Exploring the Latent Capacity of LL.Ms for One-Step Text Generation

Anonymous ACL submission

Abstract

A recent study showed that large language mod-
els (LLMs) can reconstruct surprisingly long
texts — up to thousands of tokens — via au-
toregressive generation from just one specially
trained input embedding. In this work, we ex-
plore whether such reconstruction is possible
without autoregression.

We show that frozen LLMs can generate hun-
dreds of accurate tokens in just one forward
pass, when provided with only two learned em-
beddings. This reveals a surprising and un-
derexplored capability of LLMs — multi-token
generation without iterative decoding.

We investigate the behaviour of these embed-
dings and provide insight into the type of in-
formation they encode. We also empirically
show that although these representations are
not unique for a given text, they form connected
and local regions in embedding space — a prop-
erty that suggests the potential of learning a
dedicated encoder into that space.

1 Introduction

Large language models (LLMs) are typically
trained to generate text in an autoregressive man-
ner — they predict one token at a time based on the
previously generated context.

Recent work by Kuratov et al. (2025) demon-
strated that LLLMs can autoregressively generate
an arbitrary text starting from a single, specially
trained input embedding corresponding to that text.
This raises an intriguing question: is autoregres-
sive generation an essential part of such reconstruc-
tion? Can LLMs reconstruct accurate multi-token
sequences from some compressed representation
in a single forward pass, without any iterative gen-
eration, and if so, how?

In this work, we aim to find out whether this
is possible and to to understand, what those com-
pressed representations encode and whether it re-
veals anything about LLMs’ parallel generation
capabilities.

Figure 1: Two "proto-tokens" (trainable embeddings)
are fed into frozen, pre-trained LLM and optimized in
such a way, that the LLM predicts an arbitrary target
sequence in a single forward pass.

Our contribution is as follows:

1. We show that LLMs can reconstruct arbi-
trary sequences from as few as two learned input
embeddings, achieving perfect reconstruction of
sequences of up to several hundred tokens.

2. We identify key design aspects for such a
setup, that enable this generation, including the
critical importance of input token arrangement.

3. We study how the reconstruction capability
varies with the model size and the nature of the
target sequence (e.g. natural vs synthetic text).

4. We conduct several experiments which shed
some light on the nature of the representations,
the structure of their embedding space, and the
possibility to replace their direct optimization with
parameterized encoding.

2 Related Work

The most direct influence for our work is a paper
by Kuratov et al. (2025), which showed that frozen
LLMs can reconstruct an arbitrary text (a sequence
of tokens) T' = [t1,. .., tx] if given a set of special,
so-called memory tokens [my, ..., mg|. The em-
beddings for these tokens are trained by optimizing
a causal language modeling objective (next-token

prediction cross-entropy loss) over a concatenated
input sequence X = [mi,...,mg,t1,...,tN]
passed through a frozen LLM. In the case of per-
fect next-token prediction accuracy (which could
be achieved for reasonable text length), this allows
the model to autoregressively predict the whole text
starting from the memory tokens. The number of
memory tokens controls the maximum available
text length and can be as few as one.

Although surprisingly long (up to 1568 tokens)
texts could be compressed even into a single mem-
ory token, the authors note that the embeddings
optimized for the same text from different initial-
izations often lie far apart. Moreover, linear inter-
polations between those embeddings produce very
poor reconstruction accuracy, suggesting that the
solution space lacks desirable smoothness and lo-
cality qualities, which are important for learning
a practical encoder that could replace the direct
optimization.

Our work also relates to efforts in prompt-tuning
and its variants (Lester et al., 2021; Liu et al., 2024,
Li and Liang, 2021). Most similarly, Lester et al.
(2021) train task-specific soft tokens to condition
the frozen model to improve their performance in
new tasks. Finally, several speculative (Xia et al.,
2023) and parallel (Santilli et al., 2023) decoding
utilize a similar mechanism for multiple token pre-
diction using decoder models. More specifically,
they add special [PAD] or [MASK] tokens at the
end of the current context in order to make a pre-
diction for several tokens into the future at once.
Critically, in these works either special training or
multiple generative iterations are required.

Unlike the prior work, we show that LLMs can
generate accurate multi-token sequences in one for-
ward pass without any additional training or itera-
tive decoding.

3 Method

To adopt the approach from Kuratov et al. (2025)
to a non-autoregressive case, we replace all input
tokens of the LLM with specially trained "proto-
tokens" and predict the target token sequence in
one forward pass. In practice, "proto-tokens" are
just trainable vectors that are not tied to any real
items in the vocabulary. The main difference be-
tween regular tokens and these "proto-tokens" is
that "proto-tokens" encode multiple tokens at once
and only produce human-readable text after pass-
ing through the LLM. Our goal is to identify the

smallest possible number of such "proto-tokens"
needed for accurate reconstruction. Interestingly,
we find that it is essential to have at least two —
the performance degrades significantly when using
only one (see Section 4).

There are many ways to arrange two vectors as
an input sequence of arbitrary length. We report
results for different variants later in the paper, but
here we describe the arrangement that is used in
the majority of the experiments.

Exact scheme We introduce two "proto-tokens"
e and m with trainable embeddings of dimension
dmoder (model input embedding dimension) and
construct the input sequence as follows: Z =
[e,m, m, ..., m]—one copy of token e is followed
by N — 1 copies of token m, where N is the target
text length. We then train the vectors by optimiz-
ing cross-entropy loss between the target sequence
T = [t1,t2,...,tN] and the frozen LLM’s output
for the input sequence. The prediction is made us-
ing standard causal attention masking, so that the
prediction for the token ¢; depends on the first ¢
input "proto-tokens" (see Figure 1).

Metrics Our main evaluation metric is the num-
ber of correctly reconstructed tokens in a generated
sequence defined as:

N

Ctokens = Z]l(LM(Z[lz}) = ti) (1)
i=1

Additionally, we measure the amount of informa-
tion contained in the reconstructed token sequence
from the perspective of causal language modeling
with a given LLM. Specifically, we compute the
cross-entropy between the compressed sequence
and LLM’s autoregressive probability distribution:

N

Hpnr =Y —logPry(tilt<:))
=1

This quantity measures how uncertain a model
is about the compressed text, that is, how much
information it contains.

Solution space connectivity To gain insights
into the structure of the solution space of our prob-
lem, we analyze whether different proto-token em-
beddings obtained for the same text but from differ-
ent random initializations are connected. We adopt
a technique from (Garipov et al., 2018) which is
used to find paths connecting different minima of

the loss function in computer vision problems. We
optimize the parameters of a degree-one Bezier
curve, connecting two solutions, to maximize re-
construction accuracy along the curve. The curve is
parameterized by a control point 7 in the following
way:

dr(t) = (1 —t)2p1 +2t(1 —) + £2p2 (3)

Here, p; and po are the two original solutions that
we aim to connect.

The expectation of the cross-entropy loss func-
tion under the uniform distribution over ¢ € [0, 1]
(4) is minimized by iteratively sampling ¢ € [0, 1]
and making a gradient step, effectively obtaining
unbiased estimate of the gradient of [,:

1 N
Iy = / > —logPry(tilg-(t)dt ()
0 =1

This acts as a more tractable alternative to direct
optimization under the uniform distribution along
the curve itself.

Token sequences similarity In Section 4, we
aim to measure the similarity between two token
sequences in order to control for this similarity. To
measure token-level similarity we use the cosine
distance between TF-IDF embeddings of two se-
quences. To measure semantic similarity we use
cosine-distance between semantic sequence embed-
dings obtained from a MiniLM model fine-tuned!
for the semantic sentence embedding.

4 Experiments and results

We test the ability of different LLMs of varying
sizes to generate a predefined text from different
sources in a non-autoregressive (parallel) mode.
Moreover, we compare different ways to feed our
trainable "proto-tokens" into LLM. We also try to
understand the structure of the solution space by
examining the relations of solutions for different
problems.

Models We use six models for all experiments:
three Pythia (Biderman et al., 2023) models of
sizes 160M, 410M, and 1.4B, and three Llama-
3 (Grattafiori et al., 2024) models of sizes 1B, 3B,
and 8B.

1https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2

Data Four text sources are used in the experi-
ments to explore the possible connection between
reconstruction performance and the text nature.

A set of random texts is generated by sampling
from the top 100,000 words of the GloVe vocabu-
lary (Pennington et al., 2014), to evaluate perfor-
mance on unnatural texts.

To assess generation performance on natural but
unseen texts, we use a collection of fanfiction texts
from AO3 library 2, with a publication date cutoff
of October 2024, which is later than the end of
training for all models. For data processing details,
see Kuratov et al. (2025).

The performance on seen natural texts is evalu-
ated using PG-19 dataset (Rae et al., 2019) — a part
of a dataset used for training Pythia models.

Finally, we include a set of model-specific gen-
erated texts. Specifically, for each model and each
context text from PG-19 dataset, a suffix of the
same length is generated as autoregressive contin-
uation. The generation is done via multinomial
sampling with sampling temperature 7' = 1.

Training details The embeddings of the proto-
token are initialized randomly from a standard nor-
mal distribution and optimized using AdamW op-
timizer (Loshchilov and Hutter) with 0.01 learn-
ing rate, 31, B2 set to 0.9 and a weight decay of
0.01. The embeddings are trained for 5000 itera-
tions with early stopping if perfect reconstruction
accuracy is achieved. This number of iterations
is often insufficient for convergence, but due to
limited computational resources, we are unable to
increase it. Instead, we aggregate results across
multiple sequences. All models are loaded and
trained using PyTorch framework and the Hugging
Face Transformers library. Each experimental run
is done on a single A100 or H100 80GB GPU with
gradient accumulation enabled where necessary.
The code is available at this page?.

Proto-token arrangement To select the best way
to arrange two proto-tokens as input to an LLM
for the main experiments, we conduct test runs
on a single dataset-model pair for the variety of
arrangements. For each arrangement, the same 50
texts from the PG-19 are selected, and the Llama-
3.2-1B model is trained on prefixes of these texts at
lengths: [1, 2,4, 8, 16, 32, 64, 128, 256, 512, 1024],
to assess how token-level reconstruction accuracy
2https://archiveofourown.org/

3https://anonymous.4open.science/r/
OneStep-91DDa

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://archiveofourown.org/
https://anonymous.4open.science/r/OneStep-91DDa
https://anonymous.4open.science/r/OneStep-91DDa

changes with respect to sequence length N. A
representative selection of results is presented in
Table 1.

Arrangement N=1 N=2 N=4 N =256
le] v 1.00400 045,05 0.17.5,5 0.01 .,

[e]x(N/z) [TN‘}X(N/Z) 10010.00 1'0010.00 01210.13 0'0110.01
[e,m x(N/2) 1'0010.00 1'00i0.00 1'0010.00 0'17i0.34

e][m], x 1.004400 1.00400 1.00,900 0.97,4,5
[e][m] 1.004460 1.001400 1.004000 0.99,0 46

X(N—-1)

Table 1: Reconstruction accuracies for different input
token arrangements across varying sequence lengths.
Subscripts indicate the number of copies for each proto-
token. The last two schemes differ as follows: in one
the LLM is trained to predict the first text token ¢; for
the proto-token e, while for the other the prediction for
proto-token e is not guided and ¢; is a target prediction
for the first copy of m instead.

Interestingly, having two trainable tokens is es-
sential for the performance — the scheme with one
trainable token fails to reconstruct even 2-token
text, while best two-token schemes can reconstruct
256-token texts almost ideally.

Moreover, the way these two tokens are arranged
is also important, with the best results obtained
when the first token e is followed by NV — 1 copies
of the second token m. This asymmetrical arrange-
ment and critical necessity for two tokens suggest
possible variation in functions of e and m. It is pos-
sible, that while one of them mostly incorporates
language information, the role of the other one is
mainly structural or mechanistic. This could be re-
lated to the phenomenon of "attention sinks" — Xiao
et al. (2023) showed that LLMs are strongly attend
to the initial tokens in the sequence even when they
are not relevant. Moreover, adding a placeholder
token as an attention sink could largely improve
the performance of window-attention based mod-
els, which do not see the initial tokens by design.
So, it is possible, that in order to successfully de-
code "proto-tokens", LLM needs a distinguishable
token, which can be used as attention sink.

Token sharing In the previous section, we
showed that the quality of reconstruction is very de-
pendent on having two separate proto-tokens as an
input. This observation, led us to hypothesize that,
if a second token plays some structural or mecha-
nistic purposes and does not contain information
about the sequence itself. In that case, the second
token could be shared between texts, reducing the

number of optimized parameters, and simplifying
the training process of the potential encoder.

To test this hypothesis, we run the same op-
timization process, but splitting 256 texts from
the PG-19 dataset into groups of different sizes
Sy € [1,4,16,64,256] and sharing either e or
m within each group. We selected the maximum
length of the text that can be losslessly compressed
in a non-sharing mode - 256. The selection of the
results is presented in Table 2.

Shared Agg S,=1 S;=16 §,; =256

e max 1.00_,,, 0.99. ., 0.99.
avg 098, 0.90,,,, 0.86,,,,

P max 1.00_,,, 1.00.,, 1.00.,,,
an 0‘98i0.07 0‘86i0.19 0'83i0.18

Table 2: Reconstruction accuracy for schemes where
one of the trainable tokens is shared within a group
across different group sizes. "max" aggregation indi-
cates that for every text, maximum accuracy across ten
random seeds is selected and then averaged across texts,
while "avg" denotes averaging across both seeds and
texts.

Our experiments show that either of the tokens
can be share and both options produce approx-
imately the same results, if provided with suffi-
ciently large number of initializations (seeds), but
the number of starts needed increases significantly
with the group size.

Depending on the proto-token being shared, we
can build different intuitions behind the function of
the shared tokens and the method itself. Is e-token
is shared, which is located in the very beginning
of the input sequence, the analogy that comes to
mind is prompt-tuning (Lester et al., 2021), where
a set of prompt embeddings is trained in order to
improve performance in some specific task. In our
case, a shared token e could be viewed as an "in-
struction" saying what an LLM should do with the
upcoming embeddings (m-tokens) - decode differ-
ent pieces of information for different positions. If
m is shared, then training and prediction scheme
resembles some of the speculative decoding ap-
proaches (Xia et al., 2023), where a number of
special "[mask]" tokens are appended at the end of
the sequence and the prediction for all them is then
done in parallel. For all other experiments, unless
stated otherwise, we use scheme with sharing m
token between texts and random seeds and e token
being unique for each text/seed pair.

Pythia Llama
Share p
160M 410M 1.4B 3.2-1B 3.2-3B 3.1-8B

o False 90 92 90 256 362 512

fokens Tyye 45 22 45 181 256 256
Random

I False 507.5, 050 377.1, 5, 470.7, 0., 15513, .. 2193.4, .., 2974.4,,. .,

EM Trae 247.9.,,, 911, 231.0,,., 947.7..., 1292.2,,., 1309.4,,.,

o False 128 128 131 362 512 724

fokens Tyye 45 45 45 181 288 362
Fanfics

I False 358.9,,., 395.4,,, 261.0,.,, 1107.6,,,,, 1408.4, ... 1763.3,,,

LM True 145.0,,,, 82.3,,., 147.9,,. 5764, , 835.9,, , 11128, .,

o False 128 167 128 362 512 724

tokens
PG-19 True 45 32 64 181 256 362

= False 388.4,., 408.8,. ., 298.4.., 993.8,,., 1346.0,,,, 1659.8,,,

LM True 1560i339 881i303]‘56'0i30.2 456'5i56.5 826‘]‘i117.6 832‘3i171.0

o False 128 181 128 362 512 724
PG-19 "M Trye 45 32 64 181 362 362
(gen) = False 354.1,.,, 379.2,.,, 277.6..., 927.3,,.., 1266.6,,., 1653.1,,,,,

EM True 153.0,,,4 106.9... 197140, 478.7.e, 788.6, 0. 77174100

Table 3: Maximum reconstruction capacities for different models on different datasets.

Generation capacity We already see, that simi-
lar to autoregressive mode (Kuratov et al., 2025),
LLMs can generate fairly long sequences in just
one forward pass. To characterize this capability,
and understand how it scales with model size, we
run the optimization process for text prefixes of the
predefined lengths [4, 5, 8, 11, 16, 22, 32, 45, 64,
90, 128, 181, 256, 362, 512, 724, 1024, 1448]. We
report the maximum values of Cogens, and Hygz
which correspond to the longest prefix for which
at least 0.99 token-level accuracy is achieved — we
treat such sequences as successfully predicted. In
addition to a scheme with a shared p token, we also
run a scheme with p not shared, to eliminate the
effect of the insufficient number of random initial-
izations. While our results in Section 4, suggest
that p, can in principal, be shared without any qual-
ity drop, we also note that the optimization process
is highly sensitive to initialization, especially when
the proto-tokens are shared. The results are pre-
sented in Table 3.

Larger models in Llama family show greater
reconstruction capabilities than the smaller ones of
their family, while the situation with Pythia model-
family is less obvious, with all the models showing
approximately the same performance. Llama 1B

model is also able to reconstruct almost three times
larger sequence compared to Pythia model of the
same size.

The source of the natural language (unseen / seen
/ generated) doesn’t seem to have any systematic in-
fluence on the quality of reconstruction in terms of
the number of tokens, while for unnatural random
texts the generation capacity is significantly worse.
This suggests that our "proto-tokens" do not "store"
text tokens directly, but encode some more high-
level representations, using language modeling ca-
pabilities of LLM. However, we also can’t say that
the compressibility of the text is determined by its
likelihood under the sequential language model. In
fact, we observe the opposite trend: lower total
information content Hp ps is compressed for less-
information dense texts, such as generated by the
LLM itself.

This difference is highlighted in Figure 2, where
the amount of the language-information contained
in trainable tokens is compared to autoregressive
setup. The performance for unnatural texts is very
similar and sometimes even identical, while for nat-
ural texts, the difference in capacity can be up to
five times lower. However, more often the perfor-
mance is just two times lower in non-autoregressive

One trainable embedding

2048 28

1024 4

Model
@® Pythia-160M
Pythia-410M
Pythia-1.4B
Llama-3.2-1B
Llama-3.2-3B

Two trainable embeddings

4096

2048

2
.

.
-,
s

v

512 4
256

128
.

One-forward H,y

644"

324

T T T T
512 1024 2048 4096 -

Autoregressive H.y

T
256

-~
® Llima-3.1-88 T 19%]

Dataset
Fanfics
PG-19
PG-19(gen) -
Random ke

’
.,
-’
’

’
- ;“..
/’ ’ e
, & R
Fay “‘-Ai& /./
e & o
P 7
.“‘ : ‘/
> Ve

5124

- .
e 7
2561 a

One-forward

1284 o va

X 64 7

T T T T
1024 2048 4096 8192

Autoregressive H.y

T
512

Figure 2: Maximum language information (H 1, for a maximum text prefix that is accurately reconstructed)
compressed for different models and datasets. In the left plot, a single [mem] token is used in the autoregressive
setting, and in the non-autoregressive one, p proto-token is shared between all texts within each model. In the right
plot, two [mem] tokens are used and p proto-tokens are not shared. Each small point on the plots represents a single
text, larger points indicate the average within each (model, dataset) pair.

case, suggesting that autoregressive decoding ap-
proximately doubles the information density that
could be decoded for natural texts.

é

25000

Dataset
Fanfics
PG-19
PG-19(gen)
Random

6

20000 §

4oeox

v

&

15000 1

Model
Pythia-160M
Pythia-410M
Pythia-1.4B
Llama-3.2-1B
Llama-3.2-3B
@® Llama-3.1-88

tokens per sec

10000 1

&
Q °
(@)

4‘!84 oo

One-forward reconstruction throughput,

5000 ;vg
v v T T
20 50 80 110 140
Autoregressive reconstruction throughtput,
tokens per sec

Figure 3: Reconstruction throughput comparison be-
tween autoregressive and non-autoregressive setups. For
each (model, dataset) pair, we compress the texts of
maximum losslessly compressible length. To measure
execution time we use PyTorch profiling tools.

Although less information-dense, our one-
forward method achieves significantly higher de-
coding — outperforming its autoregressive counter-
part by a factor of 279 on average in the from the
point of view of reconstruction throughtput (Fig-
ure 3). This dramatic difference is primary due to
the number of forward passes.

Proto-tokens interpretation We investigate
what type of information is encoded in proto-
tokens, and the implications this has for a potential
practical applications. In worst case scenario, they
directly encode target tokens (imagine a vector just
containing token_ids). In that case, the whole work

of "language generation" should be done when en-
coding the text to this vector, which renders the
"decoding" useless from the point of view of poten-
tial accelerated inference, though it could still be
useful a context-compression tool. The opposite op-
tion, is that proto-tokens encode some compressed
representation of possible prefix sequence, that can
lead to such suffix, if the generation process is ap-
plied. In that case, the hard work of text generation
is done, when the proto-tokens are decoded, which
is more promising from the point of view of accel-
erated inference. All the intermediate states such
as semantic prefix representation, semantic suffix
representation, or the combination of both are also
possible.

Same text
Same context
Different contexts

-
0.85 0.90
Cosine distance

0.80 0.95

Figure 4: Pairwise cosine distances distribution for
types kinds of proto-token embedding pairs. We se-
lect 50 contexts from PG19, for each context, generate
10 different continuation texts with sampling tempera-
ture 1. Then we find one solution for each of the first 9
generations and 10 solutions for the last generation.

¥ Same Context

@ Different Contexts

-
o
I}
v
L

1.000 4

0.975 4

0.950 A

0.925 4

0.900 A

——
——

0.875 A

0.850 1

Distance between Proto-token Embeddings

o
o
N
o
|

—3—

OTG 0?7 018 0T9
Token-level Distance between Texts

I
w»

T

1.0 0.2 0?4 016 0T8 1.0
Semantic Distance between Texts

Figure 5: The comparison of the distances between proto-token embeddings for same-context text pairs and the
distances between proto-token embeddings for different-context text pairs. Token-level distance is measured as
cosine distance between TF-IDF embeddings. Semantic distance is measured as cosine distance between semantic

text embeddings (see Section 3 for details).

We start by measuring the distances between
three types proto-token embedding pairs: 1) cor-
responding to the same generated sequence, but
different random seeds, 2) corresponding to the dif-
ferent texts but generated from the same context,
3) corresponding to the different texts generated
from different contexts. As shown in Figure 4,
that same-text solutions are almost always located
closer to each other than different-texts solutions,
which suggests a degree of locality in the learned
representations. At the same time, same-context
solutions are noticeably closer to each other than
different-context ones. This may indicate that for
that the encoded information at least partially re-
flects the potential context of the text, however we
should be careful to account for the texts gener-
ated from the same context being more similar in
general.

To do that, we measure pairwise distances be-
tween the generated texts, and examine whether the
distance between the learned proto-token embed-
dings differ for a fixed distance between the texts.
We use token-level measure of text similarity and
semantic-level measure (see Section 3). For both
measures, (see Figure 5) we observer that, given
similar distances between texts, the proto-token
embeddings are consistently closer when the text
originate from the same context. We conclude that
learned proto-tokens contain information beyond
the information about the target sequence itself,

that is somehow describes the potential context of
the sequence.

Kuratov et al. (2025) raised the following con-
cern about the structure of the solution space in
autoregressive setup. Even though the same-text
token embeddings are on average closer to each
other than different-text token embeddings, they
seem to be disconnected — a linear interpolation
between two solutions does not yield a valid re-
construction. This could mean that the potential
encoding to this space could be problematic as the
same object could be mapped to disconnected re-
gions. We find that in our non-autoregressive case,
the linear interpolation between same-text solutions
also does not produce a solution (Figure 6).

g
o

o
®

Connection
—— Linear
—— Bezier curve

o
o

Accuracy
°
'S

o
N

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Pairwise interpolation accuracies between 10
solutions for 5 texts (5 X 10 x 9/2 pairs in total).

However, the solutions could be connected using
quadratic Bezier curves (parabolic segments) lying
inside "solution set". This means that even though

same-text solutions do not form a convex set, they
form a connected set. In fact, our experiments
show that the maximum ratio between Bezier curve
length and the corresponding linear connection is
only 1.2, indicating that the paths are nearly linear.
These results demonstrate that the solution space
is fairly well behaved, providing reasonable hope
that an encoder model could be built to map into
that space.

5 Discussion and Conclusions

In this paper, we demonstrate that frozen LLMs
have a surprising ability to generate hundreds of
accurate tokens in a single forward pass — without
any iterative decoding — when provided with just
two specially trained "proto-tokens".

We find that both the number and the arrange-
ment of such tokens is crucial for enabling this
generation capacity. Interestingly, with only one
proto-token, LLLMs are unable to generate more
than a single token of text. In contrast, two properly
arranged proto-tokens can enable the generation
of sequences hundreds tokens long. This signifi-
cant leap in the performance, along the observation
that one of the vectors can (in principal) be shared
across many texts, suggest that proto-tokens play
different functional roles during generation. How-
ever, the precise nature of the role differentiation
remains an open question.

We find that bigger model size does not univer-
sally imply better generation capacity. While larger
models in Llama-3 family demonstrate improved
reconstruction capacity, Pythia models show no
such trend — larger models do not outperform
smaller one. Whether this difference is connected
to the architectural variations is an open question.

Additionally, we do not observe any consistent
relationship between the source of the natural text
and the reconstruction ability of LLMs. Surpris-
ingly, Even for the texts generated by the LLM
itself, the number of successfully reconstructed
tokens is the same as for any other natural text.
However, for the texts composed of random tokens,
performance drops noticeably. This suggests that
our reconstruction process does not fully leverage
the language modeling capabilities of LLMs, and
may instead mostly rely on low-level token pat-
terns.

Although the reconstructed sequences in the non-
autoregressive setting are, on average, about two
times shorter than those in the autoregressive case,

the computational efficiency of single-forward ap-
proach allows to achieve up to 279x greater gener-
ation throughput.

Despite this, we observe that proto-tokens en-
code more than just the target sequence. Embed-
dings of the "proto-tokens" corresponding to the
different texts generated from the same context are
significantly closer to each other than those from
unrelated sequences. This indicates that the learned
representations capture some contextual informa-
tion.

Finally, we discover that the embedding space in
which proto-tokens exist, has very desirable struc-
tural properties — proto-tokens corresponding to
the same text, form localized and connected re-
gions, enabling smooth transitions via quadratic
interpolation. These findings suggest that it may
be feasible to build an encoder capable of mapping
into this space, opening the door to future work
on non-autoregressive inference and representation
learning.

6 Limitations

Although our paper demonstrates the surprising
capability of LLMs to generate long sequences in
a single forward pass from just two learned em-
beddings, several important limitations should be
acknowledged:

1. Lack of immediate practical application: Most
importantly, this work highlights an interesting
quirk of LLMs and does not suggest any imme-
diate practical implications or real-life usages for
the method.

2. Architectural dependence: The method
demonstrates different behavior across model fami-
lies, suggesting some architectural dependence. As
a results, our method may potentially not general-
ize to other model architectures.

3. Limited domain coverage: While we evaluate
four different text sources , the results may not gen-
eralize beyond those explored in our experiments.

References

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, and 1 others.
2023. Pythia: A suite for analyzing large language
models across training and scaling. In International
Conference on Machine Learning, pages 2397-2430.
PMLR.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin,
Dmitry P Vetrov, and Andrew G Wilson. 2018. Loss
surfaces, mode connectivity, and fast ensembling of
dnns. Advances in neural information processing
systems, 31.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Yuri Kuratov, Mikhail Arkhipov, Aydar Bulatov, and
Mikhail Burtsev. 2025. Cramming 1568 tokens into
a single vector and back again: Exploring the lim-
its of embedding space capacity. arXiv preprint
arXiv:2502.13063.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024. Gpt
understands, too. Al Open, 5:208-215.

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532—1543, Doha, Qatar.
Association for Computational Linguistics.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Andrea Santilli, Silvio Severino, Emilian Postolache,
Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodola. 2023. Accelerating
transformer inference for translation via parallel de-
coding. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12336-12355, Toronto,
Canada. Association for Computational Linguistics.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerat-
ing seq2seq generation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 3909-3925, Singapore. Association for Com-
putational Linguistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257

	Introduction
	Related Work
	Method
	Experiments and results
	Discussion and Conclusions
	Limitations

