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Abstract

Training a unified multilingual model promotes001
knowledge transfer but inevitably introduces002
negative interference. Language-specific mod-003
eling methods show promise in reducing inter-004
ference. However, they often rely on heuris-005
tics to distribute capacity and struggle to fos-006
ter cross-lingual transfer via isolated modules.007
In this paper, we explore intrinsic task modu-008
larity within multilingual networks and lever-009
age these observations to circumvent interfer-010
ence under multilingual translation. We show011
that neurons in the feed-forward layers tend012
to be activated in a language-specific manner.013
Meanwhile, these specialized neurons exhibit014
structural overlaps that reflect language prox-015
imity, which progress across layers. Based016
on these findings, we propose Neuron Special-017
ization, an approach that identifies specialized018
neurons to modularize feed-forward layers and019
then continuously updates them through sparse020
networks. Extensive experiments show that021
our approach achieves consistent performance022
gains over strong baselines with additional anal-023
yses demonstrating reduced interference and024
increased knowledge transfer.1025

1 Introduction026

Jointly training multilingual data in a unified027

model with a shared architecture for different lan-028

guages has been a trend (Conneau et al., 2020;029

Le Scao et al., 2022) encouraging knowledge trans-030

fer across languages, especially for low-resource031

languages (Johnson et al., 2017; Pires et al., 2019).032

However, such a training paradigm also leads to033

negative interference due to conflicting optimiza-034

tion demands (Wang et al., 2020). This interference035

often causes performance degradation for high-036

resource languages (Li and Gong, 2021; Pfeiffer037

et al., 2022) and can be further exacerbated by lim-038

ited model capacity (Shaham et al., 2023).039

1We release code at https://anonymous.4open.
science/r/NS-3D93

Modular-based methods, such as Language- 040

specific modeling (Zhang et al., 2020b) and 041

adapters (Bapna and Firat, 2019), aim to mitigate 042

interference by balancing full parameter sharing 043

with isolated or partially shared modules (Pfeiffer 044

et al., 2023). However, they heavily depend on 045

heuristics for allocating task-specific capacity and 046

face challenges in enabling knowledge transfer be- 047

tween modules (Zhang et al., 2020a). Specifically, 048

such methods rely on prior knowledge for man- 049

aging parameter sharing such as language-family 050

adapters (Chronopoulou et al., 2023) or directly 051

isolate parameters per language, which impedes 052

transfer (Pires et al., 2023). 053

Research in vision and cognitive science has 054

shown that unified multi-task models may sponta- 055

neously develop task-specific functional specializa- 056

tions for distinct tasks (Yang et al., 2019; Dobs 057

et al., 2022), a phenomenon also observed in 058

mixture of experts Transformer systems (Zhang 059

et al., 2023). These findings suggest that through 060

multi-task training, networks naturally evolve to- 061

wards specialized modularity to effectively man- 062

age diverse tasks, with the ablation of these spe- 063

cialized modules adversely affecting task perfor- 064

mance (Pfeiffer et al., 2023). Despite these insights, 065

exploiting the inherent structural signals for multi- 066

task optimization remains largely unexplored. 067

In this work, we explore the intrinsic task- 068

specific modularity within multi-task networks in 069

Multilingual Machine Translation (MMT), treating 070

each language pair as a separate task. We focus 071

on analyzing the intermediate activations in the 072

Feed-Forward Networks (FFN) where most model 073

parameters reside. To our knowledge, our study is 074

the first to show that neurons activate in a language- 075

specific way, yet they present structural overlaps 076

that indicate language proximity in general. More- 077

over, this pattern evolves across layers in the model, 078

suggesting that neurons consistently transition from 079

language-specific to language-agnostic. 080
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Building on these observations, we introduce081

Neuron Specialization, a novel method that lever-082

ages intrinsic task modularity to reduce interfer-083

ence and enhance knowledge transfer. In general,084

our approach selectively updates the FFN parame-085

ters during back-propagation for different tasks to086

enhance task specificity. Specifically, we first iden-087

tify task-specific neurons from pre-trained unified088

translation models, using standard forward-pass089

validation processes without decoding. We then090

specifically modularize FFN layers using these spe-091

cialized neurons and continuously update FFNs via092

sparse networks.093

Extensive experiments on small- (IWSLT) and094

large-scale EC30 (Tan and Monz, 2023) transla-095

tion datasets show that our method consistently096

achieves performance gains over strong baselines097

with various configs. Moreover, we conduct in-098

depth analyses to show that our method effectively099

mitigates interference and enhances knowledge100

transfer in high and low-resource languages, re-101

spectively. Our main contributions are summarized102

as follows:103

• We identify inherent multilingual modular-104

ity by showing that neurons activate in a105

language-specific manner and their overlap-106

ping patterns reflect language proximity.107

• Building on these findings, we enhance task108

specificity through sparse FFNs, achieving109

consistent improvements in translation quality110

over strong baselines.111

• We employ analyses to show that our method112

effectively reduces interference in high-113

resource languages and boosts knowledge114

transfer in low-resource languages.115

2 Related Work116

Multilingual Interference. Multilingual training117

enables knowledge transfer but also causes interfer-118

ence, largely due to optimization conflicts among119

various tasks (Wang and Zhang, 2022). Methods120

alleviating task conflicts hold promise to reduce121

interference (Wang et al., 2020), yet they show122

limited effectiveness in practice (Xin et al., 2022).123

Scaling up model size may reduce interference but124

leads to overly large models (Chang et al., 2023),125

with risks of overfitting (Aharoni et al., 2019).126

Language-Specific Modeling. Recent methods127

enhance the unified model by utilizing language-128

specific (LS) modules such as adapters (Bapna129

and Firat, 2019), LS layers (Zhang et al., 2020b; 130

Pires et al., 2023) and LS hidden states (Xie et al., 131

2021). Although the unified model serves as a 132

common foundation, these methods strictly iso- 133

late modules per language. Such designs present 134

no knowledge sharing among modules and thus 135

offer fewer benefits to low-resource languages. 136

Alternatively, approaches like language family 137

adapters Chronopoulou et al. (2023) seek to fa- 138

cilitate sharing among language-specific modules, 139

however, they heavily depend on heuristics such as 140

using priori linguistic knowledge to enable more 141

flexible parameter sharing. 142

Additionally, these modular-based methods ex- 143

hibit parameter inefficiency when handling numer- 144

ous languages, resulting in increased memory re- 145

quirements and extended inference times (Liao 146

et al., 2023a,b). Similarly, techniques such as pa- 147

rameter differentiation (Wang and Zhang, 2022) 148

and language clustering training (Tan et al., 2019) 149

alleviate interference by expanding the unified 150

model with substantial extra parameters. 151

Sub-networks in Multi-task Models. The lot- 152

tery ticket hypothesis (Frankle and Carbin, 2018) 153

states that within dense neural networks, sparse 154

subnetworks can be found with iterative pruning to 155

achieve the original network’s performance. Fol- 156

lowing this premise, recent studies attempt to iso- 157

late sub-networks of a pre-trained unified model 158

that captures task-specific features (Choenni et al., 159

2023a; Lin et al., 2021; He et al., 2023). Nonethe- 160

less, unlike our method that identifies intrinsic 161

modularity within the model, these approaches de- 162

pend on fine-tuning to extract the task-specific sub- 163

networks. This process may not reflect the origi- 164

nal model modularity and also can be particularly 165

resource-consuming for multiple tasks. 166

Specifically, these methods extract the task- 167

specific sub-networks by fine-tuning the original 168

unified multi-task model on specific tasks, fol- 169

lowed by employing pruning to retain only the most 170

changed parameters. We argue that this process 171

faces several issues: 1) The sub-network might be 172

an artifact of fine-tuning, suggesting the original 173

model may not inherently possess such modular- 174

ity. 2) This is further supported by the observation 175

that different random seeds during fine-tuning lead 176

to varied sub-networks and performance instabil- 177

ity (Choenni et al., 2023a). 3) The process is highly 178

inefficient for models covering multiple tasks, as it 179

necessitates separate fine-tuning for each task. 180
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3 Neuron Structural Analysis181

Recent work aims to identify a subset of parame-182

ters within pre-trained multi-task networks that are183

sensitive to distinct tasks. This exploration is done184

by either 1) selecting hidden states that greatly in-185

fluence task performance (Dobs et al., 2022) or186

possess high magnitude values (Xie et al., 2021);187

or 2) fine-tuning the unified model on task-specific188

data to extract sub-networks (Lin et al., 2021; He189

et al., 2023; Choenni et al., 2023b). These ap-190

proaches, however, raise a fundamental question,191

namely whether the modularity is inherent to the192

original model, or simply an artifact introduced by193

network modifications.194

In this paper, we perform a thorough identifica-195

tion of task-specific modularity through the lens196

of neuron behaviors, without altering the original197

parameters or architectures. We focus on the neu-198

rons — the intermediate activations inside the Feed-199

Forward Networks (FFN) — to investigate if they200

indicate task-specific modularity features. As FFN201

neurons are active (>0) or inactive (=0) due to the202

ReLU activation function, this binary activation203

state offers a clear view of their contributions to the204

network’s output. Intuitively, neurons that remain205

inactive for one task but show significant activa-206

tion for another may be indicative of specialization207

for the latter. More importantly, this approach en-208

sures that both parameters and hidden states remain209

unchanged, affirming the observed modularity is210

inherent to the original model.211

3.1 Identifying Specialized Neurons212

We choose multilingual translation as a testbed,213

treating each translation direction as a distinct task214

throughout the paper. We start with a pre-trained215

multilingual model with dff as its dimension of the216

FFN layer. We hypothesize the existence of neuron217

subsets specialized for each task and describe the218

identification process of an FFN layer as follows.219

Activation Recording. Given a validation220

dataset Dt for the t-th task, we measure activation221

frequencies in an FFN layer during validation.222

For each sample xi ∈ Dt, we record the state of223

each neuron after ReLU , reflecting whether the224

neuron is active or inactive to the sample. We225

use a binary vector ati ∈ Rdff to store this neuron226

state information. Note that this vector aggregates227

neuron activations for all tokens in the sample228

by taking the neuron union of them. By further229

merging all of the binary vectors for all samples230

in Dt, an accumulated vector at =
∑

xi∈Dt
ati can 231

be derived, which denotes the frequency of each 232

neuron being activated during a forward pass given 233

a task-specific dataset Dt. 234

Neuron Selection. We identify specialized neu- 235

rons for each task t based on their activation fre- 236

quency at. A subset of neurons St
k is progressively 237

selected based on the highest at values until reach- 238

ing a predefined threshold k, where 239

∑
i∈St

k

at(i) >= k

dff∑
i=1

at(i) (1) 240

Here, the value at(i) is the frequency of the ac- 241

tivation at dimension i, and
∑dff

i=1 a
t
(i) is the total 242

activation of all neurons for an FFN layer. k is a 243

threshold factor, varying from 0% to 100%, indi- 244

cating the extent of neuron activation deemed nec- 245

essary for specialization. A lower k value results 246

in higher sparsity in specialized neurons; k = 0 247

means no neuron will be involved, while k = 100 248

fully engages all neurons, the same as utilizing the 249

full capacity of the original model. This dynamic 250

approach emphasizes the collective significance of 251

neuron activations up to a factor of k. In the end, 252

we repeat these processes to obtain the specialized 253

neurons of all FFN layers for each task. 254

3.2 Analysis on EC30 255

In this section, we describe how we identify spe- 256

cialized neurons on EC30 (Tan and Monz, 2023), 257

where we train an MMT model covering all direc- 258

tions. EC30 is a multilingual translation benchmark 259

that is carefully designed to consider diverse lin- 260

guistic properties and real-world data distributions. 261

It collects high to low-resource languages, resulting 262

in 30 diverse languages from 5 language families, 263

allowing us to connect our observations with lin- 264

guistic properties easily. See Sections 5 for details 265

on data and models. 266

3.2.1 Neuron Overlaps Reflect Language 267

Proximity 268

We identified specialized neurons following Sec- 269

tion 3.1, while setting the cumulative activation 270

threshold k at 95%. This implies that the set of 271

specialized neurons covers approximately 95% of 272

the total activations. Intuitively, two similar tasks 273

should have a high overlap between their special- 274

ized neuron sets. Therefore, we examined the over- 275

laps among specialized neurons across different 276
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Figure 1: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the first decoder
FFN layer across all out-of-English translation directions to measure the degree of overlap. Darker cells indicate
stronger overlaps, with the color threshold set from 40 to 80 to improve visibility.

tasks by calculating the Intersection over Union277

(IoU) scores: For task ti and tj , with specialized278

neurons denoted as sets Si and Sj , their overlap is279

quantified by IoU(Si, Sj) = |Si∩Sj |
|Si∪Sj | .280

Figure 1 shows the IoU scores for specialized281

neurons across different tasks in the first decoder282

layer. Figures for the other layers can be found in283

Appendix A.9. We first note a structural separation284

of neuron overlaps, indicating a preference for lan-285

guage specificity. Notably, neuron overlap across286

language families is relatively low, a trend more287

pronounced in encoder layers (Figure 6). Secondly,288

this structural distinction generally correlates with289

language proximity as indicated by the clustering290

pattern in Figure 1. This implies that target lan-291

guages from the same family are more likely to292

activate similar neurons in the decoder, even when293

they use different writing systems, e.g., Arabic (ar)294

and Hebrew (he). Overlaps also show linguistic295

traits beyond family ties, exemplified by notable296

overlaps between Maltese (mt) and languages in297

the Romance family due to vocabulary borrowing.298

3.2.2 The Progression of Neuron Overlaps299

To analyze how specialized neuron overlaps across300

tasks evolve within the model, we visualize the IoU301

score distribution across layers in Figure 2. For302

each layer, we compute the pair-wise IoU scores303

between all possible tasks and then show them in a304

distribution. Overall, we observe that from shallow305

to deeper layers, structural distinctions intensify in306

the decoder (decreasing IoU scores) and weaken in307

the encoder (increasing IoU scores).308

Figure 2: Progression of distribution of IoU scores for
specialized neurons across layers on the EC30 dataset.
The scores are measured for different source and target
languages in the Encoder and Decoder, respectively.

Furthermore, all neuron overlaps increase as we 309

move up the encoder, regardless of whether these 310

tasks are similar or not. This observation may sug- 311

gest that the neurons in the encoder become more 312

language-agnostic, as they attempt to map different 313

scripts into semantic concepts. As for the Decoder, 314

the model presents intensified modularity in terms 315

of overlaps of specialized neurons. This can be 316

seen by all overlaps becoming much smaller, indi- 317

cating that neurons behave more separately. 318

Our findings align with the common assumption 319

about the transformation process in seq-to-seq mod- 320

els. Similarly, Kudugunta et al. (2019) observed 321

that multilingual embeddings gradually, though not 322

perfectly, align within the encoder. However, our 323

research diverges as it focuses on binary neuron 324

activation patterns, rather than high-dimensional 325

embeddings. Moreover, unlike them, we show that 326

our findings can be leveraged to improve MMT. 327
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4 Neuron Specialization Training328

Our neuron structural analysis showed the presence329

of specialized neurons within the Feed-Forward330

Network (FFN) layers of a multilingual network.331

We hypothesize that continuously training the332

model, while leveraging these specialized neurons’333

intrinsic modular features, can further enhance task-334

specific performance. Building on this hypothesis,335

we propose Neuron Specialization, an approach336

that leverages specialized neurons to modularize337

the FFN layers in a task-specific manner.338

4.1 Vanilla Feed-Forward Network339

We first revisit the Feed-Forward Network (FFN)340

in Transformer (Vaswani et al., 2017). The FFN,341

crucial to our analysis, consists of two linear lay-342

ers (fc1 and fc2) with a ReLU activation function.343

Specifically, the FFN block first processes the hid-344

den state H ∈ Rn×d (n denotes number of tokens345

in a batch) through fc1 layer W1 ∈ Rd×dff . Then346

the output is passed to ReLU and the fc2 layer W2,347

as formalized in Eq 2, with bias terms omitted.348

FFN(H) = ReLU(HW1)W2. (2)349

4.2 Specializing Task-Specific FFN350

Next, we investigate continuous training upon a351

subset of specialized parameters within FFN for352

each task. Given a pre-trained vanilla multilingual353

Transformer model with tags to identify the lan-354

guage pairs, e.g., Johnson et al. (2017), we can355

derive specialized neuron set St
k for each layer of a356

task2 t and threshold k following the method out-357

lined in Section 3.1. Then, we derive a boolean358

mask vector mt
k ∈ {0, 1}dff from St

k, where the i-359

th element in mt
k is set to 1 only when i ∈ St

k, and360

apply it to control parameter updates. Specifically,361

we broadcast mt
k and perform Hadamard Product362

with W1 in each FFN layer as follows:363

FFN(H) = ReLU (H(mt
k ⊙W1))W2. (3)364

mt
k plays the role of controlling parameter up-365

date, where the boolean value of i-th element in366

mt
k denotes if the i-th row of parameters in W1 can367

be updated or not for each layer3 during continues368

training. Broadly speaking, our approach selec-369

tively updates the first FFN (fc1) weights during370

2We treat each translation direction as a distinct task.
3Note that mt

k is layer-specified, we drop layer indexes
hereon for simplicity of notation.

back-propagation, tailoring the model more closely 371

towards specific translation tasks and reinforcing 372

neuron separation. Note that while fc1 is selec- 373

tively updated for specific tasks, other parameters 374

are universally updated to maintain stability, and 375

the same masking is applied to inference to ensure 376

consistency. Our pseudocode is in Appendix A.10. 377

Relevant studies like Xie et al. (2021), selec- 378

tively pruning output hidden states during training 379

and inference. In contrast, we utilize sparse sub- 380

networks (fc1 weights), while they prune output 381

hidden states from Transformer modules. 382

5 Experimental Setup 383

In this section, we evaluate the capability of our 384

proposed method on small (IWSLT) and large-scale 385

(EC30) multilingual machine translation tasks. 386

More details of the datasets are in Appendix A.1. 387

5.1 Datasets 388

IWSLT. Following Lin et al. (2021), we con- 389

structed an IWSLT dataset with eight languages. 390

We learned a 30k SentencePiece unigram (Kudo 391

and Richardson, 2018) shared vocabulary and ap- 392

plied temperature sampling with τ = 2. We use 393

Flores-200 (Costa-jussà et al., 2022), merging de- 394

vtest and test, as our test set. 395

EC30. We further validate our methods on EC30 396

dataset (Tan and Monz, 2023), which features 397

61 million parallel training sentences across 60 398

English-centric directions, representing five lan- 399

guage families and various writing systems. We 400

classify language pairs into low-resource (=100k), 401

medium-resource (=1M), and high-resource (=5M) 402

categories. We build a 128k size shared unigram 403

vocabulary. Aligning with the original EC30 setups, 404

we use Ntrex-128 (Federmann et al., 2022) as the 405

validation set. Also, we use Flores-200 (merging 406

devtest and test) as the test set for evaluation. 407

5.2 Systems 408

We compare our method with strong open-source 409

baselines that share similar motivations in reducing 410

interference for multilingual translation tasks. 411

mT-small. For IWSLT, we train an mT-small 412

baseline model on Many-to-Many directions as 413

per (Lin et al., 2021): a 6-layer Transformer with 4 414

attention heads, d = 512, dff = 1,024. 415
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Language
∆θ

Fa Pl Ar He Nl De It Es
Avg

Size 89k 128k 139k 144k 153k 160k 167k 169k

One-to-Many (O2M / En-X)
mT-small - 14.5 9.9 12.0 13.1 17.0 20.6 17.3 18.3 15.4
Fine-Tune 0% +0.1 -0.2 +0.2 +0.4 -0.4 -0.1 -0.3 -0.5 -0.1
AdapterLP +67% +0.1 -0.1 +0.4 +1.4 +0.2 +0.6 +0.1 +0.4 +0.4

LaSS 0% -2.6 0 +0.6 +0.7 -0.2 +0.7 -0.2 -0.4 -0.2
Ours 0% +0.7 +0.1 +0.9 +0.6 +0.1 +0.1 +0.2 -0.3 +0.3

Many-to-One (M2O / X-En)
mT-small - 19.1 19.4 25.7 30.9 30.6 28.1 29.0 34.0 24.7
Fine-Tune 0% +0.3 -0.2 +0.1 +0.8 +0.7 +0.3 -0.2 0 +0.2
AdapterLP +67% +0.9 +0.6 +0.9 +1.0 +0.8 +1.0 +0.9 +0.3 +0.8

LaSS 0% +1.2 +0.6 +0.9 +1.4 +1.1 +1.6 +1.6 +0.8 +1.2
Ours 0% +1.6 +1.2 +1.7 +2.0 +1.9 +2.1 +1.8 +1.4 +1.7

Table 1: BLEU improvements over the baseline (mT-small) on IWSLT. ∆θ denotes the relative parameter increase
over the baseline, and ’Fine-Tune’ signifies finetuning mT-small with the same setting as ’Ours’.

mT-big For EC30, we train a mT-big baseline416

model on Many-to-Many directions following Wu417

and Monz (2023). It has 6 layers, with 16 attention418

heads, d = 1,024, and dff = 4,096.419

Fine-Tune. We finetune baselines with the same420

routine as our Neuron Specialization Training.421

Adapters. We employ two adapter methods: 1)422

Language Pair Adapter (AdapterLP) and 2) Lan-423

guage Family Adapter (AdapterFam). We omit424

AdapterFam for IWSLT due to its limited languages.425

AdapterLP inserts adapter modules based on lan-426

guage pairs, demonstrating strong effects in re-427

ducing interference while presenting no parame-428

ter sharing (Bapna and Firat, 2019). In contrast,429

AdapterFam (Chronopoulou et al., 2023) facilitates430

parameter sharing across similar languages by train-431

ing modules for each language family. Their bottle-432

neck dimensions are 128 and 512 respectively. See433

Appendix A.2 for more training details.434

LaSS. Lin et al. (2021) proposed LaSS to lo-435

cate language-specific sub-networks following the436

lottery ticket hypothesis, i.e., finetuning all transla-437

tion directions from a pre-trained model and then438

pruning based on magnitude. They then continu-439

ally train the pre-trained model by only updating440

the sub-networks for each direction. We adopt441

the strongest LaSS configuration by applying sub-442

networks for both attention and FFNs.443

5.3 Implementation and Evaluation444

We train baseline models following the same hyper-445

parameter settings in Lin et al. (2021) and Wu and446

Monz (2023). For fair comparisons, we use the 447

fixed training routine for all compared methods, 448

see detailed training and model specifications in 449

Appendix A.2. We adopt the tokenized BLEU (Pa- 450

pineni et al., 2002) for the IWSLT and detokenized 451

SacreBLEU4 (Post, 2018) for the EC30. In ad- 452

dition, we report ChrF++ (Popović, 2017) and 453

COMET (Rei et al., 2020) in Appendix A.4. 454

6 Results and Analyses 455

6.1 Small-Scale Results on IWSLT 456

We show results on IWSLT in Table 1. For Many- 457

to-One (M2O) directions, our method receives an 458

average +1.7 BLEU gain over the baseline, achiev- 459

ing the best performance among all approaches. 460

The AdapterLP, with a 67% increase in parame- 461

ters over the baseline model, shows weaker im- 462

provements (+0.8) than our method. As for One- 463

to-Many (O2M) directions, we observed weaker 464

performance gains for all methods. While the gains 465

are modest (averaging +0.3 BLEU), our method 466

demonstrates consistent improvements across var- 467

ious languages in general. Finally, we show that 468

fine-tuning the baseline with the same setting as 469

our approach does not bring performance gains. 470

Scaling up does not always reduce interference. 471

Shaham et al. (2023); Chang et al. (2023) have 472

found scaling up the model capacity reduces in- 473

terference, even under low-resource settings. We 474

then investigate the trade-off between performance 475

and model capacity by employing mT-shallow, a 476

4nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

mT-big - 28.1 31.6 29.9 29.7 31.6 30.6 18.9 26.0 22.4 25.5 29.7 27.7
Fine-Tune 0% +0.3 +0.2 +0.3 +0.3 +0.2 +0.3 +0.1 -0.4 -0.2 +0.2 0 +0.1
AdapterFam +70% +0.7 +0.3 +0.5 +0.7 +0.3 +0.5 +1.1 +0.5 +0.8 +0.8 +0.4 +0.6
AdapterLP +87% +1.6 +0.6 +1.1 +1.6 +0.4 +1.0 +0.4 +0.4 +0.4 +1.2 +0.5 +0.8

LaSS 0% +2.3 +0.8 +1.5 +1.7 +0.2 +1.0 -0.1 -1.8 -1.0 +1.3 -0.3 +0.5
Random 0% +0.9 -0.5 +0.2 +0.5 -0.7 -0.2 -0.3 -1.5 -0.9 +0.5 -0.9 -0.2

OursEnc 0% +1.2 +1.1 +1.1 +1.0 +1.0 +1.0 +0.7 +0.8 +0.8 +1.0 +1.0 +1.0
OursDec 0% +1.2 +1.1 +1.1 +0.9 +1.1 +1.0 +0.7 +1.1 +0.9 +0.9 +1.1 +1.0

Ours 0% +1.8 +1.4 +1.6 +1.4 +1.1 +1.3 +1.4 +0.9 +1.2 +1.5 +1.1 +1.3

Table 2: Average SacreBLEU improvements on the EC30 dataset over the baseline (mT-big), categorized by High,
Medium, and Low-resource translation directions. ’Random’ denotes continually updating the model with randomly
selected task-specific neurons. ’OursEnc’ and ’OursDec’ indicate Neuron Specialization applied solely to the Encoder
and Decoder, respectively, while ’Ours’ signifies the method applied to both components.

Figure 3: BLEU gains of shallower models over mT-
small on IWSLT show improved X-En performance at
the expense of En-X. Applying Neuron Specialization
reduces EN-X degradation and amplifies X-En gains.

shallower version of mT-small with three fewer lay-477

ers (with ∆θ = −39% for parameters, see Table 6478

for details). Surprisingly, in Figure 3, we show479

that reducing parameters improved Many-to-One480

(X-En) performance but weakened One-to-Many481

(En-X) results. This result indicates that scaling up482

the model capacity does not always reduce interfer-483

ence, but may show overfitting to have performance484

degradation. Furthermore, we show that imple-485

menting Neuron Specialization with mT-shallow486

enhances X-En performance in all directions while487

lessening the decline in En-X translation quality.488

6.2 Large-Scale Results on EC-30489

Similar to what we observed in the small-scale490

setting, we find notable improvements when we491

scale up on the EC30 dataset. Table 2 shows con-492

sistent improvements across high-, medium-, and493

low-resource languages, with an average gain of494

+1.3 SacreBLEU over the baseline. LaSS, while495

effective in high-resource O2M pairs, presents lim- 496

itations with negative impacts (-1.0 score) on low- 497

resource languages, highlighting difficulties in sub- 498

network extraction for low-resource languages. In 499

contrast, our method achieves stable and consis- 500

tent gains and passes statistical significance tests 501

in A.5. The AdapterLP , despite increasing parame- 502

ters by 87% compared to the baseline, falls short 503

of our method in boosting performance. Similar 504

to experiments on IWSLT, we found fine-tuning 505

the baseline on EC30 also brings worse/unchanged 506

performance, suggesting the effectiveness of our 507

method. Additionally, we show that applying Neu- 508

ron Specialization in the encoder or decoder de- 509

livers similar gains, with both combined offering 510

stronger performance. 511

Random Mask. We applied Neuron Specializa- 512

tion Training using random masks that masked 513

30% fc1 weights to validate the effectiveness of 514

our method in locating task-specific neurons. We 515

show that such strategy sacrifices performance. 516

Zero-shot Translation. We further evaluated our 517

method on 870 zero-shot directions using the EC30 518

dataset, observing an average improvement of +3.1 519

SacreBLEU. Of these, 847 directions improved, 520

while 23 experienced minor declines of -0.3 Sacre- 521

BLEU on average. See Appendix A.7 for details. 522

Wider and Deeper Models. We experiment with 523

larger models by scaling up the width and depth 524

in A.6. Table 8 shows we achieve consistent perfor- 525

mance gains, confirming the effectiveness of our 526

approach for larger configurations. 527
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Lang De Es Cs Hi Ar Lb Ro Sr Gu Am High Low
Size 5m 5m 5m 5m 5m 100k 100k 100k 100k 100k Avg Avg

One-to-Many
Bilingual 36.3 24.6 28.7 43.9 23.7 5.5 16.2 17.8 12.8 4.1 31.8 11.3
mT-big -4.7 -1.5 -3.6 -4.4 -4.7 +9.0 +8.9 +6.2 +13.9 +3.1 -3.7 +8.2
Ours -2.0 -0.2 -1.7 -2.4 -3.0 +10.8 +10.0 +8.2 +16.4 +3.7 -1.9 +9.8

Many-to-One
Bilingual 39.1 24.5 32.6 35.5 30.8 8.7 19.5 21.3 7.0 8.7 32.7 13.0
mT-big -1.5 +0.9 +0.2 -1.8 -2.3 +13.7 +11.9 +10.3 +18.2 +12.5 -1.1 +13.3
Ours -0.3 +1.7 +1.8 -0.2 -0.3 +15.3 +12.4 +11.3 +19.6 +14.1 +0.3 +14.5

Table 3: SacreBLEU score comparisons for Multilingual baseline and Neuron Specialization models against
Bilingual ones on the EC30 dataset, limited to 5 high- and low-resource languages due to computational constraints.
Red signifies negative interference, Blue denotes positive synergy, with darker shades indicating better effects.

The role of threshold factor. In A.8, we explore528

the impact of our sole hyper-parameter k (neuron529

selection threshold factor) on performance. We530

show that our method delivers consistent and posi-531

tive gains without extensive hyperparameter tuning.532

Model △θ △Tsubnet △ Memory

AdapterLP +87% n/a 1.42 GB
LaSS 0% +33 hours 9.84 GB
Ours 0% +5 minutes 3e-3 GB

Table 4: Efficiency comparison on EC30 dataset regard-
ing extra trainable parameters (△θ: relative increase
over the baseline), extra processing time for subnet ex-
traction (△Tsubnet), and extra memory (△ Memory).

Efficiency Comparisons. We compare efficiency533

across three aspects (Table 4). First, adding534

lightweight language pair adapters results in an535

+87% increase in trainable parameters over the536

baseline. Second, our method, which locates spe-537

cialized neurons in just 5 minutes, is significantly538

faster than LaSS, which takes 33 hours with 4539

Nvidia A6000 GPUs. Finally, regarding memory540

costs essential for handling multiple languages in541

deployment, our method is more economical, re-542

quiring only 1-bit masks for the FFN neurons in-543

stead of extensive parameters.544

6.3 The Impact of Reducing Interference545

In this section, we measure to what extent our546

method mitigates interference and enhances knowl-547

edge transfer. Similar to Wang et al. (2020),548

we train bilingual models that do not contain in-549

terference or transfers, then compare results be-550

tween bilingual models, the multilingual baseline551

model (mT-big), and our method (ours). We train552

Transformer-big and Transformer-based models for553

high- and low-resource tasks, see Appendix A.2. 554

In Table 3, we show that the multilingual model 555

(mT-big) facilitates clear positive transfer for low- 556

resource languages versus bilingual setups, leading 557

to +8.2 (O2M) and +13.3 (M2O) score gains but 558

incurs negative interference for high-resource lan- 559

guages (-3.7 and -1.1 scores). 560

Our method reduces interference for high- 561

resource settings, leading to +1.8 and +1.4 Sacre- 562

BLEU gains over mT-big in O2M and M2O direc- 563

tions. Moreover, our Neuron Specialization method 564

enhances low-resource task performance with av- 565

erage gains of +1.6 (O2M) and +1.2 (M2O) Sacre- 566

BLEU over the mT-big, demonstrating its ability 567

to foster cross-lingual knowledge transfer. 568

7 Conclusions 569

In this paper, we have identified and leveraged in- 570

trinsic task-specific modularity within multilingual 571

networks to mitigate interference. We showed that 572

FFN neurons activate in a language-specific way, 573

and they present structural overlaps that reflect lan- 574

guage proximity, which progress across layers. We 575

then introduced Neuron Specialization to leverage 576

these natural modularity signals to structure the 577

network, enhancing task specificity and improving 578

knowledge transfer. Our experimental results, span- 579

ning various resource levels, show that our method 580

consistently outperforms strong baseline systems, 581

with additional analyses demonstrating reduced in- 582

terference and increased knowledge transfer. Our 583

work deepens the understanding of multilingual 584

models by revealing their intrinsic modularity, of- 585

fering insights into how multi-task models can be 586

optimized without extensive modifications. 587
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Limitations588

This study primarily focuses on Multilingual Ma-589

chine Translation, a key method in multi-task learn-590

ing, using it as our primary testbed. However,591

the exploration of multilingual capabilities can be592

extended beyond translation to include a broader593

range of Multilingual Natural Language Processing594

tasks. These areas remain unexplored in our current595

research and are considered promising directions596

for future work. In this work, we focus on the597

feed-forward network (FFN) components within598

the Transformer architecture, which constitutes a599

significant portion of the model’s parameters. We600

leave investigations of other Transformer compo-601

nents, such as the layer normalization modules, to602

future work.603

Furthermore, our method identifies task-specific604

neurons in Feed-Forward Networks that use the605

ReLU activation function. Although this could be606

one of the limitations of our work, we motivate607

it on the following aspects. Firstly, ReLU deliv-608

ers negligible impact on convergence and perfor-609

mance while significantly reducing computation610

and weight transfer (Mirzadeh et al., 2023) than611

other activation functions like GeLU (Hendrycks612

and Gimpel, 2016). Secondly, ReLU is still the613

most common activation function for state-of-the-614

art MNMT systems, such as NLLB-200 (Costa-615

jussà et al., 2022), M2M-100 (Fan et al., 2021),616

SeamlessM4T (Barrault et al., 2023).617

Lastly, ReLU is monotonic, thus offering better618

interpretability than GeLU (Sudjianto et al., 2020),619

which is important for analyzing the modularity in620

MNMT. Recent work on Large Language Models621

has also explored the binary activation states of622

FFN neurons, particularly focused on when neu-623

rons are activated, and their roles in aggregating624

information (Voita et al., 2023).625

Broader Impact626

Recognizing the inherent risks of mistranslation627

in machine translation data, we have made efforts628

to prioritize the incorporation of high-quality data,629

such as two open-sourced Multilingual Machine630

Translation datasets: IWSLT and EC30. Addition-631

ally, issues of fairness emerge, meaning that the ca-632

pacity to generate content may not be equitably dis-633

tributed across different languages or demographic634

groups. This can lead to the perpetuation and am-635

plification of existing societal prejudices, such as636

biases related to gender, embedded in the data.637
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A Appendix951

A.1 Dataset details952

Due to the difficulties of mining non-English-953

centric Translation data, recent research (Johnson954

et al., 2017; Zhang et al., 2020b,a; Tan and Monz,955

2023; Wu and Monz, 2023; Shaham et al., 2023;956

Pires et al., 2023) has increasingly focused on uti-957

lizing English-centric datasets to explore Multilin-958

gual Neural Machine Translation (MNMT). Fur-959

thermore, Fan et al. (2021) have observed that train-960

ing in M2M settings does not necessarily enhance961

performance in supervised directions. Therefore,962

our approach prioritizes English-centric datasets to963

remain computationally feasible while still provid-964

ing valuable insights into MNMT dynamics.965

IWSLT We collect and pre-processes the IWSLT-966

14 dataset following Lin et al. (2021). We refer967

readers to Lin et al. (2021) for more details.968

EC30 We utilize the EC30, a subset of the EC40 969

dataset (Tan and Monz, 2023) (with 10 extremely 970

low-resource languages removed in our experi- 971

ments) as our main dataset for most experiments 972

and analyses. We list the Languages with their 973

ISO and scripts in Table 5, along with their num- 974

ber of sentences. In general, EC30 is an English- 975

centric Multilingual Machine Translation dataset 976

containing 61 million sentences covering 30 lan- 977

guages (excluding English). It collected data from 978

5 representative language families with multiple 979

writing scripts. In addition, EC30 is well bal- 980

anced at each resource level, for example, for all 981

high-resource languages, the number of training 982

sentences is 5 million. Note that the EC30 is al- 983

ready pre-processed and tokenized (with Moses 984

tokenizer), thus we directly use it for our study. 985

A.2 Model and Training Details 986

We list the configurations and hyper-parameter set- 987

tings of all systems for the main training setting 988

(EC30) in Table 6. To maintain consistency and 989

comparability across all experiments, we employed 990

the same early stopping settings rather than fix- 991

ing the training duration for all experiments. We 992

use 4 NVIDIA A6000 (48G) GPUs to conduct 993

most experiments and implement them based on 994

Fairseq (Ott et al., 2019) with FP16. 995

Global training settings. For all systems on both 996

datasets, we adopt the pre-norm and share the de- 997

coder input output embedding. In addition, we 998

use the Adam optimizer (β1 = 0.9, β2 = 0.98, 999

ϵ = 10−9) with 5e-4 learning rate and 4k warmup 1000

steps in all methods. Furthermore, we use cross 1001

entropy with label smoothing to avoid overfitting 1002

(smoothing factor=0.1) and set early stopping to 20. 1003

Similar to Fan et al. (2021), we prepend language 1004

tags to the source and target sentences to indicate 1005

the translation directions for all multilingual trans- 1006

lation systems. More importantly, we applied the 1007

same fixed routine across all experiments to ensure 1008

a fair comparison among all multilingual systems. 1009

Other global settings are the same for all systems 1010

to make fair comparisons, such as learning rate, 1011

warm-up steps, and batch size. 1012

Bilingual models. For bilingual models of low- 1013

resource languages, we adopt the suggested hyper- 1014

parameter settings from Araabi and Monz (2020), 1015

such as dff = 512, number of attention head as 2, 1016

and dropout as 0.3. Furthermore, We train separate 1017

dictionaries for low-resource bilingual models to 1018
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Germanic Romance Slavic Indo-Aryan Afro-Asiatic

ISO Language Script ISO Language Script ISO Language Script ISO Language Script ISO Language Script

High

(5m)

de German Latin fr French Latin ru Russian Cyrillic hi Hindi Devanagari ar Arabic Arabic

nl Dutch Latin es Spanish Latin cs Czech Latin bn Bengali Bengali he Hebrew Hebrew

Med

(1m)

sv Swedish Latin it Italian Latin pl Polish Latin kn Kannada Devanagari mt Maltese Latin

da Danish Latin pt Portuguese Latin bg Bulgarian Cyrillic mr Marathi Devanagari ha Hausa∗ Latin

Low

(100k)

af Afrikaans Latin ro Romanian Latin uk Ukrainian Cyrillic sd Sindhi Arabic ti Tigrinya Ethiopic

lb Luxembourgish Latin oc Occitan Latin sr Serbian Latin gu Gujarati Devanagari am Amharic Ethiopic

Table 5: Details of EC30 Training Dataset. Numbers in the table represent the number of sentences, for example,
5m denotes exactly 5,000,000 number of sentences. The only exception is Hausa, where its size is 334k (334,000).

Models Dataset
Num. Num. Num.

dim dff
max update

dropout
trainable params Layer Attn Head tokens freq

mT-shallow IWSLT 47M 3 8 512 1,024 2,560 4 0.1
mT-small IWSLT 76M 6 8 512 1,024 2,560 4 0.1

bilingual-low EC30 52M 6 2 512 1,024 2,560 1 0.3
bilingual-high EC30 439M 6 16 1,024 4096 2,560 10 0.1

mT-big EC30 439M 6 16 1,024 4,096 7,680 21 0.1
LaSS EC30 439M 6 16 1,024 4,096 7,680 21 0.1

Ours-big EC30 439M 6 16 1,024 4,096 7,680 21 0.1

mT-wide EC30 540M 6 16 1,024 8,192 7,680 21 0.1
Ours-wide EC30 540M 6 16 1,024 8,192 7,680 21 0.1

mT-large EC30 615M 12 16 1,024 4,096 7,680 21 0.1
Ours-large EC30 615M 12 16 1,024 4,096 7,680 21 0.1

Table 6: Configuration and hyper-parameter settings for all models in this paper. Num. Layer and Attn Head denote
the number of layers and attention heads, respectively. dim represents the dimension of the Transformer model, dff
means the dimension of the feed-forward layer. bilingual-low and -high represent the bilingual models for low and
high-resource languages.

avoid potential overfitting instead of using the large1019

128k shared multilingual dictionary.1020

For bilingual models of high-resource languages,1021

we adopt the 128k shared multilingual dictionary1022

and train models with the Transformer-big archi-1023

tecture as the multilingual baseline (mT-big). The1024

detailed configurations can be found in Table 6.1025

Language Pair Adapters. We implement Lan-1026

guage Pair Adapters (Bapna and Firat, 2019) by1027

ourselves based on Fairseq. The Language Pair1028

Adapter is learned depending on each pair, e.g.,1029

we learn two modules for en-de, namely en on the1030

Encoder side and the de on the Decoder side. Note1031

that, except for the unified pre-trained model, lan-1032

guage pair adapters do not share any parameters1033

with each other, preventing potential knowledge1034

transfers. We set its bottleneck dimension as 1281035

for all experiments of IWSLT and EC30.1036

• IWSLT. For the IWSLT dataset that contains1037

8 languages with 16 translation directions, the 1038

mT-small base model size is 76M. AdapterLP 1039

insert 3.2M extra trainable parameters for one 1040

direction, thus resulting in 51.2M added pa- 1041

rameters for all, leading to 67% relative pa- 1042

rameter increase over the baseline model. 1043

• EC30. For the EC30 dataset that contains 30 1044

languages with 60 translation directions, the 1045

mT-big base model size is 439M. AdapterLP 1046

inserts 6.4M extra trainable parameters for 1047

one direction, thus resulting in 384M added 1048

parameters for all directions, leading to 87% 1049

relative parameter increase over the baseline 1050

model. When training AdapterLP for low- 1051

resource languages, we increased dropout (0.1 1052

-> 0.3) and decreased batch size (max-token: 1053

7680 -> 2560) to avoid overfitting as sug- 1054

gested by Bapna and Firat (2019). 1055
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Methods θ
High (5M) Med (1M) Low (100K)

O2M M2O Avg O2M M2O Avg O2M M2O Avg

mT-big 438m 27.7 32.0 29.9 30.6 34.2 32.4 26.9 32.9 29.9
M2M-100 418m 23.3 28.0 25.7 30.8 32.9 31.9 24.6 32.0 28.3
M2M-100 1.2b 28.3 34.3 31.3 36.3 38.9 37.6 31.7 41.1 36.4

Ours-big 438m 29.6 33.3 31.5 32.0 35.5 33.8 28.1 33.7 30.9

Table 7: Performance comparisons on the EC30 test set using SacreBLEU. θ represents the number of parameters,
and ’Ours-big’ denotes our neuron specialization method applied to the mT-big. We excluded directions where the
M2M-100 models scored <=10 BLEU to ensure fair comparisons, resulting in 51 translation directions.

Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

SacreBLEU
mT-big - 28.1 31.6 29.9 29.7 31.6 30.6 18.9 26.0 22.4 25.5 29.7 27.7

Ours-big 0% +1.8 +1.4 +1.6 +1.4 +1.1 +1.3 +1.4 +0.9 +1.2 +1.5 +1.1 +1.3

mT-wide +23% +0.8 +0.6 +0.7 +0.7 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6
Ours-wide +23% +2.2 +1.9 +2.1 +1.8 +1.7 +1.8 +1.4 +1.1 +1.3 +1.8 +1.5 +1.7

mT-large +40% +1.2 +1.2 +1.2 +1.0 +1.4 +1.2 +0.8 +1.6 +1.2 +1.0 +1.2 +1.1
Ours-large +40% +2.6 +2.3 +2.5 +1.9 +2.0 +2.0 +1.4 +2.2 +1.8 +2.0 +2.1 +2.0

ChrF++
mT-big - 52.4 57.6 55.0 54.0 56.6 55.3 42.5 50.0 46.3 49.6 54.7 52.1

Ours-big 0% +1.4 +1.1 +1.3 +1.1 +0.9 +1.0 +1.2 +0.8 +1.0 +1.2 +0.9 +1.1

mT-wide +23% +0.7 +0.7 +0.7 +0.7 +0.6 +0.7 +0.6 +0.7 +0.7 +0.7 +0.6 +0.7
Ours-wide +23% +1.8 +1.6 +1.7 +1.5 +1.4 +1.5 +1.3 +1.0 +1.2 +1.6 +1.3 +1.4

mT-large +40% +0.9 +0.9 +0.9 +0.9 +1.1 +1.0 +0.8 +1.4 +1.1 +0.9 +1.1 +1.0
Ours-large +40% +2.0 +1.8 +1.9 +1.5 +1.7 +1.6 +1.3 +1.8 +1.6 +1.6 +1.8 +1.7

COMET
mT-big - 82.4 83.9 83.2 81.1 80.1 80.6 73.8 73.4 73.6 79.1 79.1 79.1

Ours-big 0% +1.4 +1.0 +1.2 +0.9 +0.7 +0.8 +0.8 +0.7 +0.8 +1.0 +0.8 +0.9

mT-wide +23% +0.8 +0.6 +0.7 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6 +0.7 +0.6 +0.6
Ours-wide +23% +1.8 +1.4 +1.6 +1.3 +1.3 +1.3 +1.3 +1.2 +1.3 +1.5 +1.3 +1.4

mT-large +40% +1.0 +0.8 +0.9 +0.7 +1.0 +0.9 +0.9 +1.2 +1.1 +0.9 +1.0 +0.9
Ours-large +40% +2.1 +1.6 +1.9 +1.3 +1.6 +1.5 +1.3 +1.9 +1.6 +1.6 +1.7 +1.6

Table 8: The effectiveness of our method on different model configurations. The table shows the averaged
improvements on the EC30 dataset over the baseline (mT-big). ’Ours-big’, ’Ours-wide’, and ’Ours-large’ indicate
Neuron Specialization applied to the mT-big, mT-wide, and mT-large baselines respectively.

Language Family Adapters. The Language1056

Family Adapter (Chronopoulou et al., 2023) is1057

learned depending on each language family, e.g.,1058

for all 6 Germanic languages in the EC30, we1059

learn two modules for en-Germanic, namely the1060

en adapter on the Encoder side and the Germanic1061

adapter on the Decoder side. We set its bottleneck1062

dimension as 512 for all experiments for the EC30.1063

• EC30. For the EC30 dataset that contains 301064

languages with 60 translation directions, the1065

mT-big base model size is 439M. AdapterFam 1066

insert 25.3M additional trainable parameters 1067

for one family (on EN-X directions), thus re- 1068

sulting in 303.6M added parameters for all 1069

families on both EN-X and X-En directions, 1070

leading to 69% relative parameter increase 1071

over the baseline model. 1072

LaSS. When reproducing LaSS (Lin et al., 2021), 1073

we adopt the code from their official Github page5 1074

5https://github.com/NLP-Playground/LaSS
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with the same hyper-parameter setting as they sug-1075

gested in their paper. For IWSLT, we finetune1076

the mT-small for each translation direction with1077

dropout=0.3, and we set dropout=0.1 for large-1078

scale EC30. We then identify the language-specific1079

parameters for attention and feed-forward modules1080

(the setting with the strongest gains in their paper)1081

with a pruning rate of 70%. We continue to train1082

the sparse networks while keeping the same setting1083

as the pre-training phase as they suggested.1084

Note that we observed different results as they1085

reported in the paper, even though we used the1086

same code, hyper-parameter settings, and corre-1087

sponding Python environment and package version.1088

We also found that He et al. (2023) reproduced1089

LaSS results in their paper, which shows similar1090

improvements (around +0.6 BLUE gains) over the1091

baseline of our reproductions. As for an improved1092

method over LaSS proposed by He et al. (2023),1093

we do not reproduce since no open-source code has1094

been released.1095

A.3 Comparison with M2M-100 Models1096

We choose multilingual Transformer architecture1097

as our baseline backbone, which has been com-1098

monly used as a strong baseline in many MNMT1099

studies (Pires et al., 2023; Shaham et al., 2023;1100

Arivazhagan et al., 2019; Wu et al., 2024), and is1101

widely recognized as a strong baseline within the1102

community (Chen et al., 2023; Wu et al., 2023; Pan1103

et al., 2021; Wu and Monz, 2023).1104

We further establish the strength of our baseline1105

models by comparing them to the M2M-100 mod-1106

els, which are state-of-the-art systems trained on an1107

extensive corpus of 7.5 billion parallel sentences.1108

In specific, we directly evaluated the trained M2M-1109

100 models provided in Fairseq 6. The results,1110

presented in Table 7, demonstrate that both our1111

baseline model (mT-big) and our proposed method1112

(Ours) achieve performance that is comparable to,1113

or even surpasses, the M2M-100 models.1114

A.4 Main result using ChrF++ and COMET1115

Recent studies (Rei et al., 2020; Costa-jussà et al.,1116

2022) show that ChrF and COMET present high1117

levels of correlation with human judgments, and1118

automatic metrics based on pre-trained embeddings1119

can outperform human crowd workers (Freitag1120

et al., 2021). Notably, Costa-jussà et al. (2022)1121

6https://github.com/facebookresearch/fairseq/
tree/main/examples/m2m_100

found an increase of +0.5 in ChrF++ has been cor- 1122

related with statistically significant improvements 1123

in human evaluations, with a change of +1.0 in 1124

ChrF++ almost always perceptible to human evalu- 1125

ators, which is studied on the FLORES test set. 1126

To ensure a comprehensive evaluation, we 1127

report various automatic metrics in this paper: 1128

ChrF++(character level), SacreBleu (detokenized 1129

word level), and COMET(representation level) 1130

scores as extra results, as shown in Table 9, re- 1131

spectively. We opted for the "wmt22-comet-da" 1132

model (Rei et al., 2022), a widely used version 1133

from Unbabel’s collection of models that serves 1134

as the default choice. This model presents SOTA 1135

performance in WMT Metrics Shared Task (Freitag 1136

et al., 2022). Similar to what we observed in Sec- 1137

tion 6.2, our Neuron Specialization presents consis- 1138

tent performance improvements over the baseline 1139

model while outperforming other methods such as 1140

LaSS and Adapters. 1141

Our method, applied to the same FLORES-200 1142

test set, outperformed the baseline with an average 1143

increase of +1.1 ChrF++ scores, where most gains 1144

were greater than +1.0 ChrF++. This improvement 1145

emphasizes the effectiveness of our approach, sug- 1146

gesting a significant alignment with human evalua- 1147

tive standards. 1148

A.5 Robustness tests 1149

To show that the improvements in our method are 1150

not due to random variance, we implemented our 1151

method with different random seeds for all experi- 1152

ments and conducted paired significance tests for 1153

our main EC30 results. 1154

A.5.1 Testing with Different Random Seeds 1155

We run our method with different seeds and show 1156

robust improvements for both datasets (see Ta- 1157

ble 10 and Table 11). 1158

Seed O2M M2O

∆BLEU over mT-shallow
seed=222 +0.3 +1.8
seed=111 +0.3 +1.4

∆BLEU over mT-small

seed=222 +0.3 +1.7
seed=111 +0.6 +1.2

Table 10: Average BLEU improvements of our Neu-
ron Specialization method (Ours) over baselines (mT-
shallow and mT-small) on the IWSLT dataset.
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Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

SacreBLEU
mT-big - 28.1 31.6 29.9 29.7 31.6 30.6 18.9 26.0 22.4 25.5 29.7 27.7

Fine-Tune 0% +0.3 +0.2 +0.3 +0.3 +0.2 +0.3 -0.3 -0.4 -0.4 +0.3 0 +0.1
AdapterFam +70% +0.7 +0.3 +0.5 +0.7 +0.3 +0.5 +1.1 +0.5 +0.8 +0.8 +0.4 +0.6
AdapterLP +87% +1.6 +0.6 +1.1 +1.6 +0.4 +1.0 +0.4 +0.4 +0.4 +1.2 +0.5 +0.8

LaSS 0% +2.3 +0.8 +1.5 +1.7 +0.2 +1.0 -0.1 -1.8 -1.0 +1.3 -0.3 +0.5
Random 0% +0.9 -0.5 +0.2 +0.5 -0.7 -0.2 -0.3 -1.5 -0.9 +0.5 -0.9 -0.2

Ours-bigEnc 0% +1.2 +1.1 +1.1 +1.0 +1.0 +1.0 +0.7 +0.8 +0.8 +1.0 +1.0 +1.0
Ours-bigDec 0% +1.2 +1.1 +1.1 +0.9 +1.1 +1.0 +0.7 +1.1 +0.9 +0.9 +1.1 +1.0

Ours-big 0% +1.8 +1.4 +1.6 +1.4 +1.1 +1.3 +1.4 +0.9 +1.2 +1.5 +1.1 +1.3
ChrF++

mT-big - 52.4 57.6 55.0 53.9 56.6 55.3 42.5 50.0 46.3 49.6 54.7 52.2
AdapterLP +87% +1.3 +0.2 +0.8 +1.1 +0.1 +0.6 +0.3 +0.3 +0.3 +0.9 +0.2 +0.5
AdapterFam +70% +0.6 +0.2 +0.4 +0.7 +0.3 +0.5 +1.1 +0.4 +0.8 +0.8 +0.3 +0.5

LaSS 0% +1.7 +0.8 +1.2 +1.3 +0.3 +0.8 -0.3 -1.5 -0.9 +0.9 -0.2 +0.5
Random 0% +0.7 -0.4 +0.2 +0.4 -0.5 -0.1 -0.5 -1.2 -0.9 +0.2 -0.7 -0.3

Ours-bigEnc 0% +1.0 +0.9 +1.0 +0.7 +0.9 +0.8 +0.6 +0.9 +0.8 +0.8 +0.9 +0.8
Ours-bigDec 0% +0.9 +0.9 +0.9 +0.6 +1.0 +0.8 +0.5 +1.2 +0.9 +0.7 +1.0 +0.9

Ours-big 0% +1.4 +1.1 +1.3 +1.1 +0.9 +1.0 +1.2 +0.8 +1.0 +1.2 +0.9 +1.1
COMET

mT-big - 83.4 83.9 83.65 81.1 80.1 80.6 73.8 73.4 73.6 79.1 79.1 79.1
AdapterLP +87% +0.9 +0.2 +0.5 +0.6 +0.2 +0.4 0 +0.1 0 +0.5 +0.2 +0.4
AdapterFam +70% +0.4 +0.1 +0.3 +0.4 +0.2 +0.3 +0.7 +0.3 +0.5 +0.5 +0.2 +0.4

LaSS 0% +1.5 +0.8 +1.2 +0.9 +0.6 +0.8 -0.2 -1.0 -0.6 +0.7 +0.1 +0.4
Random 0% +0.2 -0.1 +0.1 -0.1 -0.2 -0.2 -0.8 -0.9 -0.9 -0.2 -0.4 -0.3

Ours-bigEnc 0% +1.0 +0.8 +0.9 +0.5 +0.9 +0.7 +0.3 +0.9 +0.6 +0.6 +0.8 +0.7
Ours-bigDec 0% +0.9 +0.8 +0.9 +0.5 +1.0 +0.8 +0.3 +0.9 +0.6 +0.6 +1.0 +0.8

Ours-big 0% +1.4 +1.0 +1.2 +0.9 +0.7 +0.8 +0.8 +0.7 +0.8 +1.0 +0.8 +0.9

Table 9: Average improvements on the EC30 dataset over the baseline (mT-big). ’Ours-bigEnc’ and ’Ours-bigDec’
indicate neuron specialization applied solely to the Encoder and Decoder, respectively, while ’Ours-big’ signifies
the method applied to both components. The best results are highlighted in bold.

Seed O2M M2O M2M

∆SacreBLEU over mT-big
seed=222 +1.5 +1.1 +1.3
seed=111 +1.3 +1.1 +1.2
seed=42 +1.4 +1.2 +1.3

Table 11: Average SacreBLEU improvements of our
Neuron Specialization method (Ours) over the baseline
(mT-big) on the EC30 dataset.

A.5.2 Statistical Significance Test1159

We conducted Paired approximate randomiza-1160

tion (Riezler and Maxwell III, 2005) paired sig-1161

nificance test to show that the improvements of our1162

method over the baseline (mT-big) on EC30 are1163

statistically significant regarding SacreBLEU and1164

CHRF++ metrics in Table 12. In sum, for both1165

metrics, 59/60 directions passed the test (p-value < 1166

0.05) except en-ha. The test is performed with the 1167

SacreBLEU Python package’s paired significance 1168

testing feature (–paired-ar). 1169

A.6 Experiments on wider and deeper models 1170

We conducted further experiments to determine 1171

if our method retains its effectiveness with larger 1172

models. We expanded the baseline model, mT- 1173

big, in two key dimensions: a) the feed-forward 1174

network (FFN) size, indicating the ’width’ of the 1175

network; b) the number of layers, representing 1176

the ’depth’ of the network. Specifically, we in- 1177

troduced mT-wide, which features an expanded 1178

FFN dimensionality (from 4,096 to 8,192), and mT- 1179

large, which has increased layer count (from 6-6 to 1180

12-12). See model config details in Table 6. 1181

Following these modifications, we applied our 1182
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Statistical Significance Test based on SacreBLEU

en-af en-am en-ar en-bg en-bn en-cs en-da en-de en-es en-fr en-gu en-ha en-he en-hi en-it
3e-3 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 2e-1 9e-4 9e-4 9e-4

en-kn en-lb en-mr en-mt en-nl en-oc en-pl en-pt en-ro en-ru en-sd en-sr en-sv en-ti en-uk
9e-4 9e-4 3e-3 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 2e-2 9e-4

af-en am-en ar-en bg-en bn-en cs-en da-en de-en es-en fr-en gu-en ha-en he-en hi-en it-en
9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4

kn-en lb-en mr-en mt-en nl-en oc-en pl-en pt-en ro-en ru-en sd-en sr-en sv-en ti-en uk-en
9e-4 9e-4 9e-4 9e-4 9e-4 1e-2 9e-4 9e-4 1e-2 9e-4 3e-2 9e-4 9e-4 9e-4 9e-4

Statistical Significance Test based on ChrF++
en-af en-am en-ar en-bg en-bn en-cs en-da en-de en-es en-fr en-gu en-ha en-he en-hi en-it
9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 1e-01 9e-04 9e-04 9e-04

en-kn en-lb en-mr en-mt en-nl en-oc en-pl en-pt en-ro en-ru en-sd en-sr en-sv en-ti en-uk
9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 2e-02 9e-04

af-en am-en ar-en bg-en bn-en cs-en da-en de-en es-en fr-en gu-en ha-en he-en hi-en it-en
9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04

kn-en lb-en mr-en mt-en nl-en oc-en pl-en pt-en ro-en ru-en sd-en sr-en sv-en ti-en uk-en
9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 9e-04 8e-02 9e-04 9e-04 9e-04 9e-04

Table 12: Statistical Significance Test comparing our Neuron Specialization against the mT-big baseline on EC30.
The table shows p-values in each direction, with p-value < 0.05 indicating our method yields significant improvement
over the baseline. Overall, for both metrics, 59/60 directions passed the test (p-value < 0.05) except en-ha.

neuron specialization approach to these models.1183

The results, as shown in Table 8, demonstrate con-1184

sistent performance gains across both configura-1185

tions, further validating the efficacy of our method.1186

A.7 Reults in Zero-shot translations1187

Zero-shot neural machine translation (ZS-NMT)1188

represents a pivotal challenge in multilingual ma-1189

chine translation, aiming to handle language pairs1190

never seen during training. Although training1191

unified MMT systems enables zero-shot transla-1192

tions(Johnson et al., 2017), their performance falls1193

short of that seen in supervised directions. Recent1194

findings by Zhang et al. (2020b) suggest that larger1195

model sizes enhance ZS performance. Addition-1196

ally, Tan and Monz (2023) indicates that vocabu-1197

lary overlap and linguistic similarities contribute1198

to variations in ZS performance, and that stronger1199

En-centric capabilities might improve ZS results.1200

ZS-NMT Setups To further investigate whether1201

our method could bring benefits to zero-shot trans-1202

lations, we tested our method across 870 zero-shot1203

directions involving 30 languages. To do that,1204

we created masks using the Encoder mask from1205

Source-to-English (Src-En) and the Decoder mask1206

from English-to-Target (En-Tgt).1207

ZS-NMT Results Overall, we observed an aver-1208

aged +3.1 SacreBLEU improvement on zero-shot1209

directions, with 847 out of 870 directions show- 1210

ing improvements, and 23 directions experiencing 1211

minor declines, averaging -0.3 SacreBLEU. De- 1212

tailed results for high, medium, and low-resource 1213

languages (denoted as H, M, and L) are presented 1214

in Table 13, along with comparisons of directions 1215

achieving baseline scores of 5 and 10 SacreBLEU 1216

using both a baseline model (mT-big) and our 1217

method are shown in Table 14. 1218

Model H2H H2M H2L M2H M2M M2L L2H L2M L2L

mT-big 1.5 2.2 1.3 1.8 2.4 1.3 2.6 3.1 1.3
Ours-big +4.2 +4.7 +1.6 +4.1 +4.3 +1.5 +2.7 +2.8 +1.2

Table 13: SacreBLEU improvements of Neuron Spe-
cialization method (Ours) over the mT-big baseline on
zero-shot translations.

Model Num. ≥ 5 Num. ≥ 10

mT-big 37 2
Ours-big 381 95

Table 14: Number of directions that exceed 5 and 10
SacreBLEU scores for the baseline (mT-big) and our
method (Ours).

A.8 Sparsity versus Performance 1219

For the Neuron Specialization, we dynamically se- 1220

lect specialized neurons via a cumulative activa- 1221

17



Figure 4: Improvements of Neuron Specialization
method over the mT-large baseline on EC30. The x-axis
indicates the factor k and the dynamic sparsity of the
fc1 layer, with displayed values ranging from minimum
to maximum sparsity achieved. The y-axis indicates the
SacreBLEU improvements over the mT-large model.

tion threshold k in Equation 1, which is the only1222

hyper-parameter of our method. Here, we discuss1223

the impact of k on the final performance and its1224

relationship to the sparsity. As mentioned in Sec-1225

tion 3.1, a smaller factor k results in more sparse1226

specialized neuron selection, which makes the fc11227

weight more sparse as well in the Neuron Special-1228

ization Training process. In Figure 4, we show that1229

our method consistently outperforms the baseline1230

across a range of k values, from 50 to 97. This1231

demonstrates robust positive gains, suggesting that1232

our method is stable across various k settings.1233

In addition, we show that increasing k leads to1234

higher improvements in general, and the optimal1235

performance is about when k=95%. Such observa-1236

tion follows the intuition since when k is too low,1237

model capacity will be largely reduced. Moreover,1238

we find that when the FFN capacity is significantly1239

reduced (k being very small), we still observe per-1240

formance gains. Notably, even when 70%-83%1241

of FFN weights are zeroed out (as shown in Fig-1242

ure 4), our method still achieves an increase of +0.61243

SacreBLEU. These results indicate that our method1244

can deliver consistent and positive gains without1245

extensive hyperparameter tuning.1246

Furthermore, in Figure 5, we show that the spar-1247

sity of the network presents an intuitive structure:1248

the sparsity decreases in the Encoder and increases1249

in the Decoder. This implies the natural signal1250

within the pre-trained multilingual model that neu-1251

rons progress from language-specific to language-1252

agnostic in the Encoder, and vice versa in the De-1253

coder. Such observation is natural because it is re-1254

flected by the untouched network, similar to what1255

Figure 5: Sparsity progression of Neuron Specialization
when k = 95 on the EC30. We observe that the sparsity
becomes smaller in the Encoder and then goes up in the
Decoder. Note that this figure is based on the natural
signals extracted from the untouched pre-trained model,
and will be leveraged later in the process of Neuron
Specialization Training. This intrinsic pattern naturally
follows our intuition that specialized neurons progress
from language specific to agnostic the in Encoder, and
vice versa in the Decoder.

we observed in the Progression of Neuron overlaps 1256

in Section 3.2.2. 1257

A.9 Visualization Details 1258

We provide the additional Pairwise Intersection 1259

over Union (IoU) scores for specialized neurons in 1260

the first Encoder layer (Figure 6), last Encoder layer 1261

(Figure 7), and last Decoder layer (Figure 8). The 1262

figures show that the Neurons gradually changed 1263

from language-specific to language-agnostic in the 1264

Encoder, and vice versa in the Decoder. 1265

A.10 Pseudocode of Neuron Specialization 1266

We provide the pseudocode of our proposed 1267

method, Neuron Specialization. We present the 1268

process of Specialized Neuron Identification in Al- 1269

gorithm. 1 and Neuron Specialization Training in 1270

Algorithm. 2. 1271
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Figure 6: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the first encoder
FFN layer across all X-En language pairs to measure the degree of overlap between language pairs. Darker cells
indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.

Figure 7: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the last encoder
FFN layer across all One-to-Many language pairs to measure the degree of overlap between language pairs. Darker
cells indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.

Figure 8: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the last decoder
FFN layer across all X-En language pairs to measure the degree of overlap between language pairs. Darker cells
indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.
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Algorithm 1 Specialized Neuron Identification

1: Input: A pre-trained multi-task model θ with dimensions d and dff ; a validation dataset D with T
tasks, where D = {D1, ..., DT }; and an accumulation threshold factor k ∈ [0%, 100%] as the only
hyper-parameter.

2: Output: A set of selected specialized neurons St
k for each task t.

3: for task t in T do
4: Step 1: Activation Recording
5: Initialize activation vector At = 0 ∈ Rdff

6: for sample xi in Dt do
7: Record activation state ati ∈ Rdff

8: At = At + ati ▷ Accumulate activation states
9: end for

10: at = At
|Dt| ▷ Compute average activation state for task t

11: Step 2: Neuron Selection
12: Initialize selected neurons set St

k = ∅
13: while selection condition not met do ▷ Refer to Eq. 1 for condition
14: Select neurons based on at and add them to St

k

15: end while
16: end for

Algorithm 2 Neuron Specialization Training

1: Input: A pre-trained multi-task model θ with dimensions d and dff . Corpora data C with T tasks that
contain both training and validation data. A set of selected specialized neurons St

k for each task t.
2: Output: A new specialized network θnew. Note that only the fc1 weight matrix will be trained

task-specifically, the other parameters are shared across tasks. In addition, θnew does not contain
more trainable parameters than θ due to the sparse network feature.

3: Derive boolean mask mt ∈ {0, 1}dff from St
k for each layer

4: while θnew not converge do
5: for task t in T do
6: W T

1 = mt ·W θ
1 ▷ We perform this for all layers, refer to EQ. 3

7: Train θnew using Ct ▷ All parameters will be updated, yet fc1 layers are task specific
8: end for
9: end while
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