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ABSTRACT

Mini-batch optimal transport (m-OT) has been successfully used in practical ap-
plications that involve probability measures with a very high number of supports.
The m-OT solves several smaller optimal transport problems and then returns the
average of their costs and transportation plans. Despite its scalability advantage,
the m-OT does not consider the relationship between mini-batches which leads to
undesirable estimation. Moreover, the m-OT does not approximate a proper metric
between probability measures since the identity property is not satisfied. To address
these problems, we propose a novel mini-batching scheme for optimal transport,
named Batch of Mini-batches Optimal Transport (BoMb-OT), that finds the opti-
mal coupling between mini-batches and it can be seen as an approximation to a
well-defined distance on the space of probability measures. Furthermore, we show
that the m-OT is a limit of the entropic regularized version of the BoMb-OT when
the regularized parameter goes to infinity. Finally, we present the new algorithms
of the BoMb-OT in various applications, such as deep generative models and deep
domain adaptation. From extensive experiments, we observe that the BoMb-OT
achieves a favorable performance in deep learning models such as deep generative
models and deep domain adaptation. In other applications such as approximate
Bayesian computation, color transfer, and gradient flow, the BoMb-OT also yields
either a lower quantitative result or a better qualitative result than the m-OT.

1 INTRODUCTION

Optimal transport (OT) (Villani, 2021} 2008} Peyré et al., [2019) has emerged as an efficient tool
in dealing with problems involving probability measures. Under the name of Wasserstein distance,
OT has been widely utilized to solve problems such as generative modeling (Arjovsky et al.| 2017}
Tolstikhin et al.| [2018; Salimans et al., 2018};|Genevay et al.l 2018} Liutkus et al.l|2019)), barycenter
problem (Ho et al.,[2017; |L1 et al.,|2020), and approximate Bayesian computation (Bernton et al.,
2019a; |[Nadjahi et al., [2020). Furthermore, OT can also provide the most economical map of
moving masses between probability measures, which is very useful in various tasks such as color
transfer (Ferradans et al., |[2014; [Perrot et al.,|2016), natural language procesing (Alvarez-Melis &
Jaakkolal 2018)), and domain adaptation (alignment) (Courty et al.,[2016; |Lee et al., 2019a; Xu et al.,
2020), and graph processing (Titouan et al.| 2019} Xu et al.,|2019; |Chen et al., 2020).

Although OT has attracted growing attention in recent years, a major barrier that prevents OT from
being ubiquitous is its heavy computational cost. When the two probability measures are discrete
with n supports, solving the Wasserstein distance via the interior point methods has the complexity
of O(n3logn) (Pele & Werman, 2009), which is extremely expensive when n is large. There are
two main lines of works that focus on easing this computational burden. The first approach is to find
a good enough approximation of the solution by adding an entropic regularized term on the objective
function (Cuturi, 2013)). Several works (Altschuler et al., 2017 |[Lin et al., 2019) show that the
entropic approach can produce a e-approximated solution at the same time reduces the computational
complexity to O(n?/e?). The second line of works named the “slicing" approach is based on
the closed-form of Wasserstein distance in one-dimensional space, which has the computational
complexity of order O(nlogn). There are various variants in this directions; i.e., (Bonneel et al.,
2015} Deshpande et al., 2019; Kolouri et al., |2019; Nguyen et al., | 2021agb), these all belong to
the family of sliced Wasserstein distances. Recently, some methods are proposed to combine the
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dimensional reduction approach with the entropic solver of Wasserstein distance to inherit advantages
from both directions (Paty & Cuturi, 2019; Muzellec & Cuturil 2019; Lin et al., 2020a3b)).

Although those works have reduced the computational cost of OT considerably, computing OT is
nearly impossible in the big data settings where n could be as large as few millions. In particular,
solving OT requires to compute and store a n X n cost matrix that is impractical with current
computational devices. Especially in deep learning applications, both supports of empirical measures
and the cost matrix must be stored in a same device (e.g. a GPU) for automatic differentiation.
This problem exists in all variants of OT including Wasserstein distance, entropic Wasserstein, and
sliced Wasserstein distance. Therefore, it leads to the development of the mini-batches method
for OT (Genevay et al., [2018; [Sommerfeld et al., [2019), which we refer to as mini-batch OT loss.
The main idea of the mini-batch method is to divide the original samples into multiple subsets
(mini-batches), in the hope that each pair of subsets (mini-batches) could capture some structures of
the two probability measures, meanwhile, the computing OT cost between two mini-batches is cheap
due to a very small size of mini-batches. Then the overall loss is defined as the average of distances
between pairs of mini-batches. This scheme was applied for many forms of Wasserstein distances
(Deshpande et al., |2018; Bhushan Damodaran et al., 2018}, [Kolouri et al., 2018; Salimans et al.| 2018)),
and was theoretically studied in the works of (Bellemare et al.,|2017} |Bernton et al., 2019b; Nadjahi
et al.|[2019). Recently, Fatras et al. (Fatras et al.,|2020; [2021b) formulated this approach by giving a
formal definition of the mini-batch OT loss, studying its asymptotic behavior, and investigating its
gradient estimation properties. Despite being applied successfully, the current mini-batch OT loss
does not consider the relationship between mini-batches and treats every pair of mini-batches the
same. This causes undesirable effects in measuring the discrepancy between probability measures.
First, the m-OT loss is shown to be an approximation of a discrepancy (the population m-OT) that
does not preserve the metricity property, namely, this discrepancy is always positive even when two
probability measures are identical. Second, it is also unclear whether this discrepancy achieves the
minimum value when the two probability measures are the same. That naturally raises the question
if we could propose a better mini-batching scheme to sort out these issues in order to improve the
performance of the OT in practical applications.

Contribution: In this paper, we propose a novel mini-batching scheme for optimal transport, which
is named as Batch of Mini-batches Optimal Transport (BoMb-OT). In particular, the BoMb-OT views
every mini-batch as a point in the product space, then a set of mini-batches could be considered as an
empirical measure. We now could employ the Kantorovich formulation between these two empirical
measures in the product space as a discrepancy between two sets of mini-batches. In summary, our
main contributions are two-fold:

1. First, the BoMb-OT could provide a more similar transportation plan to the original OT than the
m-OT, which leads to a more meaningful discrepancy using mini-batches. In particular, we prove
that the BoMb-OT approximates a well-defined metric on the space of probability measures, named
population BoMb-OT. Furthermore, the entropic regularization version of population BoMb-OT could
be employed as a generalized version of the population m-OT. Specifically, when the regularization
parameter in the entropic population BoMb-OT goes to infinity, its value approaches the value of the
population m-OT.

2. Second, we present the implementation strategy of the BoMb-OT and detailed algorithms in various
applications in Appendix|C] We then demonstrate the favorable performance of the BoMb-OT over the
m-OT in two main applications that using optimal transport losses, namely, deep generative models
and deep domain adaptation. Moreover, we also compare BoMb-OT to m-OT in other applications,
such as sample matching, approximate Bayesian computation, color transfer, and gradient flow. In all
applications, we also provide a careful investigation of the effects of two hyper-parameters of the
mini-batching scheme, which are the number of mini-batches and the size of mini-batches, on the
performance of the BoMb-OT and the m-OT.

Organization: The remainder of the paper is organized as follows. In Section 2, we provide
backgrounds for optimal transport distances and the conventional mini-batching scheme (m-OT).
In Section 3, we define the new mini-batching scheme for optimal transport distances, Batch of
mini-batches Optimal Transport, and derive some of its theoretical properties. Section 4 benchmarks
the proposed mini-batch scheme by extensive experiments on large-scale datasets, and followed by
discussions in Section 5. Finally, proofs of key results and extra materials are in the supplementary.
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Notation: For any probability measure 1 on the Polish measurable space (X,Y), we denote

®/7 ‘(m > 2) as the product measure on the product measurable space (X, X™). For any p > 1,

we define Pp(]RN ) as the set of Borel probability measures with finite p-th moment defined on a
given metric space (RY, |.||). To simplify the presentation, we abuse the notation by using both

the notation X for both the random vector (z1, ..., %) € X" and the set {x1, ..., T, }, and we
define by Pxm := L 3™ 5, the empirical measure (the mini-batch measure) associated with X ™.
For any set X™ := {x1,...,2,} and m > 1, we denote by [X™]™ the product set of X™ taken m

times and ()f: ) the set of all m-element subsets of X".

2 BACKGROUND ON MINI-BATCH OPTIMAL TRANSPORT

In this section, we first review the definitions of the Wasserstein distance, the entropic Wasserstein,
and the sliced Wasserstein. We then review the definition of the mini-batch optimal transport (m-OT).

2.1 WASSERSTEIN DISTANCE AND ITS VARIANTS

We first start with the definition of Wasserstein distance and its variants. Let 1 and v be two probability

measures on P, (R”). The Wasserstein p-distance between p and v is defined as follows:
1

Wy (s v) i= minger(up) [Er(eylle —yllP]? , where I(u,v) := {7 : [ wde =v, [ wdy = p} is
the set of transportation plans between p and v.

The entropic regularized Wasserstein to approximate the OT solution (Altschuler et al., 2017}
Lin et al, 2019) between p and v is defined as follows (Cuturi, 2013): W (u,v) :=

1
minyer(uw) { [Ergey llz — yl[P]” + 7KL(7|p ® v)}, where 7 > 0 is a chosen regularized pa-
rameter and KL denotes the Kullback-Leibler divergence.

Finally, the sliced Wasserstein (SW) (Bonnotte, |2013; Bonneel et al., |2015) is motivated by the
closed-form of the Wasserstein distance in one-dimensional space. The formal definition of SW is:

1
SWy(p,v) := [Egoysv-1)WPE (05, 04)] *, where U(SN 1) denotes the uniform measure over
the (N — 1)-dimensional unit hypersphere and 64 is the orthogonal projection operator on direction 6.

2.2  MINI-BATCH OPTIMAL TRANSPORT

In this section, we first discuss the memory issue of large-scale optimal transport and challenges of
dual solver. Then, we revisit the mini-batch OT loss that has been used in training deep generative mod-
els, domain adaptations, color transfer, and approximate Bayesian computation (Bhushan Damodaran
et al.l 2018 |Genevay et al., [2018;; [Tolstikhin et al.| 2018} [Fatras et al., [ 2020; Bernton et al.,|2019a).

To ease the presentation, we are given X" := {x1,...,Zn |, Y" := {y1,...,Yn | iid. samples

from p and v in turn. Let p,, := % Z?’:l 0z, and v, = % 2?21 dy, be two corresponding empirical
measures from the whole data set. Here, n is usually large (e.g., millions) and each support in X",

Y™ can be a high dimensional data point (e.g. a high resolution image, video, etc).

Memory issue of optimal transport: Using an OT loss between p,, and v,, needs to compute and
store a n X n cost matrix which has one trillion float entries (about 4 terabytes) when n is about
millions. Moreover, when dealing with deep neural networks, both support points and the cost matrix
are required to be stored in the same memory (e.g., a GPU with 8 gigabytes memory) as a part of the
computational graph for automatic differentiation. This issue applies to all variants of OT losses, such
as Wasserstein distance, entropic Wasserstein, sliced Wasserstein distance. Therefore, it is nearly
impossible to compute OT and its variants in large-scale applications.

Challenges of stochastic dual solver: Using stochastic optimization to solve the Kantorovich dual
form is a possible approach to deal with large-scale OT, i.e. Wasserstein GAN (Arjovsky et al.|
2017; ILeygonie et al., 2019). However, the obtained distance has been shown to be very different
from the original Wasserstein distance (Mallasto et al., [2019} |Stanczuk et al., 2021)). Using input
convex neural networks is another choice to approximate the Brenier potential (Makkuva et al., [2020).
Nevertheless, recent work (Korotin et al.| [2021) has indicated that input convex neural networks
are not sufficient (have limited power) in approximating the Brenier potential. Furthermore, both
mentioned approaches are restricted in the choice of ground metric. In particular, £1 norm is used in
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Wasserstein GAN to make the constraint of dual form into the Lipchitz constraint and £5 norm is for
the existence of the Brenier potential.

Mini-batch solution: As a popular alternative approach for stable large-scale OT with flexible
choices of the ground metric, the mini-batch optimal transport is proposed (Genevay et al., 2018}
Sommerfeld et al.,[2019) and has been widely used in various applications (Arjovsky et al., 2017
Deshpande et al.|, 2018} Sommerfeld et al.,[2019; [Bhushan Damodaran et al., 2018). In this approach,
the original n samples are divided into subsets (mini-batches) of size m, where m is often the largest
number that the computer can process, then an alternative solution of the original OT problem is
formed by aggregating these smaller OT solutions from mini-batches.

We now state an adapted definition of mini-batch OT (m-OT) scheme that was formulated in (Fatras
et al.| 2020), including its two key parts: its transportation cost and its transportation plan.

Definition 1 (Empirical m-OT). For p > 1 and integers m > 1, and k > 1, let d : Pp(X) x
Pp(X) = [0,00) be a function, i.e., {W,, W], SW,}. Then, the mini-batch OT (m-OT) loss and the
transportation plan, a n X n matrix, between (., and v,, are defined as follows:

k Kk k k
~m 1 o 1
Ug) (/,Ln,l/n) = ﬁZZd(PX:n’_Pyjm), Wkrl(,l,bn7yn) = EZZW‘X;H’}/J‘M’ (1)

i=1 j=1 i=1j=1

where X" is sampled i.i.d from (Xm) Y™ is sampled i.i.d from ({n) and the transport plan TX ™Y

where its entries equal zero except those indexed of samples X" x Y/, is the transportation plan
when d(Pxm, Pyjm) is an optimal transport metric.

The above definition was generalized to the two original measures as follows in (Fatras et al., [2020):
Definition 2 (Population m-OT). Assume that ;i and v are two probability measures on P, (X)) for
given positive integersp > 1, m > 1, and d : P,(X) X Pp(X) — [0, 00) be a given function. Then,
the population mini-batch OT (m-OT) discrepancy between p and v is defined as follows:

UCTln(/’(” V) = E(Xm7ym),\,‘%’dn®®l;nd(PXma PY’”)- (2)

Issues of the m-OT: From Definition |1, the m-OT treats every pair of mini-batches the same by
taking the average of the m-OT loss between any pair of them for both transportation loss and
transportation plan. This treatment has some issues. First, a mini-batch is a sparse representation of
the true distribution and two sparse representations of the same distribution could be very different
from each other. Hence, a mini-batch from X"* would prefer to match to certain mini-batches of Y,
rather than treating every mini-batch of Y™ equally. For example, each mini-batch has one datum,
then each term in the population m-OT now is the ground metric of the OT cost, the population
m-OT degenerates to E[d(X™,Y™)] for independent X™ and Y. This treatment also leads to
an uninformative transportation plan shown in Figure[T5] which is followed by a less meaningful
transportation cost. Second, although it has been proved that the population m-OT is symmetric and
positive (Fatras et al.| [2020)), for the same reason it does not vanish when two measures are identical.

3 BATCH OF MINI-BATCHES OPTIMAL TRANSPORT

To address the issues of m-OT, in this section, we propose a novel mini-batch scheme, named batch
of mini-batches OT (BoMb-OT). We first demonstrate the improvement of the BoMb-OT to the
m-OT and discuss the practical usage of the BoMb-OT. Then, we prove that the BoMb-OT loss is an
approximation of a well-defined metric in the space of Borel probability measures. Finally, we discuss
the entropic version of the population BoMb-OT (population eBoMb-OT) admits the population
m-OT as a special case where the entropic regularization goes to infinity in Appendix [B] To simplify
the presentation, we assume throughout this section that ¢ and v are continuous probability measures
in P, (X) for some given p > 1 and X C RY where N > 1. Furthermore, d : P,(X) x P,(X) —
[0, 00) is a given divergence between probability measures in P, (X).

3.1 DEFINITION OF BOMB-OT AND ITS PROPERTIES

Intuitively, a mini-batch scheme in OT can be decomposed into two steps: (1) Solving local OT
between every pair of mini-batches from samples of two original measures, (2) Combining local OT
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Solid arrows represent the optimal transport (OT) mapping

Refining the mapping
between samples

Solving OT between 3 3
mini-batches —

BoMb-OT

Figure 1: Visualization of the m-OT and the BoMb-OT in providing a mapping between samples.

solutions into a global solution. As discussed above, the main problem with the m-OT lies in the
second step, all pairs of mini-batches play the same role in the total transportation loss, meanwhile,
a mini-batch from X" would prefer to match some certain mini-batches from Y. To address the
limitation, we enhance the second step by considering the optimal coupling between mini-batches. By
doing so, we could define a new mini-batch scheme that is able to construct a good global mapping
between samples that also leads to a meaningful objective loss.

Let X1, X3",..., X" be mini-batches that are sampled with replacement from [X"|™ and
Y™, Ye", ..., Y be mini-batches that are sampled with replacement from [Y™]™. The batch
of mini-batches optimal transport is defined as follows:

Definition 3 (Batch of mini-batches). Assume thatp > 1, m > 1, k > 1 are positive integers and let
d : Pp(X) x Pp(X) — [0, 00) be a given function (e.g., {Wp, W, SW,}). The BoMb-OT loss and
the BoMb-OT transportation plan between probability measures |1, and v,, are given by:

k k k k
DZ,,WL(Mn,Vn) = min ZZ’}/”d(lem,Pme), %?(anyn) = ZZ’%'j?TleA/jm,
i=1 j=1

Q@m @m
~EN( ik, vk ) i=1 j=1

® ® .
where ;ﬁ: = % Zle dxm and U = % Zle 5yjm are two empirical measures defined on the
product space via mini-batches (measures over mini-batches), 7 is a k x k optimal transport plan

®Xm ®Xm . . ')
between [, and vy, and 7 X,y is defined as in Deﬁmtlon

Compared to the m-OT, the BoMb-OT considers an additional OT between two measures on mini-
batches for combining mini-batch losses. The improvement of the BoMb-OT over the m-OT is
illustrated in Figure[T]in which we assume that we can only solve 2 x 2 OT problems and we need to
deal with the OT problems with two empirical measures of 3 supports. The optimal transportation
plan is to map i-th square to ¢-th circle. Assume that there are four mini-batches: Al and A2 from X
and B1 and B2 from ). The weight for the m-OT loss between Al and B2 equals %, meanwhile, the
map from Al to B2 is unuseful. In this toy example, Al should be mapped to B1 and A2 is for B2. It
is also the solution that the BoMb-OT tries to obtain by re-weighting pairs of mini-batches through a
transportation plan between two measures over mini-batches.

Practical usage of the BoMb-OT: There are three types of applications that the BoMb-OT can
be utilized. The first one is gradient-based applications (deep learning) such as deep generative
models, deep domain adaption, and gradient flow. In these applications, the goal is to estimate the
gradient of a parameter of interest (a neural network) with an OT objective function. The second
one is mapping-based applications, namely, we aim to obtain a transportation map between samples.
Examples of mapping-based applications include color transfer, domain adaptation, and sample
matching. Finally, the third type of applications is discrepancy-based applications where we need to
know the discrepancy between two measures, e.g., approximate Bayesian computation, and searching
problems. We now discuss the implementation of BoMb-OT in each scenario.

Gradient-based (deep learning) applications: For a better presentation, we assume that a system with
a GPU (graphics processing unit) is used in the training process. We further assume that the GPU
has enough space to store the neural net, the 2 X m supports of two mini-batch measures, and the
m X m cost matrix. The algorithm of the BoMb-OT consists of three steps: Forwarding, Solving
k x k OT, and Re-forwarding and Backwarding. In the first step, k2 OT problems of size m x m
are computed in turn on GPU to obtain the £ X k cost matrix which indicates the transportation cost
between each pair of mini-batch measures. We recall that it is only enough memory for computing
m X m OT on GPU at a time. After that, an OT problem with the found k£ x k cost matrix is solved
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to find the coupling between mini-batches. Here, k£ can be much larger than m since the k x k£ OT
can be solved on computer memory (RAM - Random-access memory), which is bigger than GPU’s
memory. We would like to emphasize that in the first two steps, automatic differentiation is not
required. In the last step, we do re-forwarding and do backwarding (back-propagation) to obtain the
gradients of each pair of mini-batches, then using the coupling in the second step to aggregate them
into the final gradient signal of the parameter of interest. The detailed algorithms of the BoMb-OT
for deep generative model and deep domain adaption are respectively described in Algorithm|[I]in
Appendix [C.T|and Algorithm [2]in Appendix [C.2] Compared to the m-OT, the BoMb-OT only costs
an additional forwarding and an additional k£ x k OT problem that is not expensive since they do not
require to create and store any computational graphs.

Mapping-based applications: In this type of application, the BoMb-OT also consists of three steps
like in gradient-based applications. However, in the last step, the transportation plan (the mapping)
is aggregated instead of the gradient. As an example, we present the BoMb-OT algorithm for
color transfer in Algorithm [3]in Appendix We would like to emphasize that the last step (re-
forwarding) can be removed by storing all k“ mini-batch transportation plans of size m x m which
can be represented by a sparse matrix of size n x n for saving memory.

Discrepancy-based applications: The BoMb-OT needs only two steps in this scenario, namely,
forwarding and solving k x k OT. Since we do not need to re-estimate any statistics from mini-
batches, the final value of the BoMb-OT can be evaluated at the end of the second step without the
re-forwarding step. Similar to the previous two types of applications, we present the BoMb-OT
algorithm for approximate Bayesian computation in Algorithm [5]in Appendix [C.4] Compared to the
m-OT, the BoMb-OT needs only an additional k£ x k OT here.

Choosing k£ and m: In practice, we want to have as large as possible values of £ and m. The
mini-batch size m is often chosen to be the largest value of the computational memory that can be
stored. For choosing k, there are two practical cases. Two (multiples) computational memories -
this is the case of modern computational systems that have at least a CPU (central processing unit)
with RAM and a GPU with its corresponding memory. As discussed in the practical usage of the
BoMb-OT, OT problems between mini-batch measures of size m x m are solved on the GPU for
high computational speed in estimating the parameter of interest or other statistics. On the other hand,
the k x k OT problems between measures over mini-batches can be computed on the CPU’s memory.
So, k can be chosen larger than m. One (shared) computational memory - in this case, the largest
value of k equals to m. Note that, smaller values of k£ and m can still be used for faster computation.
We would like to recall that k is usually set to 1 in almost all recent applications of OT (Genevay
et al.,[2018; [Bhushan Damodaran et al., [2018; Tolstikhin et al.,[2018; [Bernton et al., |2019a)). In our
experiments, we will demonstrate that increasing k could improve the performance.

Computational complexity of the BoMb-OT: The computational complexity of BoMb-OT depends
on a particular choice of divergence d. In the experiments, we specifically consider three choices
of d € {W,, W, SW,} where 7 > 0 is a chosen regularized parameter. Here, we only discuss the
case when d = W, the discussion of other choices of d is in Appendix Bl When d is the entropic
Wasserstein distance, for each pair X;™ and Y™, the computational complexity of approximating
d(Pxy, Pym) via the Sinkhorn algorithm is of order O(m?/e?) where € > 0 is some desired

accuracy (Lin et al., 2019). Hence, the computation cost of k2 OT transport plans from k2 pairs of
mini-batches is of order O(k?m?/c?) when using entropic regularization (see Appendix [Bfor the
definition). With another OT cost within k2 pairs, the total computational complexity of computing
the BoMb-OT is O(k?(m? + 1) /2). It means that the computational complexity of computing the
BoMb-OT is comparable to the m-OT, which is O(k?m?/e?).

The BoMb-OT’s transportation plan: We discuss in detail the sparsity of BoMb-OT’s transporta-
tion plan in Appendix [B] To visualize the BoMb-OT’s plan and compare it with the m-OT’s plan,
we carry out a simple experiment on two measures of 10 supports in Figure[I5] The details of the
experiment and discussion are given in Appendix [D.6] From this example, the BoMb-OT provides a
more accurate transportation plan than the m-OT with various choices of m and k.



Under review as a conference paper at ICLR 2022

3.2 METRIC APPROXIMATION OF THE BOMB-OT LOSS

In this section, we show that the BoMb-OT is an approximation of a well-defined metric, named
population BoMb-OT, in the space of probability measures. To ease the ensuing discussion, we first
define that metric as follows:

Definition 4 (Population BoMb-OT). Let y and v be two probability measures on Pp(X), for p > 1
is a positive number. The population BoMb-OT between probability measures | and v is defined as:
’DZL(/U,,I/) = inf ]E(X'm,Ym)N,Y[d(PX'm,’PYnL)].

ven(%" %"

Different from the m-OT in Definition [2] the optimal plan between two distributions on product
spaces is crucial to guarantee that the population BoMb-OT is a well-defined metric in the space of
probability measures.

Theorem 1 (Metric property of population BoMb-OT). Assume that d is an invariant metric under
permutation on X™ and the function d(Pxm , Pym) is continuous in terms of X™, Y™ € X™. Then,
the population BoMb-OT is a well-defined metric in the space of probability measures.

The proof of Theorem [T]is in Appendix [A] The assumption of Theorem|I]is mild and satisfied when
d is (sliced) Wasserstein metrics of order p, i.e., d € {W,,, SW,}.

Our next result shows the approximation error between the BoMb-OT loss and the population BoMb-
OT distance. We provide the following result with the approximation error when d € {WW,,, SW,}.

Theorem 2 (Population BoMb-OT). Assume that p > 1, X is a compact subset of RN, and
all the possible mini-batches are considered. Then, we have (i) ‘Ds’m(,um vp) — D' (u, 1/)‘ =

(’)p(ml_%/n%) when d = W,; (ii) ‘ﬁS’m(un,un) — D (p,v)| = Op(ml_%/n%) when d =
SW,y, and k is the number of mini-batches.

The proof of Theorem [2]is in Appendix [A] We would like to remark that the dependency of the
sample complexity of the BoMb-OT on N is necessary when d = W,,. It is due to the inclusion of
the additional optimal transport in the BoMb-OT. On the other hand, the curse of dimensionality
of the BoMb-OT loss does not happen when d = SW,,. Furthermore, the choice d = SW,
improves not only the sample complexity but also the computational complexity of the BoMb-OT.
In particular, in Appendix [B| we demonstrate that the computational complexity of the BoMb-OT
is O(k*mlogm) when d = SW,,. Another potential scenario that the BoMb-OT does not have the
curse of dimensionality is when we consider its entropic regularized version in equation @ The
entropic optimal transport had been shown to have sample complexity at the order n~2 (Mena &
Weed, 2019). In the case of the entropic regularized BoMb-OT (eBoMb-OT) (see equation (4)) in
Appendix [B), when the regularized parameter ) is infinity, namely, the m-OT, the result of (Fatras
et al.,|2020; 2021b)) already established the sample complexity n~ 2. However, for a general value
of the regularized parameter, it is unclear whether we still have this sample complexity n=z of the
eBoMb-OT. We leave this question for the future work.

4 EXPERIMENTS

In this section, we demonstrate the favorable performance of BoMb-OT compared to m-OT in
three discussed types of applications, namely, gradient-based, mapping-based, and value-based
applications. For gradient-based applications, we run experiments on deep generative model (Genevay
et al., 2018 Deshpande et al., 2018)), deep domain adaptation (Bhushan Damodaran et al.| 2018)).
Experiments on color transfer (Rabin et al.,[2014; |[Ferradans et al.,|2014) are conducted as the example
for mapping-based applications. Lastly, we present results on approximate Bayesian computation
(Bernton et al., 2019al) which is a value-based application. In the main text of the paper, we only
report and discuss the obtained experimental results, the details of applications and their algorithms
are given in Appendix [C] In Appendix [D] we provide detailed experimental results of discussed
applications including visualization and computational time. Moreover, we also carry out experiments
on gradient flow (Santambrogiol |2017) and visualize mini-batch transportation matrices of the m-OT
and the BoMb-OT. From all experiments, we observe that the BoMb-OT performs better than m-OT
consistently. The detailed settings of our experiments including neural network architecture, hyper-
parameters, and evaluation metrics are in Appendix [E| We would like to recall that & is the number of
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Table 1: Comparison between the BoMb-OT and the m-OT on deep generative models. On the MNIST
dataset, we evaluate the performances of generators by computing approximated Wasserstein-2 while
we use FID score (Heusel et al.,[2017)) on CIFAR10 and CelebA.

Dataset k' m-OT(WJ)  BoMb-OT(Wj)  eBoMb-OT (W3) ‘ m-OT(SW5)  BoMb-OT(SW,)  eBoMb-OT (S1¥3)
MNIST 1 28.12 28.12 28.12 37.57 37.57 37.57
2 27.88 27.53 27.56 36.01 35.27 35.88
4 27.6 27.42 27.41 35.18 34.19 34.85
8 27.36 27.1 27.25 34.33 33.17 34.00
CIFARIO 1 78.34 78.34 78.34 80.51 80.51 80.51
2 76.20 75.59 74.25 67.86 65.22 62.80
4 76.01 74.60 74.12 62.30 62.11 58.78
8 75.22 74 73.33 59.68 58.94 53.44
CelebA 1 54.16 54.16 54.16 90.33 90.33 90.33
2 52.85 52.49 51.53 82.45 78.66 74.48
4 52.56 51.71 50.55 73.06 72.37 72.19
8 51.92 51.18 49.63 71.95 69.3 68.52

Table 2: Comparison between two mini-batch schemes on deep domain adaptation on digits datasets.
We vary the number of mini-batches & and report the classification accuracy on the target domain.

Scenario k  m Number of epochs m-OT BoMb-OT Improvement m-UOT eBoMb-UOT Improvement
SVHN to MNIST 8 50 80 92 93.74 +1.74 98.76 98.81 +0.05
16 50 160 93.06 94.32 +1.26 98.83 98.85 +0.02
32 50 320 93.09 95.59 +2.40 98.83 98.90 +0.07
USPS to MNIST 8 25 80 95.86 96.16 +0.30 98.46 98.59 +0.13
16 25 160 96.04 96.48 +0.44 98.36 98.7 +0.34
32 25 320 96.22 96.71 +0.49 98.43 98.75 +0.32

mini-batches and m is the mini-batch size. In our experiments, we create mini-batches by sampling
without replacement from supports of the original empirical measures.

4.1 DEEP GENERATIVE MODEL

We now show the deep generative model result on MNIST (LeCun et al., [1998), CIFAR10
(32x32) (Krizhevsky, 2009), and CelebA (64x64) (Liu et al., 2015) using different mini-batch
schemes with two OT losses for d: SW5 (Deshpande et al.,2018) and W3 (Genevay et al., 2018)).
According to Table[I] the BoMb-OT always gives lower quantitative metrics than the m-OT on
all datasets with all choices of the number of mini-batches k£ and mini-batch ground metric d. In-
terestingly, the eBoMb-OT which is the entropic regularization version of BoMb-OT (defined in
Appendix [B)) is better than the BoMb-OT on CIFAR10, CelebA, and one setting on MNIST. The
explanation for this phenomenon is that the eBoMb-OT loss is smoother than the BoMb-OT due to
the entropic regularization (Genevay et al.,[2018). From the table, we also observe that increasing the
number of mini-batches k£ improves the result of generators that are trained with the same number
of stochastic gradient updates. It suggests that the gradient of an OT loss should not be estimated
by only 1 pair of mini-batches like the way it has been implementing in practice. Also, based on
the experimental results, we recommend practitioners to consider using an additional transportation
problem between measures over mini-batches when the number of mini-batches k£ > 1.

4.2 DEEP DOMAIN ADAPTATION

In this section, we adapt two digits datasets SVHN (Netzer et al.,[2011)) and USPS (Hull, |1994) to
MNIST (LeCun et al., [1998)). Details about architectures of neural networks and hyper-parameters
settings are given in Appendix [E.2] The classification results are illustrated in Table[2} The BoMb-OT
and eBoMb-UQOT always achieve better results than their counterparts for all choices of k. As k
increases, the gap between two methods tends to become larger in both datasets. This demonstrates
the effectiveness of our scheme, especially when dealing with a large number of mini-batches. We
also observe that the classification accuracy on the target domain also increases as k£ changes from 8
to 32 and keeping the same number of stochastic gradient updates for deep neural networks. Thus, we
suggest that DeepJDOT (Bhushan Damodaran et al.||2018]) and its variants should be implemented
with the BoMb-OT’s strategy which is presented in Algorithm [2]in Appendix
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Source - BoMb-OT full-OT Target
e

Figure 2: The transferred images of the m-OT and the BoMb-OT with k=10, m=10, and the full-OT from the
most left source image to the most right target image.

Loo-

k=2,m=28 k=6,m=28 k=2,m=16 k=6,m=16
Figure 3: [Illustration of approximated posteriors from ABC with the m-OT, the BoMb-OT, and the true
posterior via kernel density estimation. The Wasserstein-2 distances from the approximated posteriors to the true
posterior are given next to the label of corresponding mini-batch methods.

4.3 COLOR TRANSFER

Mini-batch OT has made color transfer to be able to transform color between two images that contain
millions of pixels (Fatras et al.,[2021b)). In this section, we show that our new mini-batch strategy
can improve further the quality of the color transfer. The details of the application and algorithm are
given in Appendix [C.3] The full experimental results including qualitative images and their color
palettes with different choices of k& and m are presented in Appendix [D.3] Based on the experiment,
we observe that the BoMb-OT provides a better barycentric mapping for color transfer than m-OT
with every setting of & and m. In this main paper, we show a color transfer result in Figure[2] We can
observe that the color of the transferred image of the BoMb-OT is more similar to the target image
than one of the m-OT. The color palettes in Appendix [C.3]also reinforce this claim.

4.4 APPROXIMATE BAYESIAN COMPUTATION (ABC)

As choices of sample acceptance rejection criteria, we compare the m-OT and the BoMb-OT in
ABC. We present the detail of the application and the algorithm in Appendix [C.4] The setting of
the model and the full results are given in Appendix[D.4 We compare the m-OT and the BoMb-OT
with various choices of £ and m. We compare them by plotting their approximated posteriors and
computing the Wasserstein distance between approximated posteriors to the true posterior. According
to the experiments, the BoMb-OT always yield lower Wasserstein distances than the m-OT. Here, we
show some results in Figure 3] From the figure, we can see that approximated posteriors from the
BoMb-OT are closer to the true posterior than the m-OT. Moreover, we observe that increasing the
value of k£ and m improves the quality of the approximated posteriors from both mini-batch schemes
considerably. Based on the fact that Wasserstein ABC is implemented with k£ = 1
[20194), we suggest that the BoMb-OT should be used with k is greater than 1 in ABC.

5 CONCLUSION

In the paper, we have presented a novel mini-batching scheme for optimal transport, named Batch of
Mini-batches Optimal Transport (BoMb-OT). The idea of the BoMb-OT is to consider the optimal
transport problem on the space of mini-batches with a Wasserstein-types ground metric. We prove that
the BoMb-OT is an approximation of a valid distance between probability measures and its entropic
regularized version, eBoMb-OT, is the generalization of the conventional mini-batch optimal transport.
More importantly, we have shown that the BoMb-OT and the eBoMb-OT can be implemented
efficiently and they have more favorable performance than the m-OT in various applications of
optimal transport. For future work, we could consider another extension of the BoMb-OT by
changing the local OT to the Gromov-Wasseretein (GW) and unbalanced OT (UOT).
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Reproducibility Statement: All datasets that we used in the paper are published and they are
easy to find on the Internet. Source codes and instruction for our experiments are provided in the
supplementary of the paper. The details of experimental settings, computational infrastructure, and
other used public libraries are given in Appendix [E]

Ethics Statement: The paper investigates a fundamental practical problem of optimal transport in
machine learning and deep learning. Hence, we do not foresee any ethical issues of the paper that can
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Supplement to ‘““On Transportation of Mini-batches:
A Hierarchical Approach”

In this supplementary material, we collect several proofs and remaining materials that were deferred
from the main paper. In Appendix [A] we provide the proofs of the main results in the paper. We
present additional materials including discussions about computation complexity of the BoMb-OT, the
connection of the BoMb-OT to hierarchical optimal transport, entropic regularization of BoMb-OT,
sparsity of the BoMb-OT, and extension with non-OT mini-batch metrics in Appendix [B| Furthermore,
we provide a description of applications and the BoMb-OT algorithms in those applications in
Appendix [C|] Additional results of presented experiments in the main text in Appendix [D} and their
corresponding settings in Appendix [E]

A PROOFS
In this appendix, we give detailed proofs of theorems that are stated in the main paper.

A.1 PROOF OF THEOREMIII

We first prove that for any probability measures ;1 and v € P,(0), there exists an optimal transporta-
tion plan «v* such that

Dgn (/,L, V) = E(Xm’ym),\m/* [d(PXm 5 Pym)] (3)

From the definition of the BoMb-OT, there is a sequence of transportation plans 7, € H(®ﬁn , 7 L)

such that

E(xm ym)nn, [d(Pxm, Pym)] = Da(p, v)

m

asn — oo. Since H(®/T , % ) is compact in the weak* topology (Villani} 2008), -y,, weakly converges

em ® . . . .
to some v* € I( 7", 7"). Since d(Pym, P,m) is continuous in terms of z™,y™ € X™, an

application of Portmanteau theorem leads to

lim E(Xm7Ym)N,YTZ [d(PXnL’ Pym )] > E(Xm7ym),\/,y* [d(PXnL s Pym )]

n—oo

Putting the above results together, we obtain
D;T(NJ, l/) = ]:E(Xm,7ym,)~,y* [d(PXm y Pym)].
Therefore, there exists an optimal transportation plan v* such that equation [3 holds.

We now proceed to prove that the BoMb-OT is a well-defined metric in the space of Borel probability
measures. First, we demonstrate that Dy(u, v) = 0 if and only if 4 = v. In fact, from the definition
of Dy(.,.), if we have two probability measures y and v such that D(u, v) = 0, we find that

lnf E(Xrn’ynl),\,,y [d(PXm 5 Pym,)] =0.

~ver (55

Since d is a metric, it implies that there exists transportation plan v* € H(@ﬁn , o ) such that
Pxm = Pym= y*-almost everywhere. It demonstrates that for each z, there exists a permutation o,

of {1,...,m} such that z; = y,_(;) for all i € [m]. Now, for any test function f : X — R, we have
m ® m . m .
| tedie=[ e en=[ s @)
™ i=1 XX =1 ATXX™ Gy

m

S ) A RERY

i=1

- [ Trwid¥' o).
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$mewaUHﬂmm%%ﬁ = ([ fle)du(z:))™ and [y, TI0 F)d 7' (y) =

( f Py (y1)dv yl))m, the above results show that

LﬂmMMﬂ:AﬂwMM)

for any test function f : X — R. It indicates that 4 = v. On the other hand, if 4 = v, we have

®,Jn = %", We can construct the transportation plan J(z,y) = 6. (y ) 1" (z) for all (z,7). Then, we

find that
D;T(Na V) S E(X,Y)ny[d(PXm,Pym)} =0.
Therefore, we obtain the conclusion that D(u, v) = 0 if and only if u = v.

Now, we demonstrate the triangle inequality property of Dy(., .), namely, we will show that for any
probability measures pi1, to, and p3, we have

Dg' (1, p2) + D' (2, 13) = Dy (pa, p3).-
The proof of this inequality is a direct application of gluing lemma (Berkes & Philipp, (1977}

De Acosta, 1982). In particular, for any transportation plans y; € H(®ﬁn 1,®ﬁn 5) and vo €

H((Xﬁn27 ®;T3), we can construct a probability measure £ on X' x X™ x X'™ such that £(., ., X™) =

y1(.,.) and £(X™,...) = ¥2(.,.). Therefore, we find that
E(X7Y)N"/1 [d(PX"L7 PY’”)] + IE()’,Z)Nry2 [d(PYm y PZ’”)]

= /(X )3 [d(Pm’"va"‘) + d(Py""aPZ"") df(x, Y, Z)

z[ | APu, Po)E(E,,2) 2 D s )
Xm

Taking the infimum on the LHS of the above inequality with respect to ; and 2, we obtain the
triangle inequality property of D(.,.). As a consequence, we reach the conclusion of the theorem.

A.2 PROOF OF THEOREM[2]

. ® ® .
To ease the presentation, for any product measures ;T and 7", we denote the following loss between

®,&n and V" as follows:

)

= M Xm
DI (U, V) = inf  E(xmymyey [d(Pxm, Pyn)).
~vern (%5

From the definitions of the BoMb-OT losses, we have D7'(u,v) = @?(%ﬂ ,®15n ) and
ﬁk gy Up) = D’”(%’}Qﬂ %ZL) Using the similar proof argument as that of Theorem 1L we can
check that D:l” satisfies the triangle inequality, namely, for any product measures u o ,and 77 ,
i) + D (3, 5) 2 D G )

From the above definition and properties of D, we find that

we have D7

= = ® ® = ® ®
D™ (s v) — D (s, v)| =| D (G, ) — D (i, 07
§|b,71n ®m ®m ®m ®m = ®m ®I}n)|

(iks vh) — @d(ﬁn )|+ D () - D (W
m
Vi,

(i) Since d = W), where p > 1, we have

m 1/p
1 .
d(Pxm, Pym) = Wy(Pxm, Pym) = i <1§fz X: — Yo(z‘)”p)
i=1

1 m
< — 2 IXi -
— 1 LY
m/l’i:1
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where the infimum is taken over all possible permutations o of {1,2,..., m}. The above inequality
indicates that

Xm Qm .
Dy (pk, o) < inf E(X””,Y"”)N'y|: w,ZHX Y|] =m' VP W (i, ).

~ven(w, 5
Since X is a compact subset of RY | the results of (Dudley, |1969; Dobri¢ & Yukich,|1995; [Fournier|
& Guillin, [2015) show that W (g, i) = Op(n~1/Y). Collecting these results together, we have

1-1/p
m XM dm m
Dy (e, o) =0Op (nl/N> .

1/

With similar argument, we also find that @;”(%k , v ) Op (W) Putting all the above results
together, we reach the conclusion of part (i) of the theorem.

(i) The proof of part (ii) follows directly from the argument of part (i) and the results that
SW,(pn, pt) = Op(n=/2) and SW,(v,,v) = Op(n~/?) when X is a compact subset of
RY (Bobkov & Ledoux| 2019). Therefore, we obtain the conclusion of part (ii) of the theorem.

B ADDITIONAL MATERIALS

Computational complexity: We now discuss the computational complexities of the BoMb-OT loss
when d = {W], SW,}. When d = W for some given regularized parameter 7 > 0, we can use the
Sinkhorn algorithm to compute d(Pxm, Pyjm) for any 1 < 4, j < k. The computational complexity

of the Sinkhorn algorithm for computing it is of the order O(m?). Therefore, the computational
complexity of computing the cost matrix from the BoMb-OT is of the order O(m?k?). Given the cost
matrix, the BoMb-OT loss can be approximated with the complexity of the order O(k?/e?) where ¢
stands for the desired accuracy. As a consequence, the total computational complexity of computing
the BoMb-OT is O(m?k? + k2 /?).

When d = SW,, the computational complexity for computing d(PX;rL7PyJ;rrL) is of the order

O(mlogm) for any 1 < 4,5 < k. It shows that the complexity of computing the cost matrix
from the BoMb-OT loss is of the order O(m(log m)k?). Given the cost matrix, the complexity of
approximating the BoMb-OT is at the order of O(k?/£?). Hence, the total complexity is at the order
of O(m(logm)k? + k?/2).

Connection to hierarchical OT: At the first sight, the BoMb-OT may look similar to hierarchical
optimal transport (HOT). However, we would like to specify the main difference between the BoMb-
OT and the HOT. In particular, on the one hand, the HOT comes from the hierarchical structure of data.
For example, Yurochkin et al. (Yurochkin et al.,|2019) consider optimal transport problems on both
the document level and the word level for document representation. In the paper (Luo et al.|[2020),
HOT is proposed to handle multi-view data which is collected from different sources. Similarly, a
hierarchical formulation of OT is proposed in (Lee et al., 2019b) to leverage cluster structure in data
to improve alignment. On the other hand, the BoMb-OT makes no assumption about the hierarchical
structure of data. We consider the optimal coupling of mini-batches as we want to improve the quality
of mini-batch loss and its transportation plan.

Entropic regularized population BoMb-OT: We now consider an entropic regularization of the
population BoMb-OT, which is particularly useful for reducing the computational complexity of the
BoMb-OT. In particular, the entropic regularized population BoMb-OT (eBoMb-OT) between two
probability measures p and v admits the following form:

7 Xm m
EDT (p,v) := Ir117£1®m E(xm ym)myd(Pxm, Pym)] + X -KL(y|'n ® V), 4

~vern (%5

where A > 0 stands for a chosen regularized parameter. From the above definition, the population
eBoMb-OT is an interpolation between the population BoMb-OT and the population m-OT. On
the one hand, when A — 0, we have £D4(u, v) converges to D4(u, v). On the other hand, when

A — o0, the joint distribution v approaches ®ﬁn ® %" and EDq4(p, v) converges to Uy(u,v). The
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transportation plan of the eBoMb-OT can be derived by simply replacing the coupling between
mini-batches in Definition 3| by the coupling found by the Sinkhorn algorithm.

Sparsity of transportation plan from BoMb-OT: We assume that we are dealing with two empirical
measures of n supports. For d = W), the optimal transportation plan contains n entries that are
not zero. In the m-OT case, with k£ mini-batches of size m, the m-OT’s transportation plan contains
at most k2m non-zero entries. On the other hand, with & mini-batches of size m, the BoMb-OT’s
transportation plan has at most £m non-zero entries. For d = W (7 > 0), the optimal transportation
plans contains at most n2 non-zero entries. In this case, the m-OT provides transportation plans
that have at most £2m? non-zero entries. the BoMb-OT’s transportation plans contain at most km?
non-zero entries. The sparsity is useful in the re-forward step of the BoMb-OT algorithm since we
can skip pair of mini-batches that has zero mass to save computation.

Non-OT choice of d: We would like to recall that d in Definition [3| could be any discrepancy
between empirical measures on mini-batches e.g. maximum mean discrepancy (MMD), etc. In this
case, we can see the outer optimal transport between measures over mini-batches as an additional
layer to incorporate the OT property into the final loss. However, it is not easy to define the notion of
a transportation plan in these cases.

C APPLICATIONS AND BOMB-OT ALGORITHMS

In this section, we collect the details of applications that mini-batch optimal transport is used in
practice including deep generative models, deep domain adaptation, color transfer, and approximate
Bayesian computation. Moreover, we present corresponding algorithms of these applications with
our new mini-batch scheme BoMb-OT.

C.1 DEEP GENERATIVE MODEL

Task description: We first consider the applications of the m-OT and the BoMb-OT into parametric
generative modeling. The goal of parametric generative modeling is to estimate a parameter of interest,
says #, which belongs to a parameter space ©. Each value of 6 induces a model distribution py over
the data space, and we want to find the optimal parameter 8* which has pp« as the closest distribution
to the empirical data distribution v, under a discrepancy (e.g. Wasserstein distance). In deep learning
setting, 6 is the weight of a deep neural network that maps from a low dimensional manifold Z to
the data space X, and the model distribution pig is a push-forward distribution Gpfip(z) for p(z) is a
white noise distribution on Z (e.g. (0, I)). By using mini-batching schemes, we can estimate this
parameter by minimizing the BoMb-OT loss in Definition

0* + arg min bs’m(ﬂgm, Vn), %)
fee

where (14, is the empirical distribution of 119. The mentioned optimization is used directly in learning
generative model on MNIST dataset with d = (SWa, W) in our experiments.

Algorithms: The algorithm for deep generative model with BoMb-OT is given in Algorithm
This algorithm is used to train directly the generative model on MNIST dataset.

Metric learning:  Since L, distance is not a natural distance on the space of images such as
CelebA, metric learning was introduced by (Genevay et al.,[2018; Deshpande et al.[2018)) as a key
step in the application of generative models. The general idea is to learn a parametric ground metric
Ccost Cg:

co(x,y) = [lfo(2) = fo(y)ll2, (6)

where fy : X — R” is a non-linear function that map from the data space to a feature space where
L, distance is meaningful.

The methodology to learn the function f, depends on the choice of d. For example, when d = W,
authors in (Genevay et al 2018) seek for ¢ by solve following optimization:

max D" (fothion, fovn). ™
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Algorithm 1 Mini-batch Deep Generative Model with BoMb-OT

Input: k, m, data X, prior distribution p(z), chosen mini-batch loss Lpgm € {Wa, WT, SWs}
Initialize Gy on GPU;
while 6 does not converge do
—— On computer memory—
Sample indices uniformly Ixy, ..., Ixm on X
Sample Z7*, ..., Z}" from p(z)
Intialize C' € R¥**
for i =1to k do
for j =1to kdo
—— On GPU, autograd off —
Load X" to GPU from Ix»
Load Z7" to GPU '
Compute Y™ « Go(Z]")
Compute Cj; < Lpom(Pxp, Pym)
end for
end for
—— On computer memory—
Solve 7 + OT(ug, ug, C) (entropic OT for eBoMb-OT)
grad, < 0
for i = 1to k do
for j =1to k do
if Tij 35 0 then
On GPU, autograd on—
Load X" to GPU from Ix
Load ZJ" to GPU
Compute Y™ « Go(Z7")
Compute Cij — LDGM(PX{” s Pyjm)
grad, < grad, + m;;VoCj; '
end if
end for
end for
— On GPU—
0 < Adam(6, grad,)
end while

In (Deshpande et al., 2018)), another metric learning technique is used for d = SW5:

max max Eompig iy~ 108 9y (fo(2)) +log(1 — gy (fo(y))], (®)

where g, : R — [0, 1].

Learning the metric or f, is carried out simultaneously with learning the generative model in practice,
namely, after one gradient step for the parameter 6, ¢ will be updated by one gradient step.

C.2 DEEP DOMAIN ADAPTATION

We adapt the BoMb-OT into DeepJDOT (Bhushan Damodaran et al.l 2018) which is a famous
unsupervised domain adaptation method based on the m-OT. In particular, we aim to learn an
embedding function G : X — Z which maps data to the latent space; and a classifier g : Z — )
which maps the latent space to the label space on the target domain. For a given number of the
mini-batches k and the size of mini-batches m, the goal is to minimize the following objective

19



Under review as a conference paper at ICLR 2022

Algorithm 2 Mini-batch Deep Domain Adaptation with BoMb-OT

Input: k, m, source domain (.5, Y"), target domain 7', chosen cost Lpa in Equation
Initialize G (parametrized by ), Fy, (parametrized by ¢)
while (0, ¢) do not converge do
—— On computer memory—
Sample indices uniformly Isy y;m, ..., Ism ym on (S5,Y)
Sample indices uniformly Iy, ..., Iym onT
Initialize C' € RF*F
fori=1tok do
for j =1to k do
—— On GPU, autograd off —
Load (Szm, Y;m) to GPU from Islm7yim
Load T]m to GPU from ITJ_m
Compute mC' < Lpa(S]", Y™, T]", Go, Fp) (Equation

U < (£, 2)
Compute C;; < OT (W, Ur,, mC)
end for
end for
—— On computer memory—
wp < (5,---5 %)
Solve v < OT(ug, uy, C) (entropic OT for eBoMb-OT)
grady < 0
grad, < 0

fori =1tokdo
—— On GPU, autograd on—
Load (S7",Y;™) to GPU from Igm ym
grady < grad, + £ = VoL (Y™, F4(Go(5™)) (Equation |9)
grad < grad, + VL (Y™, Fy(Go(S™)) (Equation 9)
for j =1tok do
if Vij 75 0 then
On GPU, autograd on—
Load ij to GPU from IT;"
Compute mC' < Lpa (S}, Y™, Tj", Gy, Fy) (Equation
Compute C;; < OT(W,, Uy, mC)
grad, < grad, + v;; Vo Cj;
grad, < grad, +7i;VCij
end if
end for
end for
— On GPU—
0 < Adam(6, grad,)
¢ < Adam(6, grad ;)
end while

function:

=1 j=1
E ok
. . Go,Fy
+ min i X min Com’ ym pm, T )
YEM (uk,uk) ; ]; i weH(um,um)< STLY T > ’
where L; is the source loss function (e.g. classification loss), ST°, ..., S} are source mini-batches
which are sampled with or without replacement from the source domain ™ € X™, Y™, ..., Y,"
are corresponding labels of ST, ..., S/, with ST = {s;1,...,8im} and Y™ := {yi1, ..., Yim }-
Similarly, 777, ..., T;™ (I7" := {t:1, .. ., tim }) are target mini-batches which are sampled with or
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without replacement from the target domain 7™ € X™™. The cost matrix C'g y-m 7 denoted mC
is defined as follows: -

MC1<zy zazm = Al|G(8izy) = Gltyz) P + ALt (Yizy, F(G(t2,))), (10)

where L; is the target loss function, o and \; are hyper-parameters that control two terms.

C.3 COLOR TRANSFER

In this appendix, we carry out more experiments on color transfer with various settings. In detail, we
compare the m-OT and the BoMb-OT in different domains of images, and we demonstrate visually
the interpolation property of the eBoMb-OT by varying the regularization parameter.

Methodology: In our experiment, we first compress both the source image and the target image
using K-means clustering with 3000 components. After that, we look for the transportation plans
between cluster centers of two images from different approaches, the m-OT, the BoMb-OT, and the
full-OT. Next, we change the values of all pixels in a cluster of the source image based on the value of
the corresponding cluster centers of the target image with the previously found plans. We present the
algorithm that we use in color transfer with the BoMb-OT in Algorithm 3] This algorithm is adapted
from the algorithm that is used for the m-OT in (Fatras et al., [2020).

Algorithm 3 Color Transfer with BoMb-OT

Input: k, m, T source image X, € R"*3, target image X, € R"*3
Initialize Y, € R?*3
fort =1to T do
Initialize C' € RF*¥
Sample indices lem, o ,IX,gﬂ from X
Sample indices Iylm7 o ,kam from X;
fori =1to k do
for j =1tok do
Load X" from [xm
Load Y;™ from [y m
Compute cost matrix M between X" and Y,
T 4= argmin, oy M, 7)
Cij — <M, 7T>
end for
end for
¢ AT, 1y ) (C3)
for:=1to k do
for j =1to k do
if Yij 7é 0 then
Load X" from Ixm
Load Y;™ from Iy m
Compute cost matrix M between X" and Y,

Um, Um,) <

T 4 arg minﬂen(um’um)(M7 )
Ys|1X1m —myij - Xy I
end if '
end for
end for
end for

Output: Y

C.4 APPROXIMATE BAYESIAN COMPUTATION (ABC)

In this appendix, details of Approximate Bayesian Computation (ABC) and the usage of mini-batches
with BoMb-OT are discussed.
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Algorithm 4 Approximate Bayesian Computation

Input: Generative model p(z, §), observation {z;}!;, number of iterations 7', discrepancy
measure D, tolerance threshold e, number of particles m, and summary statistics s (optional).
fort =1to 7 do
repeat
Sample 6 ~ p(6)
Sample {y;};2; ~ p(z|0)
until D(s({y}12,), s({zi},)) < €
0, =06
end for
Output: {6,}],

Review on ABC: The central task of Bayesian inference is to estimate a distribution of parameter
6 € O given n data points {z;}?_; and a generative model p(z, #). Using Bayes rule, the posterior

can be written as p(6|z1.,) 1= W. Generally, the posterior is intractable since we cannot

evaluate the normalizing constant p(x1.,) (or the evidence). It leads to the usage of approximate
Bayesian Inference, e.g., Markov Chain Monte Carlo and Variational Inference. However, in some
settings, the likelihood function p(x1.,|0) cannot be evaluated such as implicit generative models. In
these cases, Approximate Bayesian Computation (or likelihood-free inference) is a good framework
to infer the posterior distribution since it only requires the samples from the likelihood function.

We present the algorithm of ABC in Algorithm 4] that is used to obtain posterior samples of 6. The
thing that sets ABC apart is that it can be implemented in distributed ways, and its posterior can be
shown to have the desirable theoretical property of converging to the true posterior when ¢ — 0.
However, the performance of ABC depends on the choice of the summary statistics s (e.g., empirical
mean and empirical variance) and the discrepancy D. In practice, constructing sufficient statistics
is not easy. Thus, a discrepancy between empirical distributions is used to avoid this non-trivial
task. Currently, Wasserstein distances have drawn a lot of attention from ABC’s community because
they provide a meaningful comparison between non-overlap probability distributions (Bernton et al.|
2019a; |[Nadjahi et al., 2020). When the number of particles m in Algorithm [4is the largest OT
problem that can be solved by the current computational resources, the mini-batch approach can be
utilized to obtain more information about two measures, namely, more supports in sample space can
be used. In particular, we utilize the mini-batch OT losses as the discrepancy D in Algorithm ] The
detail of the application of BoMb-OT in ABC is given in Algorithm 3]

D ADDITIONAL EXPERIMENTS

In this appendix, we provide additional experimental results that are not shown in the main paper. In
Appendix we present random generated images on MNIST dataset, CIFAR10 dataset, CelebA
dataset, and training time comparison between the m-OT and the BoMb-OT. Furthermore, we give
detailed result on deep domain adaptation in Appendix and we also provide the computational
time. In Appendix [D.3| we carry out more experiments on color transformation with various settings
on different images and their corresponding color palettes. Moreover, details of setting of the ABC
experiment and additional comparative experiments are presented in Appendix After that, we
compare the m-OT and the BoMb-OTs on gradient flow application in Appendix Finally, we
investigate the behavior of the m-OT and the (e)BoMb-OT in estimating the optimal transportation

plan in Appendix

D.1 DEEP GENERATIVE MODEL

Generated images: We show the generated images on MNIST dataset in Figure |4} the generated
images on CelebA in Figure[5] the generated images on CIFAR10 in Figure[6] For both choices of d
(SWa, WJ), we can see that the images from (e)BoMb-OT is more realistic than the images from
m-OT. This qualitative result supports the quantitative in Table[I]in the main text.
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Algorithm 5 Approximate Bayesian Computation with BoMb-OT

Input: Generative model p(z, ), observation {x;}7 ;, number of iterations 7', optimal transport
discrepancy measure Dgr, tolerance threshold e, number of particles m, number of mini-batches
k, and summary statistics s (optional).

fort =1toT do

repeat
Sample 6 ~ p(6)
Sample indices Ixy, ..., Ixm from {z:}
Sample {y; }i, ~ p(x|0)
Sample indices Iy;n, ..., Iy, from {y; };_;

Initialize C' € R¥**
fori =1to k do
for j = 1to k do
Load X", Y™ from their indices Ix, ijm
Cij + Dor(X[",Y;")

end for
end for
D + OT(uk,u;wC’)
until D < ¢
9t == 9
end for

Output: {0,}1

BoMb-OT(WY) eBoMb-OT(WJ) (

Figure 4: MNIST generated images from the m-OT and the (¢)BoMb-OT for (k, m) = (4, 100).

Computational speed: Table|3|details the computational speed of deep generative model when
using mini-batch size m = 100. In general, the more the number of mini-batches is, the more complex
the problem is. Increasing the number of mini-batches k& does decrease the number of iterations
per second in all experiments. For both datasets, using the sliced Wasserstein distance (d = SW5)
leads to higher iterations per second compared to the entropic Wasserstein distance (d = WJ ) on
the high dimensional space. This result is expected since the slicing approach aims to reduce the
computational complexity. On the MNIST dataset, we observe that the entropic regularized version
of the BoMb-OT (eBoMb-OT) is the slowest for both choices of d. The m-OT is the fastest approach
with the number of iterations per second of 7.89,2.54, and 0.85 for k = 2,4, and 8 respectively. In
contrast, the BoMb-OT is faster than the m-OT for CIFAR10 and CelebA dataset because we set
a high value for the regularized parameter (e.g. 7 = 50, 40). For the CelebA dataset, although the
eBoMb-OT is the slowest method when d = SWha, it becomes the fastest approach if we set d to W3 .
The reason for this phenomenon is because of the sparsity of the (¢)BoMb-OT’s transportation plan
between measures over mini-batches. In particular, pairs of mini-batches that are zero can be skipped
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BoMb OT(W ) o eBoMbOT(W )

Figure 5: CelebA generated images from the m-OT and the (€)BoMb-OT for (k,m)=(4,100).

BTl b

BoMb-OT(WY) eBoMb-OT(W{)

Figure 6: CIFARI0 generated images from the m-OT and the (¢)BoMb-OT for (k,m)=(4,100).

Table 3: Number of iterations per second of deep generative models

Dataset k m-OT(WJ)  BoMb-OT(W3)  eBoMb-OT (W3) ‘ m-OT(STW5)  BoMb-OT(SW,)  eBoMb-OT (SW5)

MNIST 1 27.27 27.27 27.27 54.55 54.55 54.55
2 7.89 5.88 4.62 18.75 15.00 11.54

4 2.54 2.11 1.36 6.00 5.36 3.41

8 0.85 0.79 0.44 1.70 1.74 0.95
CIFARIO 1 22.73 22.73 22.73 25.00 25.00 25.00
2 6.94 5.81 7.35 9.62 10.00 7.58

4 2.05 231 2.16 3.21 4.17 2.40

8 0.53 0.78 0.59 0.97 1.54 0.71

CelebA 1 6.78 6.78 6.78 9.93 9.93 9.93
2 1.92 1.75 2.52 3.38 3.55 2.65

4 0.45 0.54 0.68 1.03 1.40 0.78

8 0.11 0.15 0.18 0.29 0.51 0.22

(see in Algorithm[T] So, the (¢)BoMb-OT can avoid estimating gradient of the neural networks of a
bad pair of mini-batches.
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Table 4: Effect of changing the mini-batch size on deep domain adaptation

Scenario m  k  Number of epochs m-OT BoMb-OT Improvement
SVHN to MNIST 10 32 64 69.41 88.49 +19.08
20 32 128 89.69 93.54 +3.85
50 32 320 93.09 95.59 +2.40
USPS to MNIST 5 32 50 73.92 93.15 +19.23
10 32 100 92.96 95.06 +2.10
20 32 200 95.85 96.15 +0.30

Table 5: Comparison between the two mini-batch schemes on deep domain adaptation on Office-

Home datasets.
k  Methods A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg

2 m-UOT 56.22 75.04 80.51 6481 7450 7508 65.88 5223 80.01 7421 60.00 8297 70.15
eBoMb-UOT 5590 75.13 80.51 66.01 74.52 75.63 6597 5322 79.99 7404 60.09 83.29 70.39

4 m-UOT 5542 7513 8045 6588 7389 7450 6576 5290 7996 7421 59.84 83.17 70.09
eBoMb-UOT 56.06 75.15 80.63 65.88 7391 7530 6584 5324 80.17 7429 60.18 83.31 70.33

8 m-UOT 56.04 75.08 8045 6576 7340 74.68 6576 53.04 7992 7429 60.14 83.24 70.15
eBoMb-UOT 56.22 75.56 80.51 65.84 7430 74.89 66.05 53.08 80.03 7441 60.12 83.13 70.35

Table 6: Computational speed of deep DA Table 7: Computational speed of deep DA
when changing k when changing m
Scenario k m-OT BoMb-OT Scenario m m-OT BoMb-OT
SVHN to MNIST 8 2.26 3.05 SVHN to MNIST 10 0.33 0.61
16  0.60 1.06 20 033 0.60
32 015 0.32 50 0.15 0.32
USPS to MNIST 8 6.00 9.00 USPS to MNIST 5 0.49 1.00
16  1.80 2.57 10 049 1.00
32045 0.75 20 046 1.00

D.2 DEEP DOMAIN ADAPTATION

In this section, we compare the performance of two mini-batch schemes on digits and Office-Home
datasets.

Comparison between the m-OT and BoMb-OT on digits datasets: As seen in Table 4] the
BoMb-OT produces better classification accuracy than the m-OT in all experiments. In addition,
it leads to a huge performance improvement (over 19%) in comparison with the m-OT when the
mini-batch size is small (k = 10 for SVHN to MNIST and k = 5 for USPS to MNIST). When the
mini-batch size becomes larger, the performance of both methods also increases. An explanation for
such outcome is that a large mini-batch size makes mini-batch loss approach to its population version.

Comparison between the m-UOT and eBoMb-UOT on Office-Home dataset: Table[3]illustrates
the performance of m-UOT and eBoMb-UOT on Office-Home dataset when changing the number of
mini-batches k£ from 2 to 8. When k = 4, eBoMb-UOT achieves the classification accuracy higher
than m-UOT on 11 out of 12 scenarios, resulting in an improvement of 0.24 on average.

Computational speed: The number of iterations per second of deep DA can be found in Table
Similar to deep generative model, we observe a phenomenon that the speed of both the m-OT and
BoMb-OT decreases as k increases. Interestingly, increasing the mini-batch size m when adapting
from USPS to MNIST barely affects the running speed of both methods. The run time of the m-OT
nearly doubles that of the BoMb-OT. Specifically, the BoMb-OT averagely runs 1 iteration in a second
while an iteration of the m-OT consumes roughly 2 seconds. Although having comparable time
complexity, the BoMb-OT in practice runs faster than the m-OT in all deep DA experiments. This is
because of the sparsity of the BoMb-OT’s transportation plan between measures over mini-batches.
In particular, pairs of mini-batches that are zero can be skipped (see in Algorithm [Z). We would like
to recall that, gradient estimation is the most time-consuming task in deep learning applications.
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D.3 COLOR TRANSFER

In this appendix, we compare the m-OT and the BoMb-OT in different domains of images including
natural images and arts.

Comparison between the m-OT and the BoMb-OT: Next, we illustrate the color-transferred
images using the m-OT and the BoMb-OT with two values of the number of mini-batches and the size
of mini-batches (k,m) = (10,10) and (k, m) = (20, 20). The number of incremental step 7" (see in
Algorithm3) is set to 5000. We show the source images, target images, and corresponding transferred
images in Figure [7}Figure It is easy to see that the transferred images from the BoMb-OT look
more realistic than the m-OT and the color is more similar to the target images. The color palette of
transferred images also reinforces the above claim when it is closer to the color palette of the target
images. According to those figures, increasing the number of mini-batches and the mini-batch size
improves the results considerably.

Computational speed: For £ = 10, m = 10, the m-OT has the speed of 103 iterations per second
while the BoMb-OT has the speed of 100 iterations per second. For k = 20, m = 20, the speed of
m-OT is about 20 iterations per second and the speed of the BoMb-OT is also about 20 iterations per
second. It means that the additional k£ x k OT is not too expensive while it can improve the color
palette considerably.

D.4 APPROXIMATE BAYESIAN COMPUTATION (ABC)

Settings: We use the same setup as in (Nadjahi et al., 2020): there are n = 100 observations
{z;}1_, i.i.d from multivariate Gaussian N (p., 01 ) where N is the dimension, . ~ N(0, Ix)
and 02 = 4. The task is to estimate the posterior of o2 under the imaginary assumption that o
follows inverse gamma distribution ZG(1,1). Under these assumptions, the posterior of o2 has
the form ZG(1 + ng,1+ £ 3" | [|z; — v4||?). For ABC, we use the m-OT and the BoMb-OT
with the Wasserstein-2 ground metric for the acceptance-rejection sampling’s criteria in sequential
Monte Carlo ABC (Toni et al., 2009) (using implementation from pyABC (Klinger et al., 2018)
with 100 particles and 10 iterations). The mini-batches’ size is set in {8, 16, 32} and the number of
mini-batches is in {2, 4, 6, 8}.

Results on ABC with mini-batches:  After obtaining all samples, we estimate their densities
by utilizing Gaussian kernel density estimation and then plot the approximated posteriors and the
true posterior in Figure Here we run the algorithm with several values of (k,m), namely,
m € {8,16,32} and k € {2,4,6,8}. From these results, we see that a bigger m usually returns a
better posterior in both the m-OT and the BoMb-OT cases. Similarly, increasing & also improves the
performance of the two methods. Moreover, these graphs strengthen the claim that the BoMb-OT
outperforms the m-OT in every setting of (k,m) since its posteriors are always closer to the true
posterior than those of the m-OT in both visual result and Wasserstein distance.

D.5 NON-PARAMETRIC GENERATIVE MODEL VIA GRADIENT FLOW

In this appendix, we show the experiment that uses the m-OT and the (¢)BoMb-OT in the gradient
flow application.

Task description:  Gradient flow is a non-parametric method to learn a generative model. Like
every generative model, the goal of gradient flow is to mimic the data distribution v by a distribution
w. It leads to the functional optimization problem:

min D(u, v), (11)
m

where D is a predefined discrepancy between two probability measures. So, a gradient flows can be
constructed:

Opr = =V, D(pe,v) (12)
We follow the Euler scheme to solve this equation as in (Feydy et al.,|2019), starting from an initial
distribution at time ¢ = 0. In this paper, we choose D be (e)BoMb-W5 and m-W5 for the sake of
comparison between them.
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m=10, k=10, T=5000
Source ] m-OT BoMb-OT Target

m=20, k=20, T=5000
Source m-OT BoMb-OT Target

Figure 7: Experimental results on color transfer for the m-OT, the BoMb-OT on natural images with
(k,m) = (10, 10), (k, m) = (20,20), and T' = 5000. Color palettes are shown under corresponding images.

We first consider the toy example as in (Feydy et all, 2019) and present our results in Figure
The task is to move the colorful empirical measure to the "S-shape" measure. Each measure has
1000 support points. Here, we choose (k, m) = (4, 16), the OT loss is Wasserstein-2, and we use
the Wasserstein-2 score to evaluate the performance of the mini-batching scheme. From Figure
[12[, BoMb-OT and eBoMb-OT provide better flows than m-OT, namely, Wasserstein-2 scores of
BoMB-OT and eBoMb-OT are always lower than those of m-OT in every step. In addition, we do
an extra setup with a higher of mini-batches, (k, m) = (16, 16) to show the increasing the number
of mini-batches improve the performance of both m-OT and (e)BoMb-OT. The result is shown in
Figure[I3] In this setting, the BoMb-OT still shows its favorable performance compared to the m-OT,
namely, its Wasserstein-2 scores are still lower than the m-OT in every step.

CelebA: Let i and v denote the empirical measures defined over 5000 female images and 5000
male images in the CelebA dataset. Thus, we can present the transformation from a male face to be
a female one by creating a flow from p to v. Our setting experiment is the same as
[2020). We first train an autoencoder on CelebA, then we compress two original measures to the
low-dimensional measures on the latent space of the autoencoder. After having the latent measures,
we run the Euler scheme to get the transformed measure then we decode it back to the data space by
the autoencoder. The result is shown in Figure[T4] we also show the closest female image (in sense of
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m=10, k=10, T=5000
Source m-OT BoMb-OT _ at

m=20, k=20, T=5000
Source m-OT BoMb-OT _ at

Figure 8: Experimental results on color transfer for the m-OT, the BoMb-OT on arts with (k, m) = (10, 10),
(k,m) = (20, 20), and T' = 5000. Color palettes are shown under corresponding images.

Lo distance) to the final found image in each method and the corresponding Lo distance between the
middle step images and the nearest image. As shown, (¢)BoMb-OT provides a better flow than m-OT
does.

D.6 TRANSPORTATION PLANS

In this appendix, we investigate deeper the behavior of the m-OT and the (¢)BoMb-OT in estimating
the transportation plan. We present a toy example to illustrate the transportation plans of the m-OT,
the BoMb-OT, and the original OT (full-OT). In particular, we sample two empirical distributions fi,,

and v,,, where n = 10, from N ([8] . [1 0] ) and NV ( [j] , [_1 ’0'8] ) respectively.

0 1 0.8 1

Transportation plans:  We plot the graph of samples matching and transportation matrices in
Figure[T5] When the size of mini-batches equals 2 and the number of mini-batches is set to be 20, the
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m=10, k=10, T=5000
Source m-OT ] BoMb-OT Target

m=20, k=20, T=5000

Source m-OT BoMb-OT Target

Figure 9: Experimental results on color transfer for the m-OT, the BoMb-OT on natural images with
(k,m) = (10, 10), (k, m) = (20,20), and T' = 5000. Color palettes are shown under corresponding images.

m-OT approach produces messy OT matrices and disordered matching, meanwhile, the BoMb-OT
can still concentrate the mass to meaningful entries of the transportation matrix, thus, its matching
is acceptable. Increasing the size of mini-batches to 8, m-OT’s performance improves significantly
however its matching and its matrices are visibly still not good solutions. In contrast, the BoMb-OT
is able to generate nearly optimal matchings and transportation matrices. Next, we test the m-OT
and the BoMb-OT in real applications in the case of an extremely small number of mini-batches.
When there are 8 mini-batches of size 2, the m-OT still performs poorly while the BoMb-OT creates
a sparser transportation matrix that is closer to the optimal solution obtained by the full-OT. Similarly,
with 2 mini-batches of size 8, the BoMb-OT has only 4 wrong matchings while that number of the
m-OT is 10. In conclusion, the BoMb-OT is the better version for mini-batching with any value of
the number of mini-batches and mini-batches size.

Entropic transportation plan of the BoMb-OT: We empirically show that the transportation
plan of the eBoMb-OT, when the entropic regularization is sufficiently large, reverts into the m-OT’s
plan. The result is given in Figure When \ = 103, the transportation plans of the eBoMb-OT
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m=10, k=10, T=5000
Source _ m-0OT ' BoMb-OT "‘ arget

m=20, k=20, T=5000
Source i . m-OT » BoMb-OT ‘ . argt

Figure 10: Experimental results on color transfer for the m-OT, the BoMb-OT on arts with (k, m) = (10, 10),
(k,m) = (20,20), and T' = 5000. Color palettes are shown under corresponding images.

are identical to plans of the m-OT with every choice of (k, m). However, when A = 0.1, despite not
being identical to full-OT, the plans produced by the eBoMb-OT are still close to the true optimal
plan.

Comparison with stochastic averaged gradient (SAG): We compare the BoMb-OT with the
stochastic averaged gradient (SAG) 2016) for computing OT. The transportation matrices
are given in Figure[T7] We would like to recall that SAG still need to store full cost matrix (rnx)
while the BoMb-OT only need to store smaller cost matrices (m x m). We can see that the BoMb-OT
gives better than transportation plan than SAG when m = 2. When m = 8, the BoMb-OT still seems
to be better.

E EXPERIMENT SETTINGS

In this appendix, we collect some necessary experimental setups in the paper including generative

model, gradient flow. We use POT (Flamary et al,[202T) for OT solvers, and the pyABC
2018) for the ABC experiments.
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Figure 11: Approximated posteriors from ABC with m-OT and BoMb-OT. The first row, the second row, and
the last row have m = 8, m = 16, and m = 32 respectively. In each row, the number of mini-batches k are
k =2,4,6 and k = 8 from left to right.
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Figure 12: Comparison between (¢€)BoMb-OT and m-OT in gradient flow with n = 1000, k = 4, m = 16.
The entropic regularized parameter of eBoMb-OT A is set to 0.01.

E.1 DEEP GENERATIVE MODEL
Wasserstein-2 scores: We use empirical distribution with 11000 samples that are obtained by

sampling from the generative model and the empirical test set distribution respectively, then we
compute discrete Wasserstein-2 distance via linear programming.

FID scores:  We use 10000 samples from the generative model and all test set images to compute

FID score (Heusel et al.l 2017).

Parameter settings: We chose a learning rate equal to 0.0005, batch size equal to 100, num-
ber of epochs in MNIST equal to 100, number of epochs in CelebA equal to 25, number of
epochs in CIFAR10 equal to 50. For d = SW, we use the number of projections L = 1000
on MNIST and L = 100 on CIFAR10 and CelebA. For d = W], we use 7 = 1 for MNIST,
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Figure 13: Visualization of the gradient flow provided by m-OT, BoMb-OT and eBoMb-OT with corresponding
Wasserstein-2 scores (n = 1000, (k,m) = (16, 16)). The entropic regularized parameter of eBoMb-OT A is set
to 0.01.
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Figure 14: Transforming man face to woman face by using the gradient flow with m-OT and (¢)BoMb-OT on
CelebA dataset for (k, m) = (25, 100). The last column is the nearest image (in sense of L distance) to the
final found female image, the corresponding L, distance are also shown on the top of middle-stage images.

7 = 50 for CIFAR10, 7 = 40 for CelebA. For the eBoMb-OT, we choose the best setting for
A e {1,2,3,4,5,10,20, 30, 40, 50, 60, 70, 80}

Neural network architectures: We use the MLP for the generative model on the MNIST dataset,

while CNNs are used on the CelebA dataset.

Generator architecture was used for MNIST dataset:
z e R32 — FC;[OO — ReLU — FCQOO — ReLU — FC400 — ReLU — FC784 — ReLU

Generator architecture was used for CelebA: z € R'?® —  TransposeConvsia —
BatchNorm — ReLU — TransposeConvesg — BatchNorm — RelU —
TransposeConvisg — BatchNorm — ReLU — TransposeConvgs — BatchNorm —
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Figure 15: Visualization of transportation plans of m-OT and BoMb-OT between 2D empirical distributions
with 10 samples. The first two rows are results of & = 20. The next two rows are for (k, m) = (8,2) and
(k,m) = (2,8) in turn.

ReLU — TransposeConvy — Tanh
Metric learning neural network’s architecture was used for CelebA:

First part: ¢ € R64X64X3 _ Convgy — LeakyReLUys — Convisgs — BatchNorm

LearkyReLUj o — BatchNorm — LearkyReLUy

— CO’IZU256

BatchNorm — Tanh
Second part: Convy, — Sigmoid

Generator architecture was used for CIFARI10:

zZ €

BatchNorm — ReLU — TransposeConuvyasg
TransposeConvegs — BatchNorm — ReLU — TransposeConvi — Tanh
Metric learning neural network’s architecture was used for CIFAR:

First part: € R32X32X3 s Convgy — LeakyReLUyo — Conviss — BatchNorm

LearkyReLUy o — Convasg — BatchNorm — Tanh
Second part: Conv; — Sigmoid

E.2 DEEP DOMAIN ADAPTATION

RlZS

— COTLU512

—  TransposeConvasg
—  BatchNorm — ReLU

%

In this section we state the neural network architectures and hyper-parameters for deep domain
adaptation.

Evaluation metric: The classification accuracy is utilized to evaluate the mini-batch methods.
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Figure 16: Visualization of the m-OT’s transportation plan and eBoMb-OT’s transportation plan between two
2D empirical distributions with 10 samples, and the interpolation property of the eBoMb-OT. The first four rows
provide the result for eBoMb-OT (A € {0.1,10%}), and k = 40. The last row is the transportation plan with
(k,m) = (8,2) and (k, m) = (2, 8) respectively.

Parameter settings for digits datasets: The number of mini-batches k varies in {8, 16, 32}. For
the SVHN dataset, the mini-batch size m is set to 50. Because the USPS dataset has fewer samples
than the SVHN dataset, m is set to 25. We train the network using Adam optimizer with an
initial learning rate of 0.0002. The number of epochs is 80 for k¥ = 8. As the number of mini-
batches doubles, we double the number of epochs so that the number of iterations does not change.
The hyperparameters of m-OT and BoMb-OT in Equation [T0] follow the settings in DeepJDOT:
a = 0.001,\; = 0.0001. The hyperparameters of m-UOT and eBoMb-UOT are the same as
JUMBOT: o = 0.1, \; = 0.1,e¢ = 0.1, 7 = 1. For computing eBoMb-UOT, we choose the best value
of A € {0.01,0.1,0.2,1, 10} (entropic regularizer coefficient).

Parameter settings for Office-Home dataset: The number of mini-batches & varies in {2, 4, 8}.
Following the settings in (Fatras et al.,[20214), we train models with a mini-batch size m = 65 during
10000 iterations. The hyperparameters for computing the cost matrix follow the settings in JUMBOT:
a = 0.01,\;, = 0.5,7 = 0.5, = 0.01. For computing eBoMb-UOT, we choose the best value of
A € {0,0.01, 1,100} (entropic regularizer coefficient).

Training details: Similar to both DeepJDOT and JUMBOT, we stratify the data loaders so that
each class has the same number of samples in the mini-batches. For digits datasets, we also train our
neural network on the source domain during 10 epochs before applying our method. For Office-home
dataset, because the classifiers are trained from scratch, their learning rates are set to be 10 times that
of the generator. We optimize the models using an SGD optimizer with momentum = 0.9 and weight
decay = 0.0005. We schedule the learning rate with the same strategy used in JUMBOT. The learning
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Figure 17: Visualization of the transportation plan of the BoMb-OT and the stochastic averaged gradient
(SAG) method between two 2D empirical distributions with 10 samples. The number of mini-batch for the
BoMb-OT is set to 30. the learning rate for SAG is the best in {0.001, 0.005, 0.01, 0.05,0.1,0.5, 1, 5, 10}, the
entropic regularization of SAG is the best in {0.01,0.05,0.1,0.5, 1, 5,10}.

rate at iteration p is 1, = ~—22~, where ¢ is the training progress linearly changing from 0 to 1,
Ty = Trpg) g prog y ging

1o = 0.01, p = 10,v = 0.75.

Neural network architectures: On digits datasets, we use CNN for our generator and 1 FC layer
for our classifier in both adaptation scenarios. For Office-Home dataset, our generator is a ResNet50
pre-trained on ImageNet except for the last FC layer, which is our classifier.

Generator architecture was used for SVHN dataset:

z € R32X32X3 _ Conwvsy — BatchNorm — ReLU — Convss — BatchNorm — ReLU —
MaxPool2D — Convgs — BatchNorm — ReLU — Convgs — BatchNorm — RelLU —
MaxPool2D — Convisg — BatchNorm — ReLU — Conviss — BatchNorm —
ReLU — MaxPool2D — Sigmoid — FC1og

Generator architecture was used for USPS dataset:

z € R?X28x3 4 Convgy — BatchNorm — ReLU — MaxPool2D — Conveys —
BatchNorm — ReLU — Conviss — BatchNorm — ReLU — MaxPool2D —
Sigmoid — FClgg

Classifier archiecture was used for both SVHN and USPS datasets:
z € R128 5 FCy

E.3 GRADIENT FLOW

For the implementation of the gradient flow, we use the geomloss library (Feydy et alJ [2019).
The learning rate is set to 0.001. For the autoencoder in CelebA experiments, we use
the repo in https://github.com/rasbt/deeplearning-models/blob/master/
pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb for the pre-
trained autoencoder.

E.4 COMPUTATIONAL INFRASTRUCTURE

All deep learning experiments are done on a RTX 2080 Ti GPU and a GTX 1080 Ti. Other experiments
are done on a MacBook Pro 11inc M1.
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