
OFFLINE RL WITH REALISTIC DATASETS:
HETEROSKEDASTICITY AND SUPPORT CONSTRAINTS

Anikait Singh1,∗, Aviral Kumar1,2,∗, Quan Vuong2, Yevgen Chebotar2, Sergey Levine1,2

1EECS, UC Berkeley, 2Google Research
{asap7772, aviralk}@berkeley.edu, quanhovuong@google.com

ABSTRACT

Offline reinforcement learning (RL) learns policies entirely from static datasets,
thereby avoiding the challenges associated with online data collection. Practical
applications of offline RL will inevitably require learning from datasets where
the variability of demonstrated behaviors changes non-uniformly across the state
space. For example, at a red light, nearly all human drivers behave similarly by
stopping, but when merging onto a highway, some drivers merge quickly, effi-
ciently, and safely, while many hesitate or merge dangerously. Both theoretically
and empirically, we show that typical offline RL methods, which are based on dis-
tribution constraints fail to learn from data with such non-uniform variability, due
to the requirement to stay close to the behavior policy to the same extent across
the state space. Ideally, the learned policy should be free to choose per state how
closely to follow the behavior policy to maximize long-term return, as long as the
learned policy stays within the support of the behavior policy. To instantiate this
principle, we reweight the data distribution in conservative Q-learning (CQL) to
obtain an approximate support constraint formulation. The reweighted distribu-
tion is a mixture of the current policy and an additional policy trained to mine
poor actions that are likely under the behavior policy. Our method, CQL (ReDS),
is simple, theoretically motivated, and improves performance across a wide range
of offline RL problems in Atari games, navigation, and pixel-based manipulation.

1 INTRODUCTION

Recent advances in offline RL (Levine et al., 2020; Lange et al., 2012) hint at exciting possibili-
ties in learning high-performing policies, entirely from offline datasets, without requiring danger-
ous (Garcıa & Fernández, 2015) or expensive (Kalashnikov et al., 2018) active interaction with the
environment. Analogously to the importance of data diversity in supervised learning (Deng et al.,
2009), the practical benefits of offline RL depend heavily on the coverage of behavior in the offline
datasets (Kumar et al., 2022). Intuitively, the dataset must illustrate the consequences of a diverse
range of behaviors, so that an offline RL method can determine what behaviors lead to high returns,
ideally returns that are significantly higher than the best single behavior in the dataset.

One easy option to attain this kind of coverage is to combine many realistic sources of data, but doing
so can lead to the variety of demonstrated behaviors varying in highly non-uniform ways across the
state space, i.e. the dataset is heteroskedastic. For example, a driving dataset might show very high
variability in driving habits, with some drivers being timid and some more aggressive, but remain
remarkably consistent in “critical” states (e.g., human drivers are extremely unlikely to swerve in an
empty road or drive off a bridge). A good offline RL algorithm should combine the best parts of each
behavior in the dataset – e.g., in the above example, the algorithm should produce a policy that is as
good as the best human in each situation, which would be better than any human driver overall. At
the same time, the learned policy should not attempt to extrapolate to novel actions in subset of the
state space where the distribution of demonstrated behaviors is narrow (e.g., the algorithm should
not attempt to drive off a bridge). How effectively can current offline RL methods selectively choose
on a per-state basis how closely to stick to the behavior policy?

Most existing methods (Kumar et al., 2019; 2020; Kostrikov et al., 2021b;a; Wu et al., 2019; Fu-
jimoto et al., 2018a; Jaques et al., 2019) constraint the learned policy to stay close to the behavior

1

ar
X

iv
:2

21
1.

01
05

2v
2

 [
cs

.L
G

]
 2

1
N

ov
 2

02
2

(a) Variability in Behavior Depends on State

(b) AWR stuck (c) CQL stuck

(d) CQL (REDS) succeeds

Figure 1: Failure mode of distributional constraints. In this navigation task, an offline RL algorithm must
find a path from the start state to the goal state as indicated in (a). The offline dataset provided exhibits non-
uniform coverage at different state, e.g., in the state marked as “B” located in a wide room has more uniform
action distribution, whereas the states in the narrow hallways exhibit a more narrow action distribution. This is
akin to how the behavior of human drivers varies in certain locations (“B”), but is very similar in other situations
(“A”). To perform well, an algorithm must stay close to the data in the hallways (“A”), but deviate significantly
from the data in the rooms (“B”), where the data supports many different behaviors (most are not good). AWR
and CQL become stuck because they stay too close to the bad behavior policy in the rooms, e.g. the left and
right arrows near State B in Fig (b) and (c). Our method, CQL (ReDS), learns to ignore the bad behavior policy
action in state B and prioritizes the good action, indicated by the downward arrow near State B in (d).

policy, so-called “distributional constraints”. Using a combination of empirical and theoretical evi-
dence, we first show that distributional constraints are insufficient when the heteroskedasticity of the
demonstrated behaviors varies non-uniformly across states, because the strength of the constraint is
state-agnostic, and may be overly conservative at some states even when it is not conservative enough
at other states. We also devise a measure of heteroskedasticity that enables us to determine if certain
offline datasets would be challenging for distributional constraints.

Our second contribution is a simple and theoretically-motivated observation: distribution constraints
against a reweighted version of the behavior policy give rise to support constraints. That is, the
return-maximization optimization process can freely choose state-by-state how much the learned
policy should stay close to the behavior policy, so long as the learned policy remains within the data
support. We show that it is particularly convenient to instantiate this insight on top of conservative
Q-learning (CQL) (Kumar et al., 2020), a recent offline RL method. The new method, CQL (ReDS),
only changes minimally the form of regularization, design decisions employed by CQL and inherits
existing hyper-parameter values. CQL (ReDS) attains better performance than recent distribution
constraints methods on a variety of tasks with more heteroskedastic distributions.

2 PRELIMINARIES ON DISTRIBUTIONAL CONSTRAINTS FOR OFFLINE RL

The goal in offline RL is find the optimal policy in a Markov decision process (MDP) specified by
the tupleM = (S,A, T, r, µ0, γ). S,A denote the state and action spaces. T (s′|s,a) and r(s,a)
represent the dynamics and reward function. µ0(s) denotes the initial state distribution. γ ∈ (0, 1)
denotes the discount factor. The goal is to learn a policy that maximizes the return, denoted by
J(π) := 1

1−γE(st,at)∼π[
∑
t γ

tr(st,at)]. We must find the best possible policy while only having
access to an offline dataset of transitions collected using a behavior policy πβ , D = {(s,a, r, s′)}.
Offline RL via distributional constraints. Most offline RL algorithms regularize the learned policy
π from querying the target Q-function on unseen actions (Fujimoto et al., 2018a; Kumar et al.,
2019), either implicitly or explicitly. For our theoretical analysis, we will abstract the behavior of
distributional constraint offline RL algorithms into a generic formulation following Kumar et al.
(2020). As shown in Equation 1, we consider the problem where we must maximize the return of

2

the learned policy π (in the empirical MDP) Ĵ(π), while also penalizing the divergence from πβ :

max
π

Es∼d̂π

[
Ĵ(π)− αD(π, πβ)(s)

]
(generic distributional constraint) (1)

where D denotes a divergence between the learned policy π and the behavior policy πβ at state s.
Conservative Q-learning. (Kumar et al., 2020) enforces the distributional constraint on the policy
implicitly. To see why this is the case, consider the CQL objective, which consists of two terms:

min
θ

α (Es∼D,a∼π [Qθ(s,a)]− Es,a∼D [Qθ(s,a)])︸ ︷︷ ︸
R(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s,a)− BπQ̄(s,a)

)2]
, (2)

where BπQ̄(s,a) is the Bellman backup operator applied to a delayed target Q-network, Q̄:
BπQ̄(s,a) := r(s,a) + γEa′∼π(a′|s′)[Q̄(s′,a′)]. The second term (in blue) is the standard TD
error (Lillicrap et al., 2015; Fujimoto et al., 2018b; Haarnoja et al., 2018). The first term R(θ) (in
red) attempts to prevent overestimation in the Q-values for out-of-distribution (OOD) actions by
minimizing the Q-values under a distribution µ(a|s), which is automatically chosen to pick actions
with high Q-values Qθ(s,a), and counterbalances by maximizing the Q-values of the actions in the
dataset. Kumar et al. (2020) show that Equation 2 gives rise to a pessimistic Q-function that modifies
the optimal Q function by the ratios of densities, π(a|s)/πβ(a|s) at a given state-action pair (s,a).
More formally, the Q-function obtained after one iteration of TD-learning is given by:

Qθ(s,a) := BπQ̄(s,a)− α
[
π(a|s)
πβ(a|s)

− 1

]
. (3)

The Q function is unchanged only if the density of the learned policy π matches that of the behavior
policy πβ . Otherwise, for state-action pairs where π(a|s) < πβ(a|s), Eq. 3 increases their Q values
and encourages the policy π to assign more mass to the action. Vice versa, if π(a|s) > πβ(a|s),
Eq. 3 encourages the policy π to assign smaller density to the action a.

In Eq. 3, α is a constant for every state, and hence the value function learned by CQL is altered
by the ratio of action probabilities to the same extent at all possible state-action pairs. As we will
discuss in the next section, this can be sub-optimal when the learnt policy should stay close to the
behavior policy in some states, but not others. We elaborate on this intuition in the next section.

3 WHY DISTRIBUTION CONSTRAINTS FAIL WITH HETEROSKEDASTIC DATA

In statistics, heteroskedasticity is typically used to refer to conditions when the standard deviation
in a given random variable varies non-uniformly over time (see for example, Cao et al. (2020)).
We call a offline dataset heteroskedastic when the variability of the behavior differs drastically in
different regions of the state space: for instance, if for certain regions of the state space, the observed
behaviors in the dataset assign the most probability mass to a few actions, but in other regions, the
observed behaviors are more uniform. Realistic sources of offline data are often heteroskedastic.
This is because datasets are typically generated by multiple policies, each with its own characteristics
under a variety of different conditions. As an example, driving datasets are typically collected from
multiple humans (Ettinger et al., 2021), and many robotic manipulation datasets are collected by
multiple scripted policies (Mandlekar et al., 2021) or teleoperators (Ebert et al., 2021) that aim to
solve a variety of tasks, resulting in systematic variability in different regions of the state space.

3.1 A DIDACTIC EXAMPLE

To understand why distributional constraints are insufficient when learning from heteroskedastic
data, we present a didactic example. Motivated by the driving scenario in the introduction, we
consider a maze navigation task shown in Fig. 1. The task is to navigate from the position labeled
as “Start” to the position labeled as “Goal” using five actions at every possible state (L:←, R:→,
U: ↑, D: ↓, No: No Op), while making sure that the executed actions do not hit the walls of the grid.

Dataset construction. In order to collect a heteroskedastic dataset, we consider a mixture of several
behavior policies that attain a uniform occupancy over different states in the maze. However, the
dataset action distributions differ significantly in different states. The induced action distribution is
heavily biased to move towards the goal in the narrow hallways (e.g., the behavior policy moves
upwards at state A)). In contrast, the action distribution is quite diverse in the wider rooms. In these
rooms, the behavior policy often selects actions that do not immediately move the agent towards
the goal (e.g., the behavior policy at state B), because doing so does not generally hit the walls as

3

the rooms are wider, and hence the agent is not penalized. On the other hand, the agent must take
utmost precaution to not hit the walls in the narrow hallways. More details are in Appendix A.

Representative distributional constraints algorithms such as AWR (Peng et al., 2019; Nair et al.,
2020b) and CQL (Kumar et al., 2020) fail to perform the task, as shown in Figure 1. To ensure
fair comparison, we tune each method to its best evaluation performance using online rollouts. The
visualization in Figure 1 demonstrates that these two algorithms fail to learn reasonable policies be-
cause the learned policies match the random behavior of the dataset actions too closely in the wider
rooms, and therefore are unable to make progress towards the Goal position. This is a direct conse-
quence of enforcing too strong of a constraint on the learned policy to stay close to the behaviors in
the dataset. Therefore, we also evaluated the performance of CQL and AWR in this example, with
lower amounts of conservatism. As shown in Appendix A, utilizing a lower amount of conservatism
suffers from the opposite failure mode: it is unable to prevent the policies from hitting the walls
in the narrow hallways. To summarize, this means that choosing to be conservative prevents the
algorithm from making progress in the regions where the behavior in the dataset is more diverse,
whereas choosing to not be conservative enough hurts performance in regions where the behaviors
in the dataset agree with each other. In contrast, the method we propose in this paper to tackle this
precise challenge of heteroskedasticity, indicated as “CQL (ReDS)”, effectively traverses the maze
and attains a success rate of 80%.

3.2 CHARACTERIZING THE CHALLENGES WITH DISTRIBUTIONAL CONSTRAINTS

Having seen that distribution constraints can fail in certain scenarios, we now formally characterize
when offline RL datasets is heteroskedastic, and why distribution constraints may be ineffective in
such scenarios. Similar to how standard analyses utilize concentrability coefficient (Rashidinejad
et al., 2021), which upper bounds the ratio of state-action visitation under a policy dπ(s,a) and
the dataset distribution µ, i.e., maxs,a d

π(s,a)/µ(s,a) ≤ Cπ , we introduce a new metric called
differential concentrability, which measures dataset heteroskedasticity (i.e., the variability in the
dataset behavior across different states).
Definition 3.1 (Differential concentrability.). Given a divergence D over the action space, the dif-
ferential concentrability of a given policy π with respect to the behavioral policy πβ is given by:

Cπdiff = E
s1,s2∼dπ

(√D(π, πβ)(s1)

µ(s1)
−

√
D(π, πβ)(s2)

µ(s2)

)2
 . (4)

Eq. 4 measures the variation in the divergence between a given policy π(a|s) and the behavior
policy πβ(a|s) weighted inversely by the density of these states in the offline dataset (i.e., µ(s) in
the denominator). For simplicity, let us revisit the navigation example from Section 3.1 and first
consider the simpler scenario where µ(s) = Unif(S). For any given policy π, if there are states
where π chooses actions that lie on the fringe of the data distribution (e.g., in the wider rooms), as
well as states where the policy π chooses actions at the mode of the data distribution (e.g., as in the
narrow passages), then Cπdiff would be large for the policy π learned using distributional constraints.
Crucially, Cπdiff would be small even if the learned policy π deviates significantly from the behavior
policy πβ , such that D(π, πβ)(s) is large, but |D(π, πβ)(s1) − D(π, πβ)(s2)| is small, indicating
the dataset is not heteroskedastic. We will show in Section 5 that arbitrary policy checkpoints π
learned by offline RL algorithms generally attain a low value of Cπdiff on offline datasets from non-
heteroskedastic sources, such as those covered in the D4RL (Fu et al., 2020) benchmark.

We now use the definition of differential concentrability above to bound both the improvement and
deprovement of π w.r.t. πβ for distribution constraint algorithms using the framework of safe policy
improvement (Laroche et al., 2017; Kumar et al., 2020). We show that when Cπdiff is large, then
distributional constraints (Eq. 1) may not improve significantly over πβ , even for the best value for
the weight α (proof in Appendix B):
Theorem 3.1 (Informal; Limited policy improvement via distributional constraints.). W.h.p. ≥ 1−δ,
for any prescribed level of safety ζ, the maximum possible policy improvement over choices of α,
maxα [J(πα)− J(πβ)] ≤ ζ+, where ζ+ is given by:

ζ+ := max
α

h∗ (α)

(1− γ)2
s.t.

c1

√
log |S||A|δ

(1− γ)2

√
Cπαdiff

|D|
− α

1− γ
Es∼d̂πα [D(πα, πβ)(s)] ≤ ζ, (5)

where h∗ is a monotonically decreasing function of α, and h(0) = O(1).

4

Theorem 3.1 quantifies the fundamental tradeoff with distribution constraints: to satisfy a given
ζ-safety constraint in problems with larger Cπdiff, we would need a larger α. Since the maximum
policy improvement ζ+ is upper bounded by h∗(α), the policy may not necessarily improve over
the behavior policy if α is large. On the flip side, if we choose to fix the value of α to be small in
hopes to attain more improvement in problems where Cπdiff is high, we would end up compromising
on the safety guarantee as ζ needs to be large for a small α and large Cπdiff. Thus, in this case, the
policy may not improve over the behavior policy reliably.

Note that larger Cπdiff need not imply large Es∼d̂π [D(π, πβ)(s)] because the latter does not involve
µ(s). Cπdiff also measures the dispersion ofD(π, πβ)(s), while the latter performs a mean over states.
In addition, Theorem 3.1 characterizes the maximum possible improvement with an oracle selection
of α, though is not feasible in practice. Thus, when Cπdiff is large, distribution constraint algorithms
could either not safely improve over πβ or would attain only a limited, bounded improvement.

Remark 1 [Heteroskedasticity vs. distributional shift]. Note that larger Cπdiff need not necessarily
imply large Es∼d̂π [D(π, πβ)(s)] because the latter does not involve µ(s). Cπdiff also measures the
dispersion of D(π, πβ)(s), while the latter performs a mean over states.

Remark 2 [Oracle choice of α]. Note that Theorem 3.1 characterizes the maximum possible im-
provement with an oracle selection of α, though is not feasible in practice. Thus, when Cπdiff is large,
distribution constraint algorithms could either not safely improve over πβ or would attain only a
limited, bounded improvement, for any given α.

Remark 3 [Comparison with prior results]. Complementing prior works (Kumar et al., 2019;
Levine et al., 2020) that discuss failure modes of distributional constraints with high-entropy behav-
ior policies, Theorem 3.1 quantifies when this would be the case: this happens when Cπdiff is large.
Our analysis also indicates that when Cπdiff is small, we might be able to observe reasonable perfor-
mance with distributional constraints and this potentially serves as the justification for the superior
empirical results of distributional constraints, compared to support constraints on the D4RL (Fu
et al., 2020) tasks, which as we show are not heteroskedastic.

4 SUPPORT CONSTRAINTS AS REWEIGHTED DISTRIBUTION CONSTRAINTS

Thus far, we have seen that distribution constraints can be ineffective with heteroskedastic datasets.
If we can impose the distribution constraints such that the constraint strength can be modulated per
state, then in principle, we can alleviate the issue raised in Theorem 3.1.

Our key insight is that by reweighting the action distribution in the dataset before utilizing a dis-
tribution constraint, we can obtain a method that enforces a per-state distribution constraint, which
corresponds to an approximate support constraint. This will push down the values of actions that
are outside the behavior policy support, but otherwise not impose a severe penalty for in-support ac-
tions, thus enabling the policy to deviate from the behavior policy by different amounts at different
states. Consider the generic distribution constraint shown in Eq. 1. Rather than having a distribution
constraint between π and πβ , if we can impose a constraint between π and a reweighted version of
πβ , where the reweighting is state-dependent, then we can obtain an approximate support constraint.
Let the reweighted distribution be πre. Intuitively, if π(·|s) is within the support of the πβ(·|s), then
one can find a reweighting πre(·|s) such that D(π, πre)(s) = 0, whereas if π(·|s) is not within
the support of πre(·|s), then D(π, πre)(s) still penalizes π when π chooses out-of-support actions,
since no reweighting πre can put non-zero probability on out-of-support actions. This allows us to
handle the failure mode from Section 3: at states with wide behavior policy, even with a large α,
π is not anymore constrained to the behavior policy distribution, whereas at other “critical” states,
where the behavior policy is narrow, a large enough α will constrain π(·|s) to stay close to πβ(·|s).
We call this approach Reweighting Distribution constraints to Support (ReDS).

4.1 INSTANTIATING THE PRINCIPLE BEHIND REDS

How can we derive a reweighting of the behavior policy to instantiate an approximate support con-
straint? One option is reweight πβ into πre, and enforce the constraints between π and πre explicitly,
by minimizing D(π, πre), or implicitly, by pushing up the Q-values under πre instead of πβ , anal-
ogously to CQL. Both choices are problematic, because the error in estimating the behavior policy
can propagate, leading to poor downstream RL performance, as demonstrated in prior work (Nair
et al., 2020b; Ghasemipour et al., 2021). For the case of CQL, this issue might be especially severe if

5

CQL, Distributional Constraint CQL (ReDS), Support Constraint

W
hi

ch
 a

ct
io

ns
 a

re
 p

us
he

d
up

an

d
pu

sh
ed

 d
ow

n
Re

su
lti

ng
 Q

-V
al

ue
s

Figure 2: Comparison between support and distributional constraints: Left: CQL pushes down the Q-
function under the policy π, while pushing up the function under the behavior policy πβ . This means that the
Q-values for bad actions can go up Right: In contrast, ReDS re-weights the data distribution to push down the
values of bad actions, alleviating this shortcoming.

we push up the Q-values under πre, because then the errors in estimating the behavior policy might
lead to severe over-estimation.

Instead, we devise an alternative formulation for ReDS that re-weights the learned policy such that
applying a distributional constraint on this re-weighting imposes a support constraint. In this formu-
lation, we instead push down the Q-values under πre. To still enable approximate support constraints
between π and πβ , we define πre as a mixture distribution of the learned policy π and the reweighted
behavior policy as shown below. We then demonstrate how πre can modify CQL to enable approxi-
mate support constraints while reusing all existing algorithmic components.

πre(·|s) :=
1

2
π(·|s) +

1

2
[πβ(·|s) · g (π(·|s))] , (6)

where g(·) is a monotonically decreasing function. As Fig. 2 depicts, the second term in Eq. 6
increases the probability of actions that are likely under the behavior policy, but are less likely
under the learned policy (due to g being a decreasing function). We will show in Lemma 4.1 that
utilizing πre in CQL enforces a support constraint on π. Thus, the learned policy π can be further
away from πβ , allowing π to assign more probability to good actions that are within the behavior
policy support, even if they have lower probabilities under πβ . Section 4.2 illustrates theoretically
why pushing down the Q-values under Eq. 6 approximates a support constraint in terms of how it
modifies the resulting Q-values. For an illustration, please see Figure 3.

We must pick g to devise a complete offline algorithm. A practical choice that reuses existing com-
ponents in CQL is to subsume πβ and g into one distribution, denoted by ρ (additional justification
in the next section). More concretely, πre now mixes π and ρ (the equal weight of 1/2 is an arbitrary
choice and any non-zero weight on ρ can be used) as seen in Eq. 7. Utilizing a mixture of π and
a reweighted πβ · g is crucial, allowing for two important properties. Firstly, the inclusion of π in
the mixture ensures that the learned policy π is penalized for deviating outside the support of the
behavior policy, πβ . Second, the inclusion of the re-weighted behavior policy πβ · g(a|s) allows π
to assign more density to good actions that are within the support of πβ , even if these actions have
lower densities under πβ . This ensures that π is constrained to lie within the support of πβ , but is
not constrained to the behavior policy distribution.

πre(·|s) :=
1

2
π(·|s) +

1

2
ρ(·|s) (7)

ReDS modifies the regularizer R(θ) in CQL (Eq.3) to utilize the mixture distribution ρ from Eq. 7,
leading to the following modified regularizer:

R(θ; ρ) =

(
1

2
E

s∼D,a∼π
[Qθ(s,a)] +

1

2
E

s∼D,a∼ρ
[Qθ(s,a)]− E

s,a∼D
[Qθ(s,a)]

)
(8)

We will show that Equation 8 imposes an approximate support constraint in Lemma 4.1. Sub-
suming πβ and g into ρ means the optimal ρ should satisfy ρ(·|s) = πβ(·|s) · g (π(·|s)). Under
the MaxEnt RL framework (Levine, 2018), policy probabilities are the exponentiated advantages:
π(a|s) = exp(A(s,a)) = exp(Q(s,a) − V (s)). As such, we can utilize the advantage func-
tion (derived from Q-function) directly to train ρ, instead of using the policy. That is, ρ(·|s) =

6

πβ(·|s) ·g(exp(A(s,a))). As shown in prior work on reward-weighted and advantage-weighted pol-
icy learning (e.g., AWR (Peng et al., 2019)), we can solve for this distribution using a weighted maxi-
mum log-likelihood objective. We choose g(x) = 1/x, such that g(exp(A(s,a))) = exp(−A(s,a))
(which is a decreasing function). As is common with such weighted regression methods (Peng et al.,
2019), we add a temperature τ into the exponent, yielding the following objective for ρ:

ρψ(·|s) = arg max
ρψ

Es∼D,a∼πβ(·|s) [log ρψ(a|s) · exp (−Aθ(s,a)/τ)] . (9)

The crucial difference between this objective and standard advantage-weighted updates is the differ-
ence of the sign. While algorithms such as AWR aim to find an action that attains a high advantage
while being close to the behavior policy, and hence, uses a positive advantage, we utilize the nega-
tive advantage to mine for poor actions that are still quite likely under the behavior policy. The final
objective for the Q-function combines the regularizer in Eq. 8 with a standard TD objective:

min
θ

JQ(θ) = R(θ; ρ) +
1

2
Es,a,s′∼D

[(
Qθ(s,a)− BπQ̄(s,a)

)2]
(10)

Algorithm 1 CQL (ReDS) pseudo-code
1: Initialize Q-function, Qθ , a policy, πφ, and distribution ρψ
2: for step t in {1, . . . , N} do
3: Update ρψ with the objective in Eq. 9:

ψt := ψt−1 + ηρ E
s,a∼D

[log ρψ(a|s) · exp(−Aθ(s,a)/τ)]

4: Train the Q-function using JQ(θ) in Eq. 10:
θt := θt−1 − ηQ∇θJQ(θ)

5: Improve policy πφ with SAC-style update:
φt := φt−1 + ηπEs∼D,a∼πφ(·|s)[Qθ(s,a)−log πφ(a|s)]

Practical implementation. Our al-
gorithm, CQL (ReDS) is illustrated in
Algorithm 1. A complete implemen-
tation of the functions in python-style
is provided in Appendix C.1. CQL
(ReDS) first performs one gradient
descent step on ρψ using Eq. 9 (Lines
3), then performs one gradient step
on the Q-function using the objective
in Eq. 10 (Line 4), then performs one
gradient descent step on the policy πφ
(Line 5), and repeats.

4.2 THEORETICAL ANALYSIS OF CQL (REDS)

Next, we analyze CQL (ReDS), showing how learning using the regularizer in Eq. 8 modifies the
Q-values, providing justification behind our choice of the distribution ρ in the previous section.

Lemma 4.1 (Per-state modification of Q-values.). Let g(a|s) be a shorthand representation for
g(a|s) = g (τ · π(a|s)). In the tabular setting, the Q-function obtained after one iteration using the
objective in Eq. 10 is given by:

Qθ(s,a) := BπQ̄(s,a)− απ(a|s) + πβ(a|s)g(a|s)− 2πβ(a|s)
2πβ(a|s)

(11)

where BπQ̄(s,a) is the Bellman backup operator applied to a delayed target Q-network.

Eq. 11 illustrates why the modified regularizer in Eq. 8 leads to a “soft” support constraint whose
strength is modulated per-state. Since g is a monotonically decreasing function of π, for state-action
pairs where π(a|s) has high values, g(a|s) is low and therefore the Q-value Q(s,a) for such state-
action pairs are underestimated less. Vice versa, for state-action pairs where π(a|s) attains low
values, g(a|s) is high to counter-acts the low π(a|s) values. Also, since πβ(a|s) appears in the
denominator, for out-of-support actions, where πβ(a|s) = 0, π(a|s) must also assign 0 probability
to the actions for the Q values to be well defined. An illustration of this idea is shown in Figure 3.
We can use this insight to further derive the objective optimized by ReDS.

Lemma 4.2 (CQL (ReDS) objective.). Assume that for all policies π ∈ Π,∀(s,a), π(a|s) > 0.
Then, CQL (ReDS) solves the following optimization problem:

max
π∈Π

Ĵ(π)− α

2(1− γ)
Es∼d̂π

[
D(π, πβ)(s) + · E

a∼π(·|s)
[g (τ · π(a|s)) I {πβ(a|s) > 0}]

]
. (12)

Ĵ(π) corresponds to the empirical return of the learned policy, i.e., the return of the policy under the
learned Q-function. The objective in Lemma 4.2 can be intuitively interpreted as follows. The first
term, D(π, πβ)(s), is a standard distributional constraint, also present in naı̈ve CQL, and it aims to
penalize the learned policy π if it deviates too far away from πβ . ReDS adds an additional second

7

Figure 3: An illustration of how ReDS modulates the strength of the distributional constraint per state.
(i) Left: let (a) and (b) denote the two modes of the behavior policy πβ(·|s) at a state s. Consider in this setting
that the learned Q-values at these modes are also roughly similar. In this case, the reweighted distribution πre

(in red) puts a roughly identical weight on pushing down Q-values on actions appearing in each of these modes.
The resulting outcome is that the ReDS constraint behaves similarly to a distributional constraint. (ii) Right:
In this case, let’s consider a setting where actions appearing in one mode of the behavior policy attain very
low Q-values (mode (a)). The re-weighted distribution πre pushes down the actions appearing in the mode
with lower Q-values with a larger weight than the mode with higher Q-values. This counteracts the effect of
the push-up term in CQL that attempts to push up the Q-values for all actions under the behavior policy more
strongly in region (a). In effect, this ensures that the Q-value for any action in the high-density regions of the
behavior policy is not pushed up blindly, but the Q-values for only good, in-support actions (b) is pushed up.
The ReDS constraint, therefore allows the learned policy to selectively pick out the better mode in this case.

term that effectively encourages π to be “sharp” within the support of the behavior policy, enabling
it to put its mass on actions that lead to a high Ĵ(π).

This second term allows us control the strength of the distributional constraint per state: at states
where the support of the policy is narrow, i.e., the volume of actions such that πβ(a|s) ≥ ε is small,
the penalty in Equation 12 reverts to a standard distributional constraint by penalizing divergence
from the behavioral policy via D(π, πβ)(s) as the second term is non-existent. At states where
the policy πβ is broad, the second term counteracts the effect of the distributional constraint within
the support of the behavior policy, by π to concentrate its density on only good actions within the
support of πβ with the same multiplier α. Thus even when we need to set α to be large in order
to stay close to πβ(·|s) at certain states (e.g., in the narrow hallways in the didactic example in
Sec. 3.1), D(π, πβ)(s) is not heavily constrained at other states.

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to understand how CQL (ReDS) compares to distributional constraint
methods when learning from heteroskedastic offline datasets. In order to perform our experiments,
we construct new heteroskedastic datasets that pose challenges representative of what we would
expect to see in real-world problems. We first introduce tasks and heteroskedastic datasets that
we evaluate on, and then present our results compared to prior state-of-the-art methods. We also
evaluate ReDS on some of the standard D4RL (Fu et al., 2020) datasets which are not heteroskedastic
in and find that the addition of ReDS, as expected, does not help, or hurt on those tasks.

5.1 COMPARISON ON D4RL BENCHMARK

Our motivation for studying heteroskedastic datasets is that heteroskedasticity likely exists in real-
world domains such as driving, manipulation where datasets are collected by multiple policies that
agree and disagree at different states. While standard benchmarks (D4RL (Fu et al., 2020) and
RLUnplugged (Gulcehre et al., 2020)) include offline datasets generated by mixture policies, e.g.
the “medium-expert” generated by two policies with different performance, these policies are them-
selves trained via RL methods such as SAC, that constrain the entropy of the action distribution at
each state to be uniform. To measure their heteroskedasticity, we utilize a tractable approximation
to Cπdiff used in our theoretical analysis: the standard deviation in the value of D(π, πβ)(s) across
states in the dataset, using a fixed policy π obtained by running CQL. We did not use Cπdiff directly,
as it requires estimating the state density of the data distribution, which is challenging in continu-
ous spaces. Observe in Table 4a that the standard deviation is relatively low for the D4RL antmaze
datasets. This corroborates our intuition that D4RL datasets are significantly less heteroskedastic.

8

Dataset std max

noisy (Ours) 18 253
biased (Ours) 9 31

diverse (D4RL) 2 11
play (D4RL) 2 13

(a) the new antmaze datasets (Ours) are signifi-
cantly more heteroskedastic compared to the stan-
dard D4RL datasets. We measure heteroskedas-
ticity using the std and max of D(π, πβ)(s)
across states in the offline dataset.

Task & Dataset EDAC BEAR CQL IQL Ours

medium-noisy 0 0 55 44 73
medium-biased 0 0 73 48 74

large-noisy 0 0 42 39 53
large-biased 0 0 50 41 45

(b) CQL (ReDS) (Ours) outperforms prior offline RL methods including state-of-the-art
methods (IQL) , and prior support constraint methods(BEAR, EDAC) on three out of
four scenarios when learning from heteroskedastic datasets in the antmaze task. The im-
provement over prior methods is larger when learning from the noisy datasets, which
are more heteroskedactic, as shown in Table 4a, compared to the biased datasets.

Table 1: Our method out-performs prior methods in the antmaze navigation task when learning from het-
eroskedastic datasets, indicating the importance of support constraints relative to distributional constraints.

Dataset BC 10%BC DT AWAC Onestep RL TD3+BC COMBO CQL IQL (Ours)

halfcheetah-medium-replay 36.6 40.6 36.6 40.5 38.1 44.6 55.1 45.5 44.2 52.3
hopper-medium-replay 18.1 75.9 82.7 37.2 97.5 60.9 89.5 95.0 94.7 101.5
walker2d-medium-replay 26.0 62.5 66.6 27.0 49.5 81.8 56.0 77.2 73.9 85.0
halfcheetah-medium-expert 55.2 92.9 86.8 42.8 93.4 90.7 90.0 91.6 86.7 89.5
hopper-medium-expert 52.5 110.9 107.6 55.8 103.3 98.0 111.1 105.4 91.5 110.0
walker2d-medium-expert 107.5 109.0 108.1 74.5 113.0 110.1 103.3 108.8 109.6 112.0

locomotion total 295.9 491.8 488.4 277.8 494.8 486.1 505 523.5 500.6 550.3

Table 2: Performance comparison with recent offline RL algorithms on the D4RL benchmark.

5.2 COMPARISONS ON CONSTRUCTED HETEROSKEDASTIC DATASETS

Heteroskedastic datasets. To stress-test our method and prior distributional constraint approaches,
we collect new datasets for the medium and large mazes used in the antmaze navigation tasks from
D4RL: noisy datasets, where the behavior policy action variance differs in different regions of
the maze, representative of user variability in navigation, and biased datasets, where the behavior
policy admits a systematic bias towards certain behaviors in different regions of the maze, represen-
tative of bias towards certain routes in navigation problems. Table 4a illustrates that these datasets
are significantly more heteroskedastic compared to the D4RL datasets.

Using these more heteroskedastic datasets, we compare CQL (ReDS) with CQL and IQL (Kostrikov
et al., 2021a), which are recent popular methods, and two prior methods, BEAR (Kumar et al., 2019)
and EDAC (An et al., 2021), that also enforce support constraints. For each algorithm, including
ours, we utilize hyperparameters directly from the counterpart tasks in D4RL. Due to lack of an
effective method for offline policy selection (see Fu et al. (2021)), we utilize oracle checkpoint
selection for every method. We compute the mean and standard deviation of the performance across
3 seeds. Table 4b illustrates that the largest gap between CQL (ReDS) and prior methods appears
on the noisy datasets, which are particularly more heteroskedastic as measured in Table 4a.

We also compare CQL (ReDS) with recent offline RL algorithms on D4RL, including DT (Chen
et al., 2021), AWAC (Nair et al., 2020a), onestep RL (Brandfonbrener et al., 2021), TD3+BC (Fuji-
moto & Gu, 2021b) and COMBO (Yu et al., 2021). Table 2 shows that CQL (ReDS) obtains similar
performance as existing distributional constraint methods and outperform BC-based baselines. This
is expected given that the D4RL datasets exhibit significantly smaller degree of heteroscedasticity, as
previously explained. Also, a large fraction of the datasets is trajectories with high returns. BC using
the top 10% trajectories with the highest episode returns already has strong performance (10%BC).

The previous results compares CQL (ReDS) to baselines in tasks where the MDP states are low-
dimensional vectors. This section compares CQL (ReDS) to baselines in vision-based tasks.

Task CQL CQL (ReDS) std D(π, πβ)(s) max D(π, πβ)(s)

Pick & Place 6.5 ± 0.4 15.1 ± 0.4 48.7 307.4
Bin Sort (Easy) 31.2 ± 0.3 31.4 ± 0.3 7.9 81.6
Bin Sort (Hard) 6.1 ± 0.2 23.1 ± 0.7 59.6 988.3

Table 3: CQL (ReDS) vs CQL on the manipulation tasks. CQL (ReDS) outperforms CQL significantly when
learning from more heteroskedastic datasets, as measured by our estimates of Cπdiff: the standard-deviation and
the maximum of D(π, πβ)(s) across states.

9

Visual robotic manipulation. We consider two types of manipulation tasks. In the “Pick & Place”
task, the algorithm controls a WidowX robot to grasp an object and place it into a tray located at a test
location, directly from raw 128×128×3 images and sparse 0/1 reward signal. The dataset consists
of behavior from suboptimal grasping and placing policies, and the positions of the tray in the offline
dataset very rarely match the target test location. The placing policies exhibit significant variability,
implying that these datasets are heteroskedastic under our definition. We also consider “Bin Sort”
task (see Figure 4), where a WidowX robot is controlled to sort two objects into two separate bins.
Here heteroskedacity is introduced by when sorting the objects into the desirable bins. Similar to
the Pick & Place Domain, the placing policy exhibits significant variability, and shows an the object
being placed in the incorrect bin (e.g., recyclable trash thrown into the non-recyclable bin). However,
the grasping policy is more expert-like grasping the object with low variability. More details can be
found in Appendix D.

Less Variability More Variability

Start

Goal

Figure 4: Examples trajectories from the heteroskedastic bin-sort data. In this visual manipulation task,
an offline RL algorithm must sort the objects in front of it into two bins. The offline dataset provided exhibits
non-uniform coverage at different states. In the first half of the trajectory, the states exhibit a more narrow
action distribution. However, the second half of the trajectory has more uniform action distribution.

Table 3 presents the results on these tasks. We utilize oracle policy selection analogous to the
antmaze experiments from Table 4b. Table 3 shows that CQL (ReDS) outperforms CQL attaining a
success rate of about 15.1% for the visual pick and place task, whereas CQL only attains 6.5% suc-
cess. While these performance numbers might appear low in an absolute sense, note that both CQL
and ReDS do improve over the behavior policy, which only attains a success rate of 4%. Thus offline
RL does work on this task, and utilizing ReDS in conjunction with the standard distributional con-
straint in CQL does result in a boost in performance with this heteroskedastic dataset. For the “Bin
Sorting”, our method outperforms CQL by 3.5x when learning from more heteroskedastic datasets.
This indicates that the effectiveness of our method in settings with higher heteroskedasticity.

CQL (ReDS) CQL

Normalized Score

5
Po

lic
ie

s
2

Po
lic

ie
s

Figure 5: Performance of CQL
(ReDS) vs CQL on the IQM normal-
ized score and the mean normalized
score over ten Atari games, for the case
of two (top) and five (bottom) policies.

Atari games. We collect data on 10 Atari games from multi-
ple policies that behave differently at certain states, while hav-
ing similar actions otherwise. We consider a case of two such
policies, and a harder scenario of five. We evaluate the perfor-
mance of CQL (ReDS) on the Atari games using the evaluation
metrics from prior works (Agarwal et al., 2020; Kumar et al.,
2021), denoted IQM.

Figure 5 shows that in both testing scenarios: with the mixture
of two policies (top figure) and the mixture of five policies
(bottom figure), CQL (ReDS) outperforms CQL in aggregate.
To summarize, our results indicate that incorporating CQL
(ReDS) outperform common distributional constraints algo-
rithms when learning from heteroskedastic datasets.

6 RELATED WORK
Offline Q-learning methods utilize mechanisms to prevent backing up unseen actions (Levine et al.,
2020), by applying an explicit behavior constraint that forces the learned policy to be “close” to the

10

behavior policy (Jaques et al., 2019; Wu et al., 2019; Peng et al., 2019; Siegel et al., 2020; Wu et al.,
2019; Kumar et al., 2019; Kostrikov et al., 2021b;a; Wang et al., 2020; Fujimoto & Gu, 2021a), or
by learning a conservative value function (Kumar et al., 2020; Xie et al., 2021; Nachum et al., 2019;
Yu et al., 2021; 2020; Rezaeifar et al., 2021; Jin et al., 2020; Wu et al., 2019). Most of these offline
RL methods utilize a distributional constraint, explicit (e.g., TD3+BC (Fujimoto & Gu, 2021a)) or
implicit (e.g., CQL (Kumar et al., 2020)), and our empirical analysis of representative algorithms
from either family indicates that these methods struggle with heteroskedastic data, especially those
methods that use an explicit constraint. Model-based methods (Kidambi et al., 2020; Yu et al., 2020;
Argenson & Dulac-Arnold, 2020; Swazinna et al., 2020; Rafailov et al., 2021; Lee et al., 2021; Yu
et al., 2021) train value functions using dynamics models, which is orthogonal to our method.

Some prior works have also made a case for utilizing support constraints instead of distribution
constraints, often via didactic examples (Kumar et al., 2019; Kumar, 2019; Levine et al., 2020),
and devised algorithms that impose support constraints in theory, by utilizing the maximum mean
discrepancy metric (Kumar et al., 2019) or an asymmetric f-divergences (Wu et al., 2019) for the
policy constraint (Wu et al., 2019). Empirical results on D4RL (Fu et al., 2020) and the analysis
by Wu et al. (2019) suggest that support constraints are not needed, as strong distribution constraint
algorithms often have strong performance. As we discussed in Sections 3.2 (Theorem 3.1 indicates
that this distributional constraints may not fail when Cπdiff is small, provided these algorithms are
well-tuned.) and 4, these benchmark datasets are not heteroskedastic, as they are collected from
policies that are equally wide at all states and centered on good actions (e.g., Antmaze domains in
(Fu et al., 2020), control suite tasks in Gulcehre et al. (2020)) and hence, do not need to modulate
the distributional constraint strength. To benchmark with heteroskedastic data, we developed some
novel tasks which may be of independent interest beyond this work, and find that our method ReDS
can work well in these cases.

7 DISCUSSION

In this work, we studied the behavior of distributional constraint offline RL algorithms when learning
from heteroskedastic datasets, a property we are likely encounter in the real world. Naı̈ve distribu-
tional constraint algorithms can be highly ineffective in such settings both in theory and practice,
as they fail to modulate the constraint strength per-state. We propose ReDS, a method to convert
distributional constraints into support-based constraints via reweighting, and validate it in CQL. A
limitation of ReDS is that it requires estimating the distribution ρψ to enforce a support constraint,
which brings about its some additional compute overhead. Devising approaches for enforcing sup-
port constraints that do not require extra machinery is an interesting direction for future work. Un-
derstanding if support constraints are less sensitive to hyperparameters or are more amenable to
cross-validation procedures is also interesting. Extending ReDS to other Q-learning based, and even
model-based offline RL algorithms is also an interesting direction for future work.

ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers and others from the RAIL lab at UC Berkeley and
IRIS lab at Stanford for their comments and support. We thank Rishabh Agarwal for informative
comments and suggestions. AK is supported by the Apple Scholars in AI/ML PhD Fellowship.
This research is supported by the Office of Naval Research, Army Research Labs and the National
Science Foundation. We thank Google Cloud for donating TPU resources via the TRC program that
enabled us to timely obtain results in this paper.

11

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 22–31.
JMLR. org, 2017.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning (ICML), 2020.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-Based Offline Rein-
forcement Learning with Diversified Q-Ensemble. arXiv e-prints, art. arXiv:2110.01548, October
2021.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

David Brandfonbrener, William F. Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL with-
out off-policy evaluation. CoRR, abs/2106.08909, 2021. URL https://arxiv.org/abs/
2106.08909.

Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, and Tengyu Ma. Het-
eroskedastic and imbalanced deep learning with adaptive regularization. arXiv preprint
arXiv:2006.15766, 2020.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. arXiv preprint arXiv:2106.01345, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021.

Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning
Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. Large scale interactive motion forecasting for
autonomous driving: The waymo open motion dataset. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 9710–9719, 2021.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep Q-
learning algorithms. arXiv preprint arXiv:1902.10250, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, ziyu wang, Alexander Novikov,
Mengjiao Yang, Michael R Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, Sergey Levine,
and Thomas Paine. Benchmarks for deep off-policy evaluation. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
kWSeGEeHvF8.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021a.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
CoRR, abs/2106.06860, 2021b. URL https://arxiv.org/abs/2106.06860.

12

https://arxiv.org/abs/2106.08909
https://arxiv.org/abs/2106.08909
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://openreview.net/forum?id=kWSeGEeHvF8
https://openreview.net/forum?id=kWSeGEeHvF8
https://arxiv.org/abs/2106.06860

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018a.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning (ICML), pp. 1587–1596,
2018b.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pp. 3682–3691. PMLR, 2021.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo, Kon-
rad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl un-
plugged: Benchmarks for offline reinforcement learning. 2020.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. Technical report, 2018.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? arXiv
preprint arXiv:2012.15085, 2020.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–
673, 2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021a.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021b.

Aviral Kumar. Data-driven deep reinforcement learning. https://bair.berkeley.edu/
blog/2019/12/05/bear/, 2019. BAIR Blog.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11761–11771, 2019.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing Off-Policy Q-Learning via
Bootstrapping Error Reduction. arXiv e-prints, art. arXiv:1906.00949, June 2019.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. 2019. URL http://arxiv.org/abs/1906.00949.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.net/forum?id=O9bnihsFfXU.

13

https://bair.berkeley.edu/blog/2019/12/05/bear/
https://bair.berkeley.edu/blog/2019/12/05/bear/
http://arxiv.org/abs/1906.00949
https://openreview.net/forum?id=O9bnihsFfXU

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=AP1MKT37rJ.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Romain Laroche, Paul Trichelair, and Rémi Tachet des Combes. Safe policy improvement with
baseline bootstrapping. arXiv preprint arXiv:1712.06924, 2017.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QpNz8r_Ri2Y.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Fei-Fei
Li, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In 5th Annual Conference on Robot Learning,
2021. URL https://openreview.net/forum?id=JrsfBJtDFdI.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. CoRR, abs/2006.09359, 2020a. URL https://arxiv.org/
abs/2006.09359.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020b.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Rafael Rafailov, Tianhe Yu, A. Rajeswaran, and Chelsea Finn. Offline reinforcement learning from
images with latent space models. Learning for Decision Making and Control (L4DC), 2021.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021,
2021.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
Pietquin, and Matthieu Geist. Offline reinforcement learning as anti-exploration. arXiv preprint
arXiv:2106.06431, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked: Be-
havioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,
2020.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
Connecting new skills to past experience with offline reinforcement learning. arXiv preprint
arXiv:2010.14500, 2020.

14

https://openreview.net/forum?id=AP1MKT37rJ
https://openreview.net/forum?id=QpNz8r_Ri2Y
https://openreview.net/forum?id=JrsfBJtDFdI
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline
deep reinforcement learning. arXiv preprint arXiv:2008.05533, 2020.

Ziyu Wang, Alexander Novikov, Konrad Żołna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34, 2021.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. arXiv preprint arXiv:2102.08363,
2021.

15

Appendices
A DETAILS OF THE DIDACTIC NAVIGATION EXAMPLE FROM SECTION 3.1

Temperature 0.1 Temperature 1 Temperature 10

AWR Visitations

Figure 6: Results of running AWR on the gridworld maze for a variety of temperature values
annotated with state-occupancy values. Observe that AWR is unable to reach the goal across a wide
range of temperatures for the AWR hyperparameter. Even though for some of these hyperparame-
ters, such as τ = 0.1, it is able to traverse quickly into the third region, it does spend a larger fraction
of its state visitation in the narrow hallways in this case (e.g., the final narrow hallway it is able to
reach to) indicating that it gets stuck. Increasing the temperature to τ = 1.0 does not solve it either,
since now it does not even reach this hallway with as high of an occupancy.

CQL Visitations

Alpha 0.1 Alpha 1 Alpha 10

Figure 7: Results of running CQL on the gridworld maze for a variety of temperature values.
Observe that CQL is unable to reach the goal and gets stuck for all the α values we studied.

In this section, we present some details regarding the navigation example we considered in Sec-
tion 3.1. To create this example, we modified the gridworld code from Fu et al. (2019) (code taken
from: https://github.com/justinjfu/diagnosing_qlearning) to create the cor-
responding gridworld maze. We utilize a 24 × 16 gridworld as shown in the figures below, larger
than the 8× 8 or 16× 16 gridworlds studied in this repository in the past. We utilize a smooth rep-
resentation of the observation space. This is constructed by first sampling random Gaussian feature
vectors from R50 for each grid cell (each grid cell is a state). Smoothing of these features vectors is
then done locally, following the protocol for “grid-*-smoothobs” in Fu et al. (2019). This observa-
tion type presents a challenge for Q-learning algorithms that may often generalize incorrectly. This
is because aliasing occurs with the predictions of nearby states that exhibit very different dynamics

16

https://github.com/justinjfu/diagnosing_qlearning

but not so different observation vectors. The agents gets a sparse binary 0/1 reward: +1 is attained
only when the agent reaches the goal (marked in black) from the start location (marked in green).

The behavior policy in each part of the maze is based on a mixture of different policies. In the wider
rooms of the maze, one of the policies is a uniform policy, that uniformly chooses every action at a
state. The second policy is a biased policy, that drives the agent away from the goal. In the narrow
hallways, the behavior policy deterministically drives the agent towards the goal. For wide rooms,
in contrast, a bias exists for actions taken in the direction away from the goal. This bias was set to be
0.8. This means that for rooms where you need to exit the wide passage by going down, the action
of going up was selected 80% of the time by the behavior policy and each of the other action was
randomly sampled with 20% probability. The opposite decision was taken for rooms where the goal
was towards the top of the wide passage where 80% of the time the down action was selected.

Result visualizations. We now present some visualizations of the policies learned by various meth-
ods: AWR, CQL and CQL (ReDS). Since the reward values are binary and sparse, return curves for
AWR and CQL are not as informative, since they attain a 0 return in any episode, even if they make
some progress. Therefore, we present the results in the form of state-visitation density plots under
rollouts from the learned policy. Observe in Figures 6 and 7 that neither AWR or CQL are able to
actually successfully traverse the maze, and get stuck in it. Note that τ and α control the strength of
the distributional constraint in the methods AWR and CQL respsectively. Varying the temperature
hyperparameter τ for AWR and α for CQL does modify the density in the narrow hallways, but
utilizing too small of a parameter leads the agent to more frequent crashes in the narrow hallways.
This makes the agent spend a higher fraction of its visitation in one such narrow region, whereas a
higher τ or α does not even reach the third narrow hallway with a high-enough visitation.

REDS State Visitations

Figure 8: Results of running CQL (ReDS) on the gridworld. Note that CQL (ReDS) does actually
succeed at solving the task.

On the other hand, the method we propose in this paper, ReDS, when combined with CQL is able to
successfully traverse this maze, as shown in Figure 8.

Analysis. These experiments are consistent with our expectations. When distributional constraints
are faced with highly heteroskedastic action distributions at subsequent states, they failed to perform
good actions at these consecutive states. A strong distributional constraint leads to the agent being
too close to the behavior policy, whereas a weaker constraint fails to identify good actions at states
where the behavior policy is narrow.

A.1 WHY AND WHEN DO DISTRIBUTIONAL CONSTRAINTS FAIL IN SCENARIOS WITH
HETEROSKEDASTIC DATA?

In this section, we shall discuss why distributional constraints are especially worse than support
constraints in scenarios with heteroskedastic data. Let’s first consider a simple single-state bandit
problem. In this simple one-state problem, we must find a single optimal action by using offline
data. At first, it might appear that when faced with a wide behavior policy, distributional constraints

17

would clearly fail since they would not deviate far away from the behavior policy. However, note that
by carefully choosing the strength of the distributional constraint, we can, in principle, control the
strength of the distributional constraint quite effectively. To see this concretely, consider applying
CQL (Equation 2) to a single-state bandit problem. The Q-values on actions not observed in the
training dataset will be clearly pushed down to −∞. In addition, choosing a non-zero α will allow
us to precisely control how close the action taken by the learned policy is to the best in-support
action vs how close the learned policy is to the behavior policy. Therefore, for an optimally chosen
value of α, distributional constraint methods should already work well in the single-state setting.

However, the precise challenge with distributional constraints arises in the multi-state setting, where
finding a single value of α that can work well at all states might be can be exceedingly challenging
in practice. This is the setting with heteroskedastic data that our paper considers, including in our
didactic example above. In such a setting, a strong distributional constraint is able to take a desirable
action when the behavior policy is narrow (for example in the narrow room). However, the action
distribution has wider support in the wider room and the strong distributional constraint would not
take a desirable action in this setting due to the high entropy of the behavioral distribution in this
setting. In contrast, with a weaker distributional constraint, a bad out-of-distribution action may
be taken where the behavior policy is narrow which can lead to instability in the policy. Note that
these challenges are not, however, present in the single-state scenario. Our method CQL (ReDS) can
tackle the problem in this setting by modulating the strength of the constraint per state. This allows
the agent to stay close to the behavior distribution in the narrow room as well as learning to output
the most desirable in-support action in the wider room.

A.2 HETEROSKEDASTIC DATA VS EXPLORATORY DATA

There is a distinction between exploratory data (Yarats et al., 2022) and heteroskedasticity. In the
context of offline RL, exploratory data typically refers to being able to cover all possible state-
action pairs, as uniformly as possible. On the other hand, heteroskedasticity is used to refer to
disproportionate coverage: when the action distribution in the offline data is more uniform at
certain states, but very narrow at others. Thus, a heteroskedastic dataset does not have high coverage
in the sense of observing all possible state-action pairs.

Mathematically, while the notion of coverage is typically quantified by the concentrability coeffi-
cient which denotes the worst case density ratio between the distribution of the training dataset and
the distribution of the learned policy, as shown below:

Cπ = max
s,a

dπ(s,a)

µ(s,a)
,

where µ(s,a) denotes the state-action distribution induced by the dataset, while dπ(s,a) denotes the
state-action visitation distribution of a policy π. maxπ C

π is generally expected to be smaller when
µ(s,a) is more uniform. In contrast, we quantify the notion of heteroskedasticity by the variation
in density ratios (in this case, action density ratios, π(a|s)

πβ(a|s)) across the state space in Equation 4
(reproduced below for convenience).

Cπdiff = E
s1,s2∼dπ

(√D(π, πβ)(s1)

µ(s1)
−

√
D(π, πβ)(s2)

µ(s2)

)2
 .

Even if the dataset has high coverage (i.e., it has a low concentrability coefficient, Cπ), it can attain
a higher Cπdiff, because of higher variation in the density ratios across state spaces.

Out of all methods considered in Yarats et al. (2022), we note that the methods classified as “Data”
(APT, ProtoRL) attempt to maximize state coverage, the methods classified as “Knowledge” (ICM,
Disagreement, RND) attempt to find surprising state-action pairs and visit them, and the methods
classified as “Competence” (SMM, DIAYN, APS) that maximize the mutual information between
the state distribution attained by the learned policy and the learned skills also implicitly optimize
for state coverage. In effect, all of these methods aim to visit all state-action pairs (or all states),
which is akin to the standard definition of concentrability, whereas heteroskedastic data corresponds
distinctly to disproportionate action coverage at different states.

18

B PROOFS

In this appendix, we will provide proofs for the various theoretical results in the main paper: The-
orem 3.1. We will first discuss some preliminaries and notation, then present the proof for Theo-
rem 3.1, and finally the remaining results.

B.1 NOTATION AND PRELIMINARIES

Let πβ(a|s) denote the behavior policy. Note that the dataset, Di is generated from the marginal
state-action distribution of πβ , i.e., D ∼ dπβ (s)πβ(a|s). Define d̂π as the state marginal distribution
introduced by π under the empirical MDP defined by the transitions in the dataset. Let DCQL(p, q)
denote the following distance between two distributions p(x) and q(x) with equal support X :

DCQL(p, q) :=
∑
x∈X

p(x)

(
p(x)

q(x)
− 1

)
.

We drop the subsrcipt “CQL” from DCQL for clarity. (Kumar et al., 2020) showed that when opti-
mizing the generic distributional constraint algorithm shown in Equation 1, the resulting policy π∗
attains a high probability safe-policy improvement guarantee, i.e., J(π∗) ≥ J(πβ)− ζ, where ζ is:

ζ = O
(

1

(1− γ)2

)
Es∼d̂π∗

[√
D(π∗, πβ)(s) + 1

|D(s)|

]
+

α

1− γ
Es∼d̂π [D(π∗, πβ)(s)]. (13)

We can further express |D(s)| = |D||µ(s)|. The first term in Equation 13 corresponds to the decrease
in performance due to sampling error and this term is high when the learned policy π∗ visits low
density states under the dataset distribution (i.e., µ(s) is small) and when the divergence from the
behavior policy πβ is higher under these states. We will use this safe policy improvement guarantee
in our proofs.

B.2 FORMAL RESTATEMENT OF THEOREM 3.1

Theorem B.1 (Formal version of Theorem 3.1). For any prescribed level of safety ζ, i.e., the learned
policy satisfies J(π)− J(πβ) ≥ −ζ, the maximum possible policy improvement over choices of α:

max
α

[J(πα)− J(πβ)] ≤ ζ+,

where ζ+ is given by:

ζ+ := max
α

h∗ (α) · 1

(1− γ)2
s.t.

c1

√
log |S||A|δ

(1− γ)2

√
Cπαdiff

|D|
− ζ ≤ α ·

(
Es∼d̂πα [D(πα, πβ)(s)]

1− γ

)
︸ ︷︷ ︸

:=g(α)

(14)

where h∗ is a monotonically decreasing function of α, and h(0) = const.

Intuition behind the theorem: We will show in the proof of this theorem that g(α) is a monoton-
ically increasing function of α and g(0) = 0. This means that if the value of Cπdiff is large for all
policies π, the value of α = g−1

(√
Cπdiffc

′ − ζ
)

(where c′ is the constant and subsumes the term
containing δ) is also large. Further, note that h∗(α) is decreasing in α. This means that the larger
the value of α, the smaller the value of h∗(α), and hence, smaller the value of ζ+. This means that
as Cπdiff increases, α needs to take larger values to satisfy the safety constraint, and this reduces the
value of maximal improvement, ζ+.

Conversely, to attain a larger improvement ζ+, if we choose a smaller α for a problem where Cπdiff
is large for all policies, then, we must give up on the safety guarantee, and ζ would be large. This
means that the learned policy πα might substantially degrade beyond the behavior policy.

19

B.3 PROOF OF THEOREM 3.1

In order to prove this result, we we will utilize a basic algebraic inequality mentioned below in
Lemma B.1.

Lemma B.1 (Algebraic variation). Given any N positive real numbers, x1, x2, · · · , xN :(
N∑
i=1

√
xi

)2

≥
N∑
i=1

xi ≥
1

(N − 1)

∑
i<j

(
√
xi −

√
xj)

2. (15)

Proof. For every xi, define yi =
√
xi. Then, the difference between the two sides in the equation

above is given by:

∑
i

y2
i −

1

(N − 1)

∑
i<j

(y2
i + y2

j − 2yiyj) =
∑
i

y2
i −

N − 1

N − 1
y2
i +

1

N − 1

∑
i<j

2yiyj (16)

=
1

N − 1

∑
i<j

2yiyj ≥ 0, (17)

where the first step follows by rearranging yi and yj , and the final step follows by noting that yi ≥ 0
for all i. The other inequality follows trivially by noting that

√
xi are positive, and applying the

standard formula for sum of squares.

We will also require a Lemma that allows us to upper bound the performance difference J(π) −
J(πβ) in terms of the metric DCQL(π, πβ) that appears in the safe policy improvement guarantee in
Equation 13.

Lemma B.2 (Tight upper bound on policy improvement.). Assume that the reward function r(s,a)
of the MDP is bounded such that ∀s,a, r(s,a) ∈ [−Rmax, Rmax]. For any two policies π and πβ ,
we have the following:

J(π)− J(πβ) . O
(

1

(1− γ)2

)
· Es∼dπ [D(π(·|s), πβ(·|s))] ·Rmax. (18)

Proof. The core of the proof of this lemma relies on the fact that for any given function ν(x) over
some space x, we can upper bound, ∆ν(p, q) := Ex∼p[ν(x)]− Ex∼q[ν(x)] in terms of D(p, q). To
show this, we expand this expression:

∆ν(p, q) :=
∑
x

(p(x)− q(x)) · ν(x) (19)

=
∑
x

q(x) ·
(
p(x)

q(x)
− 1

)
· ν(x) (20)

=
∑

x:
p(x)
q(x)
≥1,ν(x)≥0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) +

∑
x:
p(x)
q(x)

<1,ν(x)≥0

q(x)

(
p(x)

q(x)
− 1

)
ν(x)

+
∑

x:
p(x)
q(x)
≥1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) +

∑
x:
p(x)
q(x)

<1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)
ν(x).

Each of the four terms above can be bounded independently as follows: for the first two terms,
we multiply by p(x)

q(x) , the third term is clearly negative, and the final term is upper bounded by

20

multiplying by 1 + p(x)
q(x) :∑

x:
p(x)
q(x)
≥1,ν(x)≥0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) ≤

∑
x:
p(x)
q(x)
≥1,ν(x)≥0

q(x)
p(x)

q(x)

(
p(x)

q(x)
− 1

)
ν(x) (21)

∑
x:
p(x)
q(x)

<1,ν(x)≥0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) ≤

∑
x:
p(x)
q(x)
≤1,ν(x)≥0

q(x)
p(x)

q(x)

(
p(x)

q(x)
− 1

)
ν(x) (22)

∑
x:
p(x)
q(x)
≥1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) ≤ 0 (23)

∑
x:
p(x)
q(x)

<1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) ≤

∑
x:
p(x)
q(x)

<1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)(
1 +

p(x)

q(x)

)
ν(x).

(24)

Finally, for each of these terms, we can now upper bound ν(x) by its maximum absolute value,
|ν(x)| ≤ ν0, and combine the terms to get the following bound on ∆ν(p, q):

∆ν(p, q) ≤ ν0

∑
x:ν(x)>0

p(x)

(
p(x)

q(x)
− 1

)
+ 0 + ν0

∑
x:
p(x)
q(x)

<1,ν(x)<0

(
p2(x)

q(x)
− q(x)

)
(25)

≤ ν0

[∑
x

p2(x)

q(x)
− 1

]
, (26)

where Equation 26 follows from using the fact that for the case when p(x)/q(x) > 1 but ν(x) ≤ 0,
p(x)

(
p(x)
q(x) − 1

)
> 0, and hence it upper bounds the RHS of Equation 23. For the last case, where

x : p(x)
q(x) < 1, ν(x) < 0, we note that

∑
x:
p(x)
q(x)

<1,ν(x)<0
q(x) ≥

∑
x:
p(x)
q(x)

<1,ν(x)<0
p(x), and hence

the upper bound on this term in Equation 26 follows. To complete the argument note that DCQL
exactly takes the form obtained in the final equation, and hence:

∆ν(p, q) ≤ ν0 ·D(p, q).

We can now use this result to bound the return differences, by using standard results for bounding
the performance difference between policies (Achiam et al., 2017; Schulman et al., 2015) in terms of

1
(1−γ)2×D(π, πβ). At the core of these results is a bound on Ea∼π(·|s)[f(s,a)]−Ea∼πβ(·|s)[f(s,a)],
and hence the result proven above directly applies. This proves the required result.

B.4 ADDITIONAL TECHNICAL LEMMAS

In this section, we will provide proofs of two technical lemmas, that allow us to conclude the proof
of Theorem 3.1. For these lemmas, we will consider a generic optimization problem,

max
x

f(x) + α g(x), (27)

where g(x) > 0 for any x, and α can only take non-negative values.

Lemma B.3 (Value of g(x) as a function of α). Let x∗α be the value of x that maximizes Equation 27
for a given fixed value of α. Then the following statements hold:

1. For any α ≥ β ≥ 0, g(x∗α) ≥ g(x∗β).

2. For any α ≥ β ≥ 0, αg(x∗α) ≥ βg(x∗β).

Proof. For any given α, x∗α satisfies the following inequality:

∀x′, f(x∗α) + αg(x∗α) ≥ f(x′) + αg(x′). (28)

21

Using the above relation, we can write down two inequalities relating x∗α and x∗β :

f(x∗α) + αg(x∗α) ≥ f(x∗β) + αg(x∗β) (29)

f(x∗β) + βg(x∗β) ≥ f(x∗α) + βg(x∗α) (30)

Now, adding the two inequalities above, and cancelling the terms f(x∗α) + f(x∗β) from both sides,
we obtain:

(α− β) g(x∗α) ≥ (α− β) g(x∗β). (31)

Since α − β is non-negative, it is either equal to 0, in which case g(x∗α) = g(x∗β) or it is positive,
in which case, g(x∗α) ≥ g(x∗β). Combining these two cases, we get the desired result in (1). For
proving the second part (2), note that we can write the difference of the two sides as:

αg(x∗α)− βg(x∗β) = αg(x∗α)− αg(x∗β) + αg(x∗β)− βg(x∗β) (32)

= α
[
g(x∗α)− g(x∗β)

]
+ (α− β)g(x∗β) (33)

≥ 0 + 0 = 0, (34)

where the last inequality follows from the fact that g(x) ≥ 0 and α > β.

We will now provide a proof for Theorem 3.1.
Theorem B.2 (Theorem 3.1 restated). W.h.p. ≥ 1 − δ, for any prescribed level of safety ζ, the
maximum possible policy improvement over choices of α, J(πα)− J(πβ) ≤ ζ+, where ζ+ is given
by:

ζ+ := max
α

h∗ (α) · 1

(1− γ)2
s.t.

c1
(1− γ)2

√
Cπαdiff

|D|
− α

1− γ
Es∼d̂πα [D(πα, πβ)(s)] ≤ ζ,

(35)

where h∗ is a monotonically decreasing function of α, and h(0) = O(1).

Proof of Theorem B.2. To prove this theorem, we will apply Lemma B.1 on xi =
D(πα(·|si)||πβ(·|si))

µ(si)
and combine it with a the safe policy improvement guarantee for behavior regu-

larization methods that admit updates of the form shown in Equation 1.

First, we note by applying Lemma B.1 in its expectation form that:(
Es∼d̂πα

[√
D(πα(·|s)||πβ(·|s))

µ(s)

])2

≥ Es1∼d̂πα ,s2∼d̂πα

[√
D(πα(·|s1)||πβ(·|s1))

µ(s1) −
√

D(πα(·|s2)||πβ(·|s2))
µ(s2)

]2
,

where the term on the RHS of the above equation corresponds to Cπdiff.

Now we can plug this into the safe-policy improvement guarantee to obtain the resulting result
as follows. Note that the first term in the bound in Equation 13 can be lower bounded using the
differential concentrability as discussed above, and therefore, we get the following lower bound on
ζ:

ζ ≥ O
(

1

(1− γ)2

)√
Cπαdiff

|D|
+ αEs∼d̂πα [D(πα, πβ)(s)] , (36)

which is exactly the same as the expression for the constraint in Theorem 3.1.

Next we provide an upper bound on the maximal improvement that can be possible, in terms of
D(πα, πβ). For this, we will utilize Lemma B.2, and we can directly upper bound J(πα) − J(πβ)
as follows:

J(πα)− J(πβ) .
1

(1− γ)2
Es∼d̂πα [D(πα, πβ)(s)] ·Rmax. (37)

Finally, we express this upper bound in terms of α.

Now, note that the RHS in Equation 37 depends on Es∼d̂πα [D(πα, πβ)(s)], which is directly the
term that a generic distributional constraint algorithm minimizes (Equation 1). We wish to under-
stand how this term evolves a function of α.

22

Now we will invoke Lemma B.3 to understand the behavior of the term above when solving the
optimization problem in Equation 1. To do so, consider any α, α′ and note that f(x) = Ĵ(π) and
g(x) = −Es∼d̂π [D(π, πβ)(s)]. Now applying Lemma B.3, Part (1), we note that:

Es∼d̂πα (s)[D(πα, πβ)(s)] ≤ Es∼d̂πα′ (s)[D(πα′ , πβ)(s)], (38)

for α′ ≤ α. This means that we can upper bound this quantity by a function h∗(α) that is monoton-
ically decreasing in α.

Therefore, the maximal improvement is upper bounded by: h∗(α)O
(

1
(1−γ)2

)
, which completes the

proof of this theorem.

B.5 PROOF OF LEMMA 4.1

Lemma B.4 ((Lemma 4.1 restated) Per-state modification.). Let g represents g (τ · π(·|s)). The
Q-function obtained after one TD-learning iteration using the objective in Eq. 10 is:

Qθ(s,a) := BπQ̄(s,a)− απ(a|s) + πβ(a|s)g − 2πβ(a|s)
2πβ(a|s)

(39)

where BπQ̄(s,a) is the Bellman backup operator applied to a delayed target Q-network.

Recall from Section 2 that the objective of CQL consists of two terms

min
θ

α (Es∼D,a∼π [Qθ(s,a)]− Es,a∼D [Qθ(s,a)])︸ ︷︷ ︸
R(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s,a)− BπQ̄(s,a)

)2]
, (40)

where BπQ̄(s,a) is the Bellman backup operator applied to a delayed target Q-network. In tabular
setting, the Q-function obtained after one iteration of TD-learning using the objective function in
Eq. 40 is given by:

Qθ(s,a) := BπQ̄(s,a)− α
[
π(a|s)
πβ(a|s)

− 1

]
. (41)

In CQL, the result in Eq. 41 is obtained by setting the derivative of the objective in Eq. 40 with
respect to the Q-values to 0, and solve for Qθ(s,a) (Kumar et al., 2020). The objective for ReDS is
given by:

min
θ

JQ(θ) = R(θ; ρ) +
1

2
Es,a,s′∼D

[(
Qθ(s,a)− BπQ̄(s,a)

)2]
(42)

Notice that the main difference between the original CQL objective in Eq. 40 and the new objective
in Eq. 42 is the distribution with which we push down Q values. The objective in Eq. 40 pushes
Q values down under the learned policy π, whereas the objective in Eq. 42 pushes Q values down

under a mixture of π and ρ, i.e.
1

2
π+

1

2
ρ. Since ρ is parameterized by a neural network whose input

does not contain the Q values, its gradient with respect to the Q values is 0. Additionally, since the

mixture
1

2
π +

1

2
ρ plays the same role that π plays in the objective function in Eq. 40, we therefore

can obtain the solution for the Q-values after updating the Q-function using the objective function
in Eq. 42 simply by replacing π in Eq. 41 with the mixture. That is, in tabular setting, after updating
the Q-function using the objective in Eq.42, the Q-values are:

23

Qθ(s,a) = BπQ̄(s,a)− α

 1

2
π(a|s) +

1

2
ρ(a|s)

πβ(a|s)
− 1

 .
= BπQ̄(s,a)− α

[
π(a|s) + ρ(a|s)

2πβ(a|s)
− 1

]
.

= BπQ̄(s,a)− α
[
π(a|s) + ρ(a|s)− 2πβ(a|s)

2πβ(a|s)

]
.

= BπQ̄(s,a)− α
[
π(a|s) + πβ(a|s)g(.)− 2πβ(a|s)

2πβ(a|s)

]
.

since ρ subsumes πβ · g, giving us the desired result.

B.6 PROOF OF LEMMA 4.2

Intuition: Comparison of CQL and CQL (ReDS) objectives We will first intuitively compare the
objectives in CQL and CQL (ReDS) to understand where the difference arises from. We write down
the CQL (ReDS) objective below:

max
π∈Π

Ĵ(π)− α

2(1− γ)
Es∼d̂π

[
D(π, πβ)(s) + · E

a∼π(·|s)
[g (τ · π(a|s)) I {πβ(a|s) > 0}]

]
. (43)

and now the CQL objective:

max
π∈Π

Ĵ(π)− α

(1− γ)
Es∼d̂π [D(π, πβ)(s)] . (44)

Observe that the only difference between CQL and ReDS stems from the fact that while the regular-
izer in CQL only optimizes the policy to stay close to the behavior policy, the regularizer in ReDS
minimizes an additional term

∑
a π(a|s)g(τ · π(a|s)). This term attempts to make the behavior

policy more “sharp”, as g is a monotonically decreasing function of its argument, by preventing π
to be less sharp in states where πβ is broad. This enables π to find the action in the dataset support
that maximizes the learned return Ĵ(π), even when πβ is broad.

To prove Lemma 4.2, we will consider the following abstract update form for the policy evaluation
version of CQL (ReDS), that obtains the next Q-function iterate Qk+1:

min
Q

α

(
E

s∼D,a∼πre
[Q(s,a)]− E

s∼D,a∼πβ
[Q(s,a)]

)
+

1

2
E

s,a,s′∼D

[
(Q(s,a)− BπQk(s,a))

2
]
, (45)

Lemma B.5 (CQL (ReDS) restated more completely.). CQL (ReDS) solves the following optimiza-
tion problem, when α is large enough:

max
π

Ĵ(π)− α

2(1− γ)
Es∼d̂π

[
D(π, πβ)(s) + Ea∼π(·|s) [g (τ · π(a|s)) I {πβ(a|s) ≥ 0}]

]
.

Proof. For proving Lemma 4.2, we follow an argument similar to the proof of Theorem 3.1 from
Kumar et al. (2020). By differentiating the above objective w.r.t. Q, we note that the ReDS + CQL
objective above exhibits the following effective Bellman backup

∀s,a ∈ D, Qk+1(s,a) := (BπQk) (s,a)− α
(
πre(a|s)
πβ(a|s)

− 1

)
. (46)

This backup is equivalent to running pessimistic RL with a reward bonus equal to
−α

(
πre(a|s)
πβ(a|s) − 1

)
, and therefore, the policy obtained by maximizing the resulting Q-function can

be expressed as:

max
π

Ĵ(π)− α 1

1− γ
Es∼d̂π

[
Ea∼π(·|s)

[(
πre(a|s)
πβ(a|s)

− 1

)]]
(47)

≡ max
π

Ĵ(π)− α 1

2(1− γ)
Es∼d̂π [D(π, πβ)(s)]− α

2(1− γ)
Es,a∼d̂π [I{πβ(a|s) > 0}g (τ · π(a|s))] .

(48)

24

We retain the notion of support I{πβ(a|s) > 0} because πβ(a|s) in the denominator only cancels
out for actions within the support of the behavior policy, as for all other actions, this term the term
would be ill-defined as πβ(a|s) = 0 appears in the denominator. Hence this term in the above
equation cannot sum up over actions a not in the behavior policy in the second term (these actions
will be pushed down to have −∞ Q-values). If we just cancelled the πβ in the denominator, note
that g(τ · π(a|s)) is not guaranteed to be 0 on actions a, where πβ(a|s) = 0. Hence, we must retain
the indicator function to explain this result properly. Instead, for the case of standard CQL, the
divergence D(π, πβ)(s) term prevents π from putting a non-zero density on actions where πβ(a|s)
in CQL, or else D(π, πβ)(s) =∞, meaning that the Q-value for such a π would be −∞.

C IMPLEMENTATION DETAILS OF CQL (REDS)

In this section, we will provide implementation details about our algorithm, CQL (ReDS). The
pseudo-code in Algorithm 1 illustrates the different update steps of our algorithms. In addition, we
provided a detailed python-like algorithm description for ease of implementation. This can be found
below in Section C.1.

Most of the components of Algorithm 1 are straightforward and follow the same convention, training
update and, as we will discuss, hyperparameters as the CQL algorithm. This includes training the
policy πφ, and for the most part training the critic Qθ. The main difference in the update for CQL
(ReDS) is utilizing the mixture of π and ρ in the CQL regularizer. For obtaining ρψ , we utilize
a standard advantage-weighted training update, following the papers (Kostrikov et al., 2021a; Nair
et al., 2020b; Peng et al., 2019). Following these prior works, we also clip the argument to the
exponent between a minimum range and a maximum range to be numerically stable:

Es,a∼D[log ρψ(a|s) · exp [clip (−Aπθ (s,a)/τ, σmin, σmax)] . (49)

In our experiments, we chose σmin = −10 and σmax = 5 across all the tasks and domains we study.
These details are standard in training advantage-weighted algorithms.

C.1 DETAILED ALGORITHM DESCRIPTION FOR CQL (REDS)

Algorithm 1 provides the pseudo-code for CQL (ReDS). We provide the detailed description of
how each update step in Algorithm 1 is implemented using Python syntax based on the PyTorch
Framework in this section. We include 3 code listings below, illustrating the update steps for the
parametric Q-functions, the policy and the learnt distribution ρ.

25

Listing 1: Training Q networks given a batch of data, corresponding to step 3 in Algorithm 1

q d a t a = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] , b a t c h [’ a c t i o n s ’])

n e x t d i s t = a c t o r (b a t c h [’ n e x t o b s e r v a t i o n s ’])
n e x t p i a c t i o n s , n e x t l o g p i s = n e x t d i s t . sample ()

t a r g e t q v a l = t a r g e t c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] ,
n e x t p i a c t i o n s)

t a r g e t q v a l = b a t c h [’ r e w a r d s ’] + \
s e l f . gamma * (1 − b a t c h [’ dones ’]) * t a r g e t q v a l

t d l o s s = m s e l o s s (q d a t a , t a r g e t q v a l)

i m p o r t a n c e s a m p l i n g term
num samples = 4

assume env i s n o r m a l i z e d be tween [−1 , 1]
r a n d o m a c t i o n s = u n i f o r m s a m p l e ((num samples ,

b a t c h [’ a c t i o n s ’] . shape [− 1]) , min = −1 , max=1)
random pi = 0 . 5 ** b a t c h [’ a c t i o n s ’] . shape [−1]

d i s t = a c t o r (b a t c h [’ o b s e r v a t i o n s ’])
p i a c t i o n s , l o g p i s = d i s t . sample (num samples)

r h o d i s t = rho (b a t c h [’ o b s e r v a t i o n s ’])
r h o a c t i o n s , l o g p r o b s r h o = r h o d i s t . sample (num samples)

q r a n d i s = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] ,
r a n d o m a c t i o n s) − random pi

q p i i s = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] ,
p i a c t i o n s) − l o g p i s

q r h o i s = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] ,
r h o a c t i o n s) − l o g p r o b s r h o

c a t q = c o n c a t e n a t e (q r a n d i s , q p i i s , n e w a x i s =True)
c a t q = logsumexp (c a t q , a x i s = −1)

c a t q r h o = logsumexp (q r h o i s , a x i s = −1)

average be tween rho and p i
p u s h d o w n t e r m r e d s = 0 . 5 * (c a t q + c a t q r h o)

r e d s l o s s = t d l o s s + \\
((p u s h d o w n t e r m r e d s − q d a t a) . mean () * c q l a l p h a)

c r i t i c o p t i m i z e r . z e r o g r a d ()
r e d s l o s s . backward ()
c r i t i c o p t i m i z e r . s t e p ()

26

Listing 2: Training the policy (or the actor) given a batch of data (step 4 in Algorithm 1)

I d e n t i c a l t o CQL
r e t u r n d i s t r i b u t i o n o f a c t i o n s
d i s t = a c t o r (b a t c h [’ o b s e r v a t i o n s ’])

sample a c t i o n s w i t h a s s o c i a t e d l o g p r o b a b i l i t i e s
p i a c t i o n s , l o g p i s = d i s t . sample ()

c a l c u l a t e q v a l u e o f a c t o r a c t i o n s
q p i = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] , a c t i o n s)
q p i = q p i . min (a x i s =0)

same o b j e c t i v e as CQL (kumar e t a l .)
a c t o r l o s s = (l o g p i s * s e l f . a l p h a − q p i) . mean ()

o p t i m i z e l o s s
a c t o r o p t i m i z e r . z e r o g r a d ()
a c t o r l o s s . backward ()
a c t o r o p t i m i z e r . s t e p ()

Listing 3: Training the ρψ distribution given a batch of data (step 5 in Algorithm 1)

AWR s t y l e upd a t e t o f i n d rho

sample p o l i c y a c t i o n s f o r advan tage c a l c u l a t i o n
d i s t = a c t o r (b a t c h [’ o b s e r v a t i o n s ’])
p i a c t i o n s , l o g p i s = d i s t . sample ()

c a l c u l a t e advan tage
q d a t a = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] , b a t c h [’ a c t i o n s ’])
v a l u e = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] , a c t i o n s)
a d v a n t a g e = (q d a t a − v a l u e . min (0)) . mean ()

awr s t y l e c l i p p i n g
c l i p p e d a d v a n t a g e = c l i p (a d v a n t a g e / s e l f . t e m p e r a t u r e , \

min = −10 , max=5)

f i n d l o g rho (a | s)
r h o d i s t = r h o (b a t c h [’ o b s e r v a t i o n s ’])
l o g p r o b r h o = r h o d i s t . l o g p r o b (b a t c h [’ a c t i o n s ’])

Advantage Weigh ted Log P r o b a b i l i t i e s i s t h e l o s s f o r rho
r h o l o s s = −(exp (− c l i p p e d a d v a n t a g e) * l o g p r o b r h o)
r h o l o s s = r h o l o s s . mean ()

r h o o p t i m i z e r . z e r o g r a d ()
r h o l o s s . backward ()
r h o o p t i m i z e r . s t e p ()

27

D TASK AND DATASET DESCRIPTIONS

In this section, we will describe the various tasks we introduce in this paper. We also provide
qualitative descriptions of these tasks here.

Heteroskedastic antmaze navigation. We introduce four new antmaze datasets which exhibit two
different dataset distributions each for the medium and large mazes from D4RL (Fu et al., 2020). We
reuse the layouts of the mazes directly from D4RL, but modify the data collection protocol. For the
noisy datasets, given an observation from the environment, we first compute the action that would
have been taken by the D4RL behavior policy, and then add Gaussian noise to the action. While
this alone is not much harder, crucially, note that the variance of this added Gaussian noise differs
depending on the location of the Ant in the 2D Maze. In addition there is a small bias added to the
D4RL behavior policy, but this bias is dominated by noise. We present the noise standard deviations
(indicated “Noise”) and the bias added (indicated “Bias”) for this dataset as a function of different
location intervals in the maze in the left part of the Figure 9 below.

Figure 9: The distribution of noise and bias in the heteroskedastic antmaze datasets as a function
of the x-position of the ant in the maze. While the noisy datasets primarily add noise, the biased
datasets also add significant bias beyond the noise. The value of a given bar is the variance of the
noise / bias added in the region between the x-position for that bar, and the next one.

For the biased datasets, in addition to adding location-dependent Gaussian noise to the action
computed by D4RL behavior policies, we add a strong bias to the action (see Figure 9 (right)). Cru-
cially note that the direction of this bias (i.e., the sign) changes based on the location of the Ant in
the 2D maze, which mimics the scenario studied in our didactic navigation example in Section 3.1.
In summary, because in some 2D regions of the maze, the values of the noise and bias added to
the actions are larger, while in other 2D regions, they are smaller, the new offline datasets contain
more heteroskedastic data distribution, where an optimal learned policy must deviate away from
the data distribution much more in certain regions, whereas much lesser in other regions, which
would correspond to an increase in the differential concentrability. This is demonstrated quantita-
tively in Table 4a. Thus, we expect that learning well on these tasks modulating the strength of the
distributional constraints per state.

Visual robotic pick and place. We introduce a pick and place dataset, which exhibits a unique
dataset distribution for a robotic pick and place manipulation task, building on the framework from
Singh et al. (2020). As shown in Figure 11, the robotic setup is a 6-DOF WidowX robot in front of a
green bowl with 2 objects: a target object (the ball in this case) and a distractor object (the can). The
objective is to place the target object into the bin. The reward function is a sparse, binary indicator
of success, where a +1 reward is given when the object is placed in the bin. This task must be done
from 128× 128× 3 raw visual observations, without access to either the robot state, or the state of
the objects, which can change as the objects can roll on the surface.

Visual robotic bin sorting. We introduce a bin sorting tasks, which are also built on the framework
from Singh et al. (2020). As shown in Figure 11, the robotic setup is a 6-DOF WidowX robot in
front of two identical white bins with 2 objects to sort. The objective is to sort each object into its
respective bins the target object in to the bin. The reward function is a sparse, binary indicator of
success, where a ”+1” reward is given when both objects are placed in their correct bins. This task
must be done from 128 × 128 × 3 raw visual observations, without access to either the robot state,
or the state of the objects, which can change as the objects can roll on the surface.

28

Figure 10: Visualizing a sample trajectory for the visual pick-place robotic manipulation task.
Here is an example successful trajectory in the dataset collected using a scripted policy. Th robot
reaches for the target object (the green ball), lifts it, and places it inside of the green container.

Figure 11: Visualizing sample trajectories for the visual bin sorting robotic manipulation task.
Here are two sample trajectories for the binsorting domain. Top: A successful trajectory in the
dataset. Here the robot places the white cylinder in the right bin and the blue ball in the left bin,
succesfully sorting the objects into their respective bins. Bottom: A unsuccessful trajectory in the
dataset. Here the robot places both objects in the same bin. This is unsuccessful as an object was
placed in the incorrect bin thereby not sorting them in a correct manner.

To collect a heteroskedastic dataset, we run data collection using hardcoded scripted control policies,
whose success rate and variance can be controlled. Each trajectory in the dataset was collected in
the following manner. For the first phase, the robot reaches towards the object without any bias and
grasps it with a reasonable success rate. Here, though, the noise and stochasticity in the scripted data
collection and the inaccuracies in the scripted policy make it not succeed for every trial. During the
second phase, where the robot places the object in the bin, there was a bias towards placing the object
in a position in the workspace that does not correspond to the target location of the bin for which the
robot can attain a reward, and which the robot will observe during evaluation. For our experiments,
this bias was 85%. This forces the data distribution to be heteroskedastic: for the picking segment
of this task, the behavior policy is centered around the desired optimal behavior i.e., grasping the
object successfully, whereas for the placing segment, the behavior is biased towards carrying the
object to the incorrect regions, requiring significant deviations from the behavior policy to succeed.
An algorithm is now required to have a non-uniform amount of closeness to the behavior policy.

Atari game playing. For the Atari tasks we consider in the paper, we devised a heteroskedastic data
composition based on the DQN Replay dataset (Agarwal et al., 2020) which comprises of transitions
found in the replay buffer of a run of an online DQN. Since this dataset consist of all the policies
that the DQN agent produced over the course of training, and since Atari typically uses ε-greedy
exploration, where the value of ε decays over time, different trajectories of this dataset are generated
from different behavior policies, that all have different levels stochasticity. Naturally, since the value
of ε decays over training and the performance of online DQN increases, the trajectories with higher
return generally correlate with having lower stochasticity.

29

Given this information, we attempted to subsample a dataset that is heteroskedastic. For this purpose,
we first divide the full replay buffer into N equal chunks, where chunk 0 consists to experience
observed earliest in training, while the chunk N − 1 consists of experience seen near the final parts
of training. Then, we subsample 20% of the trajectories from each of these chunks independently to
obtain an intermediate dataset that comes from multiplies policies, observed at different times while
training online DQN. Then, for any given trajectory τ of length L in the replay chunk i, we only
retain the transitions occurring between time steps b (L−i)×N

L c : b (L−i+1)×N
L c in our final dataset

and discard all the remaining transitions. This essentially means that the data closer to the initial
states of the game comes from a good, less stochastic policy, whereas the data close to the final states
of the game from a worse, highly stochastic policy. We develop two such datasets corresponding
to N = 2 and N = 5 chunks. These chunks concatenated together construct the replay buffer of
transitions that correspond to the 2 and 5 policy experiments seen in Section 5.

To see why this data is heteroskedastic, note that at different states of the game, we observe actions
with different amounts of stochasticity and bias. This is because, as the game progresses, the effec-
tive behavior policy induced by the offline dataset exhibits a bias towards suboptimal actions (from
the chunks that are earlier in DQN training) while also exhibiting substantial noise. The states that
are closer to the initial states of the game, on the other hand, have an effective behavior policy that
is primarily centered around a good action, with very little noise. In order to succeed, an offline RL
algorithm must have different amount of conservatism at different states.

In our experiments, we considered 10 games including several standard games, and this is a subset
of games studied in prior work (Kumar et al., 2021). The games we considered are: ASTERIX,
BREAKOUT, Q∗BERT, SEAQUEST, SPACEINVADERS, BEAMRIDER, MSPACMAN, WIZARDOF-
WOR, JAMESBOND, PONG.

E EXPERIMENTAL DETAILS

For our experiments on the AntMaze domains, we built on the following open-source implemen-
tation of CQL: https://github.com/young-geng/JaxCQL, for our visual robotic exper-
iments, we utilized our own port of the following implementation from Singh et al. (2020) in Jax:
https://github.com/avisingh599/cog, and for our Atari experiments, we use the offi-
cial implementation of CQL built on Dopamine (Castro et al., 2018): https://github.com/
aviralkumar2907/CQL/tree/master/atari. For certain baselines (e.g EDAC, BEAR),
we utilize the source implementation to stay consistent with the author’s tested and tuned implemen-
tation. We additionally verified the results for D4RL benchmark for these tasks. We will summarize
the hyperparameters in the next sections.

E.1 HYPERPARAMETERS FOR CQL (REDS)

Antmaze domains. For the AntMaze domains, we utilized a temperature parameter τ = 0.3 in
our experiments (found by sweeping over τ ∈ [0.1, 0.3, 1.0, 5.0]), for all the four dataset types
in Table 4b. Every other hyperparameter was kept identical to CQL, which for the case of antmaze
corresponds to applying the CQL regularizerR(θ) with the dual version of CQL, where the threshold
on the CQL regularizer is specified to be 1.0. Following CQL, we used 3-hidden layer critic and
actor networks with layers of size 256, a critic learning rate of 3e-4 and an actor learning rate of
1e-4. We utilized the Bellman backup that computes the target value by performing a maximization
over target values computed for k = 10 actions sampled from the policy at the next state.

Atari domains. For our Atari experiments, we tuned the value of α in CQL (Equation 2) between
two values [0.1, 0.2], and present the sensitivity results in Figure 5, and found that α = 0.1 work
better for CQL. We swept the value of τ ∈ [2.0, 5.0, 7.0] and report the sensitivity sweep in Fig-
ure 12.

Visual Robotic Domains. For the visual pick and place domains, we follow exactly the same
hyperparameters as the CQL implementation from COG (Singh et al., 2020): a critic learning rate
of 3e-4, an actor learning rate of 1e-4, using k = 4 actions from the policy for computing the target
values for computing the TD error, and using k = 4 actions to compute the log-sum-exp in CQL. For
the value of τ , we swept over τ ∈ [0.1, 1.0, 10.0, 100.0], and used a τ = 1.0 for our experiments.

30

https://github.com/young-geng/JaxCQL
https://github.com/avisingh599/cog
https://github.com/aviralkumar2907/CQL/tree/master/atari
https://github.com/aviralkumar2907/CQL/tree/master/atari

F ADDITIONAL ABLATION STUDIES

In this section, we present some results of an ablation study of the performance of CQL (ReDS)
with respect to the temperature hyperparameter τ that appears in Equation 9. Before discussing
the results, let us intuitively aim to understand the significance of this hyperparameter. When τ is
extremely small we would expect ρψ to be a distribution centered at the worst possible action, within
the support of the behavior policy. When τ is large, we would expect the learned ρψ to be close to
the behavior policy, since the exponentiated advantage term would essentially behave as a constraint
against a uniform distribution. Neither of these extremes are desirable, while the former does not
behave much differently than a distributional constraint (except that the Q-value at the action with
the smallest Q-value in the dataset support is not pushed up anymore), the latter also behaves like
a distributional constraint, but with just half the effective multiplier α on the CQL regularizer. We
would therefore expect an intermediate τ to perform the best.

To verify these insights, we study the sensitivity of the performance of CQL (ReDS) with respect to
α on the Atari datasets. Our results shown in Figure 13 confirm that indeed an intermediate value of
τ = 5.0 out of the tested values, τ ∈ [2.0, 5.0, 7.0] works the best.

Figure 12: Sensitivity of CQL (ReDS) to the temperature hyperparameter τ in Equation 9
evaluated on the Atari game experiments with 5 policies. Observe that an intermediate value of
temperature τ = 5.0 works best

In addition, we study the sensitivity of the performance of CQL (ReDS) with respect to α on the
Atari datasets. We report the performance for two different values of α ∈ {0.1, 0.2} from CQL
(Equation 2) in Figure 13. Observe that CQL (ReDS) with a given α outperforms base CQL for
the corresponding α. Additionally note that the degradation in performance of CQL (ReDS) as α
increases is lesser than base CQL.

Figure 13: Sensitivity of ReDS + CQL to the temperature hyperparameter α in Equation 2
We report the performance of CQL (ReDS) vs CQL on the IQM normalized score and the mean
normalized score over ten Atari games, for the case of two (top) and five (bottom) policies. We
consider this performance for two different values of α ∈ {0.1, 0.2} in CQL (Equation 2). Observe
that CQL (ReDS) with a given α outperforms base CQL for the corresponding α. Additionally note
that the degradation in performance of ReDS (CQL) as α increases is lesser than base CQL.

31

G ADDITIONAL BASELINE COMPARISON FOR HETEROSKEDASTIC
ANTMAZE NAVIGATION

In this section we will provide additional baseline comparison for REDS with two additional Offline
RL methods: EDAC (An et al., 2021) and BEAR (Kumar et al., 2019).

G.1 HYPERPARAMETERS FOR EDAC

As done in An et al. (2021), we tune the method over two hyperparameters. The first hyperparam-
eter is the ensemble size N which specifies the number of Q functions. The second parameter we
consider is η, the weight of the ensemble gradient diversity term. Below in table 4, we show the
values considered for each hyperparameter. There is significant overlap to these parameters with the
ones used in the Mujoco Gym and Adroit Domains that the authors used. We utilized the publicly
available code (https://github.com/snu-mllab/EDAC) released by the authors of EDAC
and were able to replicate the results they reported for the D4RL MuJoCo Gym environments in An
et al. (2021).

Table 4: EDAC Hyperparameters

Hyperparameters Values

N 10, 20, 50, 100
η 0, 1, 5, 10, 50, 100, 1000

G.2 HYPERPARAMETERS FOR BEAR

As done in Kumar et al. (2019), we tuned this method over two hyperparameters. The first
is the Kernel Type of the MMD between the behavior policy πβ and the actor π, and found
that Laplacian performed better. The second parameter considered is σ, which is needed for
the Laplacian kernel as defined. Below in table 5, we show the values considered for each hy-
perparameter. There is significant overlap to these parameters with the ones used in the Mu-
joco Gym and Adroit Domains that the authors used. We utilized the publicly available code
(https://github.com/rail-berkeley/d4rl_evaluations) released by the authors
of BEAR and were able to replicate the results they reported for the D4RL MuJoCo Gym environ-
ments in Kumar et al. (2019).

Table 5: BEAR Hyperparameters

Hyperparameters Values

Kernel Type Laplacian, Gaussian
σ 1, 10, 20, 50

32

https://github.com/snu-mllab/EDAC
https://github.com/rail-berkeley/d4rl_evaluations

	1 Introduction
	2 Preliminaries on Distributional Constraints For offline RL
	3 Why Distribution Constraints Fail with Heteroskedastic Data
	3.1 A Didactic Example
	3.2 Characterizing the Challenges with Distributional Constraints

	4 Support Constraints As Reweighted Distribution Constraints
	4.1 Instantiating the Principle Behind ReDS
	4.2 Theoretical Analysis of CQL (ReDS)

	5 Experimental Evaluation
	5.1 Comparison on D4RL Benchmark
	5.2 Comparisons on Constructed Heteroskedastic datasets

	6 Related Work
	7 Discussion
	A Details of the Didactic Navigation Example from Section 3.1
	A.1 Why and When Do Distributional Constraints Fail in scenarios with Heteroskedastic Data?
	A.2 Heteroskedastic Data vs Exploratory Data

	B Proofs
	B.1 Notation and Preliminaries
	B.2 Formal Restatement of Theorem 3.1
	B.3 Proof of Theorem 3.1
	B.4 Additional Technical Lemmas
	B.5 Proof of Lemma 4.1
	B.6 Proof of Lemma 4.2

	C Implementation details of CQL (ReDS)
	C.1 Detailed algorithm description for CQL (ReDS)

	D Task and Dataset Descriptions
	E Experimental Details
	E.1 Hyperparameters for cql (ReDS)

	F Additional Ablation Studies
	G Additional Baseline Comparison for Heteroskedastic Antmaze Navigation
	G.1 Hyperparameters for EDAC
	G.2 Hyperparameters for BEAR

