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Abstract
Seeking reliable correspondences between two feature sets is a fundamental and important task in computer vision. This paper
attempts to removemismatches from given putative image feature correspondences. To achieve the goal, an efficient approach,
termed as locality preserving matching (LPM), is designed, the principle of which is to maintain the local neighborhood
structures of those potential true matches. We formulate the problem into a mathematical model, and derive a closed-form
solution with linearithmic time and linear space complexities. Our method can accomplish the mismatch removal from
thousands of putative correspondences in only a few milliseconds. To demonstrate the generality of our strategy for handling
image matching problems, extensive experiments on various real image pairs for general feature matching, as well as for
point set registration, visual homing and near-duplicate image retrieval are conducted. Compared with other state-of-the-art
alternatives, our LPM achieves better or favorably competitive performance in accuracy while intensively cutting time cost
by more than two orders of magnitude.

Keywords Feature matching · Image registration · Locality preservation · Rigid and non-rigid transformations · Outlier
removal
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1 Introduction

This study focuses on the problem of establishing reliable
point correspondences between two images of the same
scene. Many computer vision tasks, such as 3D reconstruc-
tion, content-based image retrieval, visual homing, image
mosaic, image registration and fusion, start by assuming that
the point correspondences have been successfully recovered
(Bian et al. 2017;Lin et al. 2018;Maet al. 2013). In this paper,
we treat the target task as a matching problem between two
sets of discrete points, where each point is an image feature
extracted by a feature detector and has a local image descrip-
tor, e.g. the scale invariant feature transform (SIFT) (Lowe
2004).

The matching problem possesses a combinatorial nature,
making the matching space huge. Even without considering
outliers, a simple problem ofmatching N points to another N
points would lead to a total of N ! permutations (Wang et al.
2014). To relieve the computational pressure, a popular strat-
egy is to construct a group of putative correspondences by
imposing a similarity constraint to reduce the amount of pos-
sible matches. It requires that points can only match points
with similar descriptors.Under the circumstances, thematch-
ing task boils down to determining the correctness of each
match in the putative set. This paper intends to conquer the
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mismatch removal fromsomegivenputative point correspon-
dences.

During the past few decades, a variety of robust estima-
tors have been developed to address the mismatch removal
problem. Nevertheless, it is still challenging to customize an
effective and efficient algorithm for practical use. The chal-
lenges mainly come from three aspects. Firstly, the use of
only local descriptor information will inevitably lead to a
number of false matches in the putative set, and this prob-
lem is typically even worse if the image pairs suffer from
low-quality, occlusion, repeated structures, etc. Secondly,
the transformation models between two images are various,
making it difficult to design a general algorithm. However,
such a general algorithm is often required in many computer
vision tasks such as deformable object recognition where
the transformation models are unknown in advance. Thirdly,
the high computational load, especially when the geometric
transformation between two images is an unknown complex
non-rigid model, limits its applicability in real-time tasks.

To address the above three challenges, this paper pro-
poses a simple yet surprisingly effective feature matching
approach, which is able to accurately remove the outliers
from a putative correspondence set in only a few millisec-
onds. We observe that for an image pair of the same scene
or object, the absolute distance between two feature points
may change significantly under viewpoint changes or non-
rigid deformations, but the spatial neighborhood relationship
among feature points representing the topological structures
of an image scene is generally well preserved due to physical
constraints. Based on this observation, we introduce a math-
ematical model that aims to constrain the unknown inlier
correspondences to have similar local neighborhood struc-
tures. Themodel is general, and it can embrace both rigid and
non-rigid deformations. We further derive a simple closed-
form solution, which has linearithmic time complexity and
linear space complexity with respect to the scale of the given
putative set. The qualitative and quantitative experiments on
various image data demonstrate that the proposed method
can produce more accurate matching results with much less
computation time (more than two orders of magnitude faster)
in comparison with other state-of-the-art methods.

More concretely, the contributions of this paper can be
summarized as follows:

– Wepropose a simple yet effective approach for robust fea-
ture matching. Unlike most existing methods that require
a special parametric or non-parametric model to char-
acterize the global image transformation, our method
merely aims to preserve local neighborhood structures
of feature points and hence, it is more general.

– We derive a closed-form solution with linearithmic com-
plexity, which can solve a typical matching problem
with like 1000 putative correspondences in only a few

milliseconds. This is beneficial for many real-time appli-
cations and can quickly provide a good initialization for
complicated problem-specific matching algorithms.

– We apply our approach to several visual tasks, including
point set registration, visual homing and near-duplicate
image retrieval, and design corresponding methods. We
validate the proposed methods on publicly available
datasets, and obtain better results than other state-of-the-
art methods in terms of both accuracy and efficiency.
A preliminary version of this manuscript appeared in Ma

et al. (2017). The primary new contributions include the fol-
lowing four aspects. First, we provide an expanded derivation
of the proposed method with more details. Second, we gen-
eralize the formulation and give a comprehensive definition
on the spatial neighborhood relationship which can further
promote the matching performance. Third, we apply the
proposed method to several visual tasks and design the cor-
responding algorithms in detail. Last, we conduct extensive
experiments on more challenging datasets with comparisons
tomore state-of-the-artmethods. To allowmore comparisons
from the community and encourage future work, we have
released our code.1

The remainder of this paper is organized as follows. Sec-
tion 2 describes background material and related work. In
Sect. 3, we present our locality preserving matching for
robust feature matching. We apply our approach to several
visual tasks and design corresponding methods in Sect. 4.
Section 5 illustrates the performance of our method in com-
parison with other approaches on different visual tasks,
followed by some concluding remarks in Sect. 6.

2 RelatedWork

Featurematching has beenwidely used inmanyfields includ-
ing computer vision (Torr and Zisserman 2000; Jiang et al.
2017), pattern recognition (Gao et al. 2017; Guo and Cao
2012), medical image analysis (Ma et al. 2017; Wang et al.
2016), remote sensing (Ma et al. 2015; Yang et al. 2017),
robotics (Liu et al. 2013; Zhao and Ma 2017), etc. Here
we briefly review the background material applied as refer-
ence for the current study. This material includes twomethod
types: the first type establishes a set of putative correspon-
dence and then removes false matches, whereas the second
type solves a correspondence matrix between a couple of
point sets.

2.1 Two-Step Strategy BasedMethods

Apopular strategy for solving thematching problem involves
two steps (Ma et al. 2014): first computing a set of putative

1 https://sites.google.com/site/jiayima2013/home.
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correspondence, and then removing the outliers via geo-
metrical constraints. Putative correspondence instances are
obtained in the first step by pruning the set of all possible
point matches. This scenario is achieved by computing fea-
ture descriptors at the points and eliminating the matches
between points whose descriptors are excessively dissimilar.
Lowe (2004) proposed the SIFT descriptor with a distance
ratio method that compares the ratio between the nearest and
next-nearest neighbors against a predefined threshold to fil-
ter out unstable matches. Guo and Cao (2012) proposed a
triangle constraint, which can produce better putative cor-
respondences in terms of quantity and accuracy compared
with the distance ratio in Lowe (2004). Pele and Werman
(2008) applied the earth mover’s distance to replace the
Euclidean distance in Lowe (2004) to measure the similarity
between descriptors and improve the matching accuracy. In
addition, Hu et al. 2015 adopted the local selection of a suit-
able descriptor for each feature point instead of employing a
global descriptor during putative correspondence construc-
tion.A cascade scheme has been suggested to prevent the loss
of true matches, which can significantly enhance the corre-
spondence number (Wang et al. 2014; Cho and Lee 2012).
Although there have been various sophisticated approaches
for putative match construction, the use of only local appear-
ance featureswill inevitably result in a lot of falsematches. In
the second step, robust estimators based on some geometrical
constraints are used to detect and remove the outliers.

To remove false matches from putative sets, numerous
methods have been developed over the last decades, which
can be roughly divided into four categories, say statisti-
cal regressionmethods, resamplingmethods, non-parametric
interpolation methods, and graph matching methods. Statis-
tics literature shows that the methods that minimize the L1

norm are more robust and can resist a larger proportion of
outliers compared with quadratic L2 norms (Huber 1981).
Liu et al. 2015 proposed a regression method based on
adaptive boosting learning for 3D rigid matching. Recently,
Maier et al. 2016 introduced a guided matching scheme
based on statistical optical flow, and promising results have
been demonstrated in terms of both accuracy and efficiency.
The most popular resampling method is random sample
consensus (RANSAC), which has several variants such as
MLESAC (Torr and Zisserman 2000) and PROSAC (Chum
and Matas 2005). These methods adopt a hypothesize-and-
verify approach and attempt to obtain the smallest possible
outlier-free subset to estimate a provided parametric model
by resampling. The statistical regression and resampling
methods rely on a predefined parametric model, which
become less efficient when the underlying image transfor-
mation is non-rigid; these methods also tend to severely
degrade if the outlier proportion becomes large (Li and Hu
2010). Several non-parametric interpolation methods have
recently been introduced to address these issues, including

identifying correspondence function (ICF) (Li andHu 2010),
bounded distortion (BD) (Lipman et al. 2014), vector field
consensus (VFC) (Ma et al. 2014), and robust point match-
ingwithmanifold regularization (MR-RPM) (Ma et al. 2017;
Wang et al. 2016). These methods commonly interpolate
a non-parametric function by applying the prior condition,
in which the motion field associated with the feature cor-
respondence is slow-and-smooth. However, they typically
have cubic complexities and the computational costs are
huge for large putative sets, which limits their applicabil-
ity on real-time tasks. Graph matching is another technique
to solve the matching problem; several representative stud-
ies include spectral matching (Leordeanu and Hebert 2005),
dual decomposition (Torresani et al. 2008), mode-seeking
(Wang et al. 2014; Cho and Lee 2012), graph shift (GS)
(Liu and Yan 2010), and discrete tabu search (Adamczewski
et al. 2015). Graph matching provides considerable flexibil-
ity to the transformation model and delivers robust matching
and recognition. Nevertheless, it suffers from similar draw-
backs of its non-polynomial-hard nature. Technically, our
work belongs to this category.

Additionally to the methods above, we want to highlight
two recently proposed important algorithms which incorpo-
rate piecewise-smoothness constraints into matching. The
first one is a non-linear regression technique called coher-
ence based decision boundaries (Lin et al. 2014, 2013, 2018).
This algorithm aims to discover a coherence based separabil-
ity constraint from highly noisy matches and embed it into a
correspondence likelihood model, and the accurate matches
are then obtained by varying affine motion model. It is able
to yield high quality matches at wide baselines and robust
to a large number of outliers (even up to 90%). The second
one is grid-based motion statistics (GMS) (Bian et al. 2017),
which removes outliers by converting themotion smoothness
constraints into statistical measures based on the number of
neighboring matches. A major advantage of this algorithm is
that it develops an efficient grid-based score estimator which
can provide real-time, ultra-robust feature correspondences,
and hence is beneficial to video applications.

2.2 CorrespondenceMatrix basedMethods

Another strategy is to incorporate a correspondence matrix
with a parametric, or non-parametric, geometric constraint.
In this situation, the feature points usually do not have infor-
mation of local image descriptors. One of the best-known
point matching approaches is iterative closest point (ICP)
(Besl and McKay 1992). ICP alternatively assigns a binary
correspondence utilizing nearest-neighbor relationships; it
then performs least squares transformation estimation via the
estimated correspondence until a local minimum is reached.
Chui and Rangarajan (Chui and Rangarajan 2003) estab-
lished a general framework for non-rigid matching called
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robust point matching with thin plate spline (TPS-RPM),
which replaces the nearest point strategy of ICP with soft
assignments within a continuous optimization framework
that involves deterministic annealing. Yang et al. (Yang
et al. 2015) further introduced an approach termed as global
and local mixture distance with thin plate spline, and has
shown promising results. Zheng and Doermann proposed a
graph based method for robust point matching based on pre-
serving local neighborhood structures (RPM-LNS) (Zheng
and Doermann 2006). Boughorbel et al. (Boughorbel et al.
2004) brought the Gaussian fields into rigid registration,
which was later generalized to the non-rigid setting in Ma
et al. (2015) and (Wang et al. 2016). Point set registra-
tion has commonly been solved by probabilistic methods
in recent years, such as Gaussian mixture model based
registration (GMMREG) (Jian and Vemuri 2011), coherent
point drift (CPD) (Myronenko and Song 2010) and its vari-
ants (Horaud et al. 2011; Ma et al. 2016). These methods
formulate the matching problem as the estimation of a mix-
ture of densities utilizing Gaussian mixture models, which
is solved within the maximum-likelihood framework and
expectation-maximization algorithm. However, since these
methods completely discard the abundant information of
local image descriptors, their matching performance very
likely degrades, especiallywhen the image pair involves non-
rigid deformations (Ma et al. 2016).

3 Methodology

This section describes our method for establishing accurate
correspondences between two feature sets extracted respec-
tively from two images of the same or similar scenes. To
this end, we first construct a set of putative matches by con-
sidering all possible matches between two feature sets and
filtering out matches whose feature descriptor vectors are
sufficiently different. We then use a geometric constraint
to remove the false matches contained in the putative set,
which further filters out those matches with different spatial
neighborhood structures among feature points. Fortunately,
there are severalwell-designed feature descriptors (e.g., SIFT
Lowe 2004) can efficiently establish putative correspondence
between feature sets, therefore, we consider this component
as an easy mission. In the following, we concentrate on the
mismatch removal problem.

3.1 Problem Formulation

Suppose we have obtained a set of N putative feature cor-
respondences S = {(xi , yi )}Ni=1 extracted from two given
images, where xi and yi are 2D column vectors denoting the
spatial positions of feature points (our approach is not lim-
ited by the dimension of the input data, which can be directly

applied to 3Dmatching problems). Our goal is to remove the
outliers contained in S to establish accurate correspondences.

3.1.1 Formulation for Ideal Rigid Transformation

If the spatial relationship between the image pair is a simple
rigid transformation, then the distance between any feature
correspondence will be preserved. In other words, denoting
I the unknown inlier set, its optimal solution is

I∗ = argmin
I

C(I; S, λ), (1)

with the cost function C defined as:

C(I; S, λ) =
∑

i∈I

∑

j∈I

(
d(xi , x j ) − d(yi , y j )

)2 + λ(N − |I|),

(2)

where d is a certain distance metric such as Euclidean dis-
tance, and | · | denotes the cardinality of a set. In this cost
function, the first term penalizes any match which does not
preserve the distance of a point pair, the second term dis-
courages the outliers, and the parameter λ > 0 balances the
two terms. Ideally, the optimal solution should achieve zero
penalty, i.e, the first term of C should be zero.

3.1.2 Formulation for General Feature Matching

In real-world scenarios, however, the rigid transformation
is barely the case. For example, if the image pair under-
goes a relatively complex non-rigid transformation, the above
distance relationship will no longer hold, especially for
matches far from each other. Nevertheless, the local neigh-
borhood structure among feature points may not change
freely due to the physical constraints in a small region around
a point, which means that the distribution of neighboring
point pairs after transformation should be preserved (Zheng
and Doermann 2006). In the sequel, by preserving only local
structures, the cost function in Eq. (2) becomes:

C(I; S, λ) =
∑

i∈I

1

2K

( ∑

j |x j∈Nxi

(
d(xi , x j ) − d(yi , y j )

)2

+
∑

j |y j∈Nyi

(
d(xi , x j ) − d(yi , y j )

)2
)

+ λ(N − |I|), (3)

where Nx denotes the neighborhood of point x. There is
no obvious neighborhood definition for a point set. In our
evaluation, we adopt a simple strategy that searches the K
nearest neighbors for each point in the corresponding feature
set under the Euclidean distance. Note that we use 1/2K in
the first term of Eq. (3) to normalize the contribution of each
element in the neighborhood.
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We associate the putative set Swith an N×1 binary vector
p, where pi ∈ {0, 1} represents the match correctness of the
i-th correspondence (xi , yi ). Specifically, pi = 1 indicates
an inlier, and an outlier otherwise. Note that the absolute
distance of a point pair is not well maintained under non-
rigid deformations such as scale changes. To address this
issue, we quantize the distance into two levels as:

d(xi , x j ) =
{
0, x j ∈ Nxi
1, x j /∈ Nxi

, d(yi , y j ) =
{
0, y j ∈ Nyi
1, y j /∈ Nyi

.

(4)

Proposition 1 With the distance definition in Eq. (4), the cost
function in Eq. (3) is equivalent to the followingminimization
problem:

C(p; S, λ) =
N∑

i=1

pi
K

∑

j |x j∈Nxi

d(yi , y j ) + λ

(
N −

N∑

i=1

pi

)
.

(5)

Proof By using the distance defined in Eq. (4) and a binary
vector p, the cost function in Eq. (3) turns out to be:

C(p; S, λ) =
N∑

i=1

pi
2K

( ∑

j |x j∈Nxi

d(yi , y j )

+
∑

j |y j∈Nyi

d(xi , x j )

)
+ λ

(
N −

N∑

i=1

pi

)
. (6)

We consider the item
∑

j |x j∈Nxi
d(yi , y j ):

∑

j |x j∈Nxi

d(yi , y j ) =
∑

j |x j∈Nxi ,y j∈Nyi

d(yi , y j )

+
∑

j |x j∈Nxi ,y j /∈Nyi

d(yi , y j )

= 0 + count( j |x j ∈ Nxi , y j /∈ Nyi )

= K − count( j |x j ∈ Nxi , y j ∈ Nyi )

= K − ni , (7)

where count(·) counts the number of elements in a set, and
ni denotes the number of common elements in the two neigh-
borhoods Nxi and Nyi . Similarly, we also have

∑

j |y j∈Nyi

d(xi , x j ) = K − ni =
∑

j |x j∈Nxi

d(yi , y j ). (8)

By substituting Eq. (8) into Eq. (6), we obtain the minimiza-
tion problem in Eq. (5). ��

Fig. 1 Schematic illustration of the consensus of neighborhood topol-
ogy. The putative match (xi , yi ) (highlighted with bold) is an inlier in
the left group and an outlier in the right group. For each group, the left
figure shows a putative match (xi , yi ) together with its neighborhood
elements, their corresponding displacement vectors are shown in the
right figure with vi corresponding to (xi , yi )

3.1.3 Consensus of Neighborhood Topology

The minimization problem described above essentially aims
to preserve the intersection of neighbors (e.g., the consensus
of neighborhood elements), which ignores their topological
structure. To address this issue, here we design a cost to
further exploit the consensus of neighborhood topology.

For a putative match (xi , yi ), as shown in Fig. 1, we first
extract its ni neighboring putative matches located in Nxi
and Nyi , where K = 5 and ni = 3. Next, we convert the
putative matches into displacement vectors, where the head
and tail of each vector correspond to the spatial positions of
two corresponding feature points in the two images, and the
vector associatedwith (xi , yi ) is highlightedwith bold, i.e vi .
The neighborhood topology can then be exploited by com-
paring the difference between vi and v j associatedwith the ni
neighboring putativematches.More specifically, the changes
of topological structures of the ni elements with respect to
xi and yi will lead to significant differences between vi and
v j in both lengths and directions, as demonstrated in the two
examples in Fig. 1.

According to the analysis above, we define the consensus
of neighborhood topology based on the ratio of length and
the angle between vi and v j :

s(vi , v j ) = min{|vi |, |v j |}
max{|vi |, |v j |} · (vi , v j )

|vi | · |v j | , (9)

where s(vi , v j ) ∈ [−1, 1] and a larger value indicates higher
consensus, and the cosine similarity is used to characterize
the consensus of angle with (·, ·) denoting the inner product.

According to Eq. (9) and considering the issue of non-
rigid deformations, we define a quantized distance between
vi and v j with a predefined threshold τ as follows:

d(vi , v j ) =
{
0, s(vi , v j ) ≥ τ

1, s(vi , v j ) < τ
. (10)

123



International Journal of Computer Vision (2019) 127:512–531 517

With the above distance and considering the minimization
problem in Eq. (5), we obtain a new objective function:

C(p; S, λ, τ ) =
N∑

i=1

pi
K

( ∑

j |x j∈Nxi

d(yi , y j )

+
∑

j |x j∈Nxi ,y j∈Nyi

d(vi , v j )

)
+ λ

(
N −

N∑

i=1

pi

)
, (11)

where the value inside the bracket of thefirst term is an integer
ranging from 0 to K .

3.1.4 Multi-Scale Neighborhood Representation

In our formulation, we propose to search the K nearest neigh-
bors for each point x to construct its neighborhood Nx.
However, the optimal value of K may change due to the
following two reasons: i) the putative matches are usually
not uniformly distributed across the image domain, and ii)
the proportion of outliers changes along with different puta-
tive sets. Therefore, using a fixed K will be problematic for
addressing the general feature matching problem.

To address this issue, we use a multi-scale neighborhood
representation and define a set of neighborhoods with sizes
K = {Km}Mm=1, e.g. {N Km

xi }Mm=1 and {N Km
yi }Mm=1, whereN Km

xi
denotes the neighborhood of point xi composed of its Km

nearest neighbors under Euclidean distance. In this case, the
objective function in Eq. (11) becomes

C(p; S, λ, τ ) =
N∑

i=1

pi
M

M∑

m=1

1

Km

( ∑

j |x j∈N Km
xi

d(yi , y j )

+
∑

j |x j∈N Km
xi ,y j∈N Km

yi

d(vi , v j )

)
+ λ

(
N −

N∑

i=1

pi

)
, (12)

where 1/M is used to normalize the contribution of each
level of neighborhood. Clearly, the final objective function
in Eq. (12) is translation, rotation, and scale invariant. The
problem of removing outliers and establishing accurate fea-
ture matches can then be solved by minimizing Eq. (12).

3.2 Solution

To optimize the objective function (12), we reorganize its
form by merging the terms related to pi and obtain:

C(p; S, λ, τ ) =
N∑

i=1

pi (ci − λ) + λN , (13)

where

ci =
M∑

m=1

1

MKm

(∑
j |x j∈N Km

xi
d(yi , y j )

+ ∑
j |x j∈N Km

xi ,y j∈N Km
yi

d(vi , v j )
)

(14)

measures if the i-th correspondence (xi , yi ) meets the
geometric constraint of preserving the local neighborhood
structure. Clearly, a correct match will bring zero cost or a
small cost while a false match will increase the cost largely.

For a given putative set, the neighborhood relationship
between the feature points is fixed, and hence all the cost
values {ci }Ni=1 can be calculated in advance. That is to say,
the only unknown variable in Eq. (13) is pi , and its solution
is obvious: any correspondence with a cost smaller than λ

will lead to a negative term and decrease the objective func-
tion, while any correspondence with a cost larger than λ will
result in an positive term and increase the objective function.
Therefore, the optimal solution of p that minimizes Eq. (13)
is determined by the following simple criterion:

pi =
{
1, ci ≤ λ

0, ci > λ
, i = 1, . . . , N . (15)

And hence, the optimal inlier set I∗ is determined by:

I∗ = {i | pi = 1, i = 1, . . . , N }. (16)

From Eq. (15), we see that parameter λ also plays a role of
threshold for judging the match correctness of each putative
correspondence. Note that the setting of pi can be arbitrary
when ci = λ.

3.3 Neighborhood Construction

The neighborhoodNx of each point x in Eq. (3) is constructed
based on the whole feature set, probably involving outliers.
This strategy works well due to the following reasons. On
the one hand, for an outlier (xi , yi ), its local neighborhood
structures cannot be preserved between two images, leading
to a large cost ci , and hence it will be easily identified as
an outlier. On the other hand, for an inlier (x j , y j ), even
if its neighborhood Nx j or Ny j contains some outliers, the
major components are inliers, which is still consistent with
the geometric constraint. Therefore, its cost c j will not be
large.

To verify how well it works, we collect in total 30
image pairs with different types of transformations including
piecewise linear transformation, non-rigid deformation,wide
baseline image pair, etc. The average initial inlier percentage
of SIFT matching on the whole test data is only 51.19%,
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Fig. 2 Precision and recall with respect to the cumulative distribution
by using the whole feature set to construct the neighborhood. Top row:
result without usingmulti-scale neighborhood representation, e.g., K =
6; bottom row: result using multi-scale neighborhood representation,
e.g., K = [4, 6, 8]. A point on the curve with coordinate (x , y) denotes
that there are 100 ∗ x percents of image pairs which have precision or
recall no more than y

and hence the outlier removal task is quite challenging.2 The
precision and recall are used as our metrics to evaluate the
matching performance, where the precision is defined as the
ratio of the identified correctmatch number and the preserved
matchnumber, and the recall is defined as the ratio of the iden-
tified correct match number and the correct match number
contained in the putative set. The precision and recall curves
with respect to different λ are summarized in Fig. 2. We see
that with a proper value of λ (e.g., 0.9 in the bottom row), our
method is able to preserve about 84.58% of the true matches,
and the precision can also reach up to 85.15%. In addition,
the effectiveness of multi-scale neighborhood representation
is also validated in Fig. 2, where the top and bottom rows
are respectively the results without and with using the multi-
scale neighborhood representation. Clearly, the multi-scale
neighborhood representation is able to largely promote the
matching performance.

Nevertheless, it will bemore desirable if the neighborhood
Nx can be constructed based on only the inlier set I. In this
case, the calculation of the cost c j for an inlier will be more
accurate and is not influenced by the outlier, therefore, the
margin between inlier and outlier will be distinctly enlarged.
This is helpful for accurate classification of the putative cor-
respondences, especially when the putative set S contains a
large number of outliers. However, the true inlier set I cannot
be known in advance and it is to be solved in our problem.

2 The distribution of initial inlier percentages on the test data can be
seen from the precision curve at λ = 1 in Fig. 2 as in this case all
putative matches are considered as inliers.
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Fig. 3 Distribution of the cost ci in Eq. (14) by using the whole feature
set (left) and by using I0 (right) to construct the neighborhood. For each
bin, we overlap the inlier and outlier probabilities, where the one with
smaller probability is shown in the outer layer

To solve this dilemma, here we seek an approximation I0 of
it. As shown in Fig. 2, our method is able to generate a cor-
respondence set which can remove most of the outliers and
simultaneously keep most of the inliers just by using S for
neighborhood construction. Clearly, this set is a good approx-
imation of the true inlier set, i.e,I0 = argminI C(I; S, λ, τ )

with the neighborhood constructed based on the whole set S.
Subsequently, we use I0 to construct the neighborhood

for each correspondence in S, and solve the optimal I∗ as:

I∗ = argmin
I

C(I; I0, S, λ, τ ). (17)

By using I0 instead of S for neighborhood construction,
the average precision-recall pair on the 30 test pairs can
be largely increased from (84.58%, 85.15%) to (91.28%,
94.49%). The distributions of the cost ci by using the whole
feature set and using I0 to construct the neighborhood are
reported in Fig. 3. We see that the margin between inlier and
outlier has been distinctly enlarged.

In fact, we could use a progressive strategy to construct
the neighborhood, i.e, iteratively using the match set gener-
ated in the previous iteration for neighborhood construction
until convergence, and the average precision-recall pair is
then further increased to (92.26%, 94.26%). Note that such
progressive strategy can only slightly improve the perfor-
mance, which means that I0 is good enough to approximate
the true inlier set for neighborhood construction. Therefore,
we just use Eq. (17) to determine the optimal inlier set for
simplicity. Since our matching strategy is to preserve local
neighborhood structures, we name our method locality pre-
serving matching (LPM). The whole procedure of our LPM
has been outlined in Algorithm 1.

Parameter settings There are three parameters in our
method:K, λ, and τ . ParameterK determines the number of
nearest neighbors formulti-scale neighborhood construction.
Parameter λ controls the threshold for judging the correct-
ness of a putative correspondence. Parameter τ determines
whether a neighboring putative match preserves the consen-
sus of neighborhood topology. Clearly, a large value of K,
a small value of λ, or a large value of τ will increase the
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Algorithm 1: The LPM Algorithm

Input: putative set S = {(xi , yi )}Ni=1, parameters K, λ, τ
Output: inlier set I∗

1 Construct neighborhood {N Km
xi ,N Km

yi }M,N
m=1,i=1 using S;

2 Calculate cost {ci }Ni=1 using Eq. (14);
3 Determine I0 using Eqs. (15) and (16);

4 Construct neighborhood {N Km
xi ,N Km

yi }M,N
m=1,i=1 using I0;

5 Calculate cost {ci }Ni=1 using Eq. (14);
6 Determine I∗ using Eqs. (15), (16) and (17).

precision and simultaneously decrease the recall, and vice
versa. In our evaluate, we empirically set the default values
as K = [4, 6, 8], τ = 0.2, λ = 0.9 and 0.5 in the two itera-
tions, respectively.

3.4 Computational Complexity

To search the K nearest neighbors for each feature point in S,
the time complexity is close to O((K + N ) log N ) by using
K-D tree (Bentley 1975). Thus the time complexity of Lines
1 and 4 in Algorithm 1 is about O((KM + N ) log N ). This is
the most time consuming step of our LPM. After obtaining
the KM neighborhoodN KM

xi , its corresponding Km (m < M)

neighborhood N Km
xi can be directly obtained from N KM

xi .
According toEq. (14), themajor cost of calculating {ci }Ni=1

inLines 2 and5only involves someadditionoperation, and its
time complexity is less than O(MKMN ). Moreover, deter-
mining p and I using Eqs. (15) and (16) in Lines 3 and 6
cost O(N ) complexity. Therefore, the total time complex-
ity of our LPM is about O(MKMN + (KM + N ) log N ).
The space complexity of our LPM is O(MKMN ) due to the
memory requirement for storing the neighborhoods {N Km

xi }
and {N Km

yi }. Generally, MKM � N , thus the time and
space complexities of our method can be simply written
as O(N log N ) and O(N ), respectively. That is to say, our
LPM has linearithmic time complexity and linear space
complexity with respect to the scale of the given putative
set. This is significant for large-scale problems or real-time
applications.

4 Applications

This section describes how we can apply the locality pre-
serving matching algorithm to several different visual tasks,
including point set registration, visual homing and near-
duplicate image retrieval, whose performance is in general
dominated by the feature matching quality.

4.1 Non-rigid Point Set Registration

Point set registration aims to determine the right correspon-
dences and/or to recover the spatial transformation between

two sets of discrete points, e.g., {xi }Mx
i=1 and {y j }My

j=1. The
registration problem is typically solved by using an iterative
framework, where point correspondences are established to
estimate the transformation, and vice versa (Ma et al. 2017).
Here we use the LPM algorithm to establish reliable corre-
spondences between two point sets and the transformation
is estimated accordingly based on Tikhonov regularization
(Micchelli and Pontil 2005).

4.1.1 Correspondence Construction

In the registration problem, the points are usually just spatial
coordinates and extracted from shape contours. Therefore,
they are not associated with local image descriptors such
as SIFT. However, there are several descriptors capturing
geometrical structures of shapes or point clouds can be made
use of to establish putative correspondences, both in 2D and
in 3D cases (Belongie et al. 2002; Rusu et al. 2009).

For 2D cases, the shape context (SC) (Belongie et al.
2002), which captures the distribution of neighboring points,
has been widely used for shape matching. Consider two
points xi and y j , their SCs are histograms {pi (l)}Ll=1 and
{q j (l)}Ll=1, with L being the dimension of the feature. The
χ2 distance is used to measure their difference D(xi , y j ):

D(xi , y j ) = 1

2

K∑

k=1

[
pi (k) − q j (k)

]2

pi (k) + q j (k)
. (18)

After the distances of all point pairs, i.e. {D(xi , y j )}Mx ,My
i, j=1 ,

have been computed, the Hungarian method (Papadimitriou
and Steiglitz 1982) is applied to seek the putative correspon-
dences between two point sets.

For 3D cases, the fast point feature histograms (FPFH)
(Rusu et al. 2009) can be used as the feature descriptor. It
is a histogram representing the underlying surface model
properties that collects the pairwise pan, tilt and yaw angles
between every point and its k-nearest neighbors, followed by
a reweighting of the resultant histogram of a point with the
neighboring histograms. The computation of the histogram
is quite efficient, which has linear complexity with respect
to the number of surface normals. The matching of FPFH
descriptors is performed by a sample consensus initial align-
ment method.

After using some local feature descriptors to find corre-
spondences, we obtain a putative set S = {(xi , yi )}Ni=1. Next,
our LPM algorithm is used to remove the false matches and
establish reliable correspondences.
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4.1.2 Transformation Estimation

The transformation f , i.e. yi = f(xi ) for a true correspon-
dence (xi , yi ), can be characterized by a rigid or non-rigid
model. The rigid model only involves a small number of
parameters, and it is relatively easy and has been widely
studied. Here we consider the more complex and general
non-rigidmodel, which is required formany real world tasks.
To estimate f , it is natural to consider the supervised learning
technique such as regression.

Wemodel the transformation f by restricting it to liewithin
a specific functional space H, namely a reproducing kernel
Hilbert space (RKHS) (Micchelli and Pontil 2005), which is
defined by a positive definite matrix-valued kernel �. In this
paper we choose a diagonal decomposable Gaussian kernel
�(xi , x j ) = e−β‖xi−x j‖2 · I with β being a spread parameter
and I being a 2 × 2 identity matrix. By using the L2 loss on
the data fitting and L2 functional norm on the model com-
plexity, the Tikhonov regularization minimizes the following
regularized risk functional (Micchelli and Pontil 2005):

E(f) = min
{ ∑N

i=1 ‖yi − f(xi )‖2 + μ‖f‖2H
}
. (19)

According to the representer theorem (Micchelli and Pon-
til 2005), the optimal solution of the minimization problem
in Eq. (19) is given by

f(x) = ∑N
i=1 �(x, xi )wi , (20)

with the coefficients {wi }Ni=1 determined by a linear system:

(� + μI)W = Y, (21)

where � ∈ IRN×N is the so-called Gram matrix with �i j =
e−β‖xi−x j‖2 , W = (w1, . . . ,wN )T and Y = (y1, . . . , yN )T

are matrices of size N × 2.
Note that there are two parameters need to be set, i.e, μ

and β, where we fix them as μ = 3 and β = 0.8 throughout
this paper. In addition, to make the transformation estima-
tion more robust, the VFC (Ma et al. 2014) algorithm is
preferable. It generalizes the Tikhonov regularization to han-
dle contaminated data under a Bayesian framework, which
introduces a latent variable to resist outliers. Specifically, it
assumes the noise of inlier to be Gaussian with zero mean
and uniform standard deviation σ , and the outlier to be uni-
form distributed 1/a with a being the area of input image.
Thus the likelihood is a mixture model:

p(X,Y|θ) =
N∏

i=1

(
γ

2πσ 2 e
− ‖yi−xi−f(xi )‖2

2σ2 + 1 − γ

a

)
, (22)

where X = (x1, . . . , xN )T, θ = {f, σ 2, γ } includes a set
of unknown parameters to be solved, and γ is the mix-
ing coefficient. By imposing a slow-and-smooth prior on
the transformation: p(f) ∝ e− μ

2 ‖f‖2H , a MAP solution of
θ can then be estimated, which is solved by using an itera-
tive expectation-maximization approach. In particular, in the
maximization step, the transformation is updated according
to a regularized risk functional as:

E(f) = min
{∑N

i=1 pi‖yi − f(xi )‖2 + μσ 2‖f‖2H
}
, (23)

where pi is posterior probability estimated in the expectation
step, which indicates to what degree (xi , yi ) being an inlier.
We refer to Ma et al. (2014) for more details on the VFC
algorithm.

The above two steps of correspondence constructions and
transformation estimation are iterated to obtain a reliable
result. The iteration number is fixed to 10, and larger value
is preferable if the input data is badly degraded.

4.2 Visual Homing

Visual homing aims to navigate a robot from an arbitrary
starting position to some goal or home position solely based
on visual information. It is usually solved by first matching
local features in two panoramic images captured respectively
at the current position and home position, and then trans-
forming the correspondences into motion flows which are
finally used to determine the homing vector (Zhao and Ma
2017). It has been verified that the robustness of visual hom-
ingmethods is dominated by the presence and amount of false
correspondences (Schroeter and Newman 2008). To remedy
the degradation caused by mismatches, usually some heuris-
tic methods are adopted to remove them. As in the non-rigid
point set registration problem, we use LPM for robust feature
matching and estimate the transformation f accordingly. The
dense motion flow can then be directly obtained from f , and
we subsequently derive the focus-of-contraction (FOC) and
focus-of-expansion (FOE) based on it to determine homing
directions.

4.2.1 Feature Matching for Panoramic Image Pairs

In the visual homing problem, the panoramic image usually
has reached 360◦ field of view horizontally, which is typi-
cally called “360 cylindrical panorama”. The image plane of
this type of image could be seen as a cylinder unrolled along
with a certain vertical cutting line. Therefore, it is not appro-
priate to define the distance between pixels on the image
plane by directly using the Euclidean distance, as in this case
the distance will depend on the cutting line. For example,
two nearby pixels on the cylinder will have large distance on
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the image plane if they are located on the two sides of the
cutting line. To address this issue, we define the two dimen-
sional pixel position as a horizontal coordinate and a vertical
coordinate, i.e x = (xh, xv)T, where xh and xv are scalars.
The Euclidean distance then can bemodified as the following
cylinder distance:

CylDist2(xi , x j ) = (
CylDisth(xhi , x

h
j )

)2

+ (
CylDistv(xv

i , x
v
j )

)2
, (24)

where the horizontal and vertical distances are defined as

CylDisth(xhi , x
h
j ) = min

{|xhi − xhj |, |xhi − xhj − xhmax|,
|xhi − xhj + xhmax|

}
, (25)

CylDistv(xv
i , x

v
j ) = |xv

i − xv
j |, (26)

with xhmax being the horizontal width of the image plane.
To conduct feature matching on panoramic image pairs by

using our LPM approach in Algorithm 1, the only required
modification is to construct the neighborhoods {Nx,Ny} in
Lines 1 and 4 by using the cylinder distance defined in
Eq. (24) rather than the original Euclidean distance. This
strategy enables our method to identify those true matches
located on the two sides of the cutting line.

4.2.2 Motion Flow Estimation

After obtaining the feature correspondences, we focus on
recovering the dense motion flow by estimating the transfor-
mation f from the matches. This can be achieved by using
the regularization technique as described in the last section.
The major difference is that the match (xi , yi ) should be con-
verted to a motion vector (ui , vi ) according to the cylinder
coordinate, e.g.,

ui = xi , (27)

vi = (yhi − xhi + αxhmax, y
v
i − xv

i ), (28)

where ui is a position on an image plane, vi is its associated
motion vector, and parameter α ∈ {0,±1} is used to wrap
the horizontal displacement to [−xhmax/2, x

h
max/2]. Then we

could interpolate a motion field f : vi = f(ui ) for an inlier
sample (ui , vi ) by using regularization technique.

4.2.3 Estimation of Homing Direction

It has been shown in previous work that the motion flow
of a panoramic image pair has two singularities (Möller and
Vardy 2006), which correspond to the FOC and FOE, respec-
tively. In addition, these two singularities are separated by
half horizontal width of the panoramic image.

The FOC and FOE have been used in many applications,
including 3D environment reconstruction and estimation
of time-to-contact in visual navigation. Specifically, in the
visual homing literature, FOE corresponds to the homing
direction, and FOC corresponds to the opposition of homing
direction (Churchill and Vardy 2013; Zhao and Ma 2017).
To localize the two singularities, a heuristic strategy has been
proposed by detecting whether the SIFT features have grown
or shrunk with respect to their sizes in the reference home
image (Churchill and Vardy 2013).

Next, we introduce a method that uses the dense motion
flow to determine the FOC and FOE. In general, the FOC and
FOE should lie on the horizontal line uv = uv

max/2 and are
separated by uhmax, with uhmax and uv

max being the horizontal
width and vertical width of the panoramic image. Therefore,
there is no significant difference about the estimation of these
two singularities. In the following, we will only focus on the
estimation of FOC, and the generalization to FOE is straight-
forward.

After obtaining the motion flow f(u) in Eq. (20), finding
out the analytical solution of its singularities is impossible
or very difficult. Instead, some numerical method can be
adopted to seek an approximate solution. Formally, since
FOC lies on the horizontal line uv = uv

max/2, we define
a 1D function

g(uh) � f([uh,uv
max/2]). (29)

Clearly, g(θ) is continuous and differentiable, and the sin-
gularities correspond to the points whose left and right local
neighborhoods have different signs. We give the formal def-
inition of the FOC as below.

Definition: Focus of contraction (FOC) Focus of contrac-
tion uhFOC is the point satisfying that: (i) g(uhFOC) = 0; and
(ii) ∃ ε > 0 satisfies that g(uh) > 0 for any uh in the left
ε-neighborhood of uhFOC and g(uh) < 0 for any uh in the
right ε-neighborhood of uhFOC.

We use a coarse-to-fine grid search strategy to find the
optimal solution of FOC, which is able to achieve arbitrary
precision. In visual homing literature, usually all panoramic
images have identical compass orientation by preprocessing.
By converting the coordinate to angle, the homing direction
can then be obtained as follows:

θhoming = θFOC = 2π · uhFOC
uhmax

. (30)

With this direction, we can fulfill the visual homing task and
navigate a robot back to its reference home position.
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4.3 Near-Duplicate Image Retrieval

Given a query image, the goal of near-duplicate image
retrieval is to retrieve the images of the same object or scene
from a large database and return a ranked list. It is typically
solved by first calculating the similarities between the query
image and all the images in the database, and then sorting
the similarities to return a ranked list (Chen et al. 2016). In
this procedure, the similarity between two images could be
determined by the similarity of features contained in them,
while the feature similarity is usually measured by feature
matching result. Thus LPM is desirable to produce reliable
performance.

For the image registration problem, we are given an image
database S = {Ii }Ni=1 together with a similarity function s:
I × I → IR+ that assigns each pair of images with a positive
similarity value. In this paper, the similarity function s is
defined as follows: we first establish SIFT putative feature
correspondences and subsequently use our LPM to remove
false matches, the similarity s(Ii , I j ) is then assigned by the
number of preserved matches on the two given images Ii and
I j . Therefore, we obtain an N×N similarity matrix S related
to the whole image database, where Si j = s(Ii , I j ).

Given a query image Ii , we aim to search the most similar
images froma set of knowndatabase imagesS. By sorting the
values {Sin}Nn=1 in decreasing order, we obtain a ranking of
database images according to their similarities to the query,
e.g., the most similar database image has the highest value
and is listed first. Usually, the first M (M � N ) images are
returned as the most similar ones to the query.

5 Experimental Results

In order to evaluate the performance of our LPM, we first
conduct experiments on feature matching for various real
image pairs, and then apply it to the visual tasks, say non-
rigid point set registration, visual homing and near-duplicate
image retrieval. The open source VLFeat toolbox (Vedaldi
and Fulkerson 2010) is employed to determine the puta-
tive correspondence of SIFT (Lowe 2004) and to search the
K nearest neighbors using K-D tree. The experiments are
performed on a desktop with 3.0 GHz Intel Core CPU, 8
GB memory, and C++ code. Besides, all the codes were
implemented without special optimization such as parallel
computing or streaming SIMD extensions.

5.1 Results on Feature Matching

In this section, we focus on establishing feature corre-
spondences for real images. To this end, we first test the
performance of our LPM on several representative image
pairs undergoing different types of image transformations,

and then provide quantitative results on five datasets as fol-
lows:

– VGG (Mikolajczyk et al. 2005). The dataset contains 40
image pairs either of planar scenes or captured by a cam-
era in a fixed position during acquisition. Therefore, the
image pairs in this dataset always obey homography. The
ground truth homographies are supplied by the dataset.

– DAISY (Tola et al. 2010). The dataset consists of wide
baseline image pairs with ground truth depth maps,
including two short image sequences and several indi-
vidual image pairs. We create 52 image pairs in total for
evaluation, including all the individual pairs, and for the
two sequences we create all possible image pairs from
them.

– DTU (Aanæs et al. 2016). The dataset is originally
designed for multiple view stereo evaluation, which
involves a lot of different scenes with a wide range of
objects. Each scene has been taken from 49 or 64 posi-
tions, and the ground truth camera positions and internal
camera parameters have been found with high accuracy.
We choose two scenes from the dataset (i.e., Frustum and
House) and create 131 image pairs in total for evaluation,
which consist of those pairs with large viewpoint changes
in the scenes.

– RS. The dataset consists of 156 remote sensing image
pairs including color-infrared, SAR and panchromatic
photographs. The feature matching task for such image
pairs typically arises in image mosaic, positioning and
navigating, change detection, etc.

– Retina. The dataset consists of 65 retinal image pairs
undergoingnon-rigid transformations.The featurematch-
ing task aims to align multiple retina images together
and integrate information from them for comprehensive
understanding and better diagnoses of retinal diseases.

For the first three publicly available datasets, the cor-
rectness of each feature correspondence in a putative set is
determined based on the ground truth information supplied
by the datasets. The other two datasets are collected by our-
selves, where the ground truth correspondence is established
with respect to a benchmark prepared in advance, before
conducting any experiments, to ensure objectivity; in par-
ticular, the correctness of each putative correspondence in
each image pair is checked manually.

5.1.1 Results on Representative Image Pairs

Ten representative image pairs undergoing different types
of transformations are used for test, as shown in Fig. 4.
The “Land” pair is an aerial photograph pair involving
only linear (e.g., rigid or affine) transformation, which is
typically arisen in image stitching. The “Fox” and “Book”
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Fig. 4 Feature matching results of our LPM on 10 representative image
pairs. From top to bottom and left to right: Land, Fox, Book, Retina, T-
shirt, Church, Bear,Herzjesu, Frustum andHouse. The ratio of outliers
in the 10 image pairs are 40.81%, 85.93%, 76.14%, 49.50%, 43.81%,
57.26%, 65.94%, 78.71%, 65.96% and 78.49%. The head and tail of

each arrow in the motion field correspond to the positions of feature
points in two images (blue = true positive, black = true negative, green
= false negative, red = false positive). For visibility, in the image pairs,
at most 100 randomly selected matches are presented, and the true neg-
atives are not shown. Best viewed in color (Color figure online)

pairs undergo piecewise linear transformation, which is often
arisen in image/video retrieval. The “Retina” and “T-shirt”
pairs involve non-rigid motions, which frequently happens
in medical image registration. The rest five pairs are wide
baseline image pairs, which is typically arisen in structure-
from-motion. For each group of results, the left image pair
schematically shows thematching result, and the rightmotion
field provides the decision correctness of each correspon-
dence in the putative set. From the results, we see that our
LPM can always produce satisfying results and very few
putative matches are misjudged.

We also provide quantitative comparison on the 10 image
pairs with four state-of-the-art matching methods such as
RANSAC (Fischler and Bolles 1981), ICF (Li and Hu 2010),
GS (Liu andYan 2010), GMS (Bian et al. 2017), BD (Lipman
et al. 2014) and MR-RPM Ma et al. (2017). All these algo-
rithms are implemented based on publicly available codes,
and we have tried our best to tune their parameters to achieve
their best performance. The matching performance is char-
acterized by precision and recall,3 as shown in Table 1. From

3 For real-world tasks such as multiple view stereo and SLAM, a better
metric would be to use the inliers to retrieve the camera pose from stereo
images and evaluate their accuracy (Bian et al. 2017). However, such
camera pose estimation usually relies on an additional robust estimator
such as RANSAC, which may not directly characterize the matching
performance. Therefore, for the purpose of general feature matching,
we only use precision and recall to characterize the performance.

the results, we see that for rigid matching such as in the Land
pair, all methods except BD perform quite well. BD uses
a piecewise deformation model with relatively weak global
constraintswhich is sensitive to outliers, leading to its inferior
performance. RANSAC cannot work well when the image
transformation does not satisfy a parametric model, such as
in the Fox, Book and T-shirt pairs. ICF and MR-RPM use a
slow-and-smooth prior, whichwill probably fail if themotion
field involves large depth discontinuity or motion inconsis-
tency, such as in the Fox, Book and wide baseline image
pairs. GS often has high precision and low recall, because it
cannot automatically estimate the factor for affinity matrix
and it is not affine-invariant. GMS does not achieve the best
performance, due to that we use it with the same input as
the other methods, even though it was designed with a very
large number of low-quality matches instead. In addition, the
consensus of neighborhood topology demonstrated in Fig. 1
cannot be well addressed either. In comparison, our LPM
does not suffer from all these problems, which demonstrates
its generality and ability to handle various matching prob-
lems.

5.1.2 Results on Image Datasets

To provide a comprehensive quantitative evaluation of our
LPM, we next conduct experiments on five feature match-
ing datasets, such as VGG, DAISY, DTU, RS and Retina.
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The average numbers of putative SIFT correspondences on
the five datasets are about 693.17, 1475.60, 545.99, 445.34
and 69.03, respectively. The initial inlier percentage, preci-
sion, recall and runtime statistics of the seven algorithms are
reported in Fig. 5. From the results, we see that LPM does
not have obvious advantage in terms of precision compared
with other methods, especially for RANSAC; however, it
can always produce the best recall index. We give an expla-
nation as follows. For those scenes suffer from large depth
discontinuity, motion inconsistency or non-rigid deforma-
tion, existing methods preserve only a part of the whole true
correspondences that obey some specifical geometrical con-
straints (e.g., motion models). By contrast, our LPM does
not require a motion model between image pairs, therefore it
works well in presence of non-rigid deformations or multiple
motion fields.

We also report the runtime statistics in the last column of
Fig. 5. From the results, we see that GMS and our LPM are
very effective, which are more than two orders of magnitude
faster than the other state-of-the-art methods. The runtime of
GMS is about one third of LPM. In particular, our average
runtime on the five datasets is merely about 12.9 ms, 19.8
ms, 7.55 ms, 8.75 ms, and 2.06 ms, respectively, making it
ideal for real-time applications.

5.2 Results on Point Set Registration

We next evaluate our LPM for point set registration on both
2D shape contour and 3Dpoint cloud. For the 2Dcase,we use
the synthesized data created in Chui and Rangarajan (2003)
and Zheng and Doermann (2006), which consists of two
shape patterns such as a fish pattern and a Chinese charac-
ter pattern with both about 100 points. The dataset involves
several different types of data degeneration, and each degen-
eration type involves several different degeneration levels
where each level contains 100 samples. For the 3D case, we
consider a surface correspondence benchmark (Kim et al.
2011) and choose a point cloud pair representing awolf with
about 5000 points in different poses for evaluation. To make
the dataset more challenging, we add two types of degener-
ation including occlusion and outlier to the point cloud pair
with different degeneration levels where each level contains
50 samples. The ground truth correspondences are supplied
by the datasets.

5.2.1 Results on 2D Shape Contour

Some qualitative results of our method on the two shape pat-
terns are presented in Fig. 6. Our goal is to align amodel point
set (blue pluses) onto a target point set (red circles).We orga-
nize the results in every two rows: the first row is the initial
point sets, the second row is the corresponding registration
results, and the degree of degradation increases from left to
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Fig. 5 Quantitative comparisons of RANSAC, ICF, GS, GMS, BD, MR-RPM and LPM on five datasets, such as (Top to Bottom) VGG, DAISY,
DTU, RS and Retina. (Left to Right) Initial inlier ratio, precision, recall, and run time with respect to the cumulative distribution

right. From the results, we see that the fish pattern is relatively
simple and the local neighborhood structures among contour
points are preservedwell even in case of large degree of defor-
mation or occlusion, and hence our method is able to always
produce almost perfect alignments. By contrast, the points
of the Chinese character pattern are spread out on the shape,
which affects the locality preserving under large degradation.
The matching performance then degrades gradually, but it

remains acceptable, even for large degradation. The iterative
correspondence construction and transformation estimation
process typically converges in about 5 iterations on this
dataset.

We also provide a quantitative comparison on the dataset
with six state-of-the-art registration methods, including SC
(Belongie et al. 2002), TPS-RPM (Chui and Rangarajan
2003), RPM-LNS (Zheng and Doermann 2006), GMMREG
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(b1)(a1)

(b2)(a2)

Fig. 6 Registration results of our method on the fish (left) and Chinese
character (right) patterns, with (a1, b1) deformation and (a2, b2) occlu-
sion presented in every two rows. The goal is to align the model point
sets (blue pluses) onto the target point sets (red circles). For each group,
the first row is the initial point sets, the second row is the corresponding
registration results, and the degree of degradation increases from left to
right (Color figure online)
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Fig. 7 Comparison of LPM with SC, TPS-RPM, RPM-LNS, GMM-
REG, CPD and VFC on the fish (left) and Chinese character (right)
patterns. The error bars indicate the registration error means and stan-
dard deviations over 100 trials

(Jian and Vemuri 2011), CPD (Myronenko and Song 2010)
and VFC (Ma et al. 2014), which are implemented based
on publicly available codes. The registration error between
two point sets is characterized by the average Euclidean
distance of the ground truth correspondences between the
warped model set and the target set. For each degradation
level in a certain degradation type, we then compute themean
and standard deviation of the registration errors on all 100
samples for performance comparison. The statistic results
are reported in Fig. 7. From the results, we see that all the
seven algorithms performwell at low degradation levels, and
the performance degrades as the degradation level increases,
especially for SC andTPS-RPM.GMMREGandCPDdo not
consider local shape features for correspondence estimation,
while RPM-LNS does not use robust estimator for transfor-

Fig. 8 Registration results of our method on the wolf pattern involving
deformation (left column), occlusion (middle column), and outlier (right
column). For each group, the top figure is the initial point sets, and the
bottom is the corresponding result
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Fig. 9 Comparison of LPM with ICP, CPD and VFC on the wolf pat-
tern. The error bars indicate the registration error means and standard
deviations over 50 trials

mation estimation; they all cannot achieve satisfying results
in case of large degradation levels. VFC and our LPM do
not suffer from such problems and hence perform better. The
major difference between our LPM and VFC is that we use
an additional locality preserving constraint to filter out false
correspondence; our almost consistently best results demon-
strate that the locality preserving does play an important role
for improving the registration performance.

5.2.2 Results on 3D Point Cloud

We further evaluate our LPM for registration of 3D point
cloud pairs. The results are given in Fig. 8, where the tests on
non-rigid deformation, occlusion and outlier are shown in the
left, middle and right columns, respectively. In addition, to
make the data more challenging, we remove a part of points
on both the model and target patterns in the occlusion test,
and add outliers on both the model and target patterns in the
outlier test. From the results, we see that our method again
is able to produce almost perfect alignments.

We also provide a quantitative comparison on the two
point cloud pairs with three representative methods such as
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Fig. 10 Precision (left), recall (middle) and runtime (right) of RANSAC, ICF, GS, GMS, BD, MR-RPM and LPM on a panoramic dataset (Liu
et al. 2013)

ICP (Besl and McKay 1992), CPD (Myronenko and Song
2010) and VFC (Ma et al. 2014). We calculate the average
registration error on each degradation type and each degra-
dation level, and report the statistic results in Fig. 9. Clearly,
our method yields the best performance, which demonstrates
the generality and effectiveness of our method for handling
both 2D and 3D point set registration problems. Note that
ICP is consistently unable to generate satisfying results as it
relies on a rigid transformation model, while the testing data
here involves large degree of non-rigid deformation. In addi-
tion, the average registration error of ICP in the occlusion
test decreases as the occlusion ratio grows. This is because
that the degree of non-rigid deformation becomes smaller as
more parts are removed from the shape pattern.

5.3 Results onVisual Homing

We evaluate our LPM on a widely used panoramic image
database4 in the visual homing literature (Churchill and
Vardy 2013; Liu et al. 2013). It contains a collection of omni-
directional and unwrapped images in an indoor environment,
together with ground truth for positions where the images
were collected. The database includes several scenes, and the
collected images are of size 561× 81, 583× 81 or 295× 41.
The actual intervals between two nearest positions for image
collection are 30 cm.As the image resolution is low, wemod-
ify the default parameter of SIFT to generate more features.
Specifically, the number of layers in each octave is increased
from default 3 to 6.

Tovalidate the effectiveness of ourLPMonvisual homing,
we use three types of methods for quantitative comparison
includinghoming in scale-space (HiSS) (Churchill andVardy
2013), visual servoing-based methods (Liu et al. 2013), and
motion flow interpolation by smoothness prior (MFI-SP)
(Zhao and Ma 2017). Note that in (Liu et al. 2013), it has
introduced four variants of homingmethods: (i) bearing-only

4 http://www.ti.uni-bielefeld.de/html/research/avardy/index.html.

visual servoing; (ii) scale-only visual servoing; (iii) scale and
bearing visual servoing; (iv) simplified scale-based visual
servoing (SSVS). For these four variants, we only report the
results of SSVS due to its superior performance and effi-
ciency compared to the other three methods, and it has also
been suggested as the first choice by the original authors
according to their comprehensive evaluation.5 In addition, as
in Churchill and Vardy (2013); Liu et al. (2013), we use total
average angular error (TAAE), minimal error (Min), maxi-
mal error (Max) and standard variation of error (StdVar) to
evaluate the homing performance. For all themetrics, smaller
values indicate better results.

5.3.1 Feature Matching on Panoramic Images

We first test our method for feature matching on panoramic
images. The ground truth is established by manually check-
ing of each putative match in each image pair, and we only
choose 23 image pairswith large viewpoint changes for quan-
titative evaluation. This can not only make the test data more
challenging, but also simplify the construction of ground
truth.

The matching results of different methods are reported in
Fig. 10. The average inlier ratio in the putative sets is about
78.18%, and the average number of putativematches is about
113.5. From the results, we see that our LPM clearly has the
best precision and recall tradeoff. We see that RANSAC has
the best precision, but simultaneously has the worst recall.
This is due to that the panoramic pair does not exactly
satisfy a parametric model, and hence only a part of the
true matches can be identified. The missing matches will
inevitably affected the subsequent dense motion field inter-
polation. We also provide the runtime statistics of different

5 As different feature extraction used in this paper, the performance
of HiSS (Churchill and Vardy 2013) and SSVS (Liu et al. 2013) is
not exactly the same as reported in the original papers. In addition,
the reimplemented SSVS method in this paper does not contain the
mismatch removal introduced in (Liu et al. 2013).
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Fig. 11 Homing vectors and error analysis referring to grid position
(5, 8) in dataset A1originalH. a–d Homing vectors. The solid circle in
each figure is the homing position. e–hAngular errors for each position
(unit: degree). a HiSS (Churchill and Vardy 2013), b SSVS (Liu et al.
2013), cMFI-SP (Zhao and Ma 2017), d LPM, e HiSS, 9.43◦, f SSVS,
8.05◦, g MFI-SP, 4.66◦, and h LPM, 4.21◦

1 141 281 421 561

81

41

1

1 141 281 421 561

81

41

1

Fig. 12 Schematic illustration of feature matching and dense motion
flow estimation results of our LPM. Top: the feature matching result,
where blue and black lines indicate the preserved inliers and removed
outliers. Middle: the corresponding sparse motion flow samples. Bot-
tom: dense motion flow estimated based on the persevered matches by
our LPM, where black dots are localized FOC and FOE (Color figure
online)

methods on the rightmost figure in Fig. 10. The average run-
time of GMS and our LPM is less than 2 ms, which is far less
than the other methods.

5.3.2 Visual Homing on Panoramic Images

We further test our method for visual homing. Figure 11
provides some intuitive results of different methods on the Ta
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Fig. 13 Precision (left) and recall (middle) of RANSAC, ICF, GS, GMS, MR-RPM and LPM with respect to RN , i.e, the required number of
images to be retrieved for a given image. Right: runtime statistics of LPM over 14, 280 trials

homing performance.We take position (5, 8) ofA1originalH
dataset as the reference home position, and the homing vec-
tors calculated from other images by using the four methods
are shown in Fig. 11a–d. The corresponding average angular
errors for each position of the dataset are shown in Fig. 11e–
h. From the results, it can be seen that our LPM can provide
more accurate homing results.

We schematically show our feature matching result and
estimated dense motion flow on a typical image pair in
Fig. 12. Clearly, all the inliers and outliers in the putative
set are correctly distinguished. In addition, the estimated
dense motion flow, FOC and FOE are consistent with the real
motion flow. In this example, the FOC and FOE are about
(437, 41) and (157, 41), respectively. Usually, it takes about
10 milliseconds for our method to localize the FOE/FOC.

The statistics of the homing vector errors of all methods
on the test database are reported in Table 2. We can see that
our LPM in general can produce better or comparable results
compared with the other state-of-the-art methods.

5.4 Results on Near-Duplicate Image Retrieval

We also test our LPM for near-duplicate image retrieval and
compare it with RANSAC, ICF, GS, and MR-RPM on the
California-NDdataset (Jinda-Apiraksa et al. 2013).We select
all of the classes that have 10 or more images, and for each
class we randomly select 10 images for evaluation which
results in 14, 280 image pairs in total. The sizes of the test
images are all 1024 × 768. We run the matching algorithms
and utilize the number of preserved matches as the similar-
ity between image pairs, and then return a ranked list for a
provided image according to its similarities with every other
image in the dataset. The performance is also characterized
by precision and recall. We denote the required image num-
ber to be retrieved for a provided image as RN . The precision
is valid for RN ≤ 10 and the recall is valid for RN ≥ 10,
because each class contains 10 images.

The statistic retrieval results of the four methods in the
dataset are presented on the left two figures of Fig. 13. Our
LPM evidently outperforms all other methods and obtains
the best precision and recall, followed by RANSAC and
MR-RPM. Specifically, the average retrieved correct image
numbers of RANSAC, ICF, GS, GMS, MR-RPM and our
LPM for RN = 10 are approximately 7.45, 5.18, 7.13, 7.65,
7.13 and 8.74, respectively. The runtime statistics of LPM on
all the 14, 280 image pairs is provided on the right of Fig. 13,
where the median runtime is about 0.729 ms.

We alsomeasure the retrieval performance of the so-called
bulls-eye score (Bai et al. 2010), which is defined as the
ratio of the total number of correct images among the 20
most similar images to the highest possible number (i.e,
10). The best possible rate is 100%. The bulls-eye scores
of RANSAC, ICF, GS, GMS, MR-RPM and our LPM are
approximately 81.25%, 59.50%, 80.00%, 82.67, 80.25%and
92.17%, respectively. Ourmethod again evidently showcases
the best performance.

6 Discussion and Conclusion

In this paper, we proposed a novel mismatch removal method
for robust feature matching. It works based on a general
characteristic that the neighborhood structures of feature cor-
respondences between two images of the same scene should
be similar. We formulated this idea into a mathematic model
and derived a closed-form solution with linearithmic time
complexity.Thequalitative andquantitative results on feature
matching as well as other real-world tasks demonstrated that
our method can handle a variety of matching problems.More
importantly, it can identify outliers from over 1, 000 puta-
tive matches in only a few milliseconds, which is more than
two orders of magnitude faster than state-of-the-art meth-
ods. Since our method is very fast, it can be used to provide
a quick initialization for more complicated problem-specific
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matching algorithms, for instance RANSAC, to estimate the
epipolar geometry between wide baseline image pairs.

For most existing feature matching methods, there is a
critical prerequisite that the putative set should not contain a
huge number of outliers. To ensure relatively high inlier ratio,
typical strategies for putative set construction often falsely
discard a part of true matches. This will be problematic if
image pairs themselves contain very few true matches, for
example, matching low-overlap images (e.g., remote sens-
ing images for mosaic) or low-quality images (e.g., medical
images for fusion). To address this issue, we have designed
a guided matching strategy based on our preliminary LPM
method (Ma et al. 2017) in the context of solving the remote
sensing image registration (Ma et al. 2018) and visual hom-
ing (Ma et al. 2018) problems. It uses the matching result
on a small putative set with a high inlier ratio to guide the
matching on a large putative set with a (very) low inlier ratio.
Therefore, it is able to address the matching problem when
the putative set is constructed from a large number of (cheap)
features (possibly with high noise) and is thus semi-dense
(Bian et al. 2017; Lin et al. 2018). This guided matching
strategy can be directly applied to our LPM in this work to
boost the number of true matches.
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