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ABSTRACT

Large vision-language models have demonstrated strong performance in multi-
source few-shot domain adaptation (MFDA). Advanced methods like CoOp rely
on identifying a domain-agnostic prompt, leading to the overlooking of known dif-
ference information between domains. However, extracting the domain informa-
tion requires the model to have good identification ability for domain information.
Although training models with domain prompts allows them to capture the spe-
cific semantic nuances of a particular domain, using learnable prompts increases
the risk of over-fitting on training samples and reduces the effectiveness of do-
main prompts in capturing target domain features during transfer. To address this
challenge, we propose “domain-aware mixup,” a method that allows the model to
become more sensitive to specific domain information when facing cross-domain
mixed feature information. Specifically, we design the prompt structure composed
of domain prompt and context prompt to narrow the gap between the specific do-
main feature and the specific image feature extracted from the cross-domain mix
feature. This approach enables us to efficiently train domain prompt terms, en-
hancing the model’s ability to distinguish semantic distinctions between domains.
We empirically validate our method on the DomainNet and OfficeHome datasets,
observing a performance boost of 5.3%-5.8% over the CLIP model and a 1.1%-
1.5% advantage over the domain-agnostic tuning method.

1 INTRODUCTION

Multi-source domain adaptation (MDA) (Mansour et al., 2012; Duan et al., 2012b; Xu et al., 2018)
aims to transfer the task knowledge from multiple fully labeled source domains to an unlabeled
target domain. However, with limited labels within each source (She et al., 2020; Cao, 2020),
traditional MDA methods may struggle to differentiate between features specific to the target domain
and those from the source domain (Yue et al., 2021a). Compared to the traditional MDA method,
Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021a) has gained attention for its
impressive performance in few-shot and zero-shot scenarios, which shows potential in tasks with
limited samples for this large-scale vision-language model.

However, current prompt learning methods predominantly always pay their emphasis on pursuing
a prompt that can universally apply to all domains (Zhou et al., 2022), which ignores the obvious
differences in domain information. These domain-agnostic prompt often results in oversight of
the inherent disparities between these diverse domains and reduces the transfer ability towards the
target domain. Unfortunately, extracting the domain information requires the model to have good
identification ability for domain information, which is what domain-agnostic prompt models lack.

Different from finding domain-agnostic prompts, Domain Adaptation Prompt learning (DAPL) (Ge
et al., 2022) highlighted the importance of employing domain prompts. DAPL enables the model
to have the ability to distinguish between the source domain and target domain by adding source
domain-specific tokens to the source domain prompt. By modifying the prompt structure, DAPL
achieves promising outcomes in the context of UDA problems. However, in the case of multi-
source domains, the extraction of domain information becomes more complex. Using learnable
prompts increases the risk of overfitting on training samples, which reduces the ability of domain
prompt models to extract common semantic features. Furthermore, the sparsity of training samples
amplifies the challenge of domain prompt learning.
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Figure 1: Domain prompt learning: We divide prompts into domain prompts and context prompts.
Domain prompts are composed of learnable vectors and domain names, and are not shared between
domains. Context prompts are composed of learnable vectors. By training the specific domain
prompts to extract the specific information from the mixed feature, the model becomes more sensi-
tive to specific domain information when facing cross-domain mixed feature information.

In this paper, to address the challenge of extracting multiple domain semantic features under the
constraint of limited samples, we introduce a new domain prompt learning method. We design
the unique domain attributes into each domain prompt and combine them with the context prompt.
Importantly, to enhance the effectiveness of the domain prompt in extracting domain-specific fea-
tures, we have introduced a novel approach method ”domain-aware mixup”, which enables us to
efficiently train domain prompt terms, enhancing the model’s ability to distinguish semantic distinc-
tions between different domains. We train the model to become more sensitive to specific domain
information when facing cross-domain mixed feature information by narrowing the gap between the
specific domain feature and the specific image feature extracted from the cross-domain mix feature.

In summary, our contributions are three-fold: 1) We propose a novel prompt learning method that
combines domain prompts with class prompts called multi-source domain prompt learning (MS-
DPL). This enables the model to focus on both the class-specific semantic features and the domain
semantic features simultaneously, and enhancing the performance of few-shot domain adaptation
tasks by opening the difference between different domains, 2) We introduce a cross-domain feature-
level mixup method called domain-aware mixup. This strategy, compared to an image-level mixup,
is more readily accepted by pre-trained large-scale models and aids in learning domain semantic
features. 3) We have carried out comprehensive experiments to validate the effectiveness of our pro-
posed methods. Our method outperforms state-of-the-art domain adaptation methods across multiple
benchmark datasets.

2 RELATED WORKS

2.1 MULTI-SOURCE DOMAIN ADAPTATION

MDA approaches (Sun et al., 2015; Zhao et al., 2019) assume the presence of multiple fully labeled
sources and aim to transfer knowledge to an unlabeled target domain. Theoretical analyses (Ben-
David et al., 2010; Crammer et al., 2008; Mansour et al., 2008; Hoffman et al., 2018) have been put
forth to underpin existing MDA algorithms. Initial MDA techniques often either establish a shared
feature space encompassing all domains (Duan et al., 2009; Sun et al., 2011; Duan et al., 2012a;b) or
amalgamate pre-learned predictions from source classifiers to yield final predictions using ensemble
methods. With the rise of deep neural networks, numerous deep learning-based MDA methods have
been introduced, including DCTN (Xu et al., 2018), M3SDA (Peng et al., 2019), MDAN (Zhao et al.,
2018), MFSAN (Zhu et al., 2019), and MDDA (Zhao et al., 2020). All these MDA strategies strive
to mitigate domain shifts through auxiliary distribution alignment objectives. SImpAl (Venkat et al.,
2020) is devised to carry out implicit domain alignment via pseudo-labeling, without introducing
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Figure 2: Multi-source Domain Prompt Learning (MSDPL): (a) MSDPL trains the learnable context
variables: context variables and domain variables, [CLASS] token and [DOM] token which are
combined and encoded by a text encoder. (b) An image encoder encodes images from different
domains. (c) Next, cosine similarity between text and image features is computed and the positive
pairs (with matched domain and class) are encouraged to align. (d) Computing cosine similarity
between domain text feature and mixup image feature. the rare domain pairs are encouraged to
align. The classification probability is defined in Eq 6. and a cross-entropy loss is applied between
the image feature and the ground truth class to train the networks.

extra training objectives for adaptation. More recently, ProtoMDA (Zhou et al., 2021) proposes the
utilization of prototypes for MDA, achieving state-of-the-art performance.

2.2 PROMPT LEARNING

Prompt learning, introduced by Petroni et al. (2019), has garnered significant attention within the
field of Natural Language Processing (NLP) in recent years (Jiang et al., 2020b; Lester et al., 2021;
Li & Liang, 2021; Liu et al., 2023). This methodology involves augmenting input with preparatory
instructions, thereby facilitating language model pre-training to enhance downstream task perfor-
mance. Notably, Petroni et al. (2019) and Poerner et al. (2019) have leveraged manually crafted
prompts to bolster language model efficacy. However, the inherent optimality of manually devised
prompts can sometimes be suboptimal or even unsuitable, potentially leading to inaccurate guidance.

To extract more precise insights from language models, various approaches have emerged to au-
tonomously explore optimal prompts (Jiang et al., 2020b; Shin et al., 2020; Zhong et al., 2021).
Recent developments have extended the concept of prompts to the realm of vision-language models,
enabling the acquisition of versatile visual representations (Jia et al., 2021; Radford et al., 2021b).
Noteworthy contributions include ALIGN (Jia et al., 2021)and CLIP (Radford et al., 2021a), with
CLIP attaining cutting-edge visual representations through language-based supervision across a
dataset of 400 million image-text pairs. Furthermore, Zhou et al. (2022) have embraced continuous
representations to model prompts, resulting in the automated acquisition of task-relevant prompts,
as exemplified by their work named CoOp. In contrast to CoOp, which focuses on formulating
domain-agnostic prompts for visual recognition tasks, Ge et al. (2022) introduces a novel domain-
aware prompt learning paradigm. By contrasting extensive source domain data with target domain
data, the model becomes capable of discerning the disparities between domains.
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3 METHOD

We study a multi-source few-shot domain adaptation (MFDA) scenario, where a single target domain
with sparse labels and multiple source domains with partial labels exist. For the i-th source domain,

a modestly labeled set Si =
{(

xj
i, y

j
i

)}Ni

j=1
is drawn from the source distribution pi (x, y) , where

Ni represents the count of labeled instances in domain i. Within the target domain, τ =
{
xj
T

}NT

j=1

symbolizes the target data subset derived from the target distribution pT (x, y) with label observa-
tion, where NT specifies the volume of target instances. Both Ni and NT are significantly smaller
than the total number of samples provided in the training set of the dataset. Our objective is to
develop a domain adaptation model capable of accurately predicting target sample labels, while
training on {Si}Ni

j=1 and τ .

3.1 PRELIMINARIES

CLIP (Radford et al., 2021a) is trained using paired image-text data in a contrastive manner. Each
text input describes a category using the structure “an image of a [CLASS]”, where [CLASS] repre-
sents the category token. A positive pair, or match, between an image xi and its corresponding text
ti, which provides details about the category of xi. Conversely, a negative pair, or mismatch, occurs
when an image xi is paired with an unrelated description tj , where j ̸= i is within the mini-batch.
The main objective of the training is to increase the cosine similarity for matched pairs while re-
ducing it for mismatched pairs. This contrastive learning objective ensures that both image and text
representations are aligned in a unified feature space.

By leveraging these aligned features, the model is capable of making zero-shot predictions. Given K
category descriptions, an image x is classified into the category ŷ that exhibits the highest similarity:

P (ŷ = i | x) = exp (⟨g (ti) , f(x)⟩ /T )∑K
k=1 exp (⟨g (tk) , f(x)⟩ /T )

(1)

ŷi = argmax
k

P (ŷi = k) (2)

where T is a user-defined hyperparameter (temperature).

The mentioned input text is a crafted prompt, consisting of a series of distinct tokens. These hand-
crafted prompts are converted into consistent vectors within the word embedding dimension. Given
that such vectors might not be the best representation for distinct categories, there’s potential to re-
fine the continuous embedding of these tokens. This continuous characterization tk provides a finer
depiction of semantic attributes crucial for understanding context variables.

Existing prompt learning methods adopt a domain agnostic style that context is shared across all
domains and all categories(Zhou et al., 2022). It follows a unified style:

tk = [v]1[v]2...[v]M1[CLASS]k (3)

where [v]m1,m1 ∈ {1, 2, 3, ...,M1} is a vector with the same dimension as the word embedding,
and M1 is the number of context tokens applied in the prompt.

3.2 DOMAIN PROMPT LEARNING

In the domain of conventional prompt learning, prompts often lack domain distinction. Previous
attempts have traditionally aimed to acquire a universally applicable prompt capable of spanning all
domains. However, this pursuit has inherent limitations. Large-scale pre-trained vision-language
models lack domain awareness during training, which hinders the acquisition of domain-specific
tendencies necessary for effective domain adaptation tasks. These models often misinterpret source-
domain-specific semantic features as belonging to the target domain, resulting in suboptimal perfor-
mance for multi-source domain adaptation through prompt learning.

To address the insufficiency of non-discriminative domain prompts in effectively accommodating
domain distribution shifts, we propose a paradigm tailored to multi-source domain migration. We
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Figure 3: Domain-aware mixup: (a) traditional mixup, which uses two pictures from the same
domain with different labels; (b) domain-aware mixup, we combined two features from different
domains with different labels through the image encoder.

divide prompts into two segments: domain prompts and context prompts. The former embodies
domain knowledge, while the latter transcends domain boundaries. Customized domain prompts
are individually tailored for each domain, resulting from the concatenation of learnable parameters
with a fraction incorporating unlearnable parameters, as the formulation follows:

td = [d]1[d]2...[d]M2[DOM ]d (4)

where [d]m2,m2 ∈ {1, 2, 3, ...,M2} with the same dimension as the word embedding, and M2 is
the number of context tokens applied in the prompt.

To emphasize differentiation across domains, non-learnable components are infused with domain-
specific expressive terms to enhance distinctiveness and facilitate convergence. Diverse prompts
are achieved by constructing a prompt bank that contains various configurations specific to each
domain. During model training, expressive terms associated with the respective domain are selec-
tively retrieved from the prompt bank to meticulously craft prompts that meet specific requirements.
Context prompts consist of a concatenation of partially learnable parameters harmonized with class
labels, providing a comprehensive view across domains.

The designed prompt architecture aims to imbue context prompts with broader communal seman-
tic expressions while including domain prompt components to enhance domain-specific semantic
information. In its final form, the prompt configuration crystallizes as follows:

tdk = [d]1[d]2...[d]M2[DOM ]d[v]1[v]2...[v]M1[CLASS]k (5)

The presence of d ∗ k categories arises due to distinct prompts, tsk for the source domain and tuk for
the target domain. When presented with a collection of training samples {xs

i , y
s
i }

Ni

i=1from the source
domain, we have the means to derive the likelihood that a given training sample pertains to the k-th
category:

P (ŷs
i = k | xs

i ) =
exp (⟨g (tsk) , f (xs

i )⟩ /T )∑
d∈{s,u}

∑K
j=1 exp

(〈
g
(
tdj
)
, f (xs

i )
〉
/T

) (6)

With the probability of the image xi belonging to class k, we minimize the standard cross-entropy
loss given ground truth label y. The loss is computed as follows:

Ls = − 1

Ns

Ns∑
i=1

logP (ŷsi = ysi ) . (7)

3.3 DOMAIN-AWARE MIXUP

In the setting of few-shot learning, learnable prompts exhibit a pronounced propensity for overfitting,
making domain differentiation a challenging endeavor. To enhance the model’s capacity for domain
information assimilation, we utilize cross-domain feature-level mixup.

To optimally extract semantically relevant information from multiple source domains that benefit the
target domain, we employ a training scheme that solely integrates the target domain with the source
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domain at the feature level. Notably, we discard inter-source domain mixup. This decision aims
to prevent the intermingling of source domains from contaminating the representation and learning
that are pertinent to the target domain.

Initially, we randomly draw source domain data, denoted as xi
s, and target domain data, denoted as

yt, from the training samples. Subsequently, we pass these data through the image encoder, resulting
in the corresponding image features f is and ft. We then amalgamate these features at certain ratios
to yield a new feature, which is denoted as f imixup. An illustrative overview of our domain-aware
mixup is presented in Figure 3.

fu = (1− γ) f is + γ × f jt (8)
where fu is the mixed feature and γ is the rate of mixup, in this paper we set it as a random number
between 0.4 and 0.6.

We consider this new feature as an intermediate state, embodying both source and target domain
semantic information. Our aspiration is for the model to possess the capability to discern domain
features from such mixed features. We train the prompt of the domain with this mixed-up feature.
The specific loss computation is depicted in the subsequent formula:

Lu = − 1

Nu

Nu∑
j=1

(
(1− γ) logP

(
ŷsj = ysj | tsk

)
+ γ logP

(
ŷsj = ysj | tuk

))
(9)

where tsk is the specific-domain text feature and the γ is the same rate of domain-aware mixup.

In a holistic view, our proposed domain adaptation via domain-aware mixup technique can be seam-
lessly trained through an end-to-end approach, facilitated by a comprehensive contrastive loss frame-
work.

L = Ls (D
s) + Lu (D

u) (10)
Unlike prevailing domain adaptation approaches that primarily focus on training classifiers for the
source domain to capture a conditional probability distribution P (y | xs), our method operates on
a more intricate level. By orchestrating the learning of dual conditional probability distributions,
namely P (y | xs) and P (y | xu), through the acquisition of distinct sets of prompts tks and tku
(where k ∈ {1, 2, ...,K}), MSDPL transcends the conventional norm. This distinctive attribute em-
powers our method to nimbly address the challenges posed by both conditional distribution shifts
and marginal distribution shifts, thus mitigating the risk of performance degradation that some tech-
niques might encounter (Wang et al., 2020). An illustrative overview of our method framework is
presented in Figure 2.

4 EXPERIMENT

4.1 DATASETS

Following the guideline in Yue et al. (2021a), we put our approach, MSDPL, to the test in a multi-
source few-shot scenario on two widely used domain adaptation benchmarks, namely Office-Home
(Venkateswara et al., 2017), and DomainNet (Peng et al., 2019). Following the protocols in Yue
et al. (2021a), we select the labeled data in each domain, and each domain is alternately treated as
the target domain, while the remaining domains within the same dataset serve as source domains.
The number of labeled samples we have selected is much smaller compared to the total sample
count. Office-Home (Venkateswara et al., 2017), a more challenging dataset, includes four domains
(Art, Clipart, Product, Real) distributed over 65 classes. Following the guidelines in, we test settings
with 3% and 6% labeled source images per class, leading to an average of 2 to 4 labeled images per
class. DomainNet (Peng et al., 2019) is an expansive domain adaptation benchmark. Considering
that some domains and classes could be noisy, we adhere to Saito et al. (2019); Yue et al. (2021b)
and utilize a subset comprising four domains (Clipart, Painting, Real, Sketch) over 126 classes. For
this dataset, we present results from settings with 1-shot and 3-shot source labels.

4.2 IMPLEMENTATION DETAILS

We use the pretrained CLIP (Radford et al., 2021a) model based on ResNet-50 (Liu & Tuzel, 2016)
as backbones for all baselines. For Office-Home, we fix the parameters in the encoders and the
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Table 1: Adaptation accuracy (%) with 3% and 6% labeled samples per class on Office-Home dataset
Office-Home

3% 6%

method Ar,Pr,Rw
->Cl

Cl,Pr,Rw
->Ar

Cl,Ar,Rw
->Pr

Cl,Ar,Pr
->Rw Avg Ar,Pr,Rw

->Cl
Cl,Pr,Rw
->Ar

Cl,Ar,Rw
->Pr

Cl,Ar,Pr
->Rw Avg

Source-Only single-best 29.0 41.2 52.3 43.1 41.4 36.0 49.9 61.8 54.6 50.6
ComBined 42.2 55.3 63.6 64.1 56.3 45.3 60.4 70.5 70.9 61.8

CDAN 27.0 38.7 44.9 40.3 37.7 40.1 54.9 63.6 59.3 54.5
MME 29.0 39.3 52.0 44.9 41.3 37.3 54.9 66.8 61.3 55.1

Single-best MDDIA 29.5 47.1 56.4 51.0 46.0 37.1 58.2 68.4 64.5 57.1
CDS 37.8 51.6 53.8 51.0 48.6 45.3 63.7 68.6 65.2 60.7
PCS 52.5 66.0 75.6 73.9 67.0 54.7 67.0 76.6 75.2 68.4

CDAN 52.3 52.3 64.5 63.2 55.7 51.1 67.0 74.2 73.3 66.4
MME 34.6 55.4 67.4 64.5 57.5 46.0 67.1 75.5 75.7 66.1

Source-conbined MDDIA 63.4 66.9 72.3 75.3 67.5 57.3 67.2 79.0 74.4 66.5
CDS 54.9 66.2 71.6 73.4 66.5 54.9 67.5 76.1 77.5 69.0
PCS 49.4 67.0 75.0 76.3 66.9 50.4 67.0 77.8 79.4 68.7

SImpAI 46.8 56.7 65.1 66.6 58.8 49.3 62.1 71.7 73.0 64.1
Multi-source MFSAN 36.9 46.6 58.9 55.6 50.3 44.5 53.7 65.4 64.2 57.0

PMDA 50.8 56.8 64.2 66.7 59.7 54.4 65.8 70.4 71.8 65.6
MSFAN 55.6 60.4 70.6 76.6 69.1 56.3 68.7 79.3 79.1 70.9

CLIP 51.9 71.6 81.5 82.5 71.8 \ \ \ \ \
Large-model CoOP 56.9±0.1 74.0±0.1 85.7±0.2 84.4±0.2 75.2±0.1 58.3±0.1 74.6±0.1 86.9±0.1 85.6±0.2 76.3±0.1

MSDPL(Ours) 57.6±0.1 75.2±0.2 86.7±0.2 85.6±0.1 76.3±0.1 60.0±0.1 76.5±0.1 88.2±0.1 86.4±0.2 77.8±0.1

prompt is trained with the mini-batch SGD optimizer for 12 epochs, where the batch size is set to
be 32. The initial learning rate is set to 0.005 and decayed with a cosine annealing rule (Kim et al.,
2020). For domainnet, the encoder parameters are kept fixed, while the prompt is trained to utilize
a mini-batch SGD optimizer for 20 epochs with a batch size of 32. We start with a learning rate
of 0.005 and apply a cosine annealing rule for its decay. As for the hyperparameters, the length
of context tokens M1 and domain tokens M2 are both set to 4. Our context vectors are randomly
initialized using a zero-mean Gaussian distribution with a standard deviation of 0.02. The rate of
the mixup is both set to 0.5 for Office-Home and Domainnet and we take the average of the three
results as the accuracy of the results.

4.3 RESULTS ON MFDA

4.3.1 BASELINE

In our study, we evaluate the multi-source domain prompt learning method alongside various other
techniques to conduct a comparative analysis. Firstly, we consider the ”source-only” strategies,
where models are trained on labeled data from source domains and directly tested on the target
domain. Secondly, we examine single-source domain adaptation methods, which approach multi-
source DA by considering single-source DA. The models included in this category are CDAN (Long
et al., 2018), MDDIA (Jiang et al., 2020a), MME (Saito et al., 2019), CDS (Kim et al., 2020), and
PCS (Yue et al., 2021b). Notably, CDS (Kim et al., 2020) and PCS (Yue et al., 2021b) are specifi-
cally developed for single-source few-shot DA (FSDA). Furthermore, we explore multi-source DA
approaches, which are designed for MDA and assume the presence of multiple fully-labeled sources.
The models considered in this group are MFSAN (Zhu et al., 2019), SImpAl (Venkat et al., 2020),
and ProtoMDA (Zhou et al., 2021). It is worth mentioning that SImpAl (Venkat et al., 2020) and Pro-
toMDA (Zhou et al., 2021) are considered to be cutting-edge, with ProtoMDA utilizing prototypes
for MDA. Finally, we investigate approaches that employ large vision-language models, including
CLIP (Radford et al., 2021a), CoOp (Zhou et al., 2022), and our method called Multi-source Do-
main Prompt Learning(MSDPL). We perform a reevaluation of all benchmark methods within the
new multi-source few-shot domain adaptation (MFDA) setting and compare them with our proposed
method.

A comprehensive series of experiments was conducted across the Office-Home and DomainNet
datasets. The results of these experiments are detailed in Tables 1 and 2. Upon analyzing these
results, several key insights were discerned:

(1) In the context of single-best, the performance of source-only noticeably exceeds that of certain
UDA approaches in multiple conditions. A parallel trend is evident in the source-combined scenario,
illustrated by a score of 40.1% versus 31.3% in the Office-Home dataset under similar conditions.

(2) In the MFDA framework, the simplistic strategy of merging multiple sources and executing
single-source DA can inadvertently degrade performance compared to sticking to an individual do-
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Table 2: Adaptation accuracy (%) comparison with 1 and 3 labeled samples per class on DomainNet.
DomainNet

1-shot 3-shot

method P,R,S
->C

C,R,S
->P

C,P,S
->R

C,P,R
->S Avg P,R,S

->C
C,R,S
->P

C,P,S
->R

C,P,R
->S Avg

Source-Only single-best 18.4 30.6 28.9 16.7 23.7 30.2 44.2 49.8 24.2 34.4
ComBined 30.8 49.4 43.3 36.9 40.1 45.3 57.4 64.7 42.6 50

CDAN 16.0 25.7 19.5 12.9 18.5 30.0 40.1 40.8 17.1 29.3
MME 16.0 29.2 26.0 13.4 21.2 25.1 46.5 50.0 20.1 32.6

Single-best MDDIA 18.0 30.6 27.4 15.9 23.0 41.4 50.7 52.9 23.1 38.2
CDS 16.7 24.4 15.9 13.4 17.6 35.0 43.8 36.8 31.1 32.9
PCS 39.0 51.7 38.8 39.8 42.3 45.2 59.1 66.6 41.9 51.0

CDAN 25.7 33.0 40.0 26.4 31.3 47.8 54.1 65.6 49.1 49.6
MME 20.0 45.3 52.5 13.0 32.7 44.2 62.7 73.9 51.8 53.1

Source-conbined MDDIA 44.0 46.4 49.6 37.1 44.3 56.3 59.3 70.3 51.3 56.3
CDS 42.2 53.3 55.4 38.5 47.4 50.2 61.5 71.8 47.3 55.6
PCS 36.2 53.0 56.4 32.8 44.6 45.6 61.2 74.3 41.3 53.4

SImpAI 48.0 40.3 45.7 35.3 42.3 51.5 47.4 68.8 45.3 51.1
Multi-source MFSAN 41.6 33.5 38.8 29.6 35.9 43.5 42.3 63.2 41.1 45.2

PMDA 49.3 42.2 45.0 34.8 42.8 52.2 52.5 71.3 47.6 53.3
MSFAN 57.3 68.7 64.8 45.2 59.0 57.8 65.5 75.8 53.6 62.3

CLIP 54.7 55.4 77.1 49.2 59.1 \ \ \ \ \
Large-model CoOP 59.3±0.1 59.6±0.1 79.4±0.1 52.6±0.2 62.7±0.1 60.1±0.2 60.4±0.1 80.0±0.1 53.4±0.1 63.4±0.1

MSDPL(Ours) 59.8±0.2 61.0±0.1 80.2±0.1 53.7±0.3 63.7±0.1 61.4±0.2 60.7±0.1 81.1±0.1 54.4±0.1 64.5±0.1

Figure 4: Investigations on context length of MSDPL(Ours) and CoOp.

main. As evidence, a score of 42.3% is registered versus 44.6% in the 1-shot per class category on
DomainNet for PCS, a method explicitly tailored for single-source few-shot DA.

(3) Within the MFDA setup, traditional MDA techniques yield subpar results when juxtaposed
against single-source DA strategies, a case in point being 65.6% versus 68.7% in the Office-Home
dataset when 6% of the labels per class are considered.

(4) Within methodologies that employ large models, the unmodified CLIP model achieves scores
of 59.1% and 71.8% on the DomainNet and Office-Home datasets, respectively. In contrast, our
proposed approach, which focuses on learning domain and context prompts, achieves a significant
improvement in accuracy, specifically 5.3% and 5.8% respectively. Additionally, when compared to
the domain-agnostic learning method CoOp (Zhou et al., 2022), our method shows a performance
improvement of 1.1% and 1.25% in accuracy respectively.

4.4 ABLATION STUDY AND ANALYSIS

We embark on an extensive exploration of the individual components comprising the MSDPL frame-
work within the context of Office-Home. The findings presented in Table 5 unequivocally establish
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Figure 5: (a) Performance contribution of each part in MSDPL framework on Office-Home and
DomainNet. (b)Compare to the traditional mixup, domain-aware mixup enables domain prompt to
train more efficiently with few-shot samples.

that the inclusion of each component makes a substantial positive contribution to the ultimate MFDA
performance, all while maintaining accuracy at its zenith, and the adoption of domain prompt yields
a discernible uptick in model accuracy. Notably, the incorporation of the domain-aware mixup
strategy propels accuracy even further beyond the bounds achieved without its deployment. To sub-
stantiate our model’s acumen in discerning inter-domain disparities, we undertake an experiment
whereby target-domain prompts are applied to test other domains. The results underscore that the
model excels only when domain cues correspond precisely on a one-to-one basis. This empirical
evidence accentuates the sensitivity of our model to domain variations.

Furthermore, to substantiate the merits of our proposed domain-aware mixup, we conducted a com-
parative analysis against the traditional mixup (Zhang et al., 2017). As demonstrated in Figure 5, the
conventional mixup method exhibits enhanced generalization effects for a limited set of domains;
however, it yields detrimental consequences in more challenging domains. In contrast, domain-
aware mixup showcases significant improvements across all domains. This serves as evidence that
our domain-aware mixup technique excels in training domain prompts, enabling the model to adeptly
discern disparities between different domains. We also compare the different length of the context.
Depicted in Figure 4, the learnable context of size 4 demonstrated significant improvements com-
pared to the others.

5 CONCLUSION AND DISCUSSION

In this paper , we investigates Multi-source Few-shot Domain Adaptation(MSFDA), which is a prac-
tical and challenging task where each source and target domain has only a small fraction of labeled
samples. In limited data scenarios, a novel prompt learning methodology is employed, which uti-
lizes domain prompts to enhance large-scale vision-language models. This augmentation enables the
model to effectively identify domain disparities between source and target domains. Additionally,
the paper introduces the innovative concept of “domain-aware mixup”, which is distinct from con-
ventional mixup approaches that often yield adverse consequences when applied across domains.
The novel mixup method significantly aids in the learning of domain prompts, allowing for the
acquisition of unique semantic information for each domain.

Our approach demonstrates significantly positive outcomes, validating its effectiveness across a wide
range of scenarios. Notably, further investigations reveal a compelling revelation. Traditional learn-
able prompts tend to have decreased transfer capabilities in domain adaptation tasks when the num-
ber of source domain samples is significantly larger than the target domain. In contrast, our method
adeptly addresses this challenge and enables proficient domain adaptation despite the disparities in
sample sizes between source and target domains.
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A APPENDIX

A.1 DATASET DETAILS

• DomainNet is a versatile benchmark used for evaluating domain adaptation and trans-
fer learning methods. It comprises six diverse domains: Clipart, Infographics, Painting,
Quickdraw, Real, and Sketch. Each domain contains the object of 345 categories in dif-
ferent environments. These domains showcase different art styles, data sources, and visual
content, making DomainNet an ideal resource for studying cross-domain challenges.

• Office-Home is a large-scale benchmark for visual cross-domain recognition. It collects a
total of 15,500 images from four distinct domains: Art (Ar), Clip Art (Cl), Product (Pr),
and Real World (Rw). Besides, each domain contains the objects of 65 categories in the
office and home environments.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present supplementary experimental material to comprehensively showcase and
elucidate the effectiveness of our proposed method (MSDPL). To facilitate a better understanding,
we provide the meanings of the symbols utilized in the main formulas through Table 3, presented in
a tabular format.

In the main context of this paper, we showcase the performance of various losses within MSDPL on
the Office-Home dataset. In order to substantiate the necessity of each loss component, we conduct
additional experiments of MSDPL on the DomainNet dataset.

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We conducted an analysis of the hyperparameters in our model, including the size of the learnable
context and the mixup ratio γ. As depicted in Figure 6,7, we observed that the model performs
optimally when the size of the learnable context is set to 4. We attribute this observation to the fact
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Table 3: Description of key symbols in this paper
Symbol Description
M1 is the number of the context prompt
M2 is the number of the domain prompt
td is the domain prompt of the d domain
tsk is the text feature of the s source domain and the s class
tuk is the text feature of the target domain and the s class
Ns is the number of training simple
Nu is the number of mixup simple
γ is the rate of mixup
f is is the image feature of the s source domain and the i class
f jt is the image feature of the target domain and the j class
Ds is the training data
Du is the mixup data
Ls is the loss of domain prompt learning
Lu is the loss of domain-aware mixup
L is the loss of model training

that in few-shot learning scenarios, excessive model flexibility can hinder convergence and effec-
tive learning. Consequently, the learnable context of size 4 demonstrated significant improvements
compared to the larger size of 16.

Regarding the mixup ratio, we found that the optimal value depends on the strength of the target do-
main. For instance, in domains with weaker representation, such as ”sketch,” the model achieved its
best results with a mixup ratio skewed towards 0.6. Conversely, in domains with stronger represen-
tation, like ”real,” the model performed better with a mixup ratio leaning towards 0.4. Taking both
cases into account, an overall balanced mixup ratio of 0.5 resulted in the most stable performance.
This observation may be attributed to the fact that stronger domains contain more domain-specific
information, while weaker domains possess relatively less. Hence, maintaining a balanced mixup
ratio facilitates the model’s ability to learn distinctive domain-specific features effectively.
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Figure 6: Hyperparameter Sensitivity Analysis on DomainNet

Figure 7: Hyperparameter Sensitivity Analysis on Office-Home
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