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Abstract001

A recent study showed that large language mod-002
els (LLMs) can reconstruct surprisingly long003
texts – up to thousands of tokens – via au-004
toregressive generation from just one specially005
trained input embedding. In this work, we ex-006
plore whether such reconstruction is possible007
without autoregression.008
We show that frozen LLMs can generate hun-009
dreds of accurate tokens in just one forward010
pass, when provided with only two learned em-011
beddings. This reveals a surprising and un-012
derexplored capability of LLMs – multi-token013
generation without iterative decoding.014
We investigate the behaviour of these embed-015
dings and provide insight into the type of in-016
formation they encode. We also empirically017
show that although these representations are018
not unique for a given text, they form connected019
and local regions in embedding space – a prop-020
erty that suggests the potential of learning a021
dedicated encoder into that space.022

1 Introduction023

Large language models (LLMs) are typically024

trained to generate text in an autoregressive man-025

ner – they predict one token at a time based on the026

previously generated context.027

Recent work by Kuratov et al. (2025) demon-028

strated that LLMs can autoregressively generate029

an arbitrary text starting from a single, specially030

trained input embedding corresponding to that text.031

This raises an intriguing question: is autoregres-032

sive generation an essential part of such reconstruc-033

tion? Can LLMs reconstruct accurate multi-token034

sequences from some compressed representation035

in a single forward pass, without any iterative gen-036

eration, and if so, how?037

In this work, we aim to find out whether this038

is possible and to to understand, what those com-039

pressed representations encode and whether it re-040

veals anything about LLMs’ parallel generation041

capabilities.042

Figure 1: Two "proto-tokens" (trainable embeddings)
are fed into frozen, pre-trained LLM and optimized in
such a way, that the LLM predicts an arbitrary target
sequence in a single forward pass.

Our contribution is as follows: 043

1. We show that LLMs can reconstruct arbi- 044

trary sequences from as few as two learned input 045

embeddings, achieving perfect reconstruction of 046

sequences of up to several hundred tokens. 047

2. We identify key design aspects for such a 048

setup, that enable this generation, including the 049

critical importance of input token arrangement. 050

3. We study how the reconstruction capability 051

varies with the model size and the nature of the 052

target sequence (e.g. natural vs synthetic text). 053

4. We conduct several experiments which shed 054

some light on the nature of the representations, 055

the structure of their embedding space, and the 056

possibility to replace their direct optimization with 057

parameterized encoding. 058

2 Related Work 059

The most direct influence for our work is a paper 060

by Kuratov et al. (2025), which showed that frozen 061

LLMs can reconstruct an arbitrary text (a sequence 062

of tokens) T = [t1, . . . , tN ] if given a set of special, 063

so-called memory tokens [m1, . . . ,mK ]. The em- 064

beddings for these tokens are trained by optimizing 065

a causal language modeling objective (next-token 066
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prediction cross-entropy loss) over a concatenated067

input sequence X = [m1, . . . ,mK , t1, . . . , tN ]068

passed through a frozen LLM. In the case of per-069

fect next-token prediction accuracy (which could070

be achieved for reasonable text length), this allows071

the model to autoregressively predict the whole text072

starting from the memory tokens. The number of073

memory tokens controls the maximum available074

text length and can be as few as one.075

Although surprisingly long (up to 1568 tokens)076

texts could be compressed even into a single mem-077

ory token, the authors note that the embeddings078

optimized for the same text from different initial-079

izations often lie far apart. Moreover, linear inter-080

polations between those embeddings produce very081

poor reconstruction accuracy, suggesting that the082

solution space lacks desirable smoothness and lo-083

cality qualities, which are important for learning084

a practical encoder that could replace the direct085

optimization.086

Our work also relates to efforts in prompt-tuning087

and its variants (Lester et al., 2021; Liu et al., 2024;088

Li and Liang, 2021). Most similarly, Lester et al.089

(2021) train task-specific soft tokens to condition090

the frozen model to improve their performance in091

new tasks. Finally, several speculative (Xia et al.,092

2023) and parallel (Santilli et al., 2023) decoding093

utilize a similar mechanism for multiple token pre-094

diction using decoder models. More specifically,095

they add special [PAD] or [MASK] tokens at the096

end of the current context in order to make a pre-097

diction for several tokens into the future at once.098

Critically, in these works either special training or099

multiple generative iterations are required.100

Unlike the prior work, we show that LLMs can101

generate accurate multi-token sequences in one for-102

ward pass without any additional training or itera-103

tive decoding.104

3 Method105

To adopt the approach from Kuratov et al. (2025)106

to a non-autoregressive case, we replace all input107

tokens of the LLM with specially trained "proto-108

tokens" and predict the target token sequence in109

one forward pass. In practice, "proto-tokens" are110

just trainable vectors that are not tied to any real111

items in the vocabulary. The main difference be-112

tween regular tokens and these "proto-tokens" is113

that "proto-tokens" encode multiple tokens at once114

and only produce human-readable text after pass-115

ing through the LLM. Our goal is to identify the116

smallest possible number of such "proto-tokens" 117

needed for accurate reconstruction. Interestingly, 118

we find that it is essential to have at least two – 119

the performance degrades significantly when using 120

only one (see Section 4). 121

There are many ways to arrange two vectors as 122

an input sequence of arbitrary length. We report 123

results for different variants later in the paper, but 124

here we describe the arrangement that is used in 125

the majority of the experiments. 126

Exact scheme We introduce two "proto-tokens" 127

e and m with trainable embeddings of dimension 128

dmodel (model input embedding dimension) and 129

construct the input sequence as follows: Z = 130

[e,m,m, . . . ,m] – one copy of token e is followed 131

by N − 1 copies of token m, where N is the target 132

text length. We then train the vectors by optimiz- 133

ing cross-entropy loss between the target sequence 134

T = [t1, t2, . . . , tN ] and the frozen LLM’s output 135

for the input sequence. The prediction is made us- 136

ing standard causal attention masking, so that the 137

prediction for the token ti depends on the first i 138

input "proto-tokens" (see Figure 1). 139

Metrics Our main evaluation metric is the num- 140

ber of correctly reconstructed tokens in a generated 141

sequence defined as: 142

Ctokens =
N∑
i=1

1(LM(Z[1:i]) = ti) (1) 143

Additionally, we measure the amount of informa- 144

tion contained in the reconstructed token sequence 145

from the perspective of causal language modeling 146

with a given LLM. Specifically, we compute the 147

cross-entropy between the compressed sequence 148

and LLM’s autoregressive probability distribution: 149

HLM =
N∑
i=1

−logPLM (ti|t<i) (2) 150

This quantity measures how uncertain a model 151

is about the compressed text, that is, how much 152

information it contains. 153

Solution space connectivity To gain insights 154

into the structure of the solution space of our prob- 155

lem, we analyze whether different proto-token em- 156

beddings obtained for the same text but from differ- 157

ent random initializations are connected. We adopt 158

a technique from (Garipov et al., 2018) which is 159

used to find paths connecting different minima of 160
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the loss function in computer vision problems. We161

optimize the parameters of a degree-one Bezier162

curve, connecting two solutions, to maximize re-163

construction accuracy along the curve. The curve is164

parameterized by a control point π in the following165

way:166

ϕπ(t) = (1− t)2p1 + 2t(1− t)π + t2p2 (3)167

Here, p1 and p2 are the two original solutions that168

we aim to connect.169

The expectation of the cross-entropy loss func-170

tion under the uniform distribution over t ∈ [0, 1]171

(4) is minimized by iteratively sampling t̃ ∈ [0, 1]172

and making a gradient step, effectively obtaining173

unbiased estimate of the gradient of lπ:174

lπ =

∫ 1

0

N∑
i=1

−logPLM (ti|ϕπ(t))dt (4)175

This acts as a more tractable alternative to direct176

optimization under the uniform distribution along177

the curve itself.178

Token sequences similarity In Section 4, we179

aim to measure the similarity between two token180

sequences in order to control for this similarity. To181

measure token-level similarity we use the cosine182

distance between TF-IDF embeddings of two se-183

quences. To measure semantic similarity we use184

cosine-distance between semantic sequence embed-185

dings obtained from a MiniLM model fine-tuned1186

for the semantic sentence embedding.187

4 Experiments and results188

We test the ability of different LLMs of varying189

sizes to generate a predefined text from different190

sources in a non-autoregressive (parallel) mode.191

Moreover, we compare different ways to feed our192

trainable "proto-tokens" into LLM. We also try to193

understand the structure of the solution space by194

examining the relations of solutions for different195

problems.196

Models We use six models for all experiments:197

three Pythia (Biderman et al., 2023) models of198

sizes 160M, 410M, and 1.4B, and three Llama-199

3 (Grattafiori et al., 2024) models of sizes 1B, 3B,200

and 8B.201

1https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

Data Four text sources are used in the experi- 202

ments to explore the possible connection between 203

reconstruction performance and the text nature. 204

A set of random texts is generated by sampling 205

from the top 100,000 words of the GloVe vocabu- 206

lary (Pennington et al., 2014), to evaluate perfor- 207

mance on unnatural texts. 208

To assess generation performance on natural but 209

unseen texts, we use a collection of fanfiction texts 210

from AO3 library 2, with a publication date cutoff 211

of October 2024, which is later than the end of 212

training for all models. For data processing details, 213

see Kuratov et al. (2025). 214

The performance on seen natural texts is evalu- 215

ated using PG-19 dataset (Rae et al., 2019) – a part 216

of a dataset used for training Pythia models. 217

Finally, we include a set of model-specific gen- 218

erated texts. Specifically, for each model and each 219

context text from PG-19 dataset, a suffix of the 220

same length is generated as autoregressive contin- 221

uation. The generation is done via multinomial 222

sampling with sampling temperature T = 1. 223

Training details The embeddings of the proto- 224

token are initialized randomly from a standard nor- 225

mal distribution and optimized using AdamW op- 226

timizer (Loshchilov and Hutter) with 0.01 learn- 227

ing rate, β1, β2 set to 0.9 and a weight decay of 228

0.01. The embeddings are trained for 5000 itera- 229

tions with early stopping if perfect reconstruction 230

accuracy is achieved. This number of iterations 231

is often insufficient for convergence, but due to 232

limited computational resources, we are unable to 233

increase it. Instead, we aggregate results across 234

multiple sequences. All models are loaded and 235

trained using PyTorch framework and the Hugging 236

Face Transformers library. Each experimental run 237

is done on a single A100 or H100 80GB GPU with 238

gradient accumulation enabled where necessary. 239

The code is available at this page3. 240

Proto-token arrangement To select the best way 241

to arrange two proto-tokens as input to an LLM 242

for the main experiments, we conduct test runs 243

on a single dataset-model pair for the variety of 244

arrangements. For each arrangement, the same 50 245

texts from the PG-19 are selected, and the Llama- 246

3.2-1B model is trained on prefixes of these texts at 247

lengths: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024], 248

to assess how token-level reconstruction accuracy 249

2https://archiveofourown.org/
3https://anonymous.4open.science/r/

OneStep-91DDa

3
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changes with respect to sequence length N . A250

representative selection of results is presented in251

Table 1.252

Arrangement N = 1 N = 2 N = 4 N = 256

[e]×N 1.00±0.00 0.45±0.31 0.17±0.18 0.01±0.01

[e]×(N/2)
[m]×(N/2) 1.00±0.00 1.00±0.00 0.12±0.13 0.01±0.01

[e,m]×(N/2) 1.00±0.00 1.00±0.00 1.00±0.00 0.17±0.34

[e][m]×N 1.00±0.00 1.00±0.00 1.00±0.00 0.97±0.15

[e][m]×(N−1) 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.10

Table 1: Reconstruction accuracies for different input
token arrangements across varying sequence lengths.
Subscripts indicate the number of copies for each proto-
token. The last two schemes differ as follows: in one
the LLM is trained to predict the first text token t1 for
the proto-token e, while for the other the prediction for
proto-token e is not guided and t1 is a target prediction
for the first copy of m instead.

Interestingly, having two trainable tokens is es-253

sential for the performance – the scheme with one254

trainable token fails to reconstruct even 2-token255

text, while best two-token schemes can reconstruct256

256-token texts almost ideally.257

Moreover, the way these two tokens are arranged258

is also important, with the best results obtained259

when the first token e is followed by N − 1 copies260

of the second token m. This asymmetrical arrange-261

ment and critical necessity for two tokens suggest262

possible variation in functions of e and m. It is pos-263

sible, that while one of them mostly incorporates264

language information, the role of the other one is265

mainly structural or mechanistic. This could be re-266

lated to the phenomenon of "attention sinks" – Xiao267

et al. (2023) showed that LLMs are strongly attend268

to the initial tokens in the sequence even when they269

are not relevant. Moreover, adding a placeholder270

token as an attention sink could largely improve271

the performance of window-attention based mod-272

els, which do not see the initial tokens by design.273

So, it is possible, that in order to successfully de-274

code "proto-tokens", LLM needs a distinguishable275

token, which can be used as attention sink.276

Token sharing In the previous section, we277

showed that the quality of reconstruction is very de-278

pendent on having two separate proto-tokens as an279

input. This observation, led us to hypothesize that,280

if a second token plays some structural or mecha-281

nistic purposes and does not contain information282

about the sequence itself. In that case, the second283

token could be shared between texts, reducing the284

number of optimized parameters, and simplifying 285

the training process of the potential encoder. 286

To test this hypothesis, we run the same op- 287

timization process, but splitting 256 texts from 288

the PG-19 dataset into groups of different sizes 289

Sg ∈ [1, 4, 16, 64, 256] and sharing either e or 290

m within each group. We selected the maximum 291

length of the text that can be losslessly compressed 292

in a non-sharing mode - 256. The selection of the 293

results is presented in Table 2. 294

Shared Agg Sg = 1 Sg = 16 Sg = 256

e max 1.00±0.00 0.99±0.01 0.99±0.02

avg 0.98±0.08 0.90±0.17 0.86±0.20

p max 1.00±0.00 1.00±0.00 1.00±0.01

avg 0.98±0.07 0.86±0.19 0.83±0.18

Table 2: Reconstruction accuracy for schemes where
one of the trainable tokens is shared within a group
across different group sizes. "max" aggregation indi-
cates that for every text, maximum accuracy across ten
random seeds is selected and then averaged across texts,
while "avg" denotes averaging across both seeds and
texts.

Our experiments show that either of the tokens 295

can be share and both options produce approx- 296

imately the same results, if provided with suffi- 297

ciently large number of initializations (seeds), but 298

the number of starts needed increases significantly 299

with the group size. 300

Depending on the proto-token being shared, we 301

can build different intuitions behind the function of 302

the shared tokens and the method itself. Is e-token 303

is shared, which is located in the very beginning 304

of the input sequence, the analogy that comes to 305

mind is prompt-tuning (Lester et al., 2021), where 306

a set of prompt embeddings is trained in order to 307

improve performance in some specific task. In our 308

case, a shared token e could be viewed as an "in- 309

struction" saying what an LLM should do with the 310

upcoming embeddings (m-tokens) - decode differ- 311

ent pieces of information for different positions. If 312

m is shared, then training and prediction scheme 313

resembles some of the speculative decoding ap- 314

proaches (Xia et al., 2023), where a number of 315

special "[mask]" tokens are appended at the end of 316

the sequence and the prediction for all them is then 317

done in parallel. For all other experiments, unless 318

stated otherwise, we use scheme with sharing m 319

token between texts and random seeds and e token 320

being unique for each text/seed pair. 321
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Share p
Pythia Llama

160M 410M 1.4B 3.2-1B 3.2-3B 3.1-8B

Random
Ctokens

False 90 92 90 256 362 512
True 45 22 45 181 256 256

HLM
False 507.5±105.9 377.1±133.1 470.7±103.1 1551.3±159.5 2193.4±190.2 2974.4±298.3

True 247.9±32.0 91.1±30.8 231.0±37.9 947.7±155.0 1292.2±217.4 1309.4±234.6

Fanfics
Ctokens

False 128 128 131 362 512 724
True 45 45 45 181 288 362

HLM
False 358.9±73.3 395.4±97.8 261.0±56.4 1107.6±129.1 1408.4±179.5 1763.3±280.2

True 145.0±26.2 82.3±28.1 147.9±29.7 576.4±90.4 835.9±121.7 1112.8±168.6

PG-19
Ctokens

False 128 167 128 362 512 724
True 45 32 64 181 256 362

HLM
False 388.4±66.4 408.8±96.3 298.4±77.4 993.8±183.4 1346.0±218.4 1659.8±344.5

True 156.0±33.9 88.1±30.3 156.0±30.2 456.5±56.5 826.1±117.6 832.3±171.0

PG-19
(gen)

Ctokens
False 128 181 128 362 512 724
True 45 32 64 181 362 362

HLM
False 354.1±72.0 379.2±82.6 277.6±71.3 927.3±103.4 1266.6±125.9 1653.1±211.4

True 153.0±17.8 106.9±38.5 197.1±39.3 478.7±85.7 788.6±130.8 771.7±143.0

Table 3: Maximum reconstruction capacities for different models on different datasets.

Generation capacity We already see, that simi-322

lar to autoregressive mode (Kuratov et al., 2025),323

LLMs can generate fairly long sequences in just324

one forward pass. To characterize this capability,325

and understand how it scales with model size, we326

run the optimization process for text prefixes of the327

predefined lengths [4, 5, 8, 11, 16, 22, 32, 45, 64,328

90, 128, 181, 256, 362, 512, 724, 1024, 1448]. We329

report the maximum values of Ctokens, and Hmax330

which correspond to the longest prefix for which331

at least 0.99 token-level accuracy is achieved – we332

treat such sequences as successfully predicted. In333

addition to a scheme with a shared p token, we also334

run a scheme with p not shared, to eliminate the335

effect of the insufficient number of random initial-336

izations. While our results in Section 4, suggest337

that p, can in principal, be shared without any qual-338

ity drop, we also note that the optimization process339

is highly sensitive to initialization, especially when340

the proto-tokens are shared. The results are pre-341

sented in Table 3.342

Larger models in Llama family show greater343

reconstruction capabilities than the smaller ones of344

their family, while the situation with Pythia model-345

family is less obvious, with all the models showing346

approximately the same performance. Llama 1B347

model is also able to reconstruct almost three times 348

larger sequence compared to Pythia model of the 349

same size. 350

The source of the natural language (unseen / seen 351

/ generated) doesn’t seem to have any systematic in- 352

fluence on the quality of reconstruction in terms of 353

the number of tokens, while for unnatural random 354

texts the generation capacity is significantly worse. 355

This suggests that our "proto-tokens" do not "store" 356

text tokens directly, but encode some more high- 357

level representations, using language modeling ca- 358

pabilities of LLM. However, we also can’t say that 359

the compressibility of the text is determined by its 360

likelihood under the sequential language model. In 361

fact, we observe the opposite trend: lower total 362

information content HLM is compressed for less- 363

information dense texts, such as generated by the 364

LLM itself. 365

This difference is highlighted in Figure 2, where 366

the amount of the language-information contained 367

in trainable tokens is compared to autoregressive 368

setup. The performance for unnatural texts is very 369

similar and sometimes even identical, while for nat- 370

ural texts, the difference in capacity can be up to 371

five times lower. However, more often the perfor- 372

mance is just two times lower in non-autoregressive 373
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Figure 2: Maximum language information (HLM for a maximum text prefix that is accurately reconstructed)
compressed for different models and datasets. In the left plot, a single [mem] token is used in the autoregressive
setting, and in the non-autoregressive one, p proto-token is shared between all texts within each model. In the right
plot, two [mem] tokens are used and p proto-tokens are not shared. Each small point on the plots represents a single
text, larger points indicate the average within each (model, dataset) pair.

case, suggesting that autoregressive decoding ap-374

proximately doubles the information density that375

could be decoded for natural texts.376
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Figure 3: Reconstruction throughput comparison be-
tween autoregressive and non-autoregressive setups. For
each (model, dataset) pair, we compress the texts of
maximum losslessly compressible length. To measure
execution time we use PyTorch profiling tools.

Although less information-dense, our one-377

forward method achieves significantly higher de-378

coding – outperforming its autoregressive counter-379

part by a factor of 279 on average in the from the380

point of view of reconstruction throughtput (Fig-381

ure 3). This dramatic difference is primary due to382

the number of forward passes.383

Proto-tokens interpretation We investigate384

what type of information is encoded in proto-385

tokens, and the implications this has for a potential386

practical applications. In worst case scenario, they387

directly encode target tokens (imagine a vector just388

containing token_ids). In that case, the whole work389

of "language generation" should be done when en- 390

coding the text to this vector, which renders the 391

"decoding" useless from the point of view of poten- 392

tial accelerated inference, though it could still be 393

useful a context-compression tool. The opposite op- 394

tion, is that proto-tokens encode some compressed 395

representation of possible prefix sequence, that can 396

lead to such suffix, if the generation process is ap- 397

plied. In that case, the hard work of text generation 398

is done, when the proto-tokens are decoded, which 399

is more promising from the point of view of accel- 400

erated inference. All the intermediate states such 401

as semantic prefix representation, semantic suffix 402

representation, or the combination of both are also 403

possible. 404
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Figure 4: Pairwise cosine distances distribution for
types kinds of proto-token embedding pairs. We se-
lect 50 contexts from PG19, for each context, generate
10 different continuation texts with sampling tempera-
ture 1. Then we find one solution for each of the first 9
generations and 10 solutions for the last generation.
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Figure 5: The comparison of the distances between proto-token embeddings for same-context text pairs and the
distances between proto-token embeddings for different-context text pairs. Token-level distance is measured as
cosine distance between TF-IDF embeddings. Semantic distance is measured as cosine distance between semantic
text embeddings (see Section 3 for details).

We start by measuring the distances between405

three types proto-token embedding pairs: 1) cor-406

responding to the same generated sequence, but407

different random seeds, 2) corresponding to the dif-408

ferent texts but generated from the same context,409

3) corresponding to the different texts generated410

from different contexts. As shown in Figure 4,411

that same-text solutions are almost always located412

closer to each other than different-texts solutions,413

which suggests a degree of locality in the learned414

representations. At the same time, same-context415

solutions are noticeably closer to each other than416

different-context ones. This may indicate that for417

that the encoded information at least partially re-418

flects the potential context of the text, however we419

should be careful to account for the texts gener-420

ated from the same context being more similar in421

general.422

To do that, we measure pairwise distances be-423

tween the generated texts, and examine whether the424

distance between the learned proto-token embed-425

dings differ for a fixed distance between the texts.426

We use token-level measure of text similarity and427

semantic-level measure (see Section 3). For both428

measures, (see Figure 5) we observer that, given429

similar distances between texts, the proto-token430

embeddings are consistently closer when the text431

originate from the same context. We conclude that432

learned proto-tokens contain information beyond433

the information about the target sequence itself,434

that is somehow describes the potential context of 435

the sequence. 436

Kuratov et al. (2025) raised the following con- 437

cern about the structure of the solution space in 438

autoregressive setup. Even though the same-text 439

token embeddings are on average closer to each 440

other than different-text token embeddings, they 441

seem to be disconnected – a linear interpolation 442

between two solutions does not yield a valid re- 443

construction. This could mean that the potential 444

encoding to this space could be problematic as the 445

same object could be mapped to disconnected re- 446

gions. We find that in our non-autoregressive case, 447

the linear interpolation between same-text solutions 448

also does not produce a solution (Figure 6). 449
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Figure 6: Pairwise interpolation accuracies between 10
solutions for 5 texts (5× 10× 9/2 pairs in total).

However, the solutions could be connected using 450

quadratic Bezier curves (parabolic segments) lying 451

inside "solution set". This means that even though 452
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same-text solutions do not form a convex set, they453

form a connected set. In fact, our experiments454

show that the maximum ratio between Bezier curve455

length and the corresponding linear connection is456

only 1.2, indicating that the paths are nearly linear.457

These results demonstrate that the solution space458

is fairly well behaved, providing reasonable hope459

that an encoder model could be built to map into460

that space.461

5 Discussion and Conclusions462

In this paper, we demonstrate that frozen LLMs463

have a surprising ability to generate hundreds of464

accurate tokens in a single forward pass – without465

any iterative decoding – when provided with just466

two specially trained "proto-tokens".467

We find that both the number and the arrange-468

ment of such tokens is crucial for enabling this469

generation capacity. Interestingly, with only one470

proto-token, LLMs are unable to generate more471

than a single token of text. In contrast, two properly472

arranged proto-tokens can enable the generation473

of sequences hundreds tokens long. This signifi-474

cant leap in the performance, along the observation475

that one of the vectors can (in principal) be shared476

across many texts, suggest that proto-tokens play477

different functional roles during generation. How-478

ever, the precise nature of the role differentiation479

remains an open question.480

We find that bigger model size does not univer-481

sally imply better generation capacity. While larger482

models in Llama-3 family demonstrate improved483

reconstruction capacity, Pythia models show no484

such trend – larger models do not outperform485

smaller one. Whether this difference is connected486

to the architectural variations is an open question.487

Additionally, we do not observe any consistent488

relationship between the source of the natural text489

and the reconstruction ability of LLMs. Surpris-490

ingly, Even for the texts generated by the LLM491

itself, the number of successfully reconstructed492

tokens is the same as for any other natural text.493

However, for the texts composed of random tokens,494

performance drops noticeably. This suggests that495

our reconstruction process does not fully leverage496

the language modeling capabilities of LLMs, and497

may instead mostly rely on low-level token pat-498

terns.499

Although the reconstructed sequences in the non-500

autoregressive setting are, on average, about two501

times shorter than those in the autoregressive case,502

the computational efficiency of single-forward ap- 503

proach allows to achieve up to 279× greater gener- 504

ation throughput. 505

Despite this, we observe that proto-tokens en- 506

code more than just the target sequence. Embed- 507

dings of the "proto-tokens" corresponding to the 508

different texts generated from the same context are 509

significantly closer to each other than those from 510

unrelated sequences. This indicates that the learned 511

representations capture some contextual informa- 512

tion. 513

Finally, we discover that the embedding space in 514

which proto-tokens exist, has very desirable struc- 515

tural properties – proto-tokens corresponding to 516

the same text, form localized and connected re- 517

gions, enabling smooth transitions via quadratic 518

interpolation. These findings suggest that it may 519

be feasible to build an encoder capable of mapping 520

into this space, opening the door to future work 521

on non-autoregressive inference and representation 522

learning. 523

6 Limitations 524

Although our paper demonstrates the surprising 525

capability of LLMs to generate long sequences in 526

a single forward pass from just two learned em- 527

beddings, several important limitations should be 528

acknowledged: 529

1. Lack of immediate practical application: Most 530

importantly, this work highlights an interesting 531

quirk of LLMs and does not suggest any imme- 532

diate practical implications or real-life usages for 533

the method. 534

2. Architectural dependence: The method 535

demonstrates different behavior across model fami- 536

lies, suggesting some architectural dependence. As 537

a results, our method may potentially not general- 538

ize to other model architectures. 539

3. Limited domain coverage: While we evaluate 540

four different text sources , the results may not gen- 541

eralize beyond those explored in our experiments. 542
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