexes by allowing multiple simplices over the same
vertex set and support directionality. We then discuss directed simplicial complexes as a key subclass,
with directed flag complexes arising canonically from digraphs. Next, we introduce a rich class of
face-map—induced relations, which generalize standard topological adjacencies and extend them to
higher-order directed structures. Finally, we formalize data integration via attributed semi-simplicial
sets, focusing on time-varying binary features relevant to brain dynamics.

: : :
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Figure 2: (a) A simplicial complex of dimension 2; (b) a semi-simplicial set of dimension 2; (c) a
digraph; (d) its associated directed flag complex.

(d

Simplicial Complexes. A simplicial complex K is a pair K = (V,X), where V is a finite set of
vertices and X is a collection of non-empty finite subsets of V' satisfying two properties: (P1) for
every v € V, the singleton {v} is in ; and (P2) if 0 € ¥ and 7 is a non-empty subset of o, then
7 € X. The dimension of a simplex o C V is dim(c) = |o| — 1; the dimension of the complex
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is N = max,cy dim(o). We denote the set of n-simplices by ¥,, = {0 € ¥ | dim(o) = n},
thus ¥ = Ufzo 3. An example of a 2-dimensional simplicial complex is shown in Figure [2(a),
with vertices V = {0, 1,2, 3}, edges ¥; = {{0,1},{0,2},{1,2},{2,3},{1,3}}, and 2-simplices
2y ={{0,1,2},{1,2,3}}.

Semi-Simplicial Sets. Semi-simplicial sets generalize simplicial complexes by allowing multiple
distinct simplices to share the same vertex set. Figure [2]illustrates this: in (b), the 2-simplices
(0,1,2) and (0, 2, 1) represent two different triangles over the same vertex set {0, 1,2}, whereas in
(a) a simplicial complex admits only one simplex on {0, 1,2}. This added flexibility is crucial for
modeling directionality. For instance, in a digraph the edges (0, 1) and (1, 0) are distinct, even though
both correspond to {0, 1}. Formally, a semi-simplicial set S consists of (i) sets {S N, where S, is
the set of n-simplices, and (ii) face maps d; : S, = Sp—1 forn > 0 and 0 < ¢ < n, specifying how
simplices are glued. These maps satisfy the simplicial identity d;d; = d;_d; for i < j, ensuring
consistency of the face structure. We denote the total set of simplices by .S = UTJLO S.

Directed Simplicial Complexes. A directed simplicial complex K is a semi-simplicial set in which
each simplex encodes a fully transitive directed structure. Formally, each set of n-simplices /C,,
consists of ordered (n + 1)-tuples o = (vo, ..., v,) such that (v;,v;) is a directed edge for every
i < j. Directed simplicial complexes of dimensions 1 and 2 are illustrated in Figures 2{c—d). The
face maps d? : KC,, — K,,—1 act by deleting the i-th vertex, i.e., d?"(o) = (vo,..., 0, ..., vp). For
example, the 1- -simplex (0, 1) in Figure [2[c) has faces d((0, 1)) (1) and d1((0,1)) = (0). We
require /C to contain all faces of its simplices, i.e., satisfy properties (P1) and (P2) descrlbed above.

Directed Flag Complexes. Given a digraph G = (V, E), the induced directed flag complex K¢ (Liit-
gehetmann et al., 2020) is the directed simplicial complex whose n-simplices are precisely the
transitive (n+1)-cliques of G—that is, ordered tuples (vo,...,v,) of distinct vertices such that
(vs,v;) € E for all i < j. In other words, each directed clique in G is promoted to a simplex.
Figures 2 c—d) illustrate a digraph and its directed flag complex. Importantly, this construction
is injective on isomorphism classes: non-isomorphic digraphs map to non-isomorphic complexes,
ensuring that no structural information from the original digraph is lost (see Appendix [D.T).

Face Map Relations. We make simplices interact in a 1
direction-sensitive way using relations induced by face maps,

generalizing binary adjacency relations in graphs, digraphs, 0 3
and simplicial complexes. Each face map d}® defines a binary

relation Rgn = {(7,0) | 0 € S,,, d} (o) = 7}, linking an 3

n-simplex to its i-th face. Collectively, these relations gen-

erate a face-map relation algebra R 4, closed under standard

relational operations union U, intersection M, composition

o (chaining relations), and converse ' (reversing them; see
App.[D.5). For example, in directed simplicial complexes, Figure 3: (Top) Directed 2-simplices o
forn > 1, Rnyij = Rd” © Rap = {(0,7) [ d7(9) = and 7 related by dj(0) = d3(7) = e,
dj (1)} relates two n- 51mp11ces whose i¢-th and j-th facets where e denotes the shared edge high-
coincide (Fig. [3|(Top)). Compositions of such relations natu- lighted in red. Hence (o, 7) € Raj 0,2.

rally define directed paths across simplices (Fig.E](Bottom)). (Bottom) Composing %2} 0,2 yields a
Further illustrative examples are given in App.[D.6] directed path across 2-simplices.

Attributed Semi-Simplicial Sets. An attributed semi-

simplicial set augments each simplex with a feature vector from a space F C R™. Formally,
an attributed semi-simplicial set is a pair Sp = (5, F) where S is a semi-simplicial set and
Fisamap F : S — F assigning each simplex ¢ € S a feature vector z, = F(o) € R™.
For a chosen indexinéﬂ)f the n-simplices S,, = (01,...,0|s,|), we define the n-feature matrix

Xn = (25,55 Tq, sm] € RIS»Ix™ Extending the indexing globally, we concatenate across all

dimensions to obtain the global feature matrix X = [Xo;...; Xx] € RISIX™_ In this work, we
often focus on the special case of dynamic binary data, where F = BT = {0,1}7 ¢ R”. A binary
dynamics map B € SB" assigns to each simplex a binary activation vector z, € {0, 1}7 indicating
whether it is active (1) or inactive (0) at each of 7" discrete time steps. The n-simplex features then
form binary matrices X,, € RIS=IXT for 0 < n < N.

!Given finite set S, a bijection {1,...,|S|} = S.
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3  SEMI-SIMPLICIAL NEURAL NETWORKS

Topological Deep Learning (TDL) architectures represent higher-order relations as unordered vertex
sets. In simplicial complexes, each vertex set admits only one simplex, preventing distinct features
across different orderings. While sufficient for symmetric interactions (Benson et al., 2016} [Battiston
et al.,|2020), this assumption fails when order is essential, as in brain dynamics (Markram et al., 2015),
where the same clique of neurons may encode entirely different information depending on firing
order. Ignoring directionality creates two expressiveness gaps: (a) Information Loss. Symmetrizing a
directed simplicial complex into an undirected one is non-injective: distinct motifs (e.g., transitive
cliques vs. directed cycles) collapse into the same unordered simplex (see App.[D.3). (b) Limited
Adjacencies. Standard TDL models restrict interactions to subset containment (simplices commu-
nicate only via shared vertices or hierarchical inclusion), underexploiting higher-order directional
propagation. To address these limitations, we propose SSN, a principled class of TDL architectures
operating directly on attributed semi-simplicial sets. This section supports Contribution C1.

Semi-Simplicial Neural Networks (SSNs). SSNs propagate information using face-map—induced
relations R C Ry, leveraging the algebraic structure of semi-simplicial sets to capture directional
motifs and their higher-order interactions. The I-th SSN layer updates features X' as

X = (X, (R wr(X)). )

ReER

where wr, is a relation-dependent learnable function, (X) aggregates multiple messages per simplex
across relations, and ¢ is a learnable update function. This formulation subsumes a wide family of
models: if wg = MPNN-D (Rossi et al., [2024)), the SSN is a message passing architecture; if wg
is masked self-attention, the SSN is a transformer-like architecture. For example, in a digraph the
relations R;, = Rdé o R;& and Ry = Rd% o R;l'—é recover standard in- and out-adjacencies A;, and

Aout, respectively. Setting R = { Ry, Rout }» wg = MPNN-D, and Q) = >, the resulting SSN is
exactly a Dir-GNN (Rossi et al, 2024), i.e., X!t = U(AinXlVVin + AoutXlWout). Further details
are given in AppJF1[

Routing SSNs. While SSNs fully exploit the combinatorial structure of semi-simplicial sets, two key
challenges arise: (1) Scalability—explicitly modeling many relations can lead to parameter explosion,
as each relation requires its own weights; and (2) Relevance of Relations—not all relations equally
contribute to learning, with some being redundant or uninformative. To address these limitations, we
propose Routing SSNs (R-SSNs), which incorporate a learnable gating mechanism (Fedus et al.,[2022;
Shazeer et al., [2017; [Wang et al., [2023) to dynamically select the top-k relations from predefined
relation classes. Given face-map-induced relations R, let Pz = {R1,..., R, } be a partition of R
grouping relations into distinct semantic classes, allowing different interaction types to be modeled
separately. For instance, one class may represent interdimensional communication (e.g., messages
from 2-simplices to their 1-faces), while another captures intradimensional communication (e.g.,
direction-aware relations between 2-simplices). The [-th R-SSN layer updates the features X' as

X+ = ¢(Xl, P R crxh -wR(Xl)), @)

RePr RER

where Gg(X!) € [0,1] is a gating function producing normalized scores for each relation within
a class. Routing is instantiated via a top-k mechanism, setting G z(X') = 0 for all but the k most
relevant relations in each class. Aggregation across relation classes is performed by €. A detailed
formulation of the routing mechanism, along with the gating strategies and tailored loss functions
employed to prevent routing collapse, is presented in App.

3.1 THEORETICAL PROPERTIES OF SSNs

We next provide a theoretical characterization of SSNs, focusing on their generality, WL-
expressivity (Xu et al.l 2019)), and permutation equivariance under simplex reindexing.

Generality. SSNs unify and extend prior models across graphs and (directed) simplicial complexes.

Proposition 1. Semi-simplicial neural networks (SSNs) subsume directed message-passing
GNNs (Rossi et al.| |2024), message-passing GNNs (Gilmer et al.| |2017) on undirected graphs,
message-passing simplicial neural networks (Bodnar et al.| 2021bl) on undirected simplicial com-
plexes and Directed Simplicial Neural Networks (Lecha et al.||2025)) on directed simplicial complexes.



Under review as a conference paper at ICLR 2026

WL Expressivity. The Weisfeiler—Leman (WL) test (Weisfeiler & Leman), [1968) (see App[E.2))
bounds the discriminative power of GNNs (Xu et al.,[2019). Graph liftings (e.g., directed flag com-
plexes) enrich representations with higher-order relations, mapping isomorphic graphs to isomorphic
CTSs and separating non-isomorphic ones. Hence, TDL models can surpass standard graph-based
models in expressivity (Horn et al.,|[2022). We now show that SSNs go further, strictly exceeding
both Dir-GNNs and MPSNNS.

Theorem 1. There exist SSNs strictly more expressive than directed graph neural networks (Dir-
GNNs) (Rossi et al.| |2024) at distinguishing non-isomorphic directed graphs.

Theorem 2. There exist SSNs strictly more expressive than message-passing simplicial neural
networks (MPSNNs) (Bodnar et al.| |2021b) at distinguishing non-isomorphic directed simplicial
complexes.

Permutation Equivariance. Matrix representations of semi-simplicial sets require arbitrary simplex
indexing (see Section [2), which has no semantic meaning. SSNs must therefore be equivariant
(or invariant) to simplex permutations, ensuring representations depend only on the underlying
domain (Bronstein et al., [2021).

Theorem 3 (Informal). Consider an attributed semi-simplicial set with a collection of face-
map—induced relations R C Rgq. An SSN layer, as defined in equation[l} is equivariant to simplex
reindexing if, for each relation R € R, the message function wr, and the aggregation operator Q)
are permutation equivariant.

The proofs of the statements in this section, and a detailed complexity analysis of SSNs are reported
in ApplE]and App[G| respectively.

4 TOPOLOGICAL DEEP REPRESENTATION LEARNING FOR BRAIN DYNAMICS

We introduce a principled framework for representation learning on dynamical brain activity, compat-
ible with both graph-based and TDL architectures. At its core are Dynamical Activity Complexes
(DACs): directed simplicial complexes that explicitly encode neuronal co-activation patterns as
they evolve over time. We prove that SSNs operating on DACs can recover a broad class of in-
variants—quantities preserved under equivalence (isomorphism; see App[D.T)— that characterize
brain activity (Reimann et al,[2017), formally defined in (ApplE.2). Crucially, this class strictly
exceeds the invariants recoverable by graph-based or traditional TDL models. This section supports
Contribution C2.

Brain Activity Modeling. Brain network activity modeling comprises two components: structural
connectivity and dynamics. Structural connectivity is modeled by a directed graph G = (V, E'), with
nodes V' as neurons and edges (u,v) € F denoting synapses from presynaptic u to postsynaptic v.
Dynamics are represented by binary functions B = {B : V — B”'}, encoding firing (1) and quiescent
(0) states across 1" discrete time bins under stimulus-driven inputs. Further details in App.

Neurotopology at a Glance. Given binary dynamics B on a digraph
G = (V, E), each time bin ¢ defines an activation state By, partitioning
neurons into active V' = {v | B;(v) = 1} and inactive V%!, The
active set induces a subgraph G1'* = G[V'1!] at time ¢, together with its
directed flag complex Kg1.: capturing co-activation. Applying a topo-
logical invariant T across time yields a temporal signature of activity,
T(Fxg) = [T(Kgr1),...,T(Kgir)] € RT. |Reimann et al.| (2017)
showed that distinct stimuli induce distinct temporal signatures, measur-
able via invariants such as Euler characteristic or clique counts. Building
on this, |Conceigdo et al.| (2022) introduced a topological featurization
pipeline for stimuli classification within G, aggregating signatures from
neuron samples with uncommon activity patterns. While effective in
realistic neocortical models (Markram et al., [2015)), this pipeline faces
key limitations: (i) it relies on predefined invariants, fixing represen-
tational power in advance; (ii) it requires carefully designed sampling
strategies to select informative neuron subsets, making results sensitive
to the chosen subgraphs and to structural variability across samples; and
(iii1) it has been reported to lack robustness under shuffled or perturbed
activity (Conceicao et al.,[2022). By contrast, our framework harnesses

Figure 4: (Top) Dynamic
binary graph; (Bottom)
its DAC. Binary vectors
indicating simplex activa-
tion over 4 time steps.
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deep learning to learn directly from arbitrary topologies, removing the dependence on predefined
invariants and sampling heuristics, and providing a unified representation of structure and dynamics.

Dynamical Activity Complex. We introduce Dynamical Activity Complexes (DACs), a representation
that integrates higher-order structural connectivity with evolving brain activity in a form directly
amenable to end-to-end learning. A DAC is a binary directed simplicial complex built from a sampled
brain digraph and its associated binary dynamics, encoding activity over 7' discrete time steps.
Formally, let G be a dynamic binary digraph, where each vertex v € V' is assigned a T-dimensional
binary feature vector B(v) € BT. The DAC is the attributed directed flag complex K= (Kg,B),
with attribute map

B(o) = |min By (v),... ,Iglel[Irl BT(’U)} € BT, 3)

veEoT
so that a simplex o is active at time ¢ iff all its vertices are active at ¢. This construction captures
higher-order co-activation motifs: for instance, in Fig. |4} the 2-simplex activates only at t{ = 3, the
unique time all its vertices fire simultaneously. Crucially, DACs (i) preserve isomorphisms, and (ii)
encode the full temporal sequence of functional complexes, retaining the ability to recover established
invariants in neurotopology pipelines (Propositions in Appendix [H.2).

Relevant Invariants. Neurotopological studies (Reimann et al.}

2017; [Conceicao et all [2022; [Reimann et al) 2022) have Model |size dir hodir rc td ec
empirically validated the set of topological invariants 7 = GI:;N
Dir-GNN

{size, ec, td, dir, hodir, rc} as particularly effective for character-
izing brain activity, as measured by predictive performance in
stimulus-induced activity classification. Briefly: the size (size)
invariant counts active neighbors per node at each time step, i.e., Taple 1: Topological invariant
synaptically connected active neurons; the directionality (dir) invari-  computation across architectures.
ant measures the imbalance between active outgoing and incoming

edges per node, i.e., post- versus pre-synaptic neighbors; the higher-order directionality (hodir)
extends this to n-simplices, comparing outgoing and incoming active cliques; the reciprocity (rc)
invariant counts active nodes with active neighbors in both directions, i.e., neurons that are simultane-
ously pre- and post-synaptic; the transitive degree (td) invariant counts active directed 2-simplices
incident to a node, i.e., transitive synaptic triads; and the Euler characteristic (ec) is the alternating
sum of active simplices across dimensions. By construction of DACs, this Euler characteristic
coincides with the one in Proposition[6] See App. for formal definitions and details.

MPSNN v
SSN (Ours) | v

Theorem 4. Let Gp be a dynamic binary digraph with corresponding DAC ng’ g For every invariant
T € T, there exists a set of face-map-induced relations Rt C Ry and a Semi-Simplicial Neural
Network SSN as in equation[l|such that:

SSN(X, Rr) = T(Kg 3)-

Moreover, the class of invariants recoverable by SSNs strictly exceeds that of message-passing neural
networks (Gilmer et al.| 2017)), directed GNNs (Rossi et al., | 2024), and message-passing simplicial
networks (Bodnar et al.| |2021b)).

A formal proof is given in Appendix Table|l|summarizes invariant computation across models,
showing that SSNs uniquely recover the complete set of critical invariants necessary for compre-
hensive brain activity characterization. This establishes SSNs as a strict generalization of prior
approaches, enabling fully data-driven, localized, and meaningful representations of brain dynamics.

5 NUMERICAL RESULTS

We empirically validate SSNs on 4 tasks across 13 datasets: two neural stimuli classification tasks
(6 datasets), edge regression (4 datasets), and node classification (3 datasets). In the main body,
we highlight that the theoretical guarantees of SSNs (Secs BH4) translate into measurable gains on
brain-stimulus classification—a task we prove to be particularly principled for SSNs and for which
we introduce a dedicated framework (SecH). Our brain network experiments test two hypotheses: (i)
modeling directed higher-order structure and interactions enhances expressivity, enabling SSNs to
distinguish stimuli that collapse under graph-based or undirected TDL models; and (ii) SSNs extend
neurotopology pipelines by reliably inferring stimulus identity from arbitrary topological samples,
robust to structural variability and permutations. We evaluate these in two settings of increasing
difficulty: Task[5.1} feature classification with fixed topology and varying dynamics; and Task[5.2}



Under review as a conference paper at ICLR 2026

graph/complex classification where both topology and dynamics vary. Additional results on edge
regression and node classification are reported in AppJI.2}[I.3] This section supports Contribution C3.

Data Overview. We build on the well-established NMC-model (Markram

et al.| 2015 [Markram| |2006)), a biologically detailed microcircuit of the Type Count
somatosensory cortex in a two-week-old rat with simulated responses Neurons 31,346
to external stimuli. The dataset consists of a large structural digraph Edges | 7,803,528
G = (V, E) with |V| = 31,346 neurons and | E| = 7,803,528 synapses, érti‘;%gelgfa Zg:gggzgg}t
together with 4495 binary dynamics functions. Following|Conceicao et al.| | Pentachorons | 7,637,507

(2022)), neuronal activity is discretized into 7" = 2 time bins, yielding
{B; : V — B?}1195, where each B, assigns to every neuron v € V a
two-dimensional binary vector encoding its activation response to one
stimulus. Each stimulus corresponds to a uniformly random sample from
eight distinct thalamocortical input patterns. Table 2] highlights the abundance of higher-order directed

motifs, and further dataset details are provided in App.

Table 2: Counts of di-
rected simplices in the Mi-
crocircuit complex Kg.

Experimental Setup. We evaluate SSNs and their routing-based variant, R-SSNs (top-k = 2 relations,
except (4, 125um) where k = 4), against a comprehensive set of set-, graph-, and topology-based
baselines, as recommended in the recent position paper (Bechler-Speicher et al.,|2025). Specifically,
we compare with: (i) Deep Sets (DS) (Zaheer et al., 2017); (ii) message-passing GNNs (Gilmer et al.|
2017; Hamilton et al., | 2017); (iii) Directed GNNs (Dir-GNNs) (Rossi et al., [2024)); and (iv) message-
passing Simplicial Neural Networks (MPSNNs) (Bodnar et al., 2021b). This selection isolates
the contributions of handling relational, directional, and higher-order structure jointly. We also
benchmark against the topological featurization pipeline of |(Conceicdo et al.[(2022), which computes
invariants followed by an SVM classifier (see App[H.3). To ensure fairness, we match parameter
budgets across baselines by scaling hidden dimensions: DS-256, GNN-256, Dir-GNN-256, and the
undirected higher-order baseline MPSNN-64. For SSNs, R-SSNs, and MPSNNs (both standard
and 64-dim variants), we include simplices up to dimension two (triangles). SSNs use standard
boundary/coboundary relations intra-dimensionally, combined with directed up/down adjacencies
inter-dimensionally (see App.[D.6). Hyperparameters for all models are tuned via grid search. SSNs
and R-SSNss are instantiated as message-passing SSN, as are all graph- and higher-order baselines,
using SAGE-style (Hamilton et al.l 2017) message functions. Additional results with attention-based
baselines (Velickovic et al., [2018) are reported in App. [[.1.2]

Model (4,125pm)  (4,325pum)  (8,175um) M=1 M=3 M=5 #Par. Par. (%)
TopoFeat+SVM 4214+ 1.19 3591 +£336 4532+ 1.68 | 27.94 £0.94 27.87+0.89 28.86+ 0.42 312 0.3%
DS 26.63+0.10 1947+ 1.16 27.31+0.34 | 23.28 £0.48 24.29+0.38 25.09 +£0.14 1,680 2%
DS-256 2521+ 1.11 1952+ 1.44 25.12+2.12 | 2524 £0.32 2476 +033 25.87 +0.19 | 70,672 68%
GNN 26.00 + 1.10  21.56 + 1.14 34.02+4.35 | 2543 £0.43 26.03+0.69 2649 +1.02 | 5,392 5%
GNN-256 2470 £+ 1.31 23.02+2.1 3347+4.15 | 2440+051 27.60+091 2827+0.17 | 70,672 68%
DirGNN 36.71 £2.00 48.11 +1.87 53.72+2.89 | 2521 £0.18 31.08 + 1.04 33.00 +£3.69 | 9,744 9%
DirGNN-256 63.52+£0.70 | 25.43 £ 0.54 39.41 +0.27 | 137,232 133%
MPSNN 4333 +6.95 42.65+3.71 53.12+2.65 | 27.45+0.50 32.10+0.77 33.68 +3.04 | 23,888 23%
MPSNN-64 46.85 +6.71 5424 +7.06 3491 +0.73 90,768 88%
R-SSN (Ours) 18,084 18%
SSN (Ours) 7513 +1.28 87.16 +1.36 78.32+7.03 | 46.73 + 1.16 61.35 +1.07 64.72 + 0.54 | 103,184 100%
Gain over 2-nd Best

Table 3: 8-class stimulus classification accuracy (%, higher is better) based on dynamic binary
brain activation responses corresponding to one of eight distinct thalamic input patterns. Columns
(4,125pm), (4,325um), and (8, 175um) correspond to fixed volumetric brain samples (i.e., fixed
topology, see Section [5.1). Columns M = 1, M = 3, and M = 5 correspond to the number of
neuron neighborhoods M sampled within the (4, 325um) volumetric sample (i.e., varying topology,
see Section. The top 1°, 2", and 2" best results are highlighted. Active parameter counts (#Par.)
and relative active parameter percentages (Par. %) at inference are reported with respect to SSNs.

5.1 TASK 1: CLASSIFYING DYNAMICAL BRAIN ACTIVITY IN FIXED VOLUMETRIC SAMPLES
Given a fixed brain structure and time-evolving neuronal activation patterns, the goal is to classify

the stimulus that triggered the observed dynamics. Following Reimann et al.| (2022)), we extract
volumetric samples U C V defined by a neuronal population centroid ¢ € {4, 8} and sampling radius
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r € {125pum, 175um, 325um}. Each sample induces a subgraph Gy = G[U], and we restrict the
binary dynamics B; |y, lifting them as in equation to obtain 4,495 lifted dynamics B; | per sample.
The task is then to classify each lifted dynamic by its associated stimulus identity. We focus on three
representative volumetric samples: (¢, r) € {(4,125um), (8,175um), (4,325um)}, corresponding
respectively to the most and least discriminative volumes under traditional dimensionality-reduction
pipelines (Reimann et al., 2022), plus an additional case to test robustness to volumetric variability.
All models employ a permutation-invariant readout (mean) for compatibility with Task 2, where
structural variability is explicit. In Table 3] (columns (4, 125um), (4,325um), and (8, 1754m)), we
report mean accuracy and standard deviation over 5 data splits (60% train, 20% validation, 20% test).
Additional robustness analyses and attention-based experiments are provided in App.[L.1.2}

5.2 TASK 2: CLASSIFYING NEURON NEIGHBOURHOOD DYNAMICAL ACTIVITY COMPLEXES

We also consider a more challenging setting where heterogeneous neuron samples and their synaptic
connections induce topological variability, moving from feature classification (Task[5.1)) to graph/-
complex classification. Each neuron n in G defines a neighborhood subgraph G,, = G|A/(n)]. For
each binary dynamic, we sample uniformly at random without replacement M neuron-neighborhood
subgraphs from the 25 largest within a given volumetric sample U, following Reimann et al.| (2022).
Restricting each dynamic B; to its M sampled subgraphs and lifting via equation 3|yields M x 4,495
DACs. We use the (4, 325um) component with M € {1, 3,5} to jointly test two hypotheses: (i)
whether SSNs can robustly infer stimulus identity from arbitrary neighbourhoods, and (ii) whether
they achieve strong sample efficiency, as smaller M corresponds to fewer training examples. Table 3]
(columns M = 1, 3, 5) reports mean accuracy and standard deviation across five splits (60% train,
20% validation, 20% test). Volumetric and temporal resolution robustness are discussed in App.
5.3 DISCUSSION

Results in Table |3| show that SSNs accurately classify stimulus identity in fixed brain volumes
(Task[5.1)) and remain effective on arbitrary neighborhood topologies (Task[5.2), where structural
variability is introduced. Their performance gains stem from jointly modeling higher-order directed
motifs—prevalent at multiple scales in brain networks (Sizemore et al., |2018; [Tadi€ et al., [2019;
Sizemore et al.|[2019; |AndjelkoviC et al.l 2020)—together with direction-aware interactions, both of
which are critical to capturing neural activity and function (Nolte et al.,[2019}; [Reimann et al., 2017;
Wang et al., 2010; |[Ecker et al., 2024} Reimann et al., 2022)). These empirical findings mirror our
theoretical results (Sections @ E]), which established that SSNs surpass Dir-GNNs and MPSNNSs in
WL-expressivity (Theorems|IH2) and provably recover a broader class of (neuro)topological invariants
(Theorem[d). The baselines further highlight the limitations of existing approaches. Standard GNNs
and DSs perform worst, reflecting their inability to capture higher-order or directional dependencies.
SVMs on topological features perform better, confirming the importance of higher-order directed
connectivity, yet they remain constrained by reliance on hand-crafted preprocessing and predefined
invariants, indicating that richer representations can be extracted directly from data. Dir-GNNs
and MPSNNs, which model directionality and hierarchy in isolation, also underperform relative to
SSNs, demonstrating that either aspect alone is insufficient. In the most challenging regime (M = 1)
with structural variability and extreme data scarcity (one neuron neighborhood per dynamic), SSNs
outperform all baselines by at least 17%, underscoring the value of strong inductive biases for sample
efficiency (Bronstein et al.| 2021). Importantly, SSNs achieve these gains with parameter counts
comparable to or smaller than baselines (Table[3] columns #Par. and Par.%). R-SSNs consistently
rank second or third across all settings while using significantly fewer parameters and yielding faster
training and inference. Detailed complexity and runtime analysis are provided in App.[Gland[]}

6 CONCLUSION

We introduced Semi-Simplicial Neural Networks (SSNs), a new class of TDL architectures for data
structured as semi-simplicial sets. SSNs generalize graph and existing TDL models by propagating
information over simplices through face-map—induced relations that may be hierarchical, directed, and
asymmetric. They subsume prior architectures and achieve enhanced WL-expressivity. By provably
capturing a broader class of topological invariants—key descriptors of neural activity—SSNs establish
a principled bridge between neurotopology and deep learning. Experiments on a biologically realistic
neocortical model confirm these theoretical advantages in practice: SSNs consistently outperform
state-of-the-art baselines in stimulus classification. Limitations and avenues for future work are
detailed in Appendix B} Overall, our theoretical and methodological contributions, supported by an
open-source codebase, lay the foundation for scalable, directed higher-order representation learning
and open the door to a new generation of TDL models for complex scientific and real-world domains
such as neuroscience.
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A REPRODUCIBILITY STATEMENT

We provide all necessary details to ensure full reproducibility of our results. The experimental settings
for the primary neural binary dynamics classification tasks are described in detail in Section 5] with
complete hyperparameter configurations provided in Appendix ?? and For the Edge Traffic
Regression and Node Classification tasks, experimental protocols and hyperparameter settings are
reported in Appendix [[.2]and [[.3] respectively. Hardware specifications and computational resource
requirements are documented in Appendix [F3] Code and data will be soon available.

B LIMITATIONS & FUTURE DIRECTIONS

In settings where data does not faithfully reflect inherent directionality—either because the inductive
biases from topology and connectivity misalign with actual information flows, or because the
system itself lacks directional structure—SSNs may introduce unnecessary memory overhead due
to reduced parameter sharing across semantically distinct relations, without yielding significant
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accuracy gains. Nevertheless, as shown in our experiments, performance remains competitive
and is not adversely affected. This limitation can be mitigated in two ways: (i) via our proposed
routing mechanism, which adaptively selects the top-£ most informative relations during learning;
and (ii) by investigating directed topological latent inference to recover meaningful directional
structure. From a neurotopological perspective, these techniques cannot yet be applied in vivo, as they
require access to detailed connectomic data—that is, structural information about the brain’s wiring.
However, this limitation is expected to diminish with the increasing availability of densely sampled
electron microscopy connectomes co-registered with neural activity data. More significantly, the
emergence of generative pipelines for constructing biologically realistic simulated digital brains offers
a transformative alternative. These developments open the door to novel applications, including the
design of intelligent systems inspired by biologically grounded architectures (Markram et al., 2024;
2025)), where our model enables the learning of representations that capture high-level information
abstractions within such systems. Beyond our current scope, several promising directions remain open,
including the unsupervised discovery of neural activity motifs and the extension of our framework to
broader neuroscience tasks. Alternative lifting strategies—such as tournaplexes and other directed
combinatorial structures—are largely unexplored and may provide complementary inductive biases.
Incorporating temporal dynamics and signed interactions (e.g., excitatory vs. inhibitory) (Millan
et al., [2025) is another key avenue. We emphasize that our contribution is primarily theoretical and
methodological: it establishes a connection between TDL and higher-order directed complex systems
such as the brain. We do not foresee any potential for harm or misuse of this technology if applied
responsibly.

C RELATED WORKS

Topological Deep Learning. TDL builds directly on pioneering efforts in Topological Signal
Processing (TSP) (Barbarossa & Sardellitti, |2020; Schaub et al., 2021} Roddenberry et al.| [2022;
Sardellitti et al.| 2021} Isufi et al.| 2025} Battilorol 2024), which underscore the importance of
modeling multi-way relationships. Extensions of the WL test to simplicial and regular cell complexes
(Bodnar et al., [2021bza) have demonstrated that message passing on these higher-order structures
outperforms its graph-based counterpart. Both convolutional (Ebli et al.l [2020; |Yang et al., 2022
Hayjij et al., 20205 | Yang & Isufi, 2023 Roddenberry et al.| 2021} |Hajij et al., 2022a} |Yan & Kuruoglu,
2025) and attentional (Battiloro et al., [2024b; |Giusti et al., [2022; |Goh et al., 2022} |Giusti et al.|
2023a) architectures over simplicial and cell complexes have been introduced. Furthermore, message
passing and diffusion on cellular sheaves over graphs (Hansen & Ghrist, 2019; Hansen & Gebhart,
2020; |[Bodnar et al., 2022} |Battiloro et al., 2024c}, Barbero et al., 2022)) have proven particularly
effective in heterophilic settings. Alternatives that eschew message passing altogether for simplicial
complexes have been detailed in (Madhu et al.; |Gurugubelli & Chepuri, 2024; Maggs et al., |[2024)),
while an approach to infer a latent regular cell complex for downstream improvement has been
introduced in (Battiloro et al.,2024a). Gaussian Processes on simplicial and cell complexes have been
presented in (Yang et al., [2024; |Alain et al., [2024)). Comprehensive reviews of TDL can be found
in (Papillon et al.;, 2023 [2025). A combinatorial framework for TDL (combinatorial complexes),
based on ranked, not necessarily uniform, set-type relations, was proposed in (Hajij et al., | 2022b)),
and recently extended in (Hajij et al.,2025). A fairly general topological expressivity analysis of TDL
models is given in (Eitan et al.| 2025). Quantum simplicial neural networks have been introduced in
(Piperno et al.,2025)), continuous variants in (Einizade et al.,[2025), and geometrically equivariant
architectures over simplicial and broader combinatorial spaces in (Eijkelboom et al., 2023} Battiloro
et al.}2025b)). Finally, software libraries and benchmarks for TDL have been released in (Hajij et al.,
2024; Telyatnikov et al., 2025} |Papillon et al.| 2024} Ballester et al.| 2024)).

Directed Graph and Topological Models. A growing body of work has incorporated directionality
into neural architectures to address the inherent asymmetry of relational data in complex systems.
Early spatial methods distinguish incoming and outgoing messages via separate learnable weights,
explicitly modeling node roles (Li et al., 2016} |Abbass| 2018)). Directed GNNs for node classifica-
tion (Rossi et al.| 2024; [Tong et al., [2020b), for instance, have demonstrated superior performance
on heterophilic benchmarks (Rossi et al., 2024; [Koke & Cremers) [2023). Spectral approaches ex-
tend Laplacian-based learning to directed graphs: DiGCN uses a Personalized PageRank—based
operator (Tong et al.l |2020a), while MAGNet introduces the Magnetic Laplacian, encoding edge
directionality in the complex phase (Zhang et al., 2021). This formulation was later extended to
the Sign-Magnetic Laplacian, addressing key limitations and enabling principled learning on signed
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directed graphs (Fiorini et al., [2023)). Extending this works, Fuchsgruber et al.| (2025) propose
the Magnetic Edge Laplacian for edge-level regression tasks in traffic forecasting. Notably, they
introduce both an orientation-equivariant variant—designed for direction-sensitive signals such as
traffic flow—and an orientation-invariant variant—suited for direction-agnostic signals such as speed
limits—thereby generalizing previous edge-based methods. Beyond pairwise structures, recent works
extend to non-uniform, non-hierarchical settings using neural networks on directed hypergraphs (Fior{
ini et al.|, [2024;|Ma et al.| [2024), with applications in traffic forecasting (Luo et al.l[2022) and human
pose estimation (Cui et al.| 2024). [Bernardez et al.| (2025) further show that hierarchical, order-aware
relations—built on the combinatorial framework of |Hajij et al.[(2022b)—better capture communi-
cation patterns in computer network systems. Finally, the preliminary work of [Lecha et al.| (2025)
introduces Directed Simplicial Neural Networks, formalizing higher-order topological directionality
for learning on directed simplicial complexes based on the theoretical foundations of |Rithiméki
(2023).

Neurotopology. The manifold hypothesis posits that neuronal activity is constrained to a lower-
dimensional subspace, shaped by the structural limitations imposed by synaptic connectivity (Cun+
ningham & Yu, |[2014; Gallego et al., 2017;|Curto & Morrison, 2019; |(Chambers & MacLean, |[2016;
Rubinov & Sporns| 2010; Bargmann & Marder, 2013 Bassett & Sporns, 2017). This concept builds
on the foundational principle that structure shapes function, succinctly captured by Hebb’s rule:
“neurons that fire together, wire together.” Yet, precisely how structural connectivity gives rise to
neural manifolds remains a major open question. Biologically grounded computational models, such
as the Blue Brain’s (Markram), [2006) rat neocortical microcircuit (NMC) (Markram et al.| [2015]),
offer a valuable platform for investigating this relationship, providing a detailed representation of
brain structure modeled as a directed graph. Notably, recent work of |[Reimann et al.| (2022) con-
firmed that the NMC model adheres to the manifold hypothesis. However, while directed graphs
effectively capture the inherent directionality of synaptic transmission—from presynaptic to postsy-
naptic neurons (Reimann et al.,|2017)—their dyadic nature limits their capacity to represent polyadic
interactions and higher-order co-activation patterns that are critical to neural computation. Experi-
mental studies have revealed that neuronal connectivity exhibits significant non-random higher-order
structure. For instance, it becomes increasingly unlikely for random activity to produce coher-
ent patterns on higher-dimensional cliques, suggesting that such patterns reflect greater functional
complexity and information abstraction. Simplices—higher-dimensional analogs of cliques—have
been identified as overexpressed motifs across multiple scales of brain networks (Sizemore et al.)
2018 [Tadic et al., [2019} [Sizemore et al., 20195 |Andjelkovic et al., |2020), and have been linked to
functional relevance (Nolte et al.,[2019). Remarkably, human connectomes have been shown to
contain undirected simplices of up to 16 and even 20 dimensions, despite comprising only 1, 115
nodes representing brain regions (Tadi¢ et al.l2019). Crucially, neurons embedded in higher-order
directed simplices with correlated activity exhibit reduced sensitivity to noise and stronger alignment
with the underlying neural manifold (Cunningham & Yu, 2014; |Gallego et al., |2017), ultimately
improving representational fidelity (Nolte et al., 2019; Reimann et al.| 2017; Wang et al., 2010).
Recent findings also suggest that neural circuits balance robustness and efficiency by organizing into
subpopulations with distinct topologies: low-complexity simplices promote efficient communication,
while high-complexity ones support resilience—both coexisting within the same network (Ecker
et al., 2024)). These insights have fueled the rise of Neurotopology, a field modeling brain activity
through topological spaces derived from spike co-activation patterns. Seminal works (Concei¢cao
et al.| 2022; Reimann et al.,2017)) propose modeling neural dynamics as time-indexed sequences of
directed flag complexes (Liitgehetmann et al., 2020) and tournaplexes (Govc et al., [2021)), derived
from subdigraphs induced by active neurons. Brain dynamics are then characterized by computing
topological invariants over these evolving structures. Building on this framework, Reimann et al.
(2022) demonstrated that stimulus identity can be accurately decoded from the NMC model using
this topological features—even when conventional methods fail. These results highlight topological
featurization as a robust and complementary alternative to traditional manifold-based approaches.
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D PRELIMINARIES

D.1 ALGEBRAIC BACKGROUND

Groups. A group is a pair (G, -), consisting of a set G and a binary operation - satisfying the
following axioms: (A1) Associativity: for all a,b,c € G we have a- (b-c) = (a-b) - ¢; (A2) Identity:
there exists an element ¢ € G such that ea = ae = a for all a € G; (A3) Inverse: foreacha € G
there exists an element a~! € G such that a~'a = aa~! = e. Given a set S, the set of all bijections
p: S — S together with the composition of functions forms a group known as the symmetric group
of S, denoted by Sym(S).

Isomorphisms. Let X and Y be two structured objects of the same type. An isomorphismy : X —Y
is a bijective map with inverse ¢»~! : Y — X that preserves all relevant structure. If such a map exists,
we say that X and Y are isomorphic, denoted X = Y. Two sets S and S’ are isomorphic if there
exists a bijection between them. Two directed graphs G = (V, E') and G’ = (V’/, E’) are isomorphic
if there exists a bijection ¢ : V' — V' such that (u,v) € E if and only if (¢(u), ¢ (v)) € E’. If the
vertex sets VV and V' are attributed—e.g., equipped with dynamic binary functions B : V — {0,1}7
and B’ : V' — {0, 1}T—we additionally require that the attributes are preserved under the inverse
map: for all v € V, B(v) = B'(¢"(v)). In general for any two sets equipped with a collection
of relations if set isomorphism preserves relation. Specifically, for directed simplicial complexes
K and K’, an isomorphism is a bijection ¢ on the vertex set that preserves simplices: a tuple
(voy ..., vn) € Xy, is a simplex in K if and only if (¢(vp), ..., ¥ (v,)) € X} is a simplex in K.

Automorphisms. An automorphism of a structured object S is an isomorphism from S onto itself.
The set of all automorphisms of S, denoted by Aut(S), forms a group under composition. Indeed,
composition is associative, the identity map serves as the identity element, and each automorphism is
invertible. If .S is a plain set, then any bijection (permutation) p : S — S is an automorphism, so
Aut(S) = Sym(S) is the full symmetric group on S.

D.2 RELATIONAL PRELIMINARIES

Binary Relations. Let S be a set. A binary relation R on S is any subset R C .S x S. A binary
relation is symmetric if, for all o,7 € S, (0,7) € R implies (7,0) € R; transitive if, for all
0,7,k €S, (0,k) € Rand (k,T) € R together imply (o, 7) € R; and irreflexive if (0,0) ¢ R for
every o € S. We further say that R is n-uniform if every element of S is related to exactly n other
elements. Since relations are subsets of S x S, canonical examples include the universal relation
1 =5 xS, the empty relation 0 = (), and the identity relation id = {(o,0) | 0 € S}.

Basic Operations. Standard set operations extend naturally to relational operations:

RNR ={(o,7)€SxS|(0,7) € Rand (0,7) € R'},

RUR ={(o,7) €S x S| (0,7)€ Ror(o,7) € R'}.
Furthermore, relational composition and converse operations are defined as:

RoR' :={(0,7) € S x S| 3k € S suchthat (5,x) € Rand (r,7) € R'},
R" :={(o,7) € Sx S |(r,0) € R}.

Characteristic function. Analogous to how subsets can be identified with their indicator functions, a
relation R C S x S can be uniquely represented by its characteristic function g : S x S — {0, 1}.
This function assigns a binary value to each ordered pair (o, 7) € S x S: itreturns 1 if (0,7) € R

and O otherwise:
1, if (o,7) € R,
o, T =
xe((@7)) {0, if (0,7) ¢ R.
Matricial Representation. Equipping the set S with an ordering S = {o1,..., 0, }, the matricial
representation of R is the n x n matrix (Ar); = xr((0i,0;)). We call it relation matrix or adjacency
matrix. Such matrix representations underpin computational implementations, relational learning
frameworks, and message-passing neural network architectures (Velickovic,2022).
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n-ary Relations. An n-ary relation over a set S is a subset R C S™, that is, a collection of n-tuples
drawn from .S. For instance, ternary relations R C S x S x S arise by extending binary relations via
the natural join operation:

R R ={(0,k,7) €S xS x8|(0,k) € Rand (k,7) € R'}.

This operation yields a ternary relation by joining the tuples from R and R’ on their shared middle
element y, thus composing relational information across three elements of the set .S.

D.3 DIRECTIONALITY AND SYMMETRY IN RELATIONAL AND COMBINATORIAL
TOPOLOGICAL STRUCTURES

Directionality. A relation of arity n + 1 over a vertex set V' is intrinsically directional when it is
stored as an ordered tuple (v, . .., v,) and membership depends on the order of its entries. Such
a relation is symmetric if membership is invariant under permutations: for every (o, ...,0,) € R
and every permutation p € Sym(n + 1), the tuple (o), - - -, 0p(n)) also belongs to R. Otherwise,
the relation is asymmetric. Binary relations provide the most familiar case. An asymmetric binary
relation R C V x V—where (0,7) € R does not necessarily entail (7,0) € R—is naturally
represented by a directed graph G = (V, F) with R = E. In contrast, undirected graphs correspond
to symmetric binary relations: the presence of (o, 7) guarantees (7, 0), so one may equivalently
replace ordered pairs with unordered pairs {o, 7} without loss of topological information. This
viewpoint extends seamlessly to higher-order structures. A directed simplicial complex K can be
regarded as an asymmetric relational structure over V', equipped with families of asymmetric relations
¥,, € V"*1 of varying arities, which collect directed simplices of different dimensions. Thus, the
asymmetric—symmetric distinction provides a unifying language for characterizing directed versus
undirected combinatorial objects.

Symmetrization. Given an irreflexive relation R on a set S (equivalently, a simple directed graph
G = (V, E)), its symmetrization is defined as Ry = R U RT, or in graph-theoretic terms, Egym =
E U ET. This construction associates an undirected graph Gsy, with the original directed graph via
the canonical projection (or quotient map)

W((U,’U)) = {ua U}, (U,’U) € Esym-

There is a one-to-one correspondence between directed symmetric graphs and undirected graphs
under this map. The same principle extends naturally to directed simplicial complexes. Given a
directed simplicial complex JC—with directed graphs as its 1-skeleton—we define its symmetrization
map © : K — Kgym by sending each n-simplex (vo, ..., v,) to the unordered set {vo,...,v,}.
While this map preserves the simplicial structure (i.e., maps directed simplicial complexes to valid
abstract simplicial complexes), it discards ordering information by identifying every ordered simplex
with all of its permutations. This loss of orientation leads to a reduction in expressive power, which
we make precise in the following proposition.

() (b) (©

Figure 5: (a) A pair of non-isomorphic digraphs G and G’, (b) their corresponding non-isomorphic
directed flag complexes KCg and g, respectively, and (c) the resulting symmetrized simplicial
complex gy, which is isomorphic in both cases, i.e., m(Kg) = 7(Kg/) .

Proposition 2. The symmetrization map 7 : K — Kgym is a simplicial structure forgetful map, that
is, preserves isomorphisms but is not injective on isomorphism classes.

Proof. Let 1 be an isomorphism between K and K’ and let ¢sym (0) = {¢(v) : v € o}. Note that,
Ysym is well defined since different orderings of the same vertex set in o are mapped to the same set
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{(v) : v € o}. Moreover, by construction 7 o ¢) = sy, © 7, implying preservation of simplicial
structure (simplices are sent to simplices). Since 1) is bijective and 7 does not collapse vertices (only
their ordering), it follows that s, is a bijective simplicial map preserving the face structure. Hence,
sym i an isomorphism between Ky, and Ingm, and 7 is isomorphims-preserving. Clearly, there
exist non-isomorphic directed simplicial complexes X and K’ such that 7(K) = 7(K’), implying
the non-injectivity. Finally, note that the number of simplices in Ky, equals that in K if and only
if no two distinct simplices in C share the same underlying vertex set—that is, each simplex has a
unique ordering. Otherwise, 7 collapses the redundant orderings, reducing the total face count (see
Figure [5). O

Symmetrization naturally extends to attributed directed simplicial complexes via a fixed permutation-
invariant aggregation of features.

Transitivization. Conversely, given a simplicial complex K = (V, X) endowed with an arbitrary
total order < on its vertex set V, one naturally obtains a unique directed simplicial complex KCg;, by
assigning to each simplex o € ¥ the directed simplex o = (vg, v1, .. ., v, ), where the vertices of
o are arranged in increasing order (v < v1 < --- < v, ). Consequently, for every pair of vertices
v;,v; € o with i < j, the directed edge (v;, v;) is present in Kg;,. By construction, every simplex
thus forms a transitive clique at the graph level.

D.4 DIRECTION VS. ORIENTATION IN COMBINATORIAL TOPOLOGICAL STRUCTURES

We clarify the conceptual distinction between directionality and orientation, two notions that are
often conflated.

Directionality. As defined in Section a relation of arity n + 1 over a vertex set V' is directional
when it is stored as an ordered tuple (vp, . .., v,,) and membership depends on the order. For instance,
in a directed graph the edge (0,1) does not imply (1,0). Reversing an edge (0,1) vs. (1,0) or
permuting a triangle (0,1,2) vs. (2,1,0) yields a different simplex that may encode different
information. This property enables models to capture higher-order asymmetric motifs—such as
brain co-activations (Sec. ), traffic flows (App. [[.2)), or citation graphs (App.[[.3). By contrast,
symmetrization collapses distinct motifs (e.g., transitive cliques vs. cycles) into a single entity
(Sec. Prop.[2} Fig.[5), erasing essential directional dependencies. Thus, directionality encodes
irreducible asymmetry in the data.

Orientation. Given an unordered k-simplex o = {vy,..., v}, an orientation is a choice of
equivalence class of orderings of its vertices under even permutations. Formally, if p € Alt(k+ 1) C
Sym(k + 1) is an even permutation, then

[1}0, .. .,Uk] = [Up(o), ce ,Up(k)].

The alternating group Alt(k + 1) consists of permutations that can be expressed as an even number of
transpositions. Hence each k-simplex has exactly two orientations, corresponding to 1. Orientation
is thus a Zs-valued structure, while directionality involves the full symmetric group.

Oriented vs. directed edge. An oriented 1-simplex [0, 1] assigns a sign: a positive orientation may
encode flux from 0 to 1, and a negative orientation flux from 1 to 0, thus usually serving as a reference
direction of current flow. Both are the same edge, differing only by sign. A directed edge instead
distinguishes (0, 1) and (1, 0) as two distinct simplices, each possibly carrying different information.

Oriented vs. directed triangle. The unordered simplex {0, 1,2} admits two orientations: clockwise
(0,1,2) ~ (1,2,0) ~ (2,0,1) and counter-clockwise (0,2,1) ~ (2,1,0) ~ (1,0, 2). Orientation
collapses the 3! = 6 orderings into two parity classes. A directed 2-simplex, however, distinguishes
all six ordered triples, allowing models to treat distinct transitive cliques as fundamentally different.

Orientation imposes a sign convention on an undirected simplex, while directionality generates
genuinely distinct simplices on the same vertex set. As a consequence, models that ignore asymmetry
cannot distinguish higher-order motifs, and their adjacency is restricted to set inclusion, preventing
direction-aware propagation of information.
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D.5 FACE-MAP RELATION ALGEBRAS

Let S be a semi-simplicial set with simplices .S and face maps d* : S, = S,—1. Each face map
naturally induces an irreflexive binary relation:

Rir ={(0,7) | 0 € Sy, di'(0) =7} € P(S x S5),

which relates each simplex o € S,, with its ¢-th facet in S,,_1.

Positive Face Map Induced Relation Algebra. The set of all binary relations on S, denoted as
P(S x S), forms a positive relation algebra closed under the operations of union (U), intersection
(M), relational composition (o), and converse (T ). Specifically, the structure:

R =(P(SxS),U,n, o, T.id, 0, 1)

satisfies standard axioms in (Tarski, (194 1). Formally, we define the face map relation algebra Ry
as the smallest positive relation subalgebra of P(S x S) generated by the collection { Rgr | n >

0,,0 < i < n}, equipped with standard operations U, N, o, T together with relations id, 0, 1.

For theoretical purposes, we consider ternary relations from natural joins R <t R’ from R, R’ € R.
These higher-order relations play a role in our generalization of Weisfeiler—Leman-type procedures

(see Appendix [E.2).

D.6 EXAMPLES OF COMMON GRAPH AND TOPOLOGICAL FACE-MAP RELATIONS

Overall, face-map—induced relations generalize classical binary relations found in graphs, digraphs,
and simplicial complexes, thereby providing a principled algebraic foundation for relational message-
passing architectures (Velickovic) 2022} Rossi et al.l 2024; Bodnar et al.,|2021b) (see Appendix @
In this section, we provide some of this common examples. In particular, we introduce the relation
set used in our SSN experiments, combining boundary/co-boundary maps with directed up/down
adjacencies for intradimensional communication.

Let .S be a semi-simplicial set with set of simplices S. We define the following face map—induced
binary relations:

Rnyij = Rin o Ray = {(0,7) | d(0) = d (1)} € Ra, ©)

which relates two n-simplices o and 7 if their i-th and j-th facets coincide, respectively (see Figure[6).
A natural extension, often employed in message-passing architectures, is the following ternary
relation:

Rnyij = Rnyij > Rap = {(0,7,K) | d}'(0) = d} (1) = k} € Ra, )

which explicitly includes the shared lower-dimensional face x between simplices o and 7. Similarly,

2

Figure 6: Two 2-simplices (triangles) o and T are related such that d3(o) = d3(7) = e, where e
denotes the shared edge highlighted in red. Therefore, (o, 7) € Raj 0 2.

we define:

Rtij =Ry 0 Rpes ={(0,7) | 3n € 8, d} (k) =cand dj (k) =7} ERa  (6)

which relates o and 7 if they are, respectively, the i-th and j-th facets of the same (n + 1)-simplex x
(see Figure[7). Its corresponding ternary extension is defined as:

RnT,i,j = Rn’r,i,j > R;—?+1 = {(O’, T, Ii) | dk € 57 d?(,‘{) = o and d?(li) = T} € Ra, (7)
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which explicitly includes the common higher-dimensional simplex «. From this point forward, we
will use the same notation for both binary and ternary relations when the context is clear, as all
constructions are valid in both cases. In Section unless otherwise specified, relations will be
assumed to be in their ternary form. Notably, when i # j, these relations are asymmetric, thereby

ayay

Figure 7: Two 1-simplices (edges) o (red) and 7 (brown) are related as facets of a common (n + 1)-
simplex « (light purple triangle). In (left), (o, 7) € R14 2,0, whereas in (right), (o, 7) € R142,1.

inducing directed graphs over the set of simplices S. Well-known examples of directional face-
map relations include those arising in graph and simplicial structures. For example, at the level of
0-simplices (nodes), the standard directed up adjacency relations can be derived as follows:

Rin = Ror01 = { (u,v) | Je € B, di(e) =uand di(e) =v },€ Ry ©))

indicating that  is the target of v (i.e., v is the source of e and w its sink). Moreover,
Rout == Ror.10 = { (u,v) | Je € E,dj(e) = uand dj(e) = v} € Ra, 9)

meaning u is the source of v (i.e., v is the target of e, and w the source). These two relations are
converses of each other: (Rin)T = Rout, and thus:

Rsym = Rin URgu € Rd7 (10)

induces a symmetric directed graph Ggym = (V, Esym) in one-to-one correspondence with the
undirected graph Ggyr, = (V, E).

Directed Paths and Higher Order Directionality. A directed path of length k in a digraph
G = (V, E) is a sequence of vertices (v1, v, ..., vg) such that (v;,v;41) € E forevery 1 <i < k.
Similarly, given a set of simplices S of a semi-simplicial set equipped with a face-map induced
relation R € Rg4, an R-path of lenght & in the semi-simplicial set is a sequence of simplices
(01,09, ...,0)) such that (¢;,0441) € Rforevery 1 <i < k. Notably, (01,0%) € R°*, where R°F
denotes the k-fold composition of R with itself. Composing different instances of R, ; ; yields
different higher-order simplicial paths, connecting directed simplices in distinct direction-preserving
manner (Rithimékil 2023} [Lecha et al.l 2025)) (see Figure @

(a) (b)

Figure 8: (a) An Ry o,2 directed path (red arrow) in a consistently directed two-dimensional structure
with a unique source and sink, and (b) An [%o) 1 2 path (red arrow) depicting a circular flow around a
source vertex.

Boundary & Converse Boundary. Let /C = (V, ) be a simplicial complex with maximal dimension
N, and let KCg;, denote the associated directed simplicial complex induced by a fixed total order on
V. For each dimension n with 1 < n < N, the nth boundary relation is defined as:

B, = Lnj Rar, (11)
=0
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which relates each n-simplex to all its (n — 1)-dimensional faces. Conversely, for N — 1 > n > 0,
the n-th converse boundary relation is defined as

n+1
Cn = {J(Rysn)T, (12)

=0

relating each n-simplex to all (n + 1)-dimensional simplices containing it as a facet. Notably, for
any 0 < m < n < N the composition of maps B,, ,,, == By,11 © By,42 0 ---0 B, relating an
n-simplex with its m-dimensional faces. Similarly, for the converse boundary relations, define
Cpmn =Cp_10---Ch o Cpy, relating n-simplex with all m-simplices containing it.

Aggregated Lower and Upper Adjacencies. For each dimension N > n > 0, we define the
collection of all possible n-lower adjacency relations as

Rin ={Ryn.ij | (i,7) € [n]*}. (13)

Accordingly, we define

RJ,n = URMH (14)

which relates a simplex o to all simplices 7 sharing a common facet with o. Then, for dimensions
N —1>n > 0, we define the collection of all possible n-th upper adjacency relations by

Rin = {Rtn,ij | (4,5) € [n]* and i # j}.. (15)

Finally, we define the aggregated upper adjacency relation as

Rip = Rn, (16)

which relates a simplex o to all simplices 7 that share a common higher-dimensional simplex
containing both as facets. Notably, B,,, C,,, R}, Ry, coincide with the four types of adjacent
simplices defined in (Bodnar et al.| 2021b)) under which MPSNN operate. Under this setting, we
denote U,, = {By,, Cp, Ryn, Rtn} and D,, = {B,,, C\,} UR |, U R4, with the understanding that
only those relations which are defined are included. Accordingly,

N N
U= U U, and D= U D,, (17)
n=0 n=0

are defined. Throughout all experiments, SSNs use the relation set D equation [I7/|on 2-dimensional
semi-simplicial sets, combining boundary/co-boundary maps with all directed up/down adjacencies
for intradimensional communication.

D.7 INVARIANTS, COLORINGS AND THE WEISFEILER-LEMAN TEST

Invariants. An invariant for a given class of objects is a function f assigning to each object a value
that remains unchanged under isomorphisms. Formally, if X = Y, then f(X) = {(Y"). Objects with
identical values under f share a common structural property. A classical example is set cardinality,
a complete invariant: sets with the same cardinality are isomorphic. In contrast, vertex count is an
incomplete invariant for graphs, as non-isomorphic graphs can share vertex counts, e.g., a complete
and an edgeless graph.

From Local (vertex) to Global (graph/complex) Invariants. Given a digraph G = (V, E) or
directed simplicial complex K = (V| X), potentially with dynamic binary functions, a vertex invariant
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isamapc:V — Corc:V x {0,1}T — C invariant under isomorphisms, meaning c(v) = ¢(¢)(v))
for all vertices v under isomorphism . Vertex invariants extend naturally to graph or complex
invariants through a permutation-invariant aggregation, i.e, functions that are invariant under set
isomorphism. Precisely, given a vertex invariant c, an induced binary graph invariant can be defined
as: ¢(Gp) = ¢({{c(v) | v € V}}), where ¢ is a permutation-invariant function. Consequently, if
Gp = G, then c(Gg) = ¢(Gf). Real-valued vector vertex invariants arranged as ordered sequences,
¢(Gp) = (c(vg), - .., c(vn)) according to a fixed vertex ordering V' = {v1, ..., vy} constitute graph
features, which are generally not invariant, as they explicitly depend on the chosen vertex ordering.

Graph coloring. Let G = (V| E) be a graph. A graph coloring is a vertex invariant ¢ : V' — N
which assigns to each vertex a positive integer (its color). For any n € N, the preimage ¢~ (n) = V,,
partitions the vertex set into subsets of vertices sharing the same color property. The pair G. = (G, c)
is called the colored graph and is an attributed graph.

Color Refinement. A color assigment ¢’ is a refiment of ¢ if for every pair u,v € V, ¢/(u) = ¢/(v)
implies c(u) = c(v). In other words, vertices that share the same color under ¢’ must also share
the same color under c. Thus, ¢ partitions the vertex set into a potentially richer variety of color
classes. Specifically, they are equivalent ¢’ = ¢, if for every pair u,v € V, ¢/(u) = ¢/(v) if and only
if c(u) = c(v).

The Weisfeiler-Leman Test. Given a graph G, define an initial coloring c’, e.g., setting c®(v) = 0
for all v € V. This yields the colored graph Gy = (G, c?); clearly G = G’ if and only if Gy = G}).
For a vertex u € Go, define the invariant ci; : V x N — M(N) (here, M(N) denotes the set of
finite multisets of N) by ¢k, (u) = {{c!(v) | (u,v) € E}}, i.e., assigning the multiset of colors
of u’s neighbours the relation E. Then, we obtain a refined coloring c!/*! by setting c!*!(u) =
hash(c!(u), cl;(u)) € N, where hash: N x M(N) — N is an injective function. The refinement

process continues until the coloring stabilizes; that is, until ¢!*!(u) = c!(u) for all u € V. Once
stability is reached, denote the stable coloring by ¢ and the resulting colored graph by G. = (G, ¢).
Assume that the image of c consists of k distinct colors (which, without loss of generality, can
be labeled {1,...,k}). A colored graph invariant h is then obtained by counting the vertices of
each color: h(G.) = (] ¢7*(1) |,...,| ¢c1(k) |). Thus, for a pair of graphs G and G’ we have
h(G.) # h(G.), then G %* G’. This algorithmic procedure, yielding incomplete graph invariants
discriminating some non-isomorphic pairs, is the Weisfeiler—Leman test (Weisfeiler & Leman), | 1968)).

E THEORETICAL PROPERTIES OF SSNS

A Message Passing Semi-Simplicial Neural Network (MPSSN) is a specific instantiation of a semi-
simplicial neural network (SSN), as defined in Equation[T} in which each relation-specific transforma-
tion wg, follows the directional message-passing paradigm introduced in the MPNN-D module (Rossi
et al.| 2024)). In this setting, messages are inherently asymmetric and propagated along the relation R:
that is, if (o, 7) € R, then wg updates the representation of 7 using information from o, but not the
other way around. For the remainder of this section, we adopt MPSSNs as our reference architecture
for theoretical analysis.

E.1 GENERALITY

Proposition [IL  Semi-simplicial neural networks (SSNs) subsume directed message-passing
GNNs (Rossi et al.| |2024) on directed graphs, message-passing GNNs (Gilmer et al.| 2017) on
undirected graphs, message-passing simplicial neural networks (Bodnar et al.| | 2021b)) on simplicial
complexes and Directed Simplicial Neural Networks (Lecha et al.| |2025) on directed simplicial
complexes.

Proof. Let wgr denote the message propagation operator associated with a face-map—induced relation
R, as defined in Equation [T} We instantiate each wp, following the directional message-passing scheme
of the MPNN-D framework (Rossi et al.| [2024)), which propagates information along R: specifically,
if (0, 7) € R, then wg updates the embedding of 7 using the features of . First, consider an attributed
directed graph Gp. If the SSN is instantiated with the relation set R = { Riy, Rout } and the directional
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propagation rules of MPNN-D, the resulting model corresponds exactly to a Dir-GNN (Rossi
et al., 2024). Next, if G is undirected—viewed as a symmetric directed graph—then choosing
R = {Rsym} yields an Rgym-MPSSN that recovers the standard message-passing GNN (Velickovic,
2022; |Gilmer et al.,|2017) operating over Gr. Let K be an attributed simplicial complex, and let
I@dir, F be its associated directed simplicial complex induced by a fixed total order on the vertices (see

Appendix. Then, an MPSSN operating on Kg;,,  with the undirected relation set{ (as defined in
Equation[17)) corresponds exactly to a message-passing simplicial neural network (MPSNN) (Bodnar
et al.,[2021b) acting on K. Finally, let r be an attributed directed simplicial complex, an MPSSN
operating on the set of relations D as in (as defined in Equation corresponds exactly to a
message-passing Directed Simplicial Neural Network (Dir-SNN) (Lecha et al.| |2025). Therefore, by
appropriately selecting the relation set R C R, and instantiating the message propagation operators
{wgr} accordingly, the SSN framework unifies and generalizes MPNNs, Dir-GNNs, MPSNNs and
Dir-SNNs. O

E.2 WEISFEILER-LEMAN EXPRESSIVENESS

Relational Weisfeiler-Leman Test (R-WL). Let .S be a set equipped with a collection of binary
relations R. We extend the standard Weisfeiler—Leman (WL) test to handle multiple relation types,
following the formulation of |Barcelo et al.|(2022). Initialize a coloring c, e.g., ¢’(o) = 0 for all
o € S. Foreach R € R, iteration [ > 0, and o € S, define

cp(o) = {{c(7) | (o,7) € R}},

the multiset of colors of elements related to o under R. The refinement step is
c!™1(o) = hash (cl(a), (clR(o))ReR), (18)

where hash: N x M(N)I®l — N is injective. This reduces to the classical 1-WL test (Weisfeiler &
Leman, |1968) when |R| = 1.

Refinement by Unions. For a finite family A of relations on S, its finite union-closure is
(A) = { UR ‘ FCA Fﬁnite}.
ReF

That is, (.A) consists of all finite unions of relations from .A. Given families .A, B of relations, we say
that A refines BB by finite unions if B C (A).

Lemma 1. Let S be a set, and let A and B be finite collections of relations on S. Suppose A is a
refinement by finite unions of B. Then, A-WL is at least as expressive as B-WL.

Proof. Let a and b denote the colorings of A-WL and B-WL, respectively. We show by induction
that a refines b at each iteration . Initially, we set a’(c) = b’(0) = 0 for all o € S, trivially
satisfying the base case. Assume the claim holds at iteration [.If a!*1(0) = a!*!(7), injectivity of
hash implies

ay(o) = a'y(t) forall R € A.
By Lemma 2 in (Bevilacqua et al.,|2022), equal multisets under a finer coloring remain equal under
any coarser coloring; using the inductive hypothesis (that a! refines b'), we get

bi(o) = bs(r) forall R € A.
Now fix R’ € B. Since A refines B by unions, there exists Az C A such that R’ = URGAR, R. By

the WL definition, the neighbor multiset for a union relation is the multiset union with multiplicities
added (bag sum) of the components:

V(o) = €D (o).
ReAg,
Therefore,
b (o) = @ br(r) = by (),
REAR

Hence the arguments to hash at iteration [ coincide and b'**(c) = b/*1(7). This completes the
induction, so A-WL is at least as expressive as 3-WL. [
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Semi-Simplicial Weisfeiler—-Leman Test (SSWL). Let S be an attributed semi-simplicial set with set
of simplices S, and let R C R4 be a collection of face-map—induced relations. The Semi-Simplicial
Weisfeiler—Leman Test (SSWL) is the R-WL test equation [I8|applied to S.

Lemma 2. Let S be the set of attributed simplices of a semi-simplicial set S endowed with a collection
of face-map—induced relations R C Ry. Consider an R-MPSSN defined by equation|l| Suppose
the message module wr, the aggregator ), and the update function ¢ are all injective. Then, an
R-MPSSN is as expressive as the R-SSWL test.

Proof. Let ¢ and x denote the colorings produced by the R-SSWL and the R-MPSSN, respectively.
We show by induction that c refines x. At/ = 0, without loss of generality, we initialize c® (o) =
xY(0) = 0 for all o € S, establishing the base case trivially. Assume the induction hypothesis holds
at iteration /. Consider two n-simplices o, 7 € S such that c!*1(c) = c!T1(7). By the definition
of R-SSWL, this implies identical multisets of colors aggregated from neighboring simplices at
iteration [. By the induction hypothesis, these multisets coincide under x', ensuring equality in the
arguments of the R-SSN, thereby yielding x'*1 (o) = x'*1(7). By induction, c refines x. Conversely,
if x!*1 (o) = x!*+1(7), the injectivity of the composition of injective operators wg, &) and ¢, implies
identical multisets at iteration /. By the induction hypothesis, the hash function receives identical
inputs, resulting in c¢!*1(¢) = c!*1(7). Thus, ¢ = x, proving that R-MPSSN and R-SSWL are

equally expressive. O
@¢g (b) G’ (©) Kg () Kgr

Figure 9: A pair of non-isomorphic directed graphs, shown in (a) and (b), along with their correspond-
ing directed flag complexes in (c) and (d), respectively. While these digraphs can be distinguished by
SSNs operating on Kg and g/, they cannot be distinguished by Dir-GNNs (Rossi et al.| 2024).

SSN vs. Dir-GNN. We now prove Theorem
Recall from App.[D.2]that a relation R is n-uniform if each element of S is related to exactly n others.

Theorem [T} There exist SSNs that are strictly more expressive than directed graph neural networks
(Dir-GNN ) (Rossi et al.| | 2024)) at distinguishing non-isomorphic directed graphs.

Proof. Let G be a directed graph and K¢ its corresponding directed flag complex, with maximal di-
mension 2. Consider the MPSSN defined on Kg with face-map—induced relations Dy = { Rin, Rout }
and D as in Then, the proof follows from Theorem 1. of (Lecha et al., 2025). To build intuition,
Fig. [12] depicts two non-isomorphic directed graphs in which both R;, and R,y are 2-uniform
relations—that is, each node has exactly two incoming and two outgoing neighbors. Assuming
constant activation features across all vertices, these graphs cannot be distinguished by Dir-GNNss.
In contrast, SSNs separate them by exploiting structural differences in their associated directed flag
complexes. O

MPSSNs vs. MPSNNs. We prove that there exist instances of MPSSNSs that are strictly more
powerful than MPSNNs (Bodnar et al.,|2021b)) at distinguishing directed simplicial complexes.

Lemma 3. Let K be a directed simplicial complex with set of simplices ¥, and let U and D be
collections of face-map—induced relations defined as in Equation[I7] Then, D-SSWL is at least as
expressive as U-SSWL.

Proof. Since D is a refinement by unions of {, the result immediately follows from Lemmal[l] [
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Figure 10: Two directed simplicial complexes: (a) &y, (b) KCp, and (c) their shared symmetrized
simplicial complex gy . Despite K, 2 Ky, both are mapped to the same undirected complex under
symmetrization.

Lemma 4. There exists a pair of directed simplicial complexes that are distinguishable by D-SSWL
but indistinguishable by U-SSWL.

Proof. Let Ky, Ky, and Ky, be as in Figure @ with constant activation values assigned to all sim-
plices. By construction, the Z/-SSWL updates on &, and K}, are equivalent to running SWL (Bodnar
et all [2021b)) on the shared symmetrized complex Kgym, and thus produce identical outputs. In
contrast, D-SSWL distinguishes /C, and K}, due to their differing directional structure. O

Corollary 1. D-SSWL is strictly more expressive than U-SSWL.
Proof. Direct consequence of Lemmas [3and 4] O

Lemma 5. There exist D-SSNs that are strictly more expressive than U-SSNs in distinguishing
non-isomorphic directed simplicial complexes (Bodnar et al.| | 2021Db).

Proof. Follows directly from Corollary [T|and Lemma 2] O

Theorem [2} There exist SSNs that are strictly more expressive in distinguishing non-isomorphic
directed simplicial complexes than MPSNNs (Bodnar et al.||2021b) under symmetrization.

Proof. Follows directly from Lemma [5|and Proposition 2} which ensures the symmetrization map m
to be forgetful. O

E.3 PERMUTATION EQUIVARIANCE AND INVARIANCE

Let S% be an attributed set equipped with relations R. Every permutation p € Aut(S) induces an
isomorphic relabelled structure (S%), = (p-S,p-R,p-F) where p- R = {(p(c),p(7)) : (0,7) €
R}foral Re Randp- F = Fop~!. Wesaythatamap ¢ : SK — (SR) is:

* Permutation equivariant if, for every p € Aut(.S), it holds that ¢ o p = p o ¢.
* Permutation invariant if, for every p € Aut(.S), it satisfies ¢ o p = ¢.

Consider an attributed semi-simplicial set S with attributed simplices Sr and face-map-induced
relations R. Representing Sy as a matrix requires assigning an arbitrary global indexing (ordering)
to simplices S = {o1,...,0n} (see Section . Neural network models processing these data must
therefore exhibit invariance or equivariance under relabeled (permutations of indices) isomorphic
structures. Specifically, Semi-Simplicial Neural Networks (SSNs) operate on an attributed set of
simplices with face-map-induced relations S, necessitating consistent behavior under reindexing of
the entire structure, including both the relations and feature assignments. We prove that SSN layers
indeed satisfy this property:

Theorem Let SE be an attributed semi-simplicial set with face-map-induced relations R.
Consider an SSN layer defined as in Equation equation(l] If for each relation R € R, the mapping
wr and the aggregator (X) are permutation equivariant, then the SSN layer is permutation equivariant
with respect to simplex reindexing. That is, for all p € Aut(S), we have:

SSNop = poSSN.
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Proof. Let X! denote the matrix of features at layer [, and define the aggregated features X =
R rer WR (X l). By assumption, each wg, is permutation equivariant and (¥) is permutation equivari-
ant (or invariant, depending on definition), so for any p € Aut(S), ® pcr wr(p(X')) = p(X™).
Let ¢ be the pointwise update applied by the SSN layer: [zL] = ¢(al , 27). Since ¢ acts
independently on each simplex, for any p,

(p(al,), pla) = ¢(aty o2l ) =abtl = p(abt).

Hence ¢(p(X"), p(X™)) = p(¢(X', X™)). Combining the equivariance of aggregation and the
update yields SSNop = p o SSN. This completes the proof. O

F IMPLEMENTATION DETAILS

F.1 SEMI-SIMPLICIAL NEURAL NETWORKS (SSNS)

We implement Semi-Simplicial Neural Networks (SSNs) leveraging PyTorch Geometric’s
HeteroConv| wrapper (Paszke et al.| [2019) to efficiently compute convolutions over heteroge-
neous graph structures. Consider a semi-simplicial set S equipped with an attributed set of simplices
SZ? and face-map-induced relations R. Nodes correspond to simplices in .S, where each node type is
defined as NodeType(o) = dim(o). Formally, R{ C R represents the subset of relations linking
simplices of dimension s to those of dimension ¢, with each relation R € R being a binary relation
R C S, x S;. The EdgeTypes are thus structured as tuples (s, R, t), encapsulating the relational
interactions between simplices of varying dimensions. The update rule for SSNis, targeting simplices
of dimension ¢, is defined by modifying the HeteroConv layer as follows:

dim(S)
X =¢|X,, P @ wax))|. (19)
s=0 RERS

This formulation involves a two-step aggregation procedure: initially, messages from each source
dimension s are independently aggregated via relation-specific mappings wgr. Subsequently, these
dimension-specific contributions are merged to update the features of simplices at dimension ¢.
Importantly, the HeteroConv wrapper enables various convolutional operations, such as SAGE,
GAT, or GCN, for implementing the relational mappings wg.

F.2 ROUTING SEMI-SIMPLICIAL NEURAL NETWORKS (R-SSNS)

Let S}z denote an attributed semi-simplicial set equipped with a collection of face-map-induced
relations R C R4. Consider a partition Pg = {R1,..., R, } of R into n distinct relation classes.
The I-th layer of a Routing Semi-Simplicial Neural Network (R-SSN) updates the features X' as

follows:
X=X, @ @ Gr(X") - wr(X))), (20)
ﬁEPR RER

where Gr(X') € [0, 1] is a gating function that outputs normalized weighting scores for each expert.
This gating mechanism employs a top-k selection regime, dynamically identifying the £ most relevant
experts for each subset of relations R € Pr during message aggregation. The operator € represents
the final aggregation of expert representations. Following the details outlined in Appendix [F.1} we
partition R into relations {R;}, where each binary relation R C S, x S;. For computational
efficiency and practical implementation, we adapt the HeteroConv| framework to express the
R-SSN update at layer [ for the n-dimensional feature representation:

dim(S)
Xl“_qs(xtl, B R G- wr Xl)) 1)
s=0 RER]

Here, the representation 2!, = P(X!) is obtained through a pooling operator P : R¥»* P ' RD
where K,, = |S,,| and D! is the dimensionality of features at layer /. For each source dimension
s, we denote M = |R{| as the number of available relation experts. The soft gating function
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G:RP' - [0, 1]™ computes normalized scores for expert selection via a top-k mechanism, defined
explicitly as:

G(z!) = Softmax (TopK(gates(xi), k)), (22)

where the gating scores are calculated as:

gates(x) = x - W, + e - Softplus(x - Wy,), (23)

with noise ¢ ~ A(0,1) and learnable parameters W,, W,, € RP"*M that modulate clean and
noisy gating scores, respectively. It is well-established that expert selection mechanisms can lead
to imbalance issues, with certain experts disproportionately favored during training (Shazeer et al.|
2017; Bengio et al., 2015). To address this, we adopt a soft constraint from (Shazeer et al.,[2017),
incorporating a regularization term in the training loss to encourage equitable distribution of samples
among experts. Specifically, for each training sample x, we compute the probability P(x, 1) that
the gating function G(z); remains active upon independently re-sampling noise for the i-th expert,
holding other noises constant. This corresponds to the probability of the i-th gating score gates(x);,
where gates(x) = x - Wy + € - Softplus (x . Wn), to be larger than the k-th greatest gating score,
excluding itself, i.e.:

P(z,i) = Pr(gates(z); > kth_excluding(gates(x), k, 1)) (24)

where € ~ N(0, 1) and kth_excluding computes the k-th largest element of gates(z) excluding the
i-th element. Following (Shazeer et al., 2017}, we can simplify this to:

(25)

Pla,i) = <(az - Wy)i — kth_excluding(gates(x), k, 1))

Softplus ((E : Wn)

%

where @ is the cumulative density function of the standard normal distribution. We now define the
load vector Load(X), i.e., an estimator of the number of samples assigned to each expert given a
batch X, whose components are

Load(X); = Y P(x,i). (26)
rzeX

Finally, the additional loss term L,y is:

Lload = )\loadCV (LO&d(X))2 (27)

where C'V () computes the coefficient of variation and Ajy,q is a hyperparameter that weights the
contribution of this term in the total loss. Minimizing this term corresponds to minimizing the
variation of the number of samples assigned to each expert, i.e., balancing the load across experts,
and has been shown beneficial in practice (Shazeer et al., 2017).

F.3 COMPUTATIONAL RESOURCES

Experiments were conducted on a single NVIDIA A100, NVIDIA L40 GPU, NVIDIA A40 or
NVIDIA V100 GPU. The total training time for all experiments was approximately two weeks.
Hyperparameter tuning was managed using Weights & Biases.

G COMPUTATIONAL COMPLEXITY

We analyze the effect of refining relations in relational message passing architectures, as we are
interested in moving from undirected to directed (i.e., direction-aware) relations. In these models, a
separate message is computed per relation instance of a given relation type. Formally, let .S be a finite
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attributed set (e.g., the set of attributed simplices of a semi-simplicial set). The asymptotic complexity
is governed by three quantities that may grow with the input: N, the number of elements in S; D, the
hidden feature dimension; and E, the total number of relation instances (edges), each corresponding
to a message. In contrast, P, the number of relation types, is treated as an input-independent constant
determined by the model design.

Example (Dir-GNN). Consider a directed, attributed graph G = (V, £). Here, the attributed set is
S =V, the set of nodes. The relation set is B = Ry, Roy, corresponding to incoming and outgoing
edges. Thus, P = |B| = 2. While N = |V| and E = |€| may grow with the input size, P remains
fixed by construction.

Proposition 3. Let S be an attributed set of N elements with matrix form X' € RN*DP l, and let B

be a collection of P relations on S, such that for each relation R € B is a set of Er elements and
E =Y p Eg. Let H be an SSN layer of X'*! = H(X', B) where X'** € N x D! with wg, an
MPNN-D module (Rossi et al.| [2024)). Then, its forward pass time complexity is

Ts = O(ND? + ED).

Proof. Each relation R € B involves two operations: (i) A dense projection of the N node fea-

tures, which requires X'Wg € RVNXPY™ is O(NDD!*1). (i) A message-passing step over
the edges Er of the relation, each edge transmitting a D't!-dimensional message, with cost
O(ER D''). Summing over all P relations yields: T = > pcs[O(ND' D) + O(ERD'1)] =
O(PND'D"*! + ED'Y). Assuming D' ~ D'*! = D we obtain:

Ts = O(PND? + ED).
Moreover, if treating P as a small constant, one can argue:
Ts = O(ND? + ED).
O

Corollary 2. Let S be a set, and let A and B be two collections of relations on S, such that A is a
finite refinement by unions of B. Then, T 4 = Tg.

Proof. By Proposition Ts = O(ND? + ED). Since A refines B by splitting each coarse relation
into at most a constant number () of finer ones, the same summation over relations yields 74 =
O(QND? + E D). Then, T4 = O(ND? + E D) = Tg. Thus the refinement does not change the
asymptotic forward-pass cost. O

Example (Dir-GNN): The forward-pass cost of one SSN layer applied to this setup is, by our derived
bound:
T =O(PND? + ED) = O(2ND? + ED).

As is standard in Big-O notation, constants can be absorbed, yielding:
O(ND? + ED),

as stated as a corollary in the proof of our theorem. We highlight that this bound exactly matches the
complexity reported for Dir-GNN (Sec. 3, p. 6, (Rossi et al.,|2024))), showing consistency between
our general analysis and this specific case.

H ToOPOLOGICAL DEEP REPRESENTATION LEARNING FOR BRAIN DYNAMICS

H.1 DATA

We build upon a simulation that was run on a Blue Brain Project (Markram, 2006), a biologically
validated digital reconstruction of a microcircuit in the somatosensory cortex of a two-week-old rat
(the NMC-model) (Markram et al., | 2015) used in subsequent neurotopological studies (Reimann
et al., 2017; |Conceicgao et al., [2022} |Reimann et al., [2022)). The model involves two fundamental
components: structural connectivity of the circuit and neuronal binary dynamics. First, structural
connectivity is modeled by a directed graph G = (V, E), with neurons represented by nodes V' and
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directed edges (u,v) € E denoting synaptic connections from presynaptic neuron u to postsynaptic
neuron v. Second, a collection of binary dynamics B = {B : V — {0,1}T} is defined, where each
dynamic B encodes neuronal activity over time, capturing neuronal firing (1) and quiescent (0) states
across I discrete time bins, under 8 stimulus-driven input patterns. The stimuli were delivered by
activating thalamocortical afferent fibers—axons that carry sensory signals from the thalamus to the
cortex, modeling how the brain receives external input. These synaptic input fibers were organized
into bundles; specifically, the 2170 input fibers were partitioned into 100 spatially adjacent bundles
using k-means clustering, reflecting the biological organization in which thalamic afferents target
specific cortical zones. Each stimulus activated 10 randomly selected bundles (approximately 10%
of the afferents), ensuring that the same groups of fibers were targeted for each stimulus pattern.
The activation followed an adapting, stochastic spiking process, which introduces variability and
biological realism while preventing the memorization of fixed patterns. Stimuli were presented as
a continuous stream: every 200 ms, a decaying and adapting stochastic spiking process activated
the corresponding fiber bundles during a predominant 10 ms interval. The 200 ms inter-stimulus
interval was chosen based on the observation that the population response to each stimulus decayed
to baseline within 100 ms. Each stimulus pattern was repeated approximately 562 £ 4 (mean = std)
times, yielding a total of 4495 stimulus presentations. Each stimuli simulation time is segmented into
a fixed number of 7" time bins, for each bin the set of neurons that became active (i.e., exhibited a
binary state of 1) is recorded, thereby defining a set of 4495 binary dynamics B = {V — {0,1}7}. In
particular, following Conceicéo et al.|(2022)), we focus on the time subinterval At = [10 ms, 60 ms],
where spiking activity is mostly concentrated. This interval is subdivided into two 25-ms segments,
yielding a set of 4495 binary dynamics B = {V — {0,1}?}. Here, B;(v) = 1 indicates that a
neuron v is active during the ¢-th 25-ms segment (with ¢ € {0, 1}) in the experiment.

H.2 DyYNAMICAL ACTIVITY COMPLEXES

In Section 4] we introduced a lifting procedure that maps dynamic binary digraphs to dynamic
binary directed simplicial complexes. This transformation enables the representation of directed
higher-order neural co-activation motifs in a structured format that is both expressive and compatible
with graph-based and TDL models. To establish the soundness of this lifting, we verify two funda-
mental properties. First, isomorphism preservation: if two dynamic binary digraphs are isomorphic,
their lifted representations must also be isomorphic. This ensures that equivalent neural dynamics
yield identical higher-order structures. Second, consistency with the neurotopological pipeline: a
Dynamical Activity Complex (DAC) must encode the time series of functional complexes—that
is, the directed flag complexes derived from the subgraphs induced by active neurons at each time
step. In this section, we formally prove both properties. Given a dynamic binary graph G, or more
generally a dynamic binary directed simplicial complex Sp, let V1 denote the set of active vertices
at time ¢, and 21* the corresponding set of active simplices.

First, the following proposition guarantees that isomorphic digraph dynamics yield identical higher-
order co-activation structures.

Proposition 4. Let G = G then Kg 5 = Ky 5.

Proof. Recall that two binary graphs are isomorphic if there exists a bijection between their vertex
sets that simultaneously preserves edge relations and node attributes. The directed flag complex
lifting is known to be invariant under digraph isomorphisms. Therefore, it suffices to show that
our assignment of binary activation sequences to simplices remains invariant under isomorphism.
Concretely, for each simplex o, we assign the activation pattern

B(c) = |min By (v), ..., min Bp(v)| € BY. (28)
veo veET

where B (v) € {0, 1} denotes the activation of vertex v at time ¢. Since the minimum function min

is permutation-invariant, any reindexing of vertices induced by a graph isomorphism preserves these

activation sequences. Hence, the entire dynamic binary lifting commutes with graph isomorphisms,

concluding the proof. More generally, any permutation-invariant aggregation function would suffice.
O

Second, we show that the lifted structure encodes the full time series of functional complexes as
subcomplexes.
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Proposition 5. Let G be dynamic binary graph and K 3 its associated DAC. IfGht = Glvhiis
the functional digraph with functional complex Kgu.«, then:

ICgl,t = ICg’B[E”]

Proof. A simplex belongs to 1% exactly when all vertices are active at time t. Therefore X1+ is
closed under taking faces implying that g 3[E1?] forms a subcomplex of Kg - In particular,

simplices of K 5 [£1%] correspond precisely to the cliques of the functional digraph G+, thereby
ICgl,t = ICg)B[E“]. ]

H.3 TOPOLOGICAL INVARIANTS FOR DYNAMICAL ACTIVITY COMPLEXES

Let G be a dynamic binary digraph and ICg, 5 its corresponding Dynamical Activity Complex (DAC).
We describe the dynamic binary topological invariants frequently employed in neurotopological stud-
ies of (Reimann et al.| 2017} |Conceicao et al.l 2022; Reimann et al.| 2022), leveraging their structure
and associated face-map-induced relations. These invariants play a central role in characterizing the
evolving topological structure of brain activity. Given a face-map-induced relation R on G or Kp,
we define its k-hop composition restricted to the active simplices at time ¢ as

RVBF = {(o,7) € Rk | 7€ El’t},

where X1 denotes the set of simplices active at time ¢. These restricted relational structures provide
the foundation for extracting topological descriptors of time-evolving brain activity from DACs.

Size. Let Ry, be defined as in Equation Define the k-hop functional size of vertex u as:

T

size(u, k) = [|R1’t7k(“) ” t=0

sym

counting active k-hop neighbors per node at each time step, i.e., k-hop synaptically connected active
neuron. This invariant, despite its simplicity, effectively distinguishes stimuli and outperforms other
invariants in practice (Conceicao et al., |2022)).

Euler Characteristic. For a dynamic binary directed simplicial complex Kp the functional Euler
Characteristic is defined as the alternating sum:
ol T
ec(Kp) = Y (=1)" [[Z3)] s
n=0

where N is the maximal dimension of XC. For a dynamic binary digraph G g, the functional Euler char-
acteristic of its associated DAC ec(Kg,, ) coincides with the time series of the Euler characteristic of
the functional flag complexes [x(Kg1.+)]L_;, computing the alternating sum of active simplices across
dimensions at each time step (see Proposition [6]). The variation in the amplitude of the Euler charac-
teristic time series of functional complexes effectively characterises stimuli (Reimann et al.,|2017)).
Moreover, it has been reported as a top-performing feature for stimulus classification (Concei¢ao
et al.l [2022).

Proposition 6. Let G be dynamic binary graph and ng g its associated DAC. Then,
ec(Kg ) = X(Kgro)li=o-

Proof. By definition ec(Kg 5) = [x(Kg 3ZV)E,. From Proposition [5] it follows that
ec(Kg,5) = X(Kgr)]izo- 0

Transitive Degree. Focusing on 2-dimensional directed flag complexes (consistent with our experi-
mental setup in Section[3)), let C » be defined as in Section[D.5] The transitive degree of vertex v is
the number of directed 3-cliques (equivalently, 2-simplices) containing v:

td(v) = (IG5 —:

the active directed 2-simplices (transitive synaptic triads) containing vertex v at each time ¢.
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Graph Level Directionality. Let R;, and R, be as defined in Equations and@} he active k-hop
in-degree and out-degree of a vertex u are defined as:

T

indeg(u, k) = [|RLF (u )|]f , and outdeg(u, k) = [|[RLL"(u)[],_,,

out

respectively counting the number of active k-hop incoming and outgoing neighbours. The resulting
k-hop functional signed degree is:

dir(u, k) = indeg(u, k) — outdeg(u, k),
quantifying local asymmetry in neuronal activity (Govc et al.,2021)).

High-Order Directionality. Let R, ; ; be defined as in Equation 4] For an n-simplex (n > 0),
define the (7, j)-th k-hop functional signed degree as:

T
degn,i,j(gv k) = URL: fg( )tho7

which relates n-simplices to their lower (7, j) k-hop adjacent active neighbors. For i # j, define:
hodiry, ; j (o, k) = deg,, ; ; (o) — degn,m-(cr).

This invariant was shown to be critical for characterizing structural directed flag complexes in brain

connectivity (Rithimikil 2023).

Reciprocity. Let R,.. = R™ N R°". The k-hop functional reciprocal degree of vertex u is defined

as:
T

1,t,k

re(u, k) = [[Re" ()],
counting active vertices simultaneously serving as in- and out-neighbors of w. This invariant effec-
tively differentiates stimulus classes (Conceigao et al., 2022).

Following the procedure described in App. for any simplex- or vertex-level invariant t €
{size, dir, hodir, rc, td}, we define the corresponding global graph or complex-level invariant as

t(Kg 5) = o({{t(v)} }vev),

where ¢ is a permutation-invariant aggregation function.

H.4 ToPOLOGICAL NEURAL NETWORKS AND DYNAMICAL ACTIVITY COMPLEX INVARIANTS

From now on, let denote 7 = {size, ec, td, dir, hodir, rc} denote the collection invariants.

Lemma 6. Let K be a DAC with a labeled set of simplices S and corresponding binary feature
matrix X € BISIXT where each row encodes the activation pattern of a simplex over T discrete
time steps. For every invariant T € T there exists a subcollection Rt C Ry of face-map—induced
relations and corresponding operators {\r} rer,. such that

T(Kp) = 6( 3 Ar(ArX)),
ReERT

where ¢ is a permutation-invariant function.

Proof. For a fixed relation R, consider the matrix product (A X). The (7, t)-th entry is

S|
(ARX)t—(AR ! t_Z]IO'JGR CON )gzl'

This sum counts the number active simplices o; at time ¢ that belong to R(o;). In other words,
(ArX)i =|{o; € R(0;) : X{ =1} |=| R"(0;) |, where we define R™*(0;) as the set of simplices
in R(0;) with an active feature at time step . Hence, the i-th row is (AgX)' = (| R*%(oy) |,.. ., |

RYT(a;) |)E.,, counting active neighbours of o; under the relation R across the 7" time steps. For
each relation R, we choose Ap to further process the count matrix A X. We set A\gp = Id to be the
identity for relations R € Ripn, Reym, Rre, Co 2, waj}’ the negation A\, ,, = —Id for the relation
Rout and Aig, := (—1)® sum (a row-sum with sign adjustment) for id,, denoting the identity relation
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restricted to elements of dimension s. These choices ensure that the processed outputs capture the
necessary counts (with any required sign modifications) for computing the invariant. Let R C R
be the subcollection of relations relevant for the invariant T. Define the aggregated representation
asz =>y rery AR(ARX). Since the order of simplices in S is arbitrary, we apply a permutation
invariant function ¢ (such as the row-sum, row-mean, or row-max) to £ yielding an invariant quantity:
T(Kg) = ¢(Z). This completes the proof. O

Corollary 3. Let K be a DAC. There exists a Semi-Simplicial Neural Network (SSN) that computes
each invariant in T .

Proof. For each relation R € R, define wr(X) == AgXW, with W = Iy (the T x T identity
matrix). Next, let an operator (X) act on the output of wg (X ) corresponding to the operator Ag. Then,
define an aggregation operator € as the summation over the subcollection Rt C R necessary for the
computation of a given invariant: @ per. Qp Wr(X) =Y per. Ar(ArX). Finally, applying a
permutation invariant function ¢ to this aggregated output yields the invariant:

T(Kg) =¢( P K) wr(X)).

ReERT R
Thus, an SSN structured in this way can compute each invariant in 7. O
1 1 1
0 0 2 2
(@ g (b g’ () Gsym

Figure 11: Two directed graphs: (a) G, (b) G, and (c) their shared symmetrized graph Ggyr,. Despite
G % G’, both are mapped to the same undirected complex under symmetrization.

Our strategy is straightforward: construct non-isomorphic objects that (i) are distinguishable by
invariants but (ii) remain indistinguishable to the corresponding architecture due to bounded expres-
sivity—or, when required, become isomorphic under symmetrization 7 (App.[D.3). The following
lemmas establish this through explicit examples. Throughout, symmetrization 7 implicitly extends
to constantly attributed simplices, where permutations of vertices collapse into a single canonical
simplex with identical constant features.

Lemma 7. MPNNs and MPSNNs cannot compute invariants dir, hodir and rc.

Proof. Directionality. Let V. = {0,1,2} and define two binary digraphs with constant activa-
tion B(i) = 1 forall i € V. Graph G (Fig. [11[a)) with edges E = (0,1),(0,2), (1,2) forms
a transitive 3-clique with dir(Gg) = {{-2,0,2}}, corresponding respectively to source (ver-
tex 0), an intermediate vertex (vertex 1), and a sink (vertex 2). Graph G’ (Fig. b)) with the
edge set E' = {(0,1),(1,2),(2,0)} forms a 3-cycle. Every vertex has equal in- and out-degree,
giving dir(G%) = {{0,0,0}}. Thus dir separates G and G’, but their symmetrizations coincide:
7(G) = (G") (Fig.c)).

Higher-Order Directionality. On V = {0, 1,2, 3} consider Kg and K¢ from Fig.[5(b) , both with
constant activations. Their higher order directional signatures differ, e.g.

hodirs 0,2(Kgy,) = {{17%, =1°?}} # {{0"*}} = hodirz 0 2(Kgy,),

as ICg contains two directionally consistent 2-simplicial paths, while g yields disconnected 2-
simplices; yet their symmetrizations coincide, m(Kg, ) = m(Kgy,).

Reciprocity. Let Gg with edges E = {(0,1),(0,2),(1,2),(2,1)} and Gy with E/ =
{(0,1),(0,2),(1,2)}. Only Gp contains reciprocal edges, hence rc(Gg) # rc(Gp). Still,
7(Gp) = 7(Gl;), and the same holds for their directed flag complexes.
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In all cases, symmetrization erases the distinctions. Since MPNNs and MPSNNs operate only on the
symmetrized 7 (-) objects, they cannot compute these invariants. O

Recall from App.[D.2]that a relation R is n-uniform if each element of S is related to exactly n others.
Lemma 8. MPNNs and Dir-GNNs cannot compute invariants ec, td, and hodir.

Proof. Consider the binary directed complexes Kg,, and K¢ in Fig.[9(a)—(b), both with constant
activation. Each has 7 vertices and 14 edges, but g, contains exactly 7 transitive 3-cliques, whereas
Kgy, includes none. Hence their invariants differ:

te(Kgy) = ({87} # {{0°7}} = te(Kgy,),

ec(Kgy) =7-144+7=0%# —7=7-14 = ec(Kg,,),

hodirz 0,2(Kg,) = {{1°7}} # {{0}} = hodirs,0,2(Kg,,)-

Dir-GNNs propagate only through R;, and Roys, each a 2-uniform relation (every node connected to
two neighbors). MPNNS, by contrast, operate via gy, a 4-uniform relation obtained by merging
them. With constant activations, such uniformity makes neighborhood multisets indistinguishable,
preventing these models from recovering the invariants above. O

Theorem & Let G be a dynamic binary digraph with corresponding DAC K g. For every invariant
T € T, there exists a set of face-map-induced relations Rt C Ry and a Semi-Simplicial Neural
Network SSN as in Equation equation[I|such that:

SSN(X, Rr) = T(Ky 3)-

Moreover, the class of invariants recoverable by SSNs strictly exceeds that of message-passing neural
networks (Gilmer et al.| 2017)), directed GNNs (Rossi et al., | 2024), and message-passing simplicial
networks (Bodnar et al.||2021b).

Proof. Follows immediately from Corollary [3|and Lemmas[7|and [] O

I ADDITIONAL NUMERICAL RESULTS

SSN Relations. Throughout, we operate with the collection of relations D equation [I7|on semi-
simplicial sets of dimension 2, comprising standard boundary/co-boundary maps together with all
directed up/down adjacencies enabling intradimensional communication.

I.1 DYNAMICAL BRAIN ACTIVITY CLASSIFICATION

We provide comprehensive details on the dataset, hyperparameter configurations, TopoFeat+SVM
baseline and runtimes for the main experiments in Sections and Additionally, we report
results for an attention-based variant of SSN and we present numerical evidence demonstrating the
robustness of our model under an alternative, non-invariant readout setting—applicable exclusively to
tasks without induced structural variability, such as brain dynamics representation on fixed neuronal
samples.

1.1.1 EXPERIMENTAL DETAILS

Fixed Volumetric Samples. Directed simplices have been shown to be overexpressed motifs in brain
networks at all scales (Sizemore et al., | 2018; TadicC et al.,|2019; Sizemore et al., 2019; |Andjelkovié
et al| [2020). Table [ presents the structural statistics of the simplicial complexes derived from three
representative volumetric samples: (4, 125um), (4,325um), and (8, 175um) used in our experimen-
tal evaluation. These statistics highlight the intrinsic structural complexity and high-dimensional
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Cell Type | (4,125pm) (4,325pum) (8,175pm)
Nodes 600 600 600
Edges 19,209 7,450 10,852

Triangles 62,481 5,322 14,141

Tetrahedra 26,450 349 2,240

Pentachorons 1,757 4 61

Hexaterons 30 0 0

Table 4: Simplex count per dimension for each volumetric sample used in the experiments.

organization present within localized regions of the neocortical microcircuit, underscoring the rele-
vance of higher-order topological representations in modeling neural computation.

Hyperparameter Configuration. For all tested models (SSNs and competitors), hyperparameters
were optimized as follows: number of layers € {2,4,6}; hidden dimension € {16, 32,64} for
non-topological models (GNN, Dir-GNN), and € {16, 32} for topological models (MPSNN, SSN).
Additional settings were fixed across all models: dropout rate of 0.3; inner aggregation set to sum;
outer aggregation set to mean; batch size of 16; Adam (Kingma & Bal[2014) optimizer with learning
rate of 0.001; early stopping with a patience of 25 validation steps; and validation performed at every
training step. The best-performing configurations across five splits are reported in Table [5] along
with their corresponding parameter counts. To ensure further fair comparisons, we also scaled the
non-topological baselines (GNN-256, Dir-GNN-256 with hidden dimension 256) and the undirected
topological baseline (MPSNN-64 with hidden dimension 64).

Model Hid Dim #Layers #Params Par. Ratio (%)
DS 64 2 1,680 2%
DS-256 256 2 70,672 68%
GNN 64 2 5,392 5%
GNN-256 256 2 70,672 68%
Dir-GNN 64 2 9,744 9%
Dir-GNN-256 256 2 137,232 133%
MPSNN 32 4 23,888 23%
MPSNN-64 64 4 90,768 88%
R-SSN (Ours) 32 6 18,084 18%
SSN (Ours) 32 6 103,184 100%

Table 5: Model architecture details. Parameter counts (# Params) and relative percentages (Par. Ratio
%) are reported compared to SSNs.

Runtime. Table[6|reports the average runtime per epoch for both validation and training. On larger
complexes, the routing mechanism in R-SSN proves advantageous: for the (4, 125, um) case (== 60k
simplices), R-SSN requires only about 70% of the time of a standard SSN, while for (8,175, um)
(= 27k simplices), the time is reduced to 88%. For the smaller (4,325, um) complex (=~ 13k
simplices), by contrast, the validation speedup is marginal, and during training SSN is slightly
faster than R-SSN. This runtime benefit stems from the fact that the number of active experts (and,
consequently, active relations) is decided in advance and can be significantly less than the number of
relations present in SSN—even at training time. As a result, overall computation is reduced compared
to the full model. Moreover, in backpropagation only the gradients of the weights tied to active
experts need to be updated, i.e., those that actually contribute to the output of the network. At the
same time, R-SSNs introduce a small extra cost due to the gating mechanism parameters. The net
advantage arises only when the savings from discarding relation experts outweigh the overhead of
gating. In practice, this effect depends on complex size: for small complexes, eliminating relations
may not fully offset the added ~ 5.8k parameters of the gating mechanism. For larger datasets,
however, the reduction in computation is substantial, showing that R-SSN scales more efficiently and
can provide meaningful training speed improvements as the number of simplices increases.
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Valid. Avg. Runtime (s/epoch) Train Avg. Runtime (s/epoch)
Model (4,125pum) (4,325pum) (8,175um) | (4,125pum) (4,325pum) (8,175um)
DS 2337+0.09 842+0.04 9.60+0.17 | 9418 +£0.46 39.56 +1.50 33.96 +0.32
DS-256 23.68+0.07 846+0.03 9.75+£0.19 | 9485+042 39.40+0.33 33.92+0.32
GNN 21.35+0.05 7.87+0.15 9.00+026 | 8573 +0.17 32.08+0.56 35.70+0.39
GNN-256 22.04+041 7.66+0.19 819+022 | 10494 +£0.77 33.16+0.15 4246 +2.01
Dir-GNN 21.49+001 7.83+0.13 890+0.13 | 86.18+0.10 32.17 £0.53 36.41 +£0.32
Dir-GNN-256 | 22.50+0.49 7.79 £0.12 839 +£0.20 103.6 £2.3 3375+ 0.07 40.23 +0.84
MPSNN 37.18+ 025 998 +£0.05 12.58 £ 0.06 190.5+0.8 4471 +£0.13 61.08 £ 0.15
MPSNN-64 5236 +0.17 11.124+0.16 15.60 £0.19 | 298.8 +0.48 53.35+0.48 81.60+0.19
SSN (Ours) 52.18+0.15 9.98+0.22 1658+0.22 | 3003 +0.8 52.68+£0.51 91.22+0.39
R-SSN (Ours) | 37.79 £ 0.14  930+0.19 14.15+0.15 | 211.7+03 5418 £0.63 80.93 +£0.51

Table 6: Avg. runtime per validation epoch (left) and training epoch (right) for different model
configurations.

1.1.2 ADDITIONAL RESULTS.

Topological features baseline. To assess the impact of end-to-end feature extraction, we com-
pare with a linear SVM on a feature vector of precomputed topological invariants as defined in
Appendix For each DAC, we compute the following invariants: Euler characteristic (ec), Graph-
level directionality (dir), Neighborhood size (size) and higher-order directionality (hodir), computed
on the (0,1) relation for edges and on the (0,1), (1,2), (0,2) relations for triangles. Node-level invari-
ants (size, dir, hodir) are summed to obtain complex-level values. The dir, size and hodir invariants
can be computed for different neighborhood orders K. All features are computed across two time
bins and concatenated, resulting in a feature vector of size 2(6 K + 1) per sample, where 2 are the
time bins, ec has size 1, size and hodir have size K and hodir has size 4 K. The parameter count for
the SVM classifier is based on the adopted one-vs-all classification strategy, which trains one SVM
for each class. Each linear SVM has 2(6K + 1) + 1 parameters (i.e., the input feature size plus one),
which leads to a total of 16(6K + 1) 4 8 parameters. In Table we report the number for K = 3
which leads to the best performance. The results in Table[7|show that increasing K leads to better
classification performance, corroborating the importance of considering higher-order relations in the
complex.

(4,125um)  (4,325um)  (8,175um) M=1 M=3 M=5
27.94 1 0.94

W ==

42.14 £ 1.19 3591 £2.36 45.32 4 1.68 27.87 +0.89 28.86 + 0.42

Table 7: Accuracy for the TopoFeat+SVM baselines for varying K (%, higher is better 7). The top
1%, 2" "and 3" results are highlighted.

Attention-based SSN. We further evaluate SSNs and baselines by using a GAT message-passing
scheme (Velickovi¢ et al.l 2018) as wp in equation|T]instead of GraphSAGE (used in Table[3)). Table[§]
shows that SSN largely outperforms all baselines also in this configuration on the (4, 325um) and
(M = 3) datasets, corroborating its improved capability to leverage higher-order directed connectivity
information under different message-passing schemes.

Model (4,325pm) M=3
GAT 2246 £ 1.48 | 24.42 £ 0.62
Dir-GAT

MPSNN-GAT

SSN-GAT (Ours) | 77.45 + 3.58 | 51.27 + 1.85
Gain

Table 8: Accuracy for GAT message-passing scheme (%, higher is better 7). The top 1%, 2", and
results are highlighted. reports the absolute accuracy improvement (| %) of our model relative
to the best performing baseline.
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1.1.3 NON-INVARIANT READOUTS.

In this work, we develop a model capable of robustly processing arbitrary localized structural
regions within neural microcircuits, represented as Dynamical Activity Complexes (DACs). Unlike
prior methods that rely on pooled neuronal samples, our approach addresses the inherent structural
variability present in localized microcircuit data. As an initial evaluation, we assess our model on a
task involving fixed topology but varying brain dynamics. To prevent artificially inflated accuracy due
to consistent neuron indexing across samples, we employ permutation-invariant readouts. Remarkably,
our model demonstrates robustness to shuffled spike trains as a natural consequence of its design,
highlighting its ability to learn solely from topological activation patterns. To further challenge and
validate its generalization capabilities, we additionally evaluate the model under non-invariant readout
settings, where a consistent ordering of the fixed feature space eases the task of recovering stimulus
identity through localized consistent activation patterns.

Model (4,125pm) (4,325pum)  (8,175um)

DS 92.26 + 1.07
GNN 77.67£1.96 87.88+£0.45 84.98+1.43
Dir-GNN 85.07 £ 091 9094 £0.81 87.42+143
MPSNN
SSN (Ours) | 87.63 + 0.43 88.98 + 1.10

Gain

Table 9: Binary dynamics classification results (%, higher is better 1) across volumetric samples. The
top 17, 2", and 3 results are highlighted. reports the absolute accuracy improvement (| %)
or drop (| %) of our model relative to the best performing baseline.

Hyperparameter Configuration. For all evaluated models (SSNs and baselines), hyperparam-
eters were optimized over the following grid: number of layers € {2,4,6}, hidden dimension
€ {16, 32,64}, and dropout rate € {0.3,0.8}. The following settings were fixed across all mod-
els: inner aggregation set to sum, outer aggregation to mean, batch size of 16, and the Adam
optimizer (Kingma & Bal [2014) with a learning rate of 0.001. Early stopping was applied with a
patience of 25 validation steps, and validation was conducted after every training iteration. The
best-performing configurations averaged over five data splits are reported in Table[9]

Results. In this setting, all baselines perform significantly better than in our main experiments (see
Table[3), reflecting the advantage of fixed structure settings for stimulus identification. Nevertheless,
SSN achieves the highest accuracy in two of the three configurations and performs comparably in
the remaining one, underscoring its ability to extract meaningful topological features even without
structural variability. Notably, SSN’s performance correlates with the topological complexity of
each volumetric sample (see Table[d). Moreover, methods that rely on a fixed neuron ordering are
intrinsically limited to those specific samples, making the models in Table 9] strong baselines only in
these constrained scenarios.

1.1.4 INCREASED TEMPORAL RESOLUTION AND VARIATION IN VOLUMETRIC SAMPLING

We provide additional numerical results for Section [5.2] evaluating two alternative scenarios: (i)
increased temporal resolution (7' = 4 time bins), and (ii) variation in volumetric sampling.

Experimental Settings. We extend our evaluations in the more challenging data-scarce setting (/N =
1), exploring two additional regimes: component (4, 325um) with increased temporal resolution
(T' = 4 time bins), and component (4, 125um) to assess volumetric consistency. This comprehensive
experimental framework is designed to rigorously evaluate the robustness of our model under both
temporal and volumetric sampling variability.

Results. Table[I0] shows that SSNs consistently achieve the highest classification accuracy across
all evaluated settings, substantially outperforming baseline models in both the increased sub-
neighborhood volume scenario and the finer temporal resolution setting (1" = 4). Notably, despite
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Model 125pum T=4
DS 22.06 £0.26 23.13+0.39
DS-256 21.62 £0.61 23.65+0.36
GNN 2445 +£0.65 22.87+0.49

GNN-256 24.03 £0.60 22.36+0.18
Dir-GNN 2346 £0.39 23.18+0.23
Dir-GNN-256 | 25.03 £1.35 22.67 +0.35
MPSNN
MPSNN-64
SSN (Ours) | 46.30 = 2.11  39.14 + 8.09

Gain

Table 10: Binary Dynamical Complex classification results (%, higher is better 7). The top 1°, 2",
and 3" results are highlighted. Absolute accuracy over the second-best model are also reported.

these variations, SSNs exhibit comparable performance to previously tested configurations, indicating
that the model’s accuracy is largely invariant to changes in temporal resolution and sampling volume.

1.2 EDGE REGRESSION TRAFFIC TASK

70 o \: > @ \: /:. >
(@) Riy.0,0 (b) Riy,11 (c) Riy,0,1 (d Riy10

Figure 12: Examples of the four lower directed edge adjacencies used for SSN in the experiments
on edge flow prediction. The first one (a) connects each edge to those sharing the same destination
node; the second one (b) connects each edge to those sharing the same source node; the third one (c)
connects each edge to those leaving from its destination node; the fourth one (d) connects each edge
to those entering in its source node.

Model Anaheim Barcelona Chicago Winnipeg
MLP 0.096 0.150 0.111 0.165
LineGraph |  0.087 0.112 0.160
HodgeGNN |  0.270 0.170 0.109 0.174
Hodge+Inv |  0.096 0.108 0.162
Hodge+Dir 0.110 0.159
EIGN 0.069 0.130 0.090
SSN (Ours) 0.130 0.045
Gain
Table 11: Traffic dynamics regression results (RMSE, lower is better |). The top 1°', 2", and
results are highlighted. Absolute over the best-performing baseline model is also reported

(negative | is better).

We evaluate our model on a traffic assignment problems using 4 traffic datasets from (for Research
Core Team, |Accessed 06.08.2024)) (Anaheim, Barcelona, Chicago and Winnipeg). These datasets
contain the street networks from the corresponding cities and the relative oriented traffic flows from
the Traffic Assignment Problem (Patriksson, 2015)). Some streets can be traversed in both ways, others
only in one way, providing the problem setting with an inherent notion of directionality. Furthermore,
traffic flows are edge data, making the problem topological. We frame the task as a traffic simulation
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problem following [Fuchsgruber et al.| (2025)): given the traffic flows on a portion of the streets and
the network topology, the goal is to predict the flows on the remaining streets.

Experimental Settings. We follow the same data-preprocessing as (Fuchsgruber et al.| 2025). In
detail, we define the following edge features (if available): capacity, length, free flow time (i.e., travel
time with no congestion), B factor and power, (calibration parameters for the Traffic Assignment
Problem), if there is a toll on the link, and the link type, e.g., highway. Differently from (Fuchsgruber
et al., [2029)), if a street is traversed in both directions, we do not transform it into a unique undirected
edge, but we maintain the two directed edges in opposite directions, keeping their original directed
flows. We whiten features and normalize the target flows between 0 and 1. To compare our results
with those in (Fuchsgruber et al.,|[2025), where undirected edges have a unique flow, we consider the
difference between the flow predictions of the two directed edges in opposite directions at evaluation
time (i.e., to compute the RMSE). For training, instead, we design a loss to account for both the
intrinsic directionality of the problem and the existence of directed edges in opposite directions.
Specifically, our training loss is composed of two terms:

Liain = aLgir + (1 — o) Laige (29)

where L, is a regression loss (e.g., MSE) on the directed flows, L is the loss between the predicted
and ground truth flow differences for undirected edges and « € [0, 1] is a hyperparameter. We test
our SSN using different combinations of the 4 directed edge adjacencies illustrated in Figure [12}
and we report results for the best one consisting of adjacencies (b) and (c) in Figure [I2] plus the
undirected edge adjacency consisting of the union of (b) and (c). We compare with six baselines:
MLP; LineGraph, a spectral GNN applied at node-level; HodgeGNN (Roddenberry & Segarral 2019),
based on the edge Laplacian; Hodge+Inv, a variant of HodgeGNN modeling orientation-invariant
features as orientation equivariant; Hodge+Dir, a variant of HodgeGNN that treats all edges as
directed; EIGN (Fuchsgruber et al., [2025), a GNN for edge signals that explicitly differentiates
between orientation and direction invariance and equivariance for edge features. All the results for
the baselines are taken from (Fuchsgruber et al.,|2025) as well as the experimental setting.

Hyperparameter Configuration. We selected the hyperparameters through a grid search among
the following values: convolution strategy € { GCN, SAGE}, batch normalization € {True, False},
hidden size € {32, 64,128}, a € {0,0.5, 1}, number of layers € {1, 3,5,9}. We fixed the following
other parameters for all models: inner aggregation set to mean, single batch, dropout rate of 0.1,
learning rate of 0.01, 1500 epochs with early stopping with a patience of 80 validation steps and
validation performed every training step. We report the best parameter configurations for each dataset
in Table

Results. Table(l1{shows the MSE on the edge flow prediction for SSN and baselines. SSN outper-
forms all baselines on Chicago and matches the best-performing model on Barcelona, demonstrating
the capability of its directed relations scheme to model edge flow invariance and equivariance to
directionality. On Anaheim and Winnipeg, SSN is outperformed by EIGN, but is close or better than
the second baseline, showing an improvement w.r.t. undirected approaches which, again, validates
the importance of considering directed adjacencies on this task.

Dataset | Hid dim # Layers Conv. BN o
Anaheim 32 9 GCN  False 1
Barcelona 64 5 GCN  True 1
Chicago 64 5 SAGE False 0
Winnipeg 64 9 GCN  False 0.5

Table 12: Model architecture details for edge-level datasets.

1.3 NODE CLASSIFICATION

We further assess SSN’s performance on a node classification task involving both homophilic and
heterophilic graphs. In homophilic graphs, nodes with the same label tend to be connected, while in
heterophilic graphs, connected nodes typically belong to different classes—making these settings
particularly challenging for GNNs. [Rossi et al.| (2024) showed that modeling graphs as directed
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Dataset Type Path Length # R-Paths RLLO,U(%) Ru,(u(%) Rll.lﬁo(%) Ri1,1,1(%)
Cora ML 1 355,808 57.50 12.05 12.05 18.41
2 31,672,710 93.99 0.70 0.70 4.60
Citeseer 1 76,344 77.22 6.46 6.46 9.87
2 2,665,146 98.06 0.23 0.23 1.48
Roman-Empire 1 222,096 14.90 30.23 30.23 24.65
P 2 1,384,820 7.93 27.29 27.29 37.50

Table 13: Higher-order edge directionality statistics for the Cora-ML, Citeseer (Bojchevski &
Giinnemann, 2018)) and Roman-Empire (Platonov et al., [2023)) datasets. The analysis reveals a
pronounced chain-like structure in the Roman-Empire graph, characterized by a higher proportion
of fully directed edge paths. In contrast, Cora-ML and Citeseer exhibit predominantly homophilic
patterns, with directionality concentrated in edge pairs sharing a common source or target, and a
markedly lower prevalence of fully directed paths.

Model Roman-Empire Model Cora-ML Citeseer
GraphSAGE 91.06 £ 0.27 GNN 87.06 + 1.47

Dir-GNN|Rossi et al.[(2024) | 91.23 +0.32 Dir-GNN 86.60 - 143  94.09 - 0.48
Polynormer

MPSNN 8876 L 0.63 MPSNN 86.58 £ 1.41 94.14 £ 0.83
SSN (Ours) 93.52 + 0.28 SSN (Ours) 94.52 + 0.53
Gain Gain

Table 14: Node classification results (accuracy in %, higher is better 1) on the Roman-Empire dataset
(Left column) (Platonov et al.,[2023)) and on Cora-ML and Citeseer (Right column) datasets (Bof
jchevski & Giinnemann, [2018). The top two performing methods are highlighted as follows: 1
and 2", reports the accuracy improvement (| %) or drop (| %) of our model relative to the
best performing baseline. In the Roman-Empire table, the entry corresponds to the previous
state-of-the-art method.

in heterophilic contexts can induce meaningful relationships that effectively increase the graph’s
homophily, highlighting the potential benefits of leveraging directional information. In this work, we
focus on the Roman-Empire dataset, whose distinctive chain-like topology makes it especially well-
suited for higher-order directed modeling. We evaluate our method on this heterophilic benchmark,
alongside two widely used homophilic citation graphs: Cora-ML and Citeseer (Bojchevski &
Gilinnemann| 2018). Our empirical findings align with the conclusions of |Rossi et al.| (2024):
directionality—whether higher-order or not—offers minimal gains in traditional strongly homophilic
benchmarks but yields substantial improvements in highly directed and heterophilic Roman-Empire
dataset (see Table[I3)). In particular, we observe that higher-order directionality plays a key role in
boosting performance in such settings, setting a new state of the art on the Roman-Empire dataset
(cf. Table[T4).

Roman Empire (A Chain-Like Graph). The Roman-Empire graph of |Platonov et al.| (2023)) is
constructed from the Roman Empire Wikipedia article, where each node represents a word token
and directed edges encode either immediate word succession or syntactic dependency. This process
yields a highly directed, heterophilic graph (heterophily score ~ 0.05), enriched with shortcut
edges that capture long-range grammatical dependencies and characterized by a chain-dominated
topology—featuring the smallest average per-node degree (2.91) and largest diameter (6824) among
commonly used benchmark datasets. Table [[3]quantifies the higher-order edge directionality: at path
length 1, fully directed edge pairs (R,1,0,1) account for 30.23% of one-hop interactions—more than
double the proportion observed in Cora-ML (12.05%) and Citeseer (6.46%), where edges typically
share a common source or target. This structure makes Roman-Empire an ideal stress test for our
Semi-Simplicial Neural Network (SSN). While traditional undirected topological models inherently
neglect directionality, and recent approaches like Dir-GNN (Rossi et al.,[2024) leverage only first-
order directional cues, SSN explicitly captures higher-order directed simplicial motifs, effectively
modeling long-range syntactic chains and dependencies.
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Baselines. For the Roman-Empire dataset, we benchmark against several strong baselines: Dir-
GNN (Rossi et al.| [2024), which previously established the efficacy of direction-aware models; Graph-
SAGE (Hamilton et al.| [2017), with extensive hyperparameter tuning by Luo et al.|(2024)—yielding
the most competitive configurations for undirected graph-based methods; and Polynormer (Deng
et al.| 2024), a Graph Transformer (GT) that currently holds state-of-the-art performance. The tuning
methodology in (Luo et al.l|2024) aligns with that of Polynormer (Deng et al.,|2024). Previous results
are taken directly from their respective works. Additionally, we evaluate MPSNN (Bodnar et al.;
2021b), enabling a comprehensive comparison across models that incorporate, or omit, higher-order
and directional interactions. For the homophilic datasets Cora-ML and Citeseer, we benchmark
SSN against standard baselines: GNN (Hamilton et al.| [2017), Dir-GNN (Rossi et al.| [2024), and
MPSNN (Bodnar et all [2021b), as detailed in Table[14]

Experimental Setup. For the Roman-Empire dataset, we adopt the data splits from (Platonov et al.|
2023)). For Cora-ML and Citeseer, we use 10 random splits with a 50/25/25 train-validation-test
ratio, reporting mean accuracy and standard deviation across splits (see Table [[4). In our SSN
model, we restrict simplicial dimension to 1, lifting node-pair embeddings into common directed
simplices (syntactic or citation-based connections) via the boundary converse operator Cy. We
propagate embeddings across four directional edge relationships (121,00, £21,0,1, £2}1,1,0, and
R,1,1,1), updating node embeddings using boundary operator 5.

Hyperparameters. Consistent with (Rossi et al., |2024) and (Luo et al.l 2024), we employ
concatenation-based Jumping Knowledge. Differing from (Luo et al.l 2024), who utilized hid-
den dimensions of 256 (GraphSAGE) and 512 (GAT and GCN), we uniformly set a smaller hidden
dimension of 128 and utilize SAGE-like aggregations (wg) across all five relations. Hyperparameter
search covers the number of layers {5, 7,9}, dropout rates {0.3, 0.5, 0.7}, inner aggregation as max,
outer aggregation as sum, and the Adam optimizer (learning rate = 0.01).

Results. Table [[4] demonstrates that our SSN sets a new state of the art on the Roman-Empire
dataset, surpassing the Polynormer Graph Transformer baseline. SSN notably improves accuracy
by 2.46% over classical graph methods on best tuning known performed in (Luo et al., 2024) and
outperforms Dir-GNN by 2.29%. This highlights SSN’s superior ability to leverage higher-order
directionality in effectively capturing complex relational structures in heterophilic, chain-like graphs.
Additionally, SSN consistently outperforms MPSNN, reinforcing the critical importance of explicitly
modeling directed higher-order structures. For the homophilic datasets, SSN achieves competitive
performance—surpassing all baselines by 0.18% on Citeseer and remaining within 0.42% of the
best-performing method on Cora-ML. These results align with the findings of (Rossi et al.,[2024),
confirming that incorporating directionality yields minimal benefit in strongly homophilic settings.
An additional possible explanation for the limited gains from higher-order directionality is provided
by the edge directionality statistics reported in Table[I3] which reveal that message passing in both
Cora-ML and Citeseer predominantly occurs along edges with shared sources or targets—a structural
hallmark of citation networks. This is accompanied by a marked collapse in the proportion of fully
directed paths. As a result, the diversity of directional relationships becomes largely redundant,
diminishing the marginal utility of higher-order directed modeling in these scenarios.
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