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Abstract Equilibrium phase transitions between a normal and a photon condensate state (also known as super-radiant phase
transitions) are a highly debated research topic, where proposals for their occurrence and no-go theorems have chased each other
for the past four decades. Recent no-go theorems have demonstrated that gauge invariance forbids second-order phase transitions
to a photon condensate state when the cavity-photon mode is assumed to be spatially uniform. However, it has been theoretically
predicted that a collection of three-level systems coupled to light can display a first-order phase transition to a photon condensate
state. Here, we demonstrate a general no-go theorem valid also for truncated, gauge-invariant models which forbids first-order as
well as second-order super-radiant phase transitions in the absence of a coupling with a magnetic field. In particular, we explicitly
consider the cases of interacting electrons in a lattice and M-level systems.

1 Introduction

The Dicke model [1] is a paradigmatic model in the theory of light-matter interactions [2-5]. It describes a collection of N identical
two-level systems coherently coupled to the same bosonic mode 4, arising from the quantization of the electromagnetic field inside
a cavity of volume V. As the name says, it was firstly introduced by Robert H. Dicke [1], with the aim of describing the “emission
of coherent radiation” obtained by considering a “radiating gas as a single quantum-mechanical system”. He dubbed such process
“super-radiant emission”.

In the thermodynamic limit (N — oo, V — oo, with N/V = constant) and when the light-matter coupling strength exceeds
a critical value, the Dicke model undergoes an equilibrium second-order thermal phase transition [6, 7] between a normal and a
“super-radiant” phase. In the zero-temperature limit, the phase transition persists and corresponds to a quantum phase transition
[8—11]. The super-radiant phase is characterized by a macroscopic number of photons, (@) ~ ~/N, and by a macroscopic number
of excitations in the matter sector. To avoid confusion with the Dicke non-equilibrium super-radiant emission [1], we here follow
Refs. [12, 13] and dub the equilibrium super-radiant phase transition as “photon condensation”.

In the Coulomb gauge, a careful derivation of the Dicke model starting from a microscopic condensed-matter model with
electronic degrees of freedom leads to an additional diamagnetic term [14], proportional to (@ + @), which is usually neglected
by utilizing a (wrong) “weak-coupling argument”. It was soon understood [14—16] that such additional term is crucial to preserve
the gauge invariance property of the model. Only when both terms generated by the minimal coupling substitution p — p +eA/c,
(i.e. the paramagnetic light-matter coupling and the diamagnetic term) are retained, does one have a gauge-invariant theory satisfying
the Thomas-Reiche-Kuhn (TRK) sum rule [17-19]. The occurrence of photon condensation in such a generalized Dicke model is
forbidden [14, 20, 21].

Despite its importance, the Dicke model is not exhaustive at all. In recent years, researchers have transcended it by studying
interactions between matter degrees of freedom and quantized electromagnetic fields in a variety of other models and physical
systems. Photon condensation has been predicted in many of these “beyond-Dicke” systems, including three-level systems [22, 23],
graphene [24], ferroelectric materials [25], superconducting circuits [21, 26-28], and strongly correlated (a.k.a. quantum) materials
[29].
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A number of no-go theorems for photon condensation in a single-mode spatially-uniform cavity field have appeared in the
literature [12, 30-34], showing that gauge invariance forbids photon condensation even in such “beyond-Dicke” systems. Often,
theorems have been opposed by “go theorems” [21, 35, 36]. Photon condensation remains a rather controversial theoretical topic.

At present, the most recent no-go theorem is reported in Ref. [12], where the authors showed that photon condensation is forbidden
by gauge invariance for generic non-relativistic interacting electron systems coupled to a spatially-uniform cavity mode. The proof
is based on linear response theory [37, 38] and uses the smallness of the order parameter « = (a). It is therefore valid only for
second-order phase transitions, where o < 1 at the phase transition, and changes continuously. It is by now clear that a natural path
to overcome such theorem is to consider spatially-varying cavity fields [13, 39, 40]. In these recent works, photon condensation
has been shown to occur and is essentially a magneto-static instability [13, 39—41]. Apparently, another possibility to bypass the
hypothesis of such theorem could be to consider a first-order phase transition [22, 23], where the order parameter « abruptly changes
from zero (in the normal phase) to a finite value (in the photon condensate phase). As a matter of fact, that first-order phase transitions
were a valuable possibility to overcome the no-go theorem was first discussed some time ago [26, 42]. In these works, an ensemble
of three level systems coupled to single uniform mode undergoes to first-order phase transition. Indeed, according to Refs. [26, 42]
systems displaying first-order phase-transitions were thought as valuable candidates to realize photon condensation.

These results are, however, in contrast with arather general no-go theorem presented already in 1978 [15]. In this work, an ensemble
of electrons in the presence of single-particle potentials and interacting with a uniform electromagnetic mode is considered and it is
shown that super-radiant phase transitions (of any order) to a photon condensate are forbidden. In this proof, no truncation is taken
and the full infinite-dimensional Hilbert space is retained. However, it is often impractical to deal with an exponentially large Hilbert
space. Hence, when performing explicit calculations in atomic systems, or more generally, in many-body systems, approximate
(truncated) models are customarily employed. However, it has been shown that such approximations can spoil gauge invariance
[43]. Since no-go theorems are closely related to gauge-invariance, it is natural to conclude that the super-radiant phase transition that
can be found in these approximate models (e.g. in the three-level systems discussed in Refs. [22, 23]) is a fictitious effect due to the
Hilbert space truncation. Since, in the ultra-strong coupling, these models fails in describing the correct ground state, it is important
to find a systematic procedure to construct truncated models fulfilling gauge-invariance and free of spurious phase transition. It has
been shown that, even for these approximate models, it is possible to build light-matter interactions which consistently satisfy the
gauge-invariance principle [43-45]. Here, we extend the no-go theorem for photon condensation of Ref. [15] for gauge-invariant
truncated models of light-matter interacting systems. In particular, in the first part of this Article, we consider an interacting system
of electrons roaming in free space and on a lattice and we extend the no-go theorem of Ref. [15] to such a system. In the second part
of this Article, we present a no-go theorem for a generic M-level matter system interacting with a uniform electromagnetic field. On
the basis of our new no-go theorem, we conclude that the first-order phase transition phenomenology discussed in the pioneering
works [22, 23] on three-level systems coupled to a cavity mode is incorrect. The reason is that, in these models, the light-matter
interaction was not derived from an underlying gauge-invariant model. Conversely, an ad hoc diamagnetic term was added. Such
addition, which was made to enforce the TRK sum-rule [17-19], is not always sufficient to prevent a breakdown of gauge invariance.
While enforcing the TRK sum-rule alone was a reasonable approach at the time that Refs. [22, 23] were published, nowadays more
refined techniques to enforce gauge invariance in systems with an arbitrary but finite number of levels have been developed [43—46]
and applied to a few solid-state systems [47—49]. Such methods can be viewed as an application of lattice gauge theory [50]. Here,
we also employ these new tools to derive a fully gauge-invariant model describing M-level systems coupled to a cavity mode. In
accordance with the general theorem, such model does not display photon condensation. As an example, we analyze in detail an
ensemble of three-level systems.

Our Article is organized as following. In Sect. 2 we present a non-perturbative no-go theorem for photon condensation in the
second-quantization framework. We consider both the continuum case and the case of Hilbert-space truncation on a lattice. In Sect. 3
we present a non-perturbative no-go theorem for photon condensation, valid for a generic M-level matter system interacting with
the electromagnetic field via the electric dipole moments. Finally, in Sect. 4 we draw our main conclusions.

2 Gauge invariance, photon condensation, and no-go theorem in interacting electron systems

2.1 Interacting electron system in the continuum

We consider a quantum many-body system of interacting electrons, following the notation of Ref. [47]. In second quantization, the
electronic Hamiltonian can be written as

ﬁel = I:IO + ﬁee s (1)
where the one-body part, I:IQ, reads as following
Hy = / dr (oY (), 2
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with
h2v?
ho(r) = — ot Vi(r), (3)
m
while the electron-electron interaction contribution is given by
Hee = f drdr' § ) U = P ) ). @

Here, V(r) and U(|r — r’|) represent a generic one-body and two-body interaction potential, respectively.
The electron system is invariant under a global phase transformation ¥ (r) — €% (r), and the associate Noether current reads

Jr) =9 () (—invV) §(r) + He. . )

However, the system is not invariant under a local phase transformation, 1/7(r) — 0 N/?(r). Such invariance can be restored by
introducing the interaction with the electromagnetic field, by employing a minimal coupling scheme. Considering the Coulomb
gauge—the effects of the scalar potential being already described by V(r) and U(|r — r’|)—the total light-matter Hamiltonian is
given by:

Ac = /drw(r)hc(r)lﬁ(r) + Hee + ﬁph ; ©
where
he(r)=Ta+V(r), @
and
Ty = L[—ihv + fA(r)]Z ®
4= 2m c .

Here, ¢ > 01is the elementary electron charge, c is the speed of light, and A(r) is the space-dependent field operator vector describing
the electromagnetic field in the Coulomb gauge. The Hamiltonian of the free field is given by

N 1 . ~
i = o~ f dr{Hz(r) +[V < AP, ©)
T
where fI(r) is the conjugate momentum.
In this work, for simplicity, we will consider a single mode decomposition of the fields [47],
A(r) =Ag(n@+a', (10)
I(r) =iM(r)@ - a', (1n

where f dr(V x Aog(r)? /Q2m) = f a’rl'[%(r)/(Zn) = hwpn, Where wpy is the resonance frequency of the cavity mode, and
Ag(r), Io(r) are the mode functions [47]. Notice that such single-mode approximation has been widely adopted in the Literature
[6-10, 12, 21-23, 25, 26, 29, 32, 39-41, 46, 47] in the context of photon condensation.

In terms of the single-mode photon creation (a") and annihilation (a) operators, the field Hamiltonian reduces to

Hpp = hophd'a . (12)

A transformation of both the electronic and electromagnetic fields of the form
V() — 0P ) (13)
A(r) — A(r) — %V@(r), (14)

leaves the Hamiltonian (6) invariant, in agreement with the gauge principle. We observe that Eq. (6) neglects the Zeeman coupling
between the electron’s spin and the magnetic component of the electromagnetic field. The absence of this term is justified either
when the magnetic field is zero or when it can be neglected in the spatial region where the field interacts with the electron system,
as, for example, in the dipole approximation.

Whenever the interaction of the matter system with the magnetic field can be neglected, the vector potential entering the interaction
terms can be locally expressed as the gradient of a scalar field

Ao(r) = Vx(r). (15)

In the dipole approximation, x(r) can be written as x(r) = r - Ag, with Ag spatially uniform. Applying strictly the dipole
approximation (uniform vector potential) to semiconductors implies a complete neglect of propagation effects inside the medium.
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In order to neglect the interaction of the electron system with the magnetic field, in an extended system such as a semiconductor, one
can divide the whole medium into many cells of the same volume V) and apply the dipole approximation at each cell [52, 53]. The
cell should be much smaller than the field wavelength. (The usual choice is to take the unit cell of the crystal as such a unit.) Such
partial relaxation of the dipole approximation (extended dipole approximation) can be realized using Eq. (15). Notice that the dipole
approximation has been customarily employed in the Literature [6-10, 12, 21, 25, 26, 29, 32, 47]. We emphasize that Eq. (15) implies
the magnetic field B in the spatial region where the electronic field is non-negligible is zero,i.e. B(r) = VxAg(r) = VxVyx(r) =

When the interaction of the matter system with the magnetic field can be neglected, the minimal coupling replacement can also be
implemented by applying a unitary transformation to the bare electronic Hamiltonian. The unitary operator transforms the electronic
field operators as follows [47]:

LA{&(I‘)Z/AI} — ei(e/ch)x(r)(&ﬂi"’)&(r) i (16)

where
0= exp[—icih(& +ah / dr &T(r)x(r)&(r)] ‘ (17)

Equation (16) is demonstrated in Appendix A.
We stress that only the electronic Hamiltonian has to be transformed applying the unitary operator in Eq. (17), while the photonic
field a is unchanged. The Hamiltonian in Eq. (6) can be rewritten as

Hc =Hpn +U(Ho + Hee YU . (18)

In principle Eq. (18) could further simplified by notlcmg that the unitary transformation U does not alter the electron-electron
interaction contribution to the Hamlltoman [47], U HeeZ/l = Hee However, we do not need to employ this property for the sake of
this proof. In Coulomb gauge, Hc is the total Hamiltonian describing both light, matter and their interactions.

We now show a no-go theorem for photon condensation, by proving that the photonic operator cannot have a non-vanishing
expectation value in the ground state, i.e. the super-radiant order parameter is zero (a). In what follows we exhibit a proof by
contradiction, showing that if there exists a ground state |yo) characterized by a non-zero super-radiant order parameter ¢ =
{(Wolalvo) # 0, then it is possible to find another state 1) with lower energy, in contrast to the hypothesis of |1y} being the ground
state. Specifically, we extend to the second quantization framework, a procedure that has been developed for first-quantization [15].
Notice that several theoretical analyses of photon condensation [13, 21, 40, 41], including those that predicts its occurrence, neglect
light-matter entanglement and assume that the system’s ground state is factorized into matter and light wave-functions, i.e. it uses
a mean-field approximation for the light-matter interaction. Here we do not need to invoke this assumption. Let us consider the
following unitary operator,

7 = D(w) exp[—ii—;%(a)/drt/A/T(r)X(r)xlA/(r)] : (19)
where D(a) = exp —o*a + aa' is the displacement operator characterized by a displacement «. Photonic operators transform under
the displacement as,

D(ot)aD(ot)1 =a—a, (20)

The electronic and photonic fields transform under T as,
T T = o FNOXO () @D
TaT =4 -, (22)

where in the second line we used that exp[—z =1 ¢ N(a) f d rWL(r) X (r)tﬂ(r)] does not act on the photonic sector and then Eq. (20) to

transform the photon operator.

We remind that we assumed as an hypothesis that the Hamiltonian of Eq. (18) has a ground state [1o) with a non-vanishing
expectation value of the photonic annihilation operator (@ = (¥gla|yo) # 0). We now consider the state |¢) = 7t |Y0). By means
of Eq. (22), we can prove that such state has zero order parameter,

(wlaly) = Wol7aT |yo) =0, (23)

where we employed the assumption (yo|d|y) = . In the following we show that the trial state [) = 7 F|y) has lower energy
than |v), contradicting the initial assumption that |/g) is the ground state.
First, we can prove that,

D) D) = exp[—ii—;m((x) / dm&*(r)x(r)l/}(r)}m , (24)
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where we used that, by means of Eq. (22), D(a)(a + aT)D(oz)T = (a+a") — 29%(«). Before proceeding, it is useful to consider the
operators product 477,

~

U'T" = DNy Det D (o)
x exp[i%?ﬁ(a) / drlﬁ"'(r)x(r)x@(r)] , 25)

where we expressed T by using the definition in Eq. (19) and we inserted a product of displacement operators by means of the
identity D" («)D(«) = 1. By using Eq. (24) the previous expression can be simplified as,

U7t =D " . (26)
Now we evaluate the total Coulomb Hamiltonian on the trial state |{) = vl [Yo),
Wl = (ol [ TUHo + Al T + i 1o . @7)
On one hand, the matter Hamiltonian can be simplified as,
(ol TUHo + HeeA T 10) = (Yoltd" (Ho + HeeU1¥00) (28)

where we used the property uiTt = D7 (oz)Z/IT glven in Eq (26) and the fact that the displacement operator leaves invariant the
matter Hamiltonian Ho + Hee, D(a)(HO + Hee)D (a) = Ho + Hee On the other hand, by means of Eq. (22), we can calculate the
average value of the photonic Hamiltonian th,

ol ApnT " 190) =(wol [ heopn(@'a + o P+
— hopm(aa’ + a*a)] o) . (29)
By using that, by construction, we have (Yo|a|vo) = «, Eq. (29) simplifies to,
(Yol T HonT ¥ |90) = haopn(@’a — laf?) . (30)
By combining Egs. (30) and (28) and the definition of the total Coulomb Hamiltonian Eq. (18) we have,
(W|Hcl¥) = (Yol Helvo) — hapnlal . 31
Noticing that hiwpp o |2 is by hypothesis a positive and strictly non-zero quantity we have,

(WIHclY) < (WolHelyo) - (32)

This equation implies that the state |y/(), which has a non-vanishing expectation value of the photon annihilation operator 4, is not
the real ground state of the system, since the state |), which was built specifically to have a vanishing expectation value, has a
lower energy. This concludes the proof by contradiction that super-radiant phase transitions to a photon condensate is forbidden for
any interacting light-matter system which can be described by an effective Hamiltonian as Eq. (18).

We close by noticing that this result applies also to the case of a multi-mode cavity field, provided that it still corresponds to the
physical situation of B = 0. In the absence of a magnetic field, the most general coupling to a transverse electric field is given by
the following unitary transformation,

U= exp[—ifh Z(&i +a)) / dr iy’ (r)xz‘(r)lﬁ(r)} : (33)

where the index i labels the different modes. The previous proof is generalized to the multi-mode case in Appendix B.

While Eq. (6) neglects the Zeeman coupling, our main conclusion can be easily generalized also to the case in which such
coupling is present. The Zeeman coupling is proportional to the scalar product of the electron spin operator and the magnetic field,
ie.o - ﬁ(r). Since in this work B(r) = V x Ao(r) = 0, the Zeeman coupling does not alter the above analysis.

Finally, we stress that the photon condensate order parameter has been defined as (a) in the Coulomb gauge. The quantity (a)
is not a physical, gauge-invariant quantity [35, 36, 51]. For example, in the dipolar gauge, (@) measures spontaneous polarization
of matter, which is a signature of ferroelectricity [25]. In contrast, we here choose as order parameter the displacement field due to
transverse photons, which coincides with (@) only in the Coulomb gauge. This is a well-defined gauge-invariant quantity and our
no-go theorem manifests in other gauges as the absence of a transverse electromagnetic field. Of course, when applying a gauge
(unitary) transformation, invariant expectation values are obtained only transforming accordingly both the quantum states and the
operators, see, for example, Ref. [51]. In an arbitrary gauge, our main result should be read as follows, at equilibrium a transverse
field cannot emerge spontaneously in a region where the magnetic field is absent.
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2.2 Interacting electron system on a lattice

The procedure discussed in the previous Subsection can be applied also to the case of interacting electron systems on a lattice, where
the space domain is discretized. The main differences from the continuous case are: (i) the replacement of the integral with a discrete
summation ( f dr — Zr,- ), (ii) the replacement of the electronic field with a fermionic annihilation operator (¢ (r) — ¢,, with the

anti-commutation property {Cy,, éjj} =8 r j). Hence, the one-body electron and the electron-electron interaction Hamiltonians,
expressed in Eq. (2) and (4) respectively, become

Hy=t,,,¢f6r, (34)
ri,r‘,-
Hee = Z Ur;,r_fé:iéjjérjéri , (35)
r; ,rj
where 7, rj = Qr,6r;, r;+ triOr;, ) describes the on-site energies and the near-neighbor hopping factors (where (r;, r ;) denotes

near-neighbor sites), while Uy, r; is a symmetric operator, since the electron-electron interaction potential U(|r — r'|) expressed in
Eq. (4) depends only on the distance between the two points r and r’.

However, in general, the truncation of the Hilbert space, could introduce some kind of spatial non-locality in the electron-electron
interaction [71]. Hence, it can be useful to also consider the generalized version of I:Iee which includes also non-local effects

ol § : rrmat AT Ao

Hee - Uri,r,- Cr,-Cr_,-CfmCrl . (36)
Fi,Tj
rlsTm

The previous Hamiltonian appears for example in the context of non-Fermi liquid states of matter. With a suitable choice of the

parameters Uy, t’,’j’” it indeed coincides with the so-called SYK model [72-74]. The generalized electron-electron interaction term

HY reduces to the usual interaction Hamiltonian He for

rLrm
Ur,»,’rj - U"is"jsrisrlérjxrm .

The interaction with a single-mode cavity field is again introduced by applying a unitary transformation to the electronic fields
(which now become the fermionic operators ¢,,) in a manner similar to Eq. (16), that is

Uen A = i@/ @iDe (37)

with

N e
U=exp|—i—@+a' e | 38
p|: i—(a+a )Zxr,c,lcr,} (38)
Equation (37), which is demonstrated in Appendix A, can be seen as the equivalent of the Peierls substitution [70]. Such procedure
can be regarded as a particular instance of lattice gauge theory, the general method developed by Wilson for studying non-perturbative

relativistic gauge theories on a lattice [54]. The obtained coupled light-matter Hamiltonian is similar to the continuum case expressed
in Eq. (18),

Ac = Ay, m(ﬁo + ﬁ;;)z,?f, (39)

where ﬁph is given in Eq. (12) and represents the bare photonic Hamiltonian. Notice that, since we considered the generalized
version of the electron-electron interaction term including non-locality, I-AI‘,f‘el may not commute with u anymore. Nevertheless, this
property is not needed for the sake of the proof, which holds also in the present case. However, we observe that the presence of such
a nonlocal potential implies that the resulting total light-matter Hamiltonian will include additional terms arising from FI;‘JLA{T
These terms are crucial to ensure gauge invariance even in the presence of an effective non-local potential [43].

The proof of the no-go theorem for interacting electrons systems on a lattice is now straightforward, and it follows the same
steps applied to the continuum case in the previous Subsection. We start by introducing the lattice version of the unitary operator
expressed in Eq. (19)

~ .e b ~
7= exp{—z —2%(@) Z Xri6y, cn}%) , (40)

which transforms the electronic and photonic operators as

Fo, 31 =/ @ g, 41)

@ Springer



Eur. Phys. J. Plus (2022) 137:1348 Page 7 of 14 1348

TaT =4 —«. (42)

Once again, we now suppose that the system described by the Hamiltonian (39) has a ground state |y9) with a non-vanishing
expectation value of the photonic annihilation operator. We now construct a trial state |{) = vl |o) with the property (¥ |a|y¥) = 0.
Following similar steps of the previous Subsection we can prove the property, Tt =pt (oz)LA{ T, corresponding to Eq. (26). It is
useful to note that,

TU(Hy + Hee AT T =UD(@)(Hy + Hee)D' ()",
=U(Ho + Hee YU, (43)
where we used Eq. (26) and the fact that ﬁ(a) commutes with I:IO + Flee. Hence, the total energy of the trial state |{) reads:
WIAclw) = (ol [t(H + A’ + T AT 1) . (44)
From Eq. (44) and employing Eq. (42), the energy finally reads,
(W|Hcl¥) = (Yol Helvo) — hapnlal . (45)

Again, we find that |{) cannot be the ground state of the system, since there is a lower energy state ) with the property that
(¥|a|y) = 0, forbidding the super-radiant phase transition for such system.

As we have seen, the presence of approximations, such as the discretization of the continuous space into a lattice, could introduce
some kind of spatial non-locality. In addition, in solid-state physics, the transition from the continuum to the lattice is usually carried
out in a slightly different way. For example, according to the tight-binding approach, it is possible to have a number of orbitals on
each lattice site. Following Ref. [47], we can introduce the orbital index p to each tight-binding site. In this case, then the one-body
electron and the electron-electron non-local Hamiltonians become, respectively,

A .
Hy = E § : Trirj 1, p02Cr; pu Crjapo

Tirj 1,2
nl __ FU a3, 04 AT AT A A
Hee = Z Z Urirlris Cron Cr o CrmansCrips » (46)
ri,rj W1, 42
Tl rm M3, 43
and the unitary operator U becomes
N L€ A A A 47
U =exp —1£(a+a )ZZX’M‘ Croulrin | - 47
rioou

The proof of the no-go theorem follows the same procedure applied to the previous two cases.

3 Gauge invariance, photon condensation, and no-go theorem in M-level systems

In this Section we firstly generalize (Sect. 3.1) the no-go theorem to a truncated model composed by M-levels atoms showing that
it does not display a transition to a photon condensate state (when placed in a spatially-uniform cavity field A).

In order to derive a fully gauge invariant model for a system of three-level atoms interacting with a spatially-uniform cavity field,
we show (Sect. 3.2) that a generic M-level system can be mapped into a tight-binding model on a lattice with M sites. In the third
part of this Section (Sect. 3.3), we use the mapping combined with lattice gauge theory to derive a gauge-invariant model of a system
of three-level atoms. Finally, we prove that such system does not display photon condensation.

3.1 No-go theorem for M-level systems

Before proceeding with the proof of the no-go theorem of a truncated model, we review the procedure to construct M-level models
that are gauge-invariant, despite the Hilbert space truncation.

Recently, the generalized minimal coupling replacement, introduced in Ref. [43] has been related to the general framework of
lattice gauge theory and to the so-called Peierls substitution [44]. Here, we show that also in the case of M-level systems this
relationship remains valid. The Hamiltonian of any M-level system can be written in the basis of the eigenstates |m) as

M
ho =" enlm)(m|. (48)
m=1
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In the Coulomb gauge, and in the case of a single-mode spatially uniform vector potential A = Ao(a + a'), such system can be
coupled to A as following [43]

he = thholl] + iy (49)

where th = hwpha a is the cavity Hamiltonian, and ¢4 = exp[—ze /(ch)AoX (G +a™)] has the purpose of carrying out the minimal

coupling replacement within the dipole approximation. Here X = PEP (with P = Zm | Im)(m|) represents the truncated position
operator.
We now consider a collection of N identical, non-interacting M-level atoms. The total bare Hamiltonian is

N M
7:[0 = Z Z €m|mn>(mn| ,

n=1m=1
and, by applying the method discussed above, we get the total interacting light-matter Hamiltonian:
He = UHU + Hyp (50)

where U = exp[—ie/(ch)Ap ), X 2@ +ah)], and X » 18 the truncated position operator corresponding to the n-th atom.

We now show that, once the Hamiltonian of a generic M-level matter system interacting with an electromagnetic field has the
structure in Eq. (50), the photon annihilation operator @ cannot have a non-vanishing expectation value in the ground state of this
system. We demonstrate it using an approach similar to that adopted in Sect. 2, based on the method developed in Ref. [15] for the
standard minimal coupling replacement case. We suppose that the ground state |i) of a system described by the Hamiltonian (50)
has the property that {(¥g|a|vg) # 0. We introduce the following unitary operator:

7= exp|:—icehA025R(oz) Zn: )?n:|25(a) , (51)

which has the property of shifting the electron momentum and, in particular, to shift the photon operators
TaT' =d—a. (52)
Again, we construct the trial state as |) = T |%o), which is characterized by a zero order parameter,
(Ylaly) =0.

Similarly to Sect. 2, by means of Eq. (52), we can prove that,
D) DT (@) = exp [—i < A020(@) )?n}m , (53)
ch -

and following the steps of Sect. 2 we can prove Eq. (26), Tt = DY ()i, also for the present case. The energy of the trial state
[Y) reads,

WIHclw) = ol [T T + FHnT 1o . (54)
By means of Eqgs. (26) and (52), the energy reads,
(W|Hely) =(WolHe o) — oplal® . (55)

Equation (55) implies that the state |y), which has a non-vanishing expectation value of the photon annihilation operator a, is not
the real ground state of the system, since a lower energy state |y), which was built specifically to have a vanishing expectation
value, has a lower energy. This ends the proof by contradiction. We have shown that the true ground state of H¢ is characterized by
a vanishing super-radiant order parameter {(a).

3.2 Mapping onto a tight-binding lattice

It has been shown that, in the dipole approximation, a two-level atom interacting with the electromagnetic field can be equivalently
described as a double-well system, where only the two lowest energy eigenstates are considered, which in turn corresponds to a
two-site system interacting with a cavity field [44]. Here we extend this idea to a generic M-level system, showing that it can be
mapped onto a linear chain of sites connected by hopping processes (i.e. a tight-binding lattice).

We now define the following operator,

R=—XA0%. 56
e 0X (56)
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In the basis of the eigenstates |m), R can be expressed as

R M—-1 M—
= Z Z ot 1) (ma| (57)
m]: :

Since R is an Hermitian operator, it defines a basis of eigenvectors |r) such that:
Rir) = hlr) . (58)

Recalling Eq. (56), the states |r) are also eigenvectors of the position operator, i.e. X|r) = x,|r), with A, = —e/(hc)Agx,. As
we will show momentarily, this local basis of eigenstates of the position operator X defines a natural lattice representation of the
Hamiltonian fzo.

We now introduce the unitary transformation O, which connects the energy basis |m) with the position basis |r). Its matrix
elements will be denoted by the symbol O, ,, = (r||m). By definition, the following property holds true:

M—-1 M-1

Srirhri = Y Y Orpmy Riiymy O oy - (59)

m1=0m=0

As this identity shows, the transformation 0] diagonalizes the position operator R.
The lattice representation of the matter Hamiltonian /¢ is given by

M—1M-1
=Y trnlr)inl, (60)
r1=0 rp=0
where the hopping matrix #,, ,, is defined by
by = Z Orl,mfm OTm,rg . (61)

It is worth noting that the Hamiltonian written above is on the same form of the one-body Hamiltonian on a lattice described by
Eq. (2). .

We are now in the position to write the Hamiltonian /. (defined by Eq. (49)) in terms of the eigenvectors |m) of the position
operator:

S
S

—1
e

=

iry ([mﬁ)tr1 rze”'xrz(&+&%)|r1)(r2|

=
O
X S
L

eI =)@y 1) (] (62)

||MH
||M

This is the main result of this Section. It shows that the coupled Hamiltonian ﬁc has the exact same form of a tight-binding lattice
model coupled to light via the Peierls substitution. Actually, the Peierls method was developed to study electron systems interacting
with static magnetic fields, in the framework of the tight-binding approximation. The Peierls substitution can be regarded as an
anticipation of lattice gauge theory, which is the general method developed by Wilson for studying non-perturbative relativistic
gauge theories on a lattice [54], or in condensed matter physics, to analyze quantum simulations of lattice gauge theories [50]. Here
we have shown that the two methods coincide provided that one operates in the position basis |m). Hence, in the lattice basis, the
Peierls substitution is the most general tool to couple matter with a single cavity mode.

3.3 Example: ladder three-level system

We now consider the particular case of a three-level ladder atom, which can be described as a three-site system with inversion
symmetry, as depicted in Fig. 1. In this Section we show that, in stark contrast to the conclusions of Refs. [22, 23], such system does
not display photon condensation.

The bare Hamiltonian of a single three-level ladder atom, expressed in the lattice representation (see Eq. (60)), reads as following:

1

Z Y|+t (|=1)(0]+|0)(1|+H.c.) . (63)

3‘)

We consider here a system with parity symmetry, so that the selection rules for a three-level ladder atom apply: €1 = €. From
now on, we also fix e_; = €; = 0. According to gauge lattice theory, the interaction with the electromagnetic field can be obtained
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Fig. 1 Pictorial representation of "

an ensemble of three-level atoms 6 ) \t t/— [ ]
. . . . le) 1)
interacting with a cavity field. >

Each atom, which is considered in 19)
a ladder configuration, can be seen
as a three-site system with nearest
neighbor hopping and parity
symmetry. According to the lattice
gauge theory, the interaction with
the electromagnetic field can be
obtained using the Wilson parallel
transporter

v

by introducing the Wilson parallel transporter [54]. The resulting Hamiltonian, after applying the dipole approximation (uniform
field), is

hior = Hpn + 11, (64)

where I:Iph is the free-photon Hamiltonian and h is the atomic Hamiltonian, now invariant under arbitrary (site-dependent) phase
transformations:

h = €0]0)(0]+[re~ @D Z1y(0]+|0)(1]) + h.c.] , (65)

accordingly to Eq. (62). Here, y = —ed Ag/(hc) with d the distance between two adjacent sites. For simplicity, we assume a single
mode optical resonator: th = hwpha a, with the field coordinate A= A()((fr + a), where Ay is the vacuum fluctuation amplitude.
The Hamiltonian in Eq. (65) can also be written as

h =thhot] (66)
where
Uy = exp[—ii;zLA] , 67)
hc

and x, is the lattice coordinate, i.e. X; = d Zj JINL
Let us now consider a collection of N identical, non-interacting three-level ladder atoms. The total Hamiltonian is

H = ﬂph + EQEAJ(),() + t[e_iy(&T'F&)(ﬁ_l,o + 20,1) +h.c.], (68)

where
N
Sij= Y lik) Gkl - (69)

Equation (68) can be written compactly as

H = Hph +UHU", (70)
where
To = €000 + t()i_l,o +304 +h.c.) 1)
and
N
U=exp|i A+TZ] iil- (72)
j=1

When the system’s Hamiltonian is cast in the form of Eq. (70), the theorem demonstrated in Sect. 3.1, showing that no photon
condensation can occur, can be readily applied to this case.
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4 Summary and conclusions

Previous no-go theorems have demonstrated that gauge invariance forbids phase transitions to a photon condensate state when the
cavity-photon mode is assumed to be spatially uniform. In this Article, we have shown that a matter system in the absence of magnetic
interactions, even if interacting with a non-uniform electric field, cannot display photon condensation. This is in agreement with the
findings of Refs. [13, 39, 40] where it was shown that photon condensation can occur in a spatially-varying cavity field, where the
magnetic field interacts with the electronic system, and that it is formally equivalent to a magneto-static instability.

The actual theoretical description of realistic electron systems requires unavoidable approximations. It has been shown that such
approximations can spoil gauge invariance. Since no-go theorems are related to gauge invariance, it is possible that these approximate
models yield super-radiant phase transitions, which would not be allowed when considering the full infinite-dimensional Hilbert
space. For example, it has been theoretically predicted that a collection of three-level systems coupled to light can display a first-order
phase transition to a photon condensate state [22, 23]. Recently, it has been shown that the gauge principle can be formulated in
a consistent way also when considering matter systems described in truncated Hilbert spaces. In this Article, we have shown that
the no-go theorem forbidding spontaneous photon condensation in the ground state remains valid for these approximate models
satisfying gauge invariance. In particular, we have presented a non-perturbative no-go theorem for: (i) systems of interacting electrons
roaming both a continuous space and on a lattice; (ii) an ensemble of non-interacting M-level systems. We also discussed the case
of three-level ladder atoms, showing that if this system is described by a model satisfying the gauge-invariance principle (in the
truncated space) no photon condensation can occur, in agreement with the general theorem and in stark contrast to the conclusions
reached by the authors of Refs. [22, 23].

We note that the conclusions reached in this Article apply to light-matter interacting systems whose interaction is described
by the minimal coupling replacement. However, our conclusions have to be carefully reconsidered when applied to systems like
superconducting artificial atoms coupled to microwave resonators, since these do not display the coordinate-momentum interaction
resulting from the minimal coupling replacement [21]. One may argue that, at a microscopic level, also these systems interact
according to the gauge-invariance principle and hence via the minimal (or Zeeman) coupling replacement [32]. However, we
observe that, in several circuit-QED systems, artificial atoms interact with the electromagnetic resonator through a magnetic flux.
Our no-go theorem naturally does not apply to this class of systems, where a magnetic field is present.

Finally, we would like to mention that the lattice gauge theory approach employed here can be fruitfully applied to condensed
matter lattice models, such as the Hubbard model [55], the Falikov-Kimball model [56] and even more complicated multi-orbital
systems. While our general theorem holds irrespective of all the microscopic details, it would be interesting to study strongly
interacting systems in the presence of a cavity magnetic field, transcending the hypothesis of our theorem. For such an investigation,
it is crucial to use a correctly gauge invariant model, which can be obtained with the methods of lattice gauge theory. Lattice gauge
theory is in general necessary to correctly describe quantum materials strongly coupled to light, not only in the context of photon
condensation [12, 29, 39, 47], but also in studying other phenomena, such as cavity-induced ferroelectricity [57], light-induced
topological properties [58, 59], photon-mediated superconductivity [60—63], and photo-chemistry [64—69].
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Appendix A: Derivation of the dressed electron field

One of the starting points of this work was to establish the correct and gauge-invariant method to couple light to matter. A system of
interacting electrons, described by the electron field (), can be coupled to a single-mode electromagnetic field by using Eq. (16),
which we write again

Uit = ei(e/cﬁ)x(r)(&ﬂﬂ)&(r) ) (A1)
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The proof of this formula is straightforward, and it follows from the fermionic anti-commutation property of the electron field
{w(r), 1//T(r/ )} = 8(r — r’) and from the Baker-Campbell-Hausdorff formula, that is

PN A ~ ~ N 1 N A N
S -S _
eSOe _0+[s,0]+i[s,[s,0]]+..., (A2)
where is our case
~ e . . ~ , S
§S=—i—@ +a') / dr' ' (xrHwr'y, (A3)
0 =y). (A4)

Thus, the commutator [S’ s 0] becomes
[8.0]=-iZa+ a*)[ f ar' J ey, &(r)]
ch
——i(@+ah) f ar' [ @) ) |x @)
ch
—ita +&T)/dr/5(r’ — )P (r)
ch

=i @+ah)xrPr) (A5)
ch

and, by recursively replacing it into Eq. (A2), we obtain the dressed electron field.
The procedure expressed above is also valid in the case of a lattice, whose space domain is no more continuous, and it can be
obtained simply substituting [ dr — ", and ¥(r) — &,

Appendix B: No-go theorem for a multi-mode cavity field

The proof of the no-go theorem for photon condensation discussed in Sect. 2.1 can be extended also to the case of a multi-modes
cavity, characterized by N photonic modes. The multi-mode photonic Hamiltonian reads,

N
Hph = Z ﬁwph,i&;&,' . (B1)

i=1
We denote as [vg) the super-radiant ground state. In the multi-mode scenario, we take as super-radiant order parameter the following
quantity,

N
Z|O‘i|2 , (B2)
i=1

where o; = (Y¥ola;|yo). Since we are assuming that |1/) is a super-radiant ground state, at least one of «; should be non-zero. The
light-matter coupling is implemented via the following unitary,

N
U= exp|:—i:h ,;(&i +a) / dr &"'(r)x,-(r)g@(r)} ) (B3)

The electronic field transforms as,

o R i(e/ch) % Xi(")(&i*'&,:k) A
UGt =e i=1 v(r) B

Following the procedure described in Sect. 2, we now consider the following generalized multi-mode unitary operator,
2e ¥
T= exp[—ich Zl Pi(e) f dr&*(r)xi(r)w(r)] [P, (BS)
1= 1

where D; (o) = exp —ofa; + ai&; is the displacement operator for the i-th characterized by a displacement «;. The electronic and
photonic fields transform under T as,

TPy T =T T ) (B6)

Ta;T" =4; — oy . (B7)
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The trial state |y) is constructed by applying the operator 77 to the super-radiant ground state |g), i.e. |¥) = T T|0). By means
of Eq. (B7) we have (¥|a;|y) = 0 fori = 1,.., N. In the multi-mode case, we can generalize Eq. (24), by means of Eq. (B7)
obtaining that,

Di (o U Dy ()’

= exp[—ii—gm(a» / dr&"‘(r)xi(r)l/?(r)]zﬁ : (B8)

We now consider the product 2477, by using Eq. (B8) we have,

ATt =[]0 @i’ (B9)

1

Finally, we calculate the total energy of the trial state |{/) = T Tlvo),

WIHclw) = ol [T T + FHnT 1o . (B10)

By using the property in Eq .(B9), and by means of Eq. (B7), Eq. (B10) can be cast as,

(YIHcly) = (Yol Helo) — Y hopn.ileil* . (B11)

Since we are assuming that ¥ is a super-radiant ground state, there exist at least one i such that «; 7 0. Hence,

(WIHclY) < (YolHelvo) - (B12)

We have found a state |y/) which has a lower energy that |vo). This is clearly in contrast with the initial hypothesis that v is the
ground state. Hence, this concludes the proof by contradiction.
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