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Abstract

We present a novel algorithm that efficiently computes near-optimal deterministic
policies for constrained reinforcement learning (CRL) problems. Our approach
combines three key ideas: (1) value-demand augmentation, (2) action-space ap-
proximate dynamic programming, and (3) time-space rounding. Our algorithm
constitutes a fully polynomial-time approximation scheme (FPTAS) for any time-
space recursive (TSR) cost criteria. A TSR criteria requires the cost of a policy to be
computable recursively over both time and (state) space, which includes classical
expectation, almost sure, and anytime constraints. Our work answers three open
questions spanning two long-standing lines of research: polynomial-time approx-
imability is possible for 1) anytime-constrained policies, 2) almost-sure-constrained
policies, and 3) deterministic expectation-constrained policies.

1 Introduction

Constrained Reinforcement Learning (CRL) traditionally produces stochastic, expectation-
constrained policies that can behave undesirably - imagine a self-driving car that randomly changes
lanes or runs out of fuel. However, artificial decision-making systems must be predictable, trustwor-
thy, and robust. One approach to ensuring these qualities is to focus on deterministic policies, which
are inherently predictable, easily implemented [19], reliable for autonomous vehicles [30, 23], and ef-
fective for multi-agent coordination [38]. Similarly, almost sure and anytime constraints [36] provide
inherent trustworthiness and robustness, essential for applications in medicine [15, 37, 32], disaster
relief [18, 50, 45], and resource management [35, 34, 40, 7]. Despite the advantages of deterministic
policies and stricter constraints, even the computation of approximate solutions has remained an
open challenge since NP-hardness was proven nearly 25 years ago [19]. Our work addresses this
challenge by studying the computational complexity of computing deterministic policies for general
constraint criteria.

Consider a constrained Markov Decision Process (cMDP) denoted by M . Let C represent an arbitrary
cost criterion and B be the available budget. We focus on the set of deterministic policies denoted by
ΠD. Our objective is to compute: maxπ∈ΠD V π

M s.t. Cπ
M ≤ B, where V π

M is the value and Cπ
M is

the cost of π in M . This objective generalizes the example of a self-driving car calculating the fastest
fixed route without running out of fuel. Our main question is the following:

Can near-optimal deterministic policies for constrained reinforcement learning
problems be computed in polynomial time?

Although optimal stochastic policies for expectation-constrained problems are efficiently com-
putable [3], the situation drastically changes when we require deterministic policies and general
constraints. Computing optimal deterministic policies is NP-hard for most popular constraints,
including expectation [19], chance [51], almost sure, and anytime constraints [36]. This complexity
remains even if we relax our goal to finding just one feasible policy, provided that we are dealing
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with a single chance constraint [51], or at least two of the other mentioned constraints [36]. Beyond
these computational challenges, traditional solution methods, such as backward induction [41, 3], fail
to apply due to the cyclic dependencies among subproblems: the value of any decision may depend
on the costs of both preceding and concurrent decisions, preventing a solution from being computed
in a single backward pass.

Past work. Past approaches fail to simultaneously achieve computational efficiency, feasibility,
and optimality. Optimal and feasible algorithms, albeit inefficient, utilize Mixed-Integer Linear
Programs [17] and Dual-guided heuristic forward searches [29] for expectation-constraints, and
cost-augmented MDPs for almost sure [11] and anytime constraints [36]. Conversely, optimal and
efficient, though infeasible, algorithms are known for expectation [43], almost sure, and anytime
constraints [36]. A fully polynomial-time approximation scheme (FPTAS) [49] is known for ex-
pectation constraints, but it requires strong assumptions such as a constant horizon [31]. Balancing
computational efficiency, feasibility, and optimality remains the bottleneck to efficient approximation.

Our contributions. We present an FPTAS for computing deterministic policies under any time-
space recursive (TSR) constraint criteria. A TSR criteria requires the cost of a policy to be computable
recursively in both time and (state) space, which captures expectation, almost sure, and anytime
constraints. Since non-TSR criteria, such as chance constraints [51], are provably inapproximable,
TSR seems pivotal for efficient computation. Overall, our general framework answers three open
complexity questions spanning two longstanding lines of work: we prove polynomial-time approxima-
bility for 1) anytime-constrained policies, 2) almost-sure-constrained policies, and 3) deterministic
expectation-constrained policies, which have been open for nearly 25 years [19].

Our approach breaks down into three main ideas: (1) value-demand augmentation, (2) action-space
approximate dynamic programming, and (3) time-space rounding. We augment the states with
value demands and the actions with future value demands to break cyclic subproblem dependencies,
enabling dynamic programming methods. Importantly, we use values because they can be rounded
without compromising feasibility [36] and can capture constraints that are not predictable from
cumulative costs. However, this results in an exponential action space that makes solving the Bellman
operator as hard as the knapsack problem. By exploiting the space-recursive nature of the criterion,
we can efficiently approximate the Bellman operator with dynamic programming. Finally, rounding
value demands result in approximation errors over both time and space, but carefully controlling
these errors ensures provable guarantees.

1.1 Related work

Approximate packing. Many stochastic packing problems, which generalize the knapsack problem,
are captured by our problem. Dean et al. [16], Frieze and Clarke [21] derived optimal approximation
ratio algorithms for stochastic packing and integer packing with multiple constraints, respectively.
Yang et al. [52], Bhalgat et al. [6] designed efficient approximation algorithms for variations of the
stochastic knapsack problem. Then, Halman et al. [27] derived an FPTAS for a general class of
stochastic dynamic programs, which was then further improved in [26, 1]. These methods require a
single-dimensional state space that captures the constraint. In contrast, our problems have an innate
state space in addition to the constraint. Our work forms a similar general dynamic programming
framework for the more complex MDP setting.

Constrained RL. It is known that stochastic expectation-constrained policies are polynomial-time
computable via linear programming [3], and many planning and learning algorithms exist for them
[39, 46, 8, 28]. Some learning algorithms can even avoid violation during the learning process under
certain assumptions [48, 4]. Furthermore, Brantley et al. [10] developed no-regret algorithms for
cMDPs and extended their algorithms to the setting with a constraint on the cost accumulated over all
episodes, which is called a knapsack constraint [10, 13].

Safe RL. The safe RL community [22, 25] has mainly focused on no-violation learning for stochas-
tic expectation-constrained policies [14, 9, 2, 12, 5] and solving chance constraints [47, 53], which
capture the probability of entering unsafe states. Performing learning while avoiding dangerous
states [53] is a special case of expectation constraints that has also been studied [42, 44] under
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non-trivial assumptions. In addition, instantaneous constraints, which require the expected cost to be
within budget at all times, have also been studied [33, 20, 24].

2 Cost criteria

In this section, we formalize our problem setting. We also define our conditions for cost criteria.

Constrained Markov decision processes. A (tabular, finite-horizon) Constrained Markov Decision
Process (cMDP) is a tuple M = (S,A, P, r, c,H), where (i) S is the finite set of states, (ii) A is the
finite set of actions, (iii) Ph(s, a) ∈ ∆(S) is the transition distribution, (iv) rh(s, a) ∈ R is the reward,
(v) ch(s, a) ∈ R is the cost, and (vi) H ∈ N is the finite time horizon. We let S := |S|, A := |A|,
[H] := {1, . . . ,H}, andM denote the set of all cMDPs. We also let rmax

def
= maxh,s,a |rh(s, a)|

denote the maximum magnitude reward, rmin
def
= minh,s,a rh(s, a) denote the true minimum reward,

and pmin
def
= minh,s,a,s′ Ph(s

′ | s, a) denote the minimum transition probability. Since S is a finite
set, we often assume S = [S] WLOG. Lastly, for any predicate p, we use the Iverson bracket notation
[p] to denote 1 if p is true and 0 otherwise, and we let χp denote the characteristic function which
evaluates to 0 if p is true and∞ otherwise.

Interaction protocol. The agent interacts with M using a policy π = (πh)
H
h=1. In the fullest

generality, πh : Hh → ∆(A) is a mapping from the observed history at time h to a distribution of
actions. In contrast, a deterministic policy takes the form πh : Hh → A. We let Π denote the set
of all possible policies and ΠD denote the set of all deterministic policies. The agent starts at the
initial state s0 ∈ S with observed history τ1 = (s0). For any h ∈ [H], the agent chooses an action
ah ∼ πh(τh). Then, the agent receives immediate reward rh(sh, ah) and cost ch(sh, ah). Lastly, M
transitions to state sh+1 ∼ Ph(sh, ah) and the agent updates the history to τh+1 = (τh, ah, sh+1).
This process is repeated for H steps; the interaction ends once sH+1 is reached.

Objective. For any cost criterion C : M× Π → R and budget B ∈ R, the agent’s goal is to
compute a solution to the following optimization problem:

max
π∈Π

Eπ
M

[
H∑

h=1

rh(sh, ah)

]
s.t.

{
Cπ

M ≤ B

π deterministic
. (CON)

Here, Pπ
M denotes the probability law over histories induced from the interaction of π with M , and

Eπ
M denotes the expectation defined by this law. We let V π

M
def
= Eπ

M

[∑H
t=1 rt(st, at)

]
denote the

value of a policy π, and V ∗
M denote the optimal solution value to (CON).

Cost criteria. We consider a broad family of cost criteria that satisfy a strengthening of the
standard policy evaluation equations [41]. This strengthening requires not only the cost of a policy
to be computable recursively in the time horizon, but at each time the cost should also break down
recursively in (state) space.
Definition 1 (TSR). We call a cost criterion C time-recursive (TR) if for any cMDP M and policy
π ∈ ΠD, π’s cost decomposes recursively into Cπ

M = Cπ
1 (s0). Here, Cπ

H+1(·) = 0 and for any
h ∈ [H] and τh ∈ Hh,

Cπ
h (τh) = ch(s, a) + f

((
Ph(s

′ | s, a), Cπ
h+1 (τh, a, s

′)
)
s′∈Ph(s,a)

)
, (TR)

where s = sh(τh), a = πh(τh), and f is a non-decreasing function1 computable in O(S) time. For
technical reasons, we also require that f(x) =∞ whenever∞ ∈ x.

We further say C is time-space-recursive (TSR) if the f term above is equal to gτh,ah (1). Here,
gτh,ah (S + 1) = 0 and for any t ≤ S,

gτh,ah (t) = α
(
β
(
Ph(t | s, a), Cπ

h+1 (τh, a, t)
)
, gτh,ah (t+ 1)

)
, (SR)

1When we say a multivariate function is non-decreasing, we mean it is non-decreasing with respect to the
partial ordering induced by component-wise ordering.
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where α is a non-decreasing function, and both α, β are computable in O(1) time. We also assume
that α(·,∞) =∞, and β satisfies α(β(0, ·), x) = x to match f ’s condition.

Since the TR condition is a slight generalization of traditional policy evaluation, it is easy to see that
we can solve for minimum-cost policies using backward induction.
Proposition 1 (TR Intuition). If C is TR, then C satisfies the usual optimality equations. Furthermore,
argminπ∈ΠD Cπ

M can be computed using backward induction in O(HS2A) time.

Although the TR condition is straightforward, the TSR condition is more strict. We will see the utility
of the TSR condition in Section 4 when computing Bellman updates. For now, we point out that the
TSR condition is not too restrictive: it is satisfied by many popular criteria studied in the literature.
Proposition 2 (TSR examples). The following classical constraints can be modeled by a TSR cost
constraint.

1. (Expectation Constraints) are captured by Cπ
M

def
= Eπ

M

[∑H
h=1 ch(sh, ah)

]
≤ B. We see C

is TSR by defining α(x, y)
def
= x+ y and β(x, y)

def
= xy.

2. (Almost Sure Constraints) are captured by Cπ
M

def
= maxτ∈HH+1,

Pπ
M [τ ]>0

∑H
h=1 ch(sh, ah) ≤ B. We

see C is TSR by defining α(x, y)
def
= max(x, y) and β(x, y)

def
= [x > 0]y.

3. (Anytime Constraints) are captured by Cπ
M

def
= maxt∈[H] maxτ∈HH+1,

Pπ
M [τ ]>0

∑t
h=1 ch(sh, ah) ≤

B. We see C is TSR by defining α(x, y)
def
= max(0,max(x, y)) and β(x, y)

def
= [x > 0]y.

Remark 1 (Extensions). Our methods can also handle stochastic costs and infinite discounting. We
defer the details to Appendix F. Moreover, we can handle multiple constraints using vector-valued
criteria so long as the comparison operator is a total ordering of the vector space.
Remark 2 (Inapproximability). Our methods cannot handle chance constraints or more than one of
our example constraints. However, this is not a limitation of our framework as the problem becomes
provably inapproximable under said constraints [51, 36].

3 Covering algorithm

In this section, we propose an algorithm to solve (CON). Our approach relies on converting the
original problem into an equivalent covering problem that can be solved using an unconstrained MDP.
This covering MDP is derived using the key idea of value augmentation.

Packing and covering. We can view (CON) as a packing program, which wishes to maximize
V π
M subject to Cπ

M ≤ B. However, we could also tackle the problem by reversing the objective:
attempt to minimize Cπ

M subject to V π
M ≥ V ∗

M . If (CON) is feasible, then any optimal solution π to
this covering program satisfies V π

M ≥ V ∗
M and Cπ

M ≤ B. Thus, we can solve the original packing
program by solving the covering program.

Proposition 3 (Packing-Covering Reduction). Suppose that C∗
M

def
= minπ∈ΠD Cπ

M s.t. V π
M ≥ V ∗

M .
Then, C∗

M ≤ B ⇐⇒ V ∗
M > −∞. Furthermore, if V ∗

M > −∞, then,

argminπ∈ΠD Cπ
M

V π
M ≥ V ∗

M
⊆ argmaxπ∈ΠD V π

M
Cπ

M ≤ B
. (PC)

Thus, any solution to the covering program is a solution to the packing program.

We focus on the covering program for several reasons. To optimize the value recursively, we would
need to predict the final cost resulting from intermediate decisions to ensure feasibility. Generally,
such predictions would require strict assumptions on the cost criteria. By treating the value as the
constraint instead, we only need to assume the cost can be optimized efficiently. Moreover, values are
well understood in RL and are more amenable to approximation [36]. Thus, the covering program
allows us to capture many criteria, ensure feasibility, and compute accurate value approximations.
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Algorithm 1 Reduction to RL
Input: (M,C,B)

1: M̄, C̄ ← Definition 2(M,C)
2: π, C̄∗ ← SOLVE(M̄, C̄)
3: if C̄∗

1 (s0, v) > B for all v ∈ V then
4: return “Infeasible”
5: else
6: return π

Value augmentation. We can solve the covering program by solving a cost-minimizing MDP
M̄ . The key idea is to augment the state space with value demands, (s, v). Then, the agent can
recursively reason how to minimize its cost while meeting the current value demand. If the agent
starts at (s0, V ∗

M ), then an optimal policy for M̄ should be a solution to the covering program.

The key invariant we desire is that any feasible policy π for M̄ should satisfy V̄ π
h (s, v) ≥ v. To

ensure this invariance, we recall the policy evaluation equations [41]. If πh(s) = a, then,

V̄ π
h (s, v) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̄ π

h+1(s
′, vs′). (PE)

For the value invariant to be satisfied, it suffices for the agent to choose an action a and commit to
future value demands vs′ satisfying,

rh(s, a) +
∑
s′

Ph(s
′ | s, a)vs′ ≥ v. (DEM)

We can view choosing future value demands as part of the agent’s augmented actions. Then, at any
augmented state (s, v), the agent’s augmented action space includes all (a,v) ∈ A× RS satisfying
(DEM). When M transitions to s′ ∼ Ph(s, a), the agent’s new augmented state should consist of the
environment’s new state in addition to its chosen demand for that state, (s′, vs′). Putting these pieces
together yields the definition of the cover MDP, Definition 2.

Definition 2 (Cover MDP). The cover MDP M̄
def
= (S̄, Ā, P̄ , c̄, H) where,

1. S̄ def
= S × V where V def

=
{
v | ∃π ∈ ΠD, h ∈ [H + 1], τh ∈ Hh, V

π
h (τh) = v

}
2. Āh(s, v)

def
=
{
(a,v) ∈ A× VS | rh(s, a) +

∑
s′ Ph(s

′ | s, a)vs′ ≥ v
}

.

3. P̄h((s
′, v′) | (s, v), (a,v)) def

= Ph(s
′ | s, a)[v′ = vs′ ].

4. c̄h((s, v), (a,v))
def
= ch(s, a).

The objective for M̄ is to minimize the cost function C̄
def
= CM̄ with modified base case C̄π

H+1(s, v)
def
=

χ{v≤0}.

Covering algorithm. Importantly, the action space definition ensures the value constraint is satisfied.
Meanwhile, the minimum cost objective ensures optimal cost. So long as our cost is TR, M̄ can be
solved using fast RL methods instead of the brute force computation required for general covering
programs. These properties ensure our method, Algorithm 1, is correct.

Theorem 1 (Reduction). If SOLVE is any finite-time MDP solver, then Algorithm 1 correctly solves
(CON) in finite time for any TR cost criterion.

Remark 3 (Execution). Given a value-augmented policy π output from Algorithm 1, the agent can
execute π using Algorithm 2. To compute V ∗

M as the starting value, it suffices for the agent to
compute,

V ∗
M = max

{
v ∈ V | C̄∗

1 (s0, v) ≤ B
}
. (1)

This computation can be easily done given C̄∗
1 (s0, ·) in O(|V|) time.
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Algorithm 2 Augmented interaction
Input: π

1: s̄1 = (s0, V
∗
M )

2: for h← 1 to H do
3: (a,v)← πh(s̄h)
4: rh = rh(s, a) and sh+1 ∼ Ph(sh, a)
5: s̄h+1 = (sh+1, vsh+1

)

4 Fast Bellman updates

In this section, we present an algorithm to solve M̄ from Definition 2 efficiently. Although the Bellman
updates can be as hard to solve as the knapsack problem, we use ideas from knapsack approximation
algorithms to create an efficient method. Our approach exploits (SR) through approximate dynamic
programming on the action space.

Even if V were small, solving M̄ would still be challenging due to the exponentially large action
space. Even a single Bellman update requires the solution of a constrained optimization problem:

C̄∗
h(s, v) = min

a,v
ch(s, a) + f

((
Ph(s

′ | s, a), C̄∗
h+1 (s

′, vs′)
)
s′∈Ph(s,a)

)
s.t. rh(s, a) +

∑
s′

Ph(s
′ | s, a)vs′ ≥ v.

(BU)

Above, we used the fact that (s′, v′) ∈ P̄h((s, v), (a,v)) iff s′ ∈ Ph(s, a) and v′ = vs′ to simplify f ’s
input. Observe that even when each vs′ only takes on two possible values, {0, ws′}, the optimization
above can capture the minimization version of the knapsack problem, implying that it is NP-hard to
compute.

Recursive approach. Fortunately, we can use the connection to the Knapsack problem positively
to efficiently approximate the Bellman update. For any fixed (s, v) ∈ S̄ and a ∈ A, we focus on the
inner constrained minimization over v:

min
v∈VS ,

rh(s,a)+
∑

s′ Ph(s
′|s,a)vs′≥v

f
((

Ph(s
′ | s, a), C̄∗

h+1 (s
′, vs′)

)
s′∈Ph(s,a)

)
(2)

We use (SR) to transform this minimization over v into a sequential decision-making problem that
decides each vs′ . As above, we can use the definition of P̄ to simplify g

(s,v),(a,v)
h (t, v′) into a function

of t alone:

g
(s,v),(a,v)
h (t) = α

(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, g

(s,v),(a,v)
h (t+ 1)

)
. (3)

Since v only constrains the valid (a,v) pairs, we can discard v and use the simplified notation gs,ah,v(t)

instead of g(s,v),(a,v)h (t). It is then clear that we can recursively optimize the value of vt by focusing
on gs,ah,v(t).

To recursively encode the value constraint, we can record the partial value u = rh(s, a) +∑t−1
s′=1 Ph(s

′ | s, a)vs′ that we have accumulated so far. Then, we can check if our choices for
v satisfied the constraint with the inequality u ≥ v. The formal recursion is defined in Definition 3.
Definition 3. For any h ∈ [H], s ∈ S, v ∈ V , and u ∈ R, we define, gs,ah,v(S + 1, u) = χ{u≥v} and
for t ≤ S,

gs,ah,v(t, u) = min
vt∈V

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1, u+ Ph(t | s, a)vt)

)
. (DP)

Recursive rounding. This approach can still be slow due to the exponential number of partial
values u induced. Similarly to the knapsack problem, the key is to round each input u to ensure
fewer subproblems. Unlike the knapsack problem, however, we do not have an easily computable
lower bound on the optimal value. Thus, we turn to a more aggressive recursive rounding. Since
rounding may cause originally feasible values to violate the demand constraint, we also relax the
demand constraint to u ≥ κ(v) for some lower bound function κ.
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Algorithm 3 Approx Bellman Update
Input: (h, s, v, C̄∗

h+1)
1: for a ∈ A do
2: ĝs,ah,v(S + 1, u)← χ{u≥v} ∀u ∈ Ûs,a

h (S + 1)
3: for t← S down to 1 do
4: for u ∈ Ûs,a

h (t) do
5: vt,a, ĝ

s,a
h,v(t, u)← (ADP)

6: a∗, Ĉ∗
h(s, v)← mina∈A ch(s, a) + ĝs,ah,v(1, rh(s, a))

7: return (a∗, v1,a∗ , . . . , vS,a∗) and Ĉ∗
h(s, v)

Algorithm 4 Approx Solve
Input: (M̄, C̄)

1: Ĉ∗
H+1(s, v)← χ{v≤0} for all (s, v) ∈ S̄

2: for h← H down to 1 do
3: for (s, v) ∈ S̄ do
4: â, Ĉ∗

h(s, v)← Algorithm 3(h, s, v, Ĉ∗
h+1)

5: πh(s, v)← â

6: return π and Ĉ∗

Definition 4. Fix a rounding function ⌊·⌋G and a lower bound function κ. For any h ∈ [H], s ∈ S,
v ∈ V , and u ∈ R, we define, ĝs,ah,v(S + 1, u) = χ{u≥v} and for t ≤ S,

ĝs,ah,v(t, u)
def
= min

vt∈V
α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, ĝs,ah,v(t+ 1, ⌊u+ Ph(t | s, a)vt)⌋G

)
. (ADP)

Fortunately, the approximate version behaves similarly to the original. The main difference is the
constraint now ensures the rounded sums are at least the value lower bound. This is formalized in
Lemma 1.

Lemma 1. For any t ∈ [S + 1] and u ∈ R, we have that,

ĝs,ah,v(t, u) = min
v∈VS−t+1

gs,ah,v̂(t)

s.t. σ̂s,a
h,v(t, u) ≥ κ(v),

(4)

where σ̂s,a
h,v(t, u)

def
=
⌊
⌊u+ Ph(t | s, a)vt⌋G + . . .+ Ph(S | s, a)vS

⌋
G .

To turn this recursion into a usable dynamic programming algorithm, we must also pre-compute the
inputs to any sub-computation. Unlike in standard RL, this computation must be done with a forward
recursion. The details for the approximate Bellman update are given in Definition 5.

Definition 5 (Approx Bellman). For any h ∈ [H], s ∈ S , and a ∈ A, we define Ûs,a
h (1)

def
= {rh(s, a)}

and for any t ∈ [S],

Ûs,a
h (t+ 1)

def
=
⋃

vt∈V

⋃
u∈Ûs,a

h (t)

{
⌊u+ Ph(t | s, a)vt⌋G

}
. (5)

Then, an approximation to the Bellman update can be computed using Algorithm 3.2

Proposition 4. Algorithm 4 runs in O(HS2A|V|2Û) time, where Û
def
= maxh,s,a |Ûs,a

h |. When ⌊·⌋G
and κ are the identity function, Algorithm 4 outputs an optimal solution to M̄ .

Remark 4 (Speedups). The runtime of our methods can be quadratically improved by rounding the
differences instead of the sums. We defer the details to Appendix F.

2We use the notation x, o← minx z(x) to say that x is the minimizer and o the value of the optimization.
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5 Approximation algorithms

In this section, we present our approximation algorithms for solving (CON). We carefully round the
value demands over both time and space to induce an approximate MDP. Solving this approximate
MDP with Algorithm 4 yields our FPTAS.

Although we can avoid exponential-time Bellman updates, the running time of the approximate
Bellman update will still be slow if |V| is large. To reduce the complexity, we instead use a smaller
set of approximate values by rounding elements of |V|. By rounding down, we effectively relax the
value-demand constraint. More aggressive rounding not only leads to smaller augmented state spaces
but also to smaller cost policies. The trade-off is aggressive rounding leads to weaker guarantees on
the computed policy’s value. Thus, it is critical to carefully design the rounding and lower bound
functions to balance this trade-off.

Value approximation. Given a rounding down function ⌊·⌋G , we would ideally use the rounded
set
{
⌊v⌋G | v ∈ V

}
to form our approximate state space. To avoid having to compute V explicitly,

we instead use the rounded superset
{
⌊v⌋G | v ∈ [vmin, vmax]

}
, where vmin and vmax are bounds

on the extremal values that we specify later. To ensure we can use Algorithm 4 to find solutions
efficiently, we must also relax the augmented action space to only include vectors that lead to
feasible subproblems for (ADP). From Lemma 1, we know this is exactly the set of (a, v̂) for
which σ̂s,a

h,v̂(1, rh(s, a)) ≥ κ(v). Combining these ideas yields the new approximate MDP, defined in
Definition 6.
Definition 6 (Approximate MDP). Given a rounding function ⌊·⌋G and lower bound function κ, the

approximate MDP M̂
def
= (Ŝ, Â, P̂ , ĉ, H) where,

1. Ŝ def
= S × V̂ where V̂ def

=
{
⌊v⌋G | v ∈ [vmin, vmax]

}
.

2. Âh(s, v̂)
def
=
{
(a, v̂) ∈ A× V̂S | σ̂s,a

h,v̂(1, rh(s, a)) ≥ κ(v̂)
}

.

3. P̂h((s
′, v̂′) | (s, v̂), (a, v̂)) def

= Ph(s
′ | s, a)[v̂′ = v̂s′ ].

4. ĉh((s, v̂), (a, v̂))
def
= ch(s, a).

The objective for M̂ is to minimize the cost function Ĉ
def
= CM̂ with modified base case Ĉπ

H+1(s, v̂)
def
=

χ{v̂≤0}.

We can show that rounding down in Definition 6 achieves our goal of producing smaller cost policies.
This ensures feasibility is even easier to achieve. We formalize this observation in Lemma 2.
Lemma 2 (Optimistic Costs). For our later choices of ⌊·⌋G and κ, the following holds: for any
h ∈ [H + 1] and (s, v) ∈ S̄, we have Ĉ∗

h(s, ⌊v⌋G) ≤ C̄∗
h(s, v).

Thus, Algorithm 5 always outputs a policy with better than optimal cost when the instance is feasible,
V ∗
M > −∞. If the instance is infeasible, all policies have cost larger than B by definition and

so Algorithm 5 correctly indicates the instance is infeasible. The remaining question is whether
Algorithm 5 outputs policies having near-optimal value.

Time-Space errors. To assess the optimality gap of Algorithm 5 policies, we must first explore
the error accumulated by our rounding approach. Rounding each value naturally accumulates
approximation error over time. Rounding the partial values while running Algorithm 3 accumulates
additional error over (state) space. Thus, solving M̂ using Algorithm 4 accumulates error over both
time and space, unlike other approximate methods in RL. As a result, our rounding and threshold
functions will generally depend on both H and S.

Arithmetic rounding. Our first approach is to round each value down to its closest element in a
δ-cover. This guarantees that v − δ ≤ ⌊v⌋G ≤ v. Thus, ⌊v⌋G is an underestimate that is not too far
from the true value. By setting δ to be inversely proportional to SH , we control the errors over time
and space. The lower bound must also be a function of S since it controls the error over space.
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Algorithm 5 Approximation Scheme
Input: (M,C,B)

1: Hyperparameters: ⌊·⌋G and κ

2: M̂, Ĉ ← Definition 6(M,C, ⌊·⌋G , κ)

3: π, Ĉ∗ ← Algorithm 4(M̂, Ĉ)

4: if Ĉ∗
1 (s0, v̂) > B for all v̂ ∈ V̂ then

5: return “Infeasible"
6: else
7: return π

Definition 7 (Additive Approx). Fix ϵ > 0. We define,

⌊v⌋G
def
=
⌊v
δ

⌋
δ and κ(v)

def
= v − δ(S + 1), (6)

where δ
def
= ϵ

H(S+1)+1 , vmin
def
= −Hrmax, and vmax

def
= Hrmax.

Theorem 2 (Additive FPTAS). For any ϵ > 0, Algorithm 5 using Definition 7 given any cMDP
M and TSR criteria C either correctly outputs the instance is infeasible, or produces a policy π

satisfying V̂ π ≥ V ∗
M − ϵ in O(H7S5Ar3max/ϵ

3) time. Thus, it is an additive-FPTAS for the class of
cMDPs with polynomial-bounded rmax and TSR criteria.

Geometric rounding. Since the arithmetic approach can be slow when rmax is large, we can
instead round values down to their closest power of 1/(1 − δ). This guarantees the number of
approximate values needed is upper bounded by a function of log(rmax), which is polynomial in the
input size. We choose a geometric scheme satisfying v(1− δ) ≤ ⌊v⌋G ≤ v so that the rounded value
is an underestimate and a relative approximation to the true value. To ensure this property, we must
now require that all rewards are non-negative.
Definition 8 (Relative Approx). Fix ϵ > 0. We define,

⌊v⌋G
def
= vmin

(
1

1− δ

)⌊
log 1

1−δ

v

vmin

⌋
and κ(v)

def
= v(1− δ)S+1, (7)

where δ
def
= ϵ

H(S+1)+1 , vmin = pHminrmin, and vmax = Hrmax.

Theorem 3 (Relative FPTAS). For ϵ > 0, Algorithm 5 using Definition 8 given any cMDP M and
TSR criteria C either correctly outputs the instance is infeasible, or produces a policy π satisfying
V̂ π ≥ V ∗

M (1 − ϵ) in O(H7S5A log (rmax/rminpmin)
3
/ϵ3) time. Thus, it is a relative-FPTAS for

the class of cMDPs with non-negative rewards and TSR criteria.
Remark 5 (Assumption Necessity). We also note the mild reward assumptions we made to guarantee
efficiency are unavoidable. Without reward bounds, (CON) captures the knapsack problem which
does not admit additive approximations. Similarly, without non-negativity, relative approximations
for maximization problems are generally not computable.

6 Conclusions

In this paper, we studied the computational complexity of computing deterministic policies for CRL
problems. Our main contribution was the design of an FPTAS, Algorithm 5, that solves (CON) for
any cMPD and TSR criteria under mild reward assumptions. In particular, our method is an additive-
FPTAS if the cMDP’s rewards are polynomially bounded, and is a relative-FPTAS if the cMDP’s
rewards are non-negative. We note these assumptions are necessary for efficient approximation,
so our algorithm achieves the best approximation guarantees possible under worst-case analysis.
Moreover, our algorithmic approach, which uses approximate dynamic programming over time and
the state space, highlights the importance of the TSR condition in making (CON) tractable. Our work
finally resolves the long-standing open questions of polynomial-time approximability for 1) anytime-
constrained policies, 2) almost-sure-constrained policies, and 3) deterministic expectation-constrained
policies.
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Future work. Several interesting questions remain unanswered. First, it remains unresolved
whether an FPTAS exists asymptotically faster than ours. Second, whether our TSR condition is
necessary for efficient computation or whether a more general condition could be derived is unclear.
Lastly, it is open whether there exist algorithms that can feasibly handle multiple constraints from
Proposition 2. Although computing feasible policies for multiple constraints is NP-hard, special
cases may be approximable efficiently. Moreover, an average-case or smoothed-case analysis could
circumvent this worst-case hardness.
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B Proofs for Section 2

B.1 Proof of Proposition 1

The proof follows from the standard proof of backward induction [41]. The main ideas for the proof
can also be seen in the proof of Lemma 4 and Lemma 5.

B.2 Proof of Proposition 2

Proof.

1. (Expectation Constraints) We claim that Cπ
M captures expectation constraints. This is

immediate as an expectation constraint takes the form Eπ
M

[∑H
h=1 ch(sh, ah)

]
≤ B and

by definition Cπ
M = Eπ

M

[∑H
h=1 ch(sh, ah)

]
. Moreover, the standard policy evaluation

equations for deterministic policies immediately imply,

Cπ
h (τh) = ch(s, a) +

∑
s′

Ph(s
′ | s, a)Cπ

h+1(τh, a, s
′). (EC)

Thus, (TR) holds. It is also easy to see that
∑

s′ Ph(s
′ | s, a)Cπ

h+1(τh, a, s
′) can be

computed recursively state-wise by,

Ph(1 | s, a)Cπ
h+1(τh, a, 1) +

S∑
s′=2

Ph(s
′ | s, a)Cπ

h+1(τh, a, s
′), (8)

and so (SR) holds. The infinity conditions and non-decreasing requirements are also easy to
verify.

2. (Almost Sure Constraints) We claim that Cπ
M captures almost sure constraints. This is

because that for tabular MDPs, Pπ
M [
∑H

h=1 ch(sh, ah) ≤ B] = 1 if and only if for all
τ ∈ HH+1 with Pπ

M [τ ] > 0 it holds that
∑H

h=1 ch(sh, ah) ≤ B if and only if Cπ
M =

maxτ∈HH+1:
Pπ
M [τ ]>0

∑H
h=1 ch(sh, ah) ≤ B.

Let c(τ) =
∑H

h=1 ch(sh, ah) denote the cost of a full history τ ∈ HH+1 and let ch:t(τ) =∑t
k=h ck(sk, ak) denote the partial cost of τ from time h to time t. Our choice of α and β

imply that,
Cπ

h (τh) = ch(s, a) + max
s′∈Ph(s,a)

Cπ
h+1(τh, a, s

′). (ASC)

To show that Cπ
M satisfies (TR), we prove for all h ∈ [H + 1] and all τh ∈ Hh that

Ch(τh) = max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:H(τ). (9)

Then, we see that Cπ
1 (s0) = max τ∈HH+1:

Pπ
M [τ |s0]>0

c1:H(τ) = maxτ∈HH+1:
Pπ
M [τ ]>0

∑H
h=1 ch(sh, ah) =

Cπ
M . Thus, Cπ

M satisfies (TR). Furthermore, it is clear that maxs′∈Ph(s,a) C
π
h+1(τh, a, s

′)
can be computed state-recursively by,

max(Cπ
h+1(τh, a, 1)[Ph(1 | s, a) > 0],

S
max
s′=2

Cπ
h+1(τh, a, s

′)[Ph(s
′ | s, a) > 0]), (10)

and so Cπ
M satisfies (SR). The infinity conditions and non-decreasing requirements are also

easy to verify.

We proceed by induction on h.

• (Base Case) For the base case, we consider h = H + 1. Observe that for any history τ ,
we have cH+1:H(τ) = 0 since it is an empty sum. Then, by definition of Cπ

M , we see
that Cπ

H+1(τH+1) = 0 = maxτ 0 = maxτ cH+1:H(τ).
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• (Inductive Step) For the inductive step, we consider h ≤ H . Let s = sh(τh) and
a = πh(τh). For any τ ∈ HH+1 for which Pπ

M [τ | τh] > 0, we can decompose its cost
by ch:H(τ) = ch(s, a) + ch+1:H(τ). Since a is fixed, we can remove ch(s, a) from
the optimization to get,

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:H(τ) = ch(s, a) + max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch+1:H(τ).

Next, we observe by the Markov property that Pπ
M [τ | τh] =

∑
s′ Pπ

M [τ |
τh, a, s

′]Ph(s
′ | s, a). Thus, Pπ

M [τ | τh] > 0 if and only if there exists some
s′ ∈ Ph(s, a) satisfying Pπ

M [τ | τh, a, s′] > 0. This implies that,

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch+1:H(τ) = max
s′∈Ph(s,a)

max
τ∈HH+1:

Pπ
M [τ |τh,a,s′]>0

ch+1:H(τ).

By applying the induction hypothesis, we see that,

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:H(τ) = ch(s, a) + max
s′∈Ph(s,a)

max
τ∈HH+1:

Pπ
M [τ |τh,a,s′]>0

ch+1:H(τ)

= ch(s, a) + max
s′∈Ph(s,a)

Cπ
h+1(τh, a, s

′)

= Ch(τh).

The second line used the induction hypothesis and the third line used the definition of
Cπ

M .

3. (Anytime Constraints) We claim that Cπ
M captures anytime constraints. This is because

that for tabular MDPs, Pπ
M [∀t ∈ [H],

∑t
h=1 ch(sh, ah) ≤ B] = 1 if and only if for all

t ∈ [H] and τ ∈ HH+1 with Pπ
M [τ ] > 0 it holds that

∑t
h=1 ch(sh, ah) ≤ B if and only if

Cπ
M = maxt∈[H] maxτ∈HH+1:Pπ

M [τ ]>0

∑t
h=1 ch(sh, ah) ≤ B.

Our choice of α and β imply that,

Cπ
h (τh) = ch(s, a) + max

(
0, max

s′∈Ph(s,a)
Cπ

h+1(τh, a, s
′)

)
. (AC)

To show that Cπ
M satisfies (TR), we show that for all h ∈ [H + 1] and all τh ∈ Hh that

Ch(τh) = max
t≥h

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:t(τ). (11)

Then, we see that Cπ
1 (s0) = maxt∈[H] max τ∈HH+1:

Pπ
M [τ |s0]>0

c1:t(τ) = maxt∈[H] maxτ∈HH+1:
Pπ
M [τ ]>0∑t

h=1 ch(sh, ah) = Cπ
M . Thus, Cπ

M satisfies (TR). Furthermore, it is clear that
max(0,maxs′∈Ph(s,a) C

π
h+1(τh, a, s

′)) can be computed state-recursively by,

max
(
max(0, Cπ

h+1(τh, a, 1)[Ph(1 | s, a) > 0]),

max(0,
S

max
s′=2

Cπ
h+1(τh, a, s

′)[Ph(s
′ | s, a) > 0])

)
,

(12)

and so Cπ
M satisfies (SR). The infinity conditions and non-decreasing requirements are also

easy to verify.

We proceed by induction on h.

• (Base Case) For the base case, we consider h = H + 1. Observe that for any history τ
and t, we have cH+1:t(τ) = 0 since it is an empty sum. Then, by definition of Cπ

M , we
see that Cπ

H+1(τH+1) = 0 = maxt maxτ 0 = maxt maxτ cH+1:t(τ)
3.

3Technically, there is no t ∈ [H] satisfying t ≥ H + 1. We instead interpret the t ≥ h condition in the max
as over all integers and define the immediate costs to be 0 for all future times to simplify the base case.
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• (Inductive Step) For the inductive step, we consider h ≤ H . Let s = sh(τh) and
a = πh(τh). By separately considering the case where t = h and t ≥ h + 1 in the
maxt≥h, we see that maxt≥h max τ∈HH+1:

Pπ
M [τ |τh]>0

ch:t(τ)

= max

 max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:h(τ), max
t≥h+1

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:t(τ)


= max

ch(s, a), ch(s, a) + max
t≥h+1

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch+1:t(τ)


= ch(s, a) + max

0, max
t≥h+1

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch+1:t(τ)


= ch(s, a) + max

0, max
t≥h+1

max
s′∈Ph(s,a)

max
τ∈HH+1:

Pπ
M [τ |τh,a,s′]>0

ch+1:t(τ)


= ch(s, a) + max

0, max
s′∈Ph(s,a)

max
t≥h+1

max
τ∈HH+1:

Pπ
M [τ |τh,a,s′]>0

ch+1:t(τ)


= ch(s, a) + max

(
0, max

s′∈Ph(s,a)
Cπ

h+1(τh, a, s
′)

)
= Ch(τh).

The second line used the fact that ch:h(τ) = ch(s, a) and the recursive definition of
ch:t(τ). The fourth line used the result proven for the almost sure case above. The
sixth line used the induction hypothesis. The last line used the definition of Cπ

M .

C Proofs for Section 3

C.1 Helpful Technical Lemmas

Here, we use a different, inductive definition for V then in the main text. However, the following
lemma shows they are equivalent.

Definition 9 (Value Space). For any s ∈ S, we define VH+1(s)
def
= {0}, and for any h ∈ [H],

Vh(s)
def
=
⋃
a

⋃
v∈×s′ Vh+1(s′)

{
rh(s, a) +

∑
s′

Ph(s
′ | s, a)vs′

}
. (13)

We define V def
=
⋃

h,s Vh(s).
Lemma 3 (Value Intution). For all s ∈ S and h ∈ [H + 1],

Vh(s) =
{
v ∈ R | ∃π ∈ ΠD, τh ∈ Hh, (s = sh(τh) ∧ V π

h (τh) = v)
}
, (14)

and |Vh(s)| ≤ A
∑H

t=h SH−t

. Thus, V can be computed in finite time using backward induction.
Lemma 4 (Cost). For any h ∈ [H + 1], τh ∈ Hh, and v ∈ V , if s = sh(τh), then,

C̄∗
h(s, v) ≤ min

π∈ΠD
Cπ

h (τh)

s.t. V π
h (τh) ≥ v.

(15)
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Lemma 5 (Value). Suppose that π ∈ ΠD. For all h ∈ [H + 1] and (s, v) ∈ S̄, if C̄π
h (s, v) < ∞,

then V̄ π
h (s, v) ≥ v.

Remark 6 (Technical Subtlety). Technically, V π
h (τh) is only well defined if Pπ

M [τh] > 0 and all of
our arguments technically should assume this is the case. However, it is standard in MDP theory to
define the policy evaluation equations on non-reachable trajectories using the standard recursion to
simplify proofs, as we have done here. Formally, this is equivalent to assuming the process starts
initially at τh instead of just conditioning on reaching τh, or defining the values to correspond to
policy evaluation equations directly. This is consistent with the usual definition when Pπ

M [τh] > 0
but gives it a defined value also when Pπ

M [τh] = 0. In either case, this detail only means our recursive
definition of V is a superset rather than exactly the set of all values as we defined in the main text.
This does not effect the final results since unreachable trajectories do not effect π’s overall value in
the MDP anyway, and only effects the interpretations of some intermediate variables.

C.2 Proof of Proposition 3

Proof. By definition of V ∗
M and C∗

M ,

V ∗
M > −∞ ⇐⇒ ∃π ∈ ΠD, Cπ

M ≤ B ∧ V π
M ≥ V ∗

M

⇐⇒ C∗
M ≤ B.

For the second claim, we observe that if V ∗
M > −∞ then by the above argument any optimal

deterministic policy π for COVER satisfies Cπ
M = C∗

M ≤ B and V π
M ≥ V ∗

M . Thus, COV ER ⊆
PACK.

C.3 Proof of Lemma 3

Proof. We proceed by induction on h. Let s ∈ S be arbitrary.

Base Case. For the base case, we consider h = H + 1. In this case, we know that for any
π ∈ ΠD and any τ ∈ HH+1, V π

H+1(τH+1) = 0 ∈ {0} = VH+1(s) by definition. Furthermore,

|VH+1(s)| = 1 = A0 = A
∑H

t=H+1 St

.

Inductive Step. For the inductive step, we consider h ≤ H . In this case, we know that for any
π ∈ ΠD and any τh ∈ Hh, if s = sh(τh) and a = πh(τh), then the policy evaluation equations
imply,

V π
h (τh) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V π

h+1(τh, a, s
′).

We know by the induction hypothesis that V π
h+1(τh, a, s

′) ∈ Vh+1(s
′). Thus, by (13), V π

h (τh) ∈
Vh(s). Lastly, we see by (13) and the induction hypothesis that,

|Vh(s)| ≤ A
∏
s′

|Vh+1(s
′)| ≤ A

∏
s′

A
∑H

t=h+1 SH−t

= A1+S
∑H

t=h+1 SH−t

= A
∑H

t=h SH−t

.

This completes the proof.

C.4 Proof of Lemma 4

Proof. We proceed by induction on h. Let τh ∈ Hh and v ∈ V be arbitrary and suppose that
s = sh(τh). We let C∗

h(τh, v) denote the minimum for the RHS of (15).

Base Case. For the base case, we consider h = H + 1. Observe that for any π ∈ ΠD,
V π
H+1(τH+1) = 0 by definition. Thus, there exists a π ∈ ΠD satisfying V π

H+1(τH+1) ≥ v if and only
if v ≤ 0. We also know by definition that any such policy π satisfies Cπ

H+1(τH+1) = 0 and if no such
policy exists C∗

H+1(τH+1, v) =∞ by convention. Therefore, we see that C∗
H+1(τH+1, v) = χ{v≤0}.

Then, by definition of the base case for C̄, it follows that,

C̄∗
H+1(s, v) = χ{v≤0} = C∗

H+1(τH+1, v).
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Inductive Step. For the inductive step, we consider h ≤ H . If C∗
h(τh, v) = ∞, then trivially

C̄∗
h(s, v) ≤ C∗

h(τh, v). Instead, suppose that C∗
h(τh, v) < ∞. Then, there must exist a feasible

π ∈ ΠD satisfying V π
h (τh) ≥ v. Let a∗ = πh(τh). By the policy evaluation equations, we know that,

V π
h (τh) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a∗)V π

h+1(τh, a
∗, s′).

For each s′ ∈ S, define v∗s′
def
= V π

h+1(τh, a
∗, s′) and observe that v∗s′ ∈ Vh+1(s

′) ⊆ V by Lemma 3.
Thus, we see that (a∗,v∗) ∈ A × VS and rh(s, a) +

∑
s′ Ph(s

′ | s, a)vs′ ≥ v, which implies
(a∗,v∗) ∈ Āh(s, v).

Since π satisfies V π
h+1(τh, a

∗, s′) ≥ v∗s′ , it is clear that C∗
h+1(s

′, v∗s′) ≤ Cπ
h+1(τh, a

∗, s′). Thus, the
induction hypothesis implies that C̄∗

h+1(s
′, v∗s′) ≤ C∗

h+1(s
′, v∗s′) ≤ Cπ

h+1(τh, a
∗, s′). The optimality

equations for M̄ then imply that,

C̄∗
h(s, v) = min

(a,v)∈Āh(s,v)
ch(s, a) + f

((
Ph(s

′ | s, a), C̄∗
h+1 (s

′, vs′)
)
s′∈Ph(s,a)

)
≤ ch(s, a

∗) + f
((

Ph(s
′ | s, a∗), C̄∗

h+1 (s
′, v∗s′)

)
s′∈Ph(s,a∗)

)
≤ ch(s, a

∗) + f
((

Ph(s
′ | s, a), Cπ

h+1 (τh, a
∗, s′)

)
s′∈Ph(s,a∗)

)
= Cπ

h (τh).

The first inequality used the fact that (a∗,v∗) ∈ Āh(s, v). The second inequality relied on f being
non-decreasing and the induction hypothesis. The final equality used (TR).

Since π was an arbitrary feasible policy for the optimization defining C∗
h(τh, v), we see that

C̄∗
h(s, v) ≤ C∗

h(τh, v). This completes the proof.

C.5 Proof of Lemma 5

Proof. We proceed by induction on h. Let (s, v) ∈ S̄ be arbitrary.

Base Case. For the base case, we consider h = H+1. By definition and assumption, C̄π
H+1(s, v) =

χ{v≤0} <∞. Thus, it must be the case that v ≤ 0 and so by definition V̄ π
H+1(s, v) = 0 ≥ v.

Inductive Step. For the inductive step, we consider h ≤ H . We decompose πh(s, v) = (a,v)
where we know (a,v) ∈ Āh(s, v) since π has finite cost4. Moreover, it must be the case that for any
s′ ∈ S with Ph(s

′ | s, a) > 0 that C̄π
h+1(s

′, vs′) <∞ otherwise the property that f outputs∞ when
inputted an∞ would imply a contradiction:

C̄π
h (s, v) = ch(s, a) + f

((
Ph(s

′ | s, a), C̄π
h+1 (s

′, vs′)
)
s′∈Ph(s,a)

)
= ch(s, a) + f(. . . ,∞, . . .)

=∞.

Thus, the induction hypothesis implies that V̄ π
h+1(s

′, vs′) ≥ vs′ for any such s′ ∈ S. By the policy
evaluation equations, we see that,

V̄ π
h (s, v) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̄ π

h+1(s
′, vs′)

≥ rh(s, a) +
∑
s′

Ph(s
′ | s, a)vs′

≥ v.

The third line uses the definition of Āh(s, v). This completes the proof.

4By convention, we assume min∅ =∞
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C.6 Proof of Theorem 1

Proof. If C̄∗
1 (s0, v) > B for all v ∈ V , then C∗

M > B since otherwise we would have C̄∗
1 (s0, v) ≤

C∗
1 (s0, v) = C∗

M ≤ B by Lemma 4. Thus, if Algorithm 1 outputs “infeasible” it is correct.

On the other hand, suppose that there exists some v ∈ V for which C̄∗
1 (s0, v) ≤ B. By standard MDP

theory, we know that since π ∈ ΠD is a solution to M̄ , it must satisfy the optimality equations. In
particular, C̄π

1 (s0, v) = C̄∗
1 (s0, v) ≤ B. Since Cπ

M = C̄π
1 (s0, v)

5, we see that there exists a π ∈ ΠD

for which Cπ
M ≤ B and so V ∗

M > −∞.

Since V ∗
M is the value of some deterministic policy, Lemma 3 implies that V ∗

M ∈ V . Thus, Lemma 5
implies that V π

1 (s0, V
∗
M ) ≥ V ∗

M and Cπ
1 (s0, V

∗
M ) ≤ C∗

1 (s0, V
∗
M ) ≤ B. Consequently, running π

with initial state s̄0 = (s0, V
∗
M ) is an optimal solution to (CON). In either case, Algorithm 1 is

correct.

D Proofs for Section 4

Definition 10. We define the exact partial sum,

σs,a
h,v(t, u)

def
= u+

S∑
s′=t

Ph(s
′ | s, a)vs′ . (16)

Observation 1. We observe that both σ and σ̂ can be computed recursively. Specifically, σs,a
h,v(S +

1, u) = u and σs,a
h,v(t, u) = σs,a

h,v(t, u + Ph(t | s, a)vt). Similarly, σ̂s,a
h,v(S + 1, u) = u and

σ̂s,a
h,v(t, u) = σs,a

h,v(t, ⌊u+ Ph(t | s, a)vt⌋G).

For completeness, and to assist with other arguments, we also prove the exact recursion we presented
in Definition 3 is correct using Lemma 6.

Lemma 6. For any t ∈ [S + 1] and u ∈ R, we have that,

gs,ah,v(t, u) = min
v∈VS−t+1

gs,ah,v(t)

s.t. u+

S∑
s′=t

Ph(s
′ | s, a)vs′ ≥ v.

(17)

Moreover, C̄∗
h(s, v) = mina∈A ch(s, a) + gs,ah,v(1, rh(s, a)).

D.1 Proof of Lemma 6

Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. Since
∑S

s′=S+1 Ph(s
′ | s, a)vs′ = 0 is

the empty sum, the condition u+
∑S

s′=S+1 Ph(s
′ | s, a)vs′ ≥ v is true iff u ≥ v. Also, for any v,

gs,ah,v(S + 1) = 0 by definition. Thus, the minimum defining gs,ah,v(S + 1, u) is 0 when u ≥ v and is
∞ due to infeasibility otherwise. In symbols, gs,ah,v(S + 1, u) = χ{u≥v} as was to be shown.

5We can view C̄ (V̄ ) as the extension of C (V ) needed to formally evaluate memory-augmented policies.
Since we consider deterministic policies, it is trivial to convert any memory-augmented policy into a history-
dependent policy that is defined in the original environment M .
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Inductive Step. For the inductive step, we consider t ≤ S. We see that gs,ah,v(t, u)

= min
v∈VS−t+1

u+
∑S

s′=t
Ph(s

′|s,a)vs′≥v

gs,ah,v(t)

= min
v∈VS−t+1

u+
∑S

s′=t
Ph(s

′|s,a)vs′≥v

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1)

)
= min

vt∈V
min

v∈VS−t

(u+Ph(t|s,a)vt)+
∑S

s′=t+1
Ph(s

′|s,a)vs′≥v

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1)

)

= min
vt∈V

α

β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, min

v∈VS−t

(u+Ph(t|s,a)vt)+
∑S

s′=t+1
Ph(s

′|s,a)vs′≥v

gs,ah,v(t+ 1)


= min

vt∈V
α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1, u+ Ph(t | s, a)vt)

)

The second lined used (SR). The third line split the optimization into the first decision and the
remaining decisions and decomposed the sum in the constraint. The fourth line used the fact that
α is a non-decreasing function of both its arguments and the fact that the second optimization only
concerns the second argument. The last line used the induction hypothesis.

The observation that mina∈A ch(s, a)+gs,ah,v(1, rh(s, a)) = C̄∗
h(s, v) then follows from the definition

of Āh(s, v) and (BU):

min
a∈A

ch(s, a) + gs,ah,v(1, rh(s, a)) = min
a∈A

ch(s, a) + min
v∈VS

rh(s,a)+
∑

s′ Ph(s
′|s,a)vs≥v

gs,ah,v(1)

= min
a∈A

min
v∈VS

rh(s,a)+
∑

s′ Ph(s
′|s,a)vs≥v

ch(s, a) + gs,ah,v(1)

= min
(a,v)∈Āh(s,v)

ch(s, a) + gs,ah,v(1)

= C̄∗
h(s, v).

D.2 Proof of Lemma 1

Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. By definition, σ̂s,a
h,v̂(S + 1, u) = u so the

constraint is satisfied iff u ≥ v. Since for any v̂, ĝs,ah,v̂(S + 1) = 0 by definition, the minimum
defining ĝs,ah,v̂(S + 1, u) is 0 when u ≥ v and is ∞ due to infeasibility otherwise. In symbols,
ĝs,ah,v(S + 1, u) = χ{u≥v} as was to be shown.
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Inductive Step. For the inductive step, we consider t ≤ S. We see that,

ĝs,ah,v(t, u) = min
v∈VS−t+1

σ̂s,a
h,v(t,u)≥v

gs,ah,v(t)

= min
v∈VS−t+1

σ̂s,a
h,v(t,u)≥v

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1)

)
= min

vt∈V
min

v∈VS−t

σ̂s,a
h,v(t+1,⌊u+Ph(t|s,a)vt⌋G)≥v

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1)

)

= min
vt∈V

α

β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, min

v∈VS−t

σ̂s,a
h,v(t+1,⌊u+Ph(t|s,a)vt⌋G)≥v

gs,ah,v(t+ 1)


= min

vt∈V
α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, ĝs,ah,v(t+ 1, ⌊u+ Ph(t | s, a)vt⌋G)

)
The second lined used (SR). The third line split the optimization into the first decision and the
remaining decisions and used the recursive definition of σ̂ in the constraint. The fourth line used the
fact that α is a non-decreasing function of both its arguments and the fact that the second optimization
only concerns the second argument. The last line used the induction hypothesis.

D.3 Proof of Proposition 4

Proof. The runtime guarantee is easily seen since Algorithm 4 consists of nested loops. The fact that
it computes an optimal solution for M̄ absent rounding or lower bounding follows immediately from
Lemma 6.

E Proofs for Section 5

E.1 Helpful Technical Lemmas (Additive)

The following claims all assume Definition 7.
Observation 2. For any v ∈ R,

v − δ ≤ ⌊v⌋G ≤ v. (18)

Lemma 7. For any h ∈ [H], s ∈ S, a ∈ A, v ∈ RS , u ∈ R, and t ∈ [S + 1], we have,

σs,a
h,v(t, u)− (S − t+ 1)δ ≤ σ̂s,a

h,v(t, u) ≤ σs,a
h,v(t, u). (19)

Lemma 8 (Cost). For any h ∈ [H + 1] and (s, v) ∈ S̄, Ĉ∗
h(s, ⌊v⌋G) ≤ C̄∗

h(s, v).

Lemma 9 (Approximation). Suppose that π ∈ ΠD. For all h ∈ [H + 1] and (s, v̂) ∈ Ŝ, if
Ĉπ

h (s, v̂) <∞, then V̂ π
h (s, v̂) ≥ v̂ − δ(S + 1)(H − h+ 1).

E.2 Helpful Technical Lemmas (Relative)

The following claims all assume Definition 8.
Observation 3. For any v ∈ R,

v(1− δ) ≤ ⌊v⌋G ≤ v. (20)

Lemma 10. For any h ∈ [H], s ∈ S, a ∈ A, v ∈ RS
≥0, u ∈ R≥0, and t ∈ [S + 1], we have,

σs,a
h,v(t, u)(1− δ)S−t+1 ≤ σ̂s,a

h,v(t, u) ≤ σs,a
h,v(t, u). (21)

Lemma 11 (Cost). Suppose all rewards are non-negative. For any h ∈ [H + 1] and (s, v) ∈ S̄,
Ĉ∗

h(s, ⌊v⌋G) ≤ C̄∗
h(s, v).

Lemma 12 (Approximation). Suppose all rewards are non-negative and π ∈ ΠD. For all h ∈ [H+1]

and (s, v̂) ∈ Ŝ, if Ĉπ
h (s, v̂) <∞, then V̂ π

h (s, v̂) ≥ v̂(1− δ)(S+1)(H−h+1).
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E.3 Proof of Observation 2

Proof. Using properties of the floor function, we can infer that,

⌊v⌋G =
⌊v
δ

⌋
δ ≤ v

δ
δ = v,

and,

⌊v⌋G =
⌊v
δ

⌋
δ ≥ (

⌈v
δ

⌉
− 1)δ =

⌈v
δ

⌉
δ − δ ≥ v − δ.

E.4 Proof of Lemma 7

Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. By definition, we have σ̂s,a
h,v(S + 1, u) =

u = σs,a
h,v(S + 1, u).

Inductive Step. For the inductive step, we consider t ≤ S. We first see that,

σ̂s,a
h,v̂(t, u) = σ̂s,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)
≤ σs,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)

= ⌊u+ Ph(t | s, a)v̂t⌋G +

S∑
s′=t+1

Ph(s
′ | s, a)v̂t

≤ u+

S∑
s′=t

Ph(s
′ | s, a)v̂t

= σs,a
h,v̂(t, u).

The first inequality used the induction hypothesis and the second inequality used the fact that
⌊x⌋G ≤ x.

We also see that,

σ̂s,a
h,v̂(t, u) = σ̂s,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)
≥ σs,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)− δ(S − t)

= ⌊u+ Ph(t | s, a)v̂t⌋G +

S∑
s′=t+1

Ph(s
′ | s, a)v̂t − δ(S − t)

≥ u+

S∑
s′=t

Ph(s
′ | s, a)v̂t − δ(S − t+ 1)

= σs,a
h,v̂(t, u)− δ(S − t+ 1).

The first inequality used the induction hypothesis and the second inequality used the fact that
⌊x⌋G ≥ x− δ.

E.5 Proof of Lemma 8

Proof. We proceed by induction on h. Let (s, v) ∈ S̄ be arbitrary.

Base Case. For the base case, we consider h = H + 1. Since ⌊v⌋G ≤ v, we immediately see,

Ĉ∗
H+1(s, ⌊v⌋G) = χ{⌊v⌋G≤0} ≤ χ{v≤0} = C̄∗

H+1(s, v).
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Inductive Step. For the inductive step, we consider h ≤ H . If C̄∗
h(s, v) = ∞, then trivially

Ĉ∗
h(s, ⌊v⌋G) ≤ C̄∗

h(s, v). Instead, suppose that C̄∗
h(s, v) <∞. Let π be a solution to the optimality

equations for M̄ so that C̄π
h (s, v) = C̄∗

h(s, v) <∞. Since C̄∗
h(s, v) <∞, we know that (a∗,v∗) =

πh(s, v) ∈ Āh(s, v). By the definition of Āh(s, v), we know that,

σs,a∗

h,v∗(1, rh(s, a
∗)) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a∗)v∗s′ ≥ v ≥ ⌊v⌋G .

For each s′ ∈ S, define v̂∗s′
def
= ⌊v∗s′⌋G and recall that v∗s′ ∈ V . We first observe that,

σs,a∗

h,v̂∗(1, rh(s, a
∗)) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a) ⌊vs′⌋G

≥ rh(s, a
∗) +

∑
s′

Ph(s
′ | s, a)(vs′ − δ)

= rh(s, a
∗) +

∑
s′

Ph(s
′ | s, a)vs′ − δ

= σs,a∗

h,v∗(1, rh(s, a
∗))− δ.

Then by Lemma 7,

σ̂s,a∗

h,v̂∗(1, rh(s, a
∗)) ≥ σs,a∗

h,v̂∗(1, rh(s, a
∗))− δS

≥ σs,a∗

h,v∗(1, rh(s, a
∗))− δ(S + 1)

≥ ⌊v⌋G − δ(S + 1)

= κ(⌊v⌋G).

Thus, (a∗, v̂∗) ∈ Âh(s, ⌊v⌋G).

Since v∗s′ ∈ V , the induction hypothesis implies that Ĉ∗
h+1(s

′, v̂∗s′) ≤ C̄∗
h+1(s

′, v∗s′) = C̄π
h+1(s

′, v∗s′).
The optimality equations for M̂ then imply that,

Ĉ∗
h(s, ⌊v⌋G) = min

(a,v̂)∈Âh(s,v)
ch(s, a) + f

((
Ph(s

′ | s, a), Ĉ∗
h+1 (s

′, v̂s′)
)
s′∈Ph(s,a)

)
≤ ch(s, a

∗) + f

((
Ph(s

′ | s, a∗), Ĉ∗
h+1 (s

′, v̂∗s′)
)
s′∈Ph(s,a∗)

)
≤ ch(s, a

∗) + f
((

Ph(s
′ | s, a), C̄π

h+1 (s
′, v∗s′)

)
s′∈Ph(s,a∗)

)
= C̄π

h (s, v)

= C̄∗
h(s, v).

The first inequality used the fact that (a∗,v∗) ∈ Âh(s, v). The second inequality relied on f being
non-decreasing and the induction hypothesis. The penultimate equality used (TR). This completes
the proof.

E.6 Proof of Lemma 9

Proof. We proceed by induction on h. Let (s, v̂) ∈ Ŝ be arbitrary.

Base Case. For the base case, we consider h = H+1. By definition and assumption, Ĉπ
H+1(s, v̂) =

χ{v̂≤0} <∞. Thus, it must be the case that v̂ ≤ 0 and so by definition V̂ π
H+1(s, v̂) = 0 ≥ v̂.

Inductive Step. For the inductive step, we consider h ≤ H . As in the proof of Lemma 5, we know
that πh(s, v) = (a, v̂) ∈ Âh(s, v̂) and for any s′ ∈ S with Ph(s

′ | s, a) > 0 that Ĉπ
h+1(s

′, vs′) <∞.
Thus, the induction hypothesis implies that V̂ π

h+1(s
′, v̂s′) ≥ v̂s′ − δ(S + 1)(H − h) for any such
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s′ ∈ S. By the policy evaluation equations, we see that,

V̂ π
h (s, v̂) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̂ π

h+1(s
′, v̂s′)

≥ rh(s, a) +
∑
s′

Ph(s
′ | s, a)v̂s′ − δ(S + 1)(H − h)

= σs,a
h,v̂(1, rh(s, a))− δ(S + 1)(H − h)

≥ σ̂s,a
h,v̂(1, rh(s, a))− δ(S + 1)(H − h)

≥ v̂ − δ(S + 1)− δ(S + 1)(H − h)

= v̂ − δ(S + 1)(H − h+ 1).

The first inequality used the induction hypothesis. The second inequality used Lemma 7. The third
inequality used the fact that by definition of Âh(s, v̂) and κ, σ̂s,a

h,v̂(1, rh(s, a)) ≥ κ(v̂) = v̂−δ(S+1).
This completes the proof.

E.7 Proof of Theorem 2

Proof.

Correctness. If Ĉ∗
1 (s0, v) > B for all v̂ ∈ V̂ , then C∗

M > B since otherwise we would have
Ĉ∗

1 (s0, ⌊v⌋G) ≤ C̄∗
1 (s0, v) ≤ C∗

M ≤ B by Lemma 8. Thus, if Algorithm 5 outputs “infeasible” it is
correct.

On the other hand, suppose that there exists some v̂ ∈ V̂ for which Ĉ∗
1 (s0, v̂) ≤ B. By standard

MDP theory, we know that since π ∈ ΠD is a solution to M̂ , it must satisfy the optimality equations.
In particular, Ĉπ

1 (s0, v̂) = Ĉ∗
1 (s0, v) ≤ B. As in the proof of Theorem 1, since Cπ

M = Ĉπ
1 (s0, v̂),

we see that there exists a π ∈ ΠD for which Cπ
M ≤ B and so V ∗

M > −∞.

Since V ∗
M is the value of some deterministic policy, Lemma 3 implies that V ∗

M ∈ V . Thus, Lemma 9
implies that V̂ π

1 (s0, ⌊V ∗
M⌋G) ≥ ⌊V

∗
M⌋G − δ(S + 1)H ≥ V ∗

M − δ(1 + (S + 1)H) = V ∗
M − ϵ and

Ĉπ
1 (s0, V

∗
M ) ≤ C∗

1 (s0, V
∗
M ) ≤ B. Consequently, running π with initial state s̄0 = (s0, ⌊V ∗

M⌋G) is an
optimal solution to (CON). In either case, Algorithm 5 is correct.

Complexity. For the complexity claim, we observe that the running time of Algorithm 5 is
O(HS2A|V̂|2|Û |). To bound |V̂|, we observe that the number of integer multiples of δ required to
capture the range [−Hrmax, Hrmax] is at most O(Hrmax

δ ) = O(H2Srmax/ϵ) by definition of δ.
Moreover, |Û | = O(|V̂|+ S) = O(|V̂|) for sufficiently large rmax

ϵ .

In particular, we see that the range of the rounded sums defining Û is at widest [−2Hrmax −
δS, 2Hrmax] since for any t+ 1 the rounded input is,⌊

⌊rh(s, a) + Ph(1 | s, a)v̂1⌋G + . . .+ Ph(t | s, a)v̂t

⌋
G ≤ rh(s, a) +

t∑
s′=1

Ph(s
′ | s, a)v̂s′ ,

which is at most 2Hrmax, and,⌊
⌊rh(s, a) + Ph(1 | s, a)v̂1⌋G + . . .+ Ph(t | s, a)v̂t

⌋
G ≥ rh(s, a) +

t∑
s′=1

Ph(s
′ | s, a)v̂s′ − δt,

which is at least −2Hrmax − δS. Overall, we see that O(|V̂|2|Û |) = O(|V̂|3) = O(H6S3r3max/ϵ
3)

implying that the total run time is O(H7S5Ar3max/ϵ
3) as claimed.

E.8 Proof of Observation 3

Proof. Using properties of the floor function, we can infer that,

⌊v⌋G = vmin

(
1

1− δ

)⌊
log 1

1−δ

v

vmin

⌋
≤ vmin

(
1

1− δ

)log 1
1−δ

v

vmin

=
v

vmin
vmin = v,
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and,

⌊v⌋G = vmin

(
1

1− δ

)⌊
log 1

1−δ

v

vmin

⌋
≥ vmin

(
1

1− δ

)log 1
1−δ

v

vmin −1

= v(1− δ).

E.9 Proof of Lemma 10

Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. By definition, we have σ̂s,a
h,v(S + 1, u) =

u = σs,a
h,v(S + 1, u).

Inductive Step. For the inductive step, we consider t ≤ S. We first see that,

σ̂s,a
h,v̂(t, u) = σ̂s,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)
≤ σs,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)

= ⌊u+ Ph(t | s, a)v̂t⌋G +

S∑
s′=t+1

Ph(s
′ | s, a)v̂t

≤ u+

S∑
s′=t

Ph(s
′ | s, a)v̂t

= σs,a
h,v̂(t, u).

The first inequality used the induction hypothesis and the second inequality used the fact that
⌊x⌋G ≤ x.

We also see that,

σ̂s,a
h,v̂(t, u) = σ̂s,a

h,v̂

(
t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G

)
≥ σs,a

h,v̂

(
t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G

)
(1− δ)S−t

=

(
⌊u+ Ph(t | s, a)v̂t⌋G +

S∑
s′=t+1

Ph(s
′ | s, a)v̂t

)
(1− δ)S−t

≥

(
(1− δ)u+ (1− δ)

S∑
s′=t

Ph(s
′ | s, a)v̂t

)
(1− δ)S−t

= σs,a
h,v̂(t, u)(1− δ)S−t+1.

The first inequality used the induction hypothesis and the second inequality used the fact that
⌊x⌋G ≥ x − δ and the fact that all rewards and values are non-negative allowing us to add a
(1− δ)-factor to the other value demands.

E.10 Proof of Lemma 11

Proof. We proceed by induction on h. Let (s, v) ∈ S̄ be arbitrary.

Base Case. For the base case, we consider h = H + 1. Since ⌊v⌋G ≤ v, we immediately see,

Ĉ∗
H+1(s, ⌊v⌋G) = χ{⌊v⌋G≤0} ≤ χ{v≤0} = C̄∗

H+1(s, v).

Inductive Step. For the inductive step, we consider h ≤ H . If C̄∗
h(s, v) = ∞, then trivially

Ĉ∗
h(s, ⌊v⌋G) ≤ C̄∗

h(s, v). Instead, suppose that C̄∗
h(s, v) <∞. Let π be a solution to the optimality
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equations for M̄ so that C̄π
h (s, v) = C̄∗

h(s, v) <∞. Since C̄∗
h(s, v) <∞, we know that (a∗,v∗) =

πh(s, v) ∈ Āh(s, v). By the definition of Āh(s, v), we know that,

σs,a∗

h,v∗(1, rh(s, a
∗)) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a∗)v∗s′ ≥ v ≥ ⌊v⌋G .

For each s′ ∈ S, define v̂∗s′
def
= ⌊v∗s′⌋G and recall that v∗s′ ∈ V . We first observe that,

σs,a∗

h,v̂∗(1, rh(s, a
∗)) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a) ⌊vs′⌋G

≥ rh(s, a
∗) +

∑
s′

Ph(s
′ | s, a)vs′(1− δ)

≥

(
rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a)vs′

)
(1− δ)

= σs,a∗

h,v∗(1, rh(s, a
∗))(1− δ).

The second inequality used the fact that all rewards are non-negative. Then by Lemma 10,

σ̂s,a∗

h,v̂∗(1, rh(s, a
∗)) ≥ σs,a∗

h,v̂∗(1, rh(s, a
∗))(1− δ)S

≥ σs,a∗

h,v∗(1, rh(s, a
∗))(1− δ)S+1

≥ ⌊v⌋G (1− δ)S+1

= κ(⌊v⌋G).

Thus, (a∗, v̂∗) ∈ Âh(s, ⌊v⌋G).

Since v∗s′ ∈ V , the induction hypothesis implies that Ĉ∗
h+1(s

′, v̂∗s′) ≤ C̄∗
h+1(s

′, v∗s′) = C̄π
h+1(s

′, v∗s′).
The optimality equations for M̂ then imply that,

Ĉ∗
h(s, ⌊v⌋G) = min

(a,v̂)∈Âh(s,v)
ch(s, a) + f

((
Ph(s

′ | s, a), Ĉ∗
h+1 (s

′, v̂s′)
)
s′∈Ph(s,a)

)
≤ ch(s, a

∗) + f

((
Ph(s

′ | s, a∗), Ĉ∗
h+1 (s

′, v̂∗s′)
)
s′∈Ph(s,a∗)

)
≤ ch(s, a

∗) + f
((

Ph(s
′ | s, a), C̄π

h+1 (s
′, v∗s′)

)
s′∈Ph(s,a∗)

)
= C̄π

h (s, v)

= C̄∗
h(s, v).

The first inequality used the fact that (a∗,v∗) ∈ Âh(s, v). The second inequality relied on f being
non-decreasing and the induction hypothesis. The penultimate equality used (TR).

This completes the proof.

E.11 Proof of Lemma 12

Proof. We proceed by induction on h. Let (s, v̂) ∈ Ŝ be arbitrary.

Base Case. For the base case, we consider h = H+1. By definition and assumption, Ĉπ
H+1(s, v̂) =

χ{v̂≤0} <∞. Thus, it must be the case that v̂ ≤ 0 and so by definition V̂ π
H+1(s, v̂) = 0 ≥ v̂.

Inductive Step. For the inductive step, we consider h ≤ H . As in the proof of Lemma 5, we know
that πh(s, v) = (a, v̂) ∈ Âh(s, v̂) and for any s′ ∈ S with Ph(s

′ | s, a) > 0 that Ĉπ
h+1(s

′, vs′) <∞.
Thus, the induction hypothesis implies that V̂ π

h+1(s
′, v̂s′) ≥ v̂s′(1 − δ)(S+1)(H−h) for any such
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s′ ∈ S. By the policy evaluation equations, we see that,

V̂ π
h (s, v̂) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̂ π

h+1(s
′, v̂s′)

≥ rh(s, a) +
∑
s′

Ph(s
′ | s, a)v̂s′(1− δ)(S+1)(H−h)

≥ σs,a
h,v̂(1, rh(s, a))(1− δ)(S+1)(H−h)

≥ σ̂s,a
h,v̂(1, rh(s, a))(1− δ)(S+1)(H−h)

≥ v̂(1− δ)S+1(1− δ)(S+1)(H−h)

= v̂(1− δ)(S+1)(H−h+1).

The first inequality used the induction hypothesis. The second inequality used the fact that the rewards
are non-negative. The third inequality used Lemma 10. The fourth inequality used the fact that by
definition of Âh(s, v̂) and κ, σ̂s,a

h,v̂(1, rh(s, a)) ≥ κ(v̂) = v̂(1− δ)S+1.

This completes the proof.

E.12 Proof of Theorem 3

Proof.

Correctness. If Ĉ∗
1 (s0, v) > B for all v̂ ∈ V̂ , then C∗

M > B since otherwise we would have
Ĉ∗

1 (s0, ⌊v⌋G) ≤ C̄∗
1 (s0, v) ≤ C∗

M ≤ B by Lemma 11. Thus, if Algorithm 5 outputs “infeasible” it is
correct.

On the other hand, suppose that there exists some v̂ ∈ V̂ for which Ĉ∗
1 (s0, v̂) ≤ B. By standard

MDP theory, we know that since π ∈ ΠD is a solution to M̂ , it must satisfy the optimality equations.
In particular, Ĉπ

1 (s0, v̂) = Ĉ∗
1 (s0, v) ≤ B. As in the proof of Theorem 1, since Cπ

M = Ĉπ
1 (s0, v̂),

we see that there exists a π ∈ ΠD for which Cπ
M ≤ B and so V ∗

M > −∞.

Since V ∗
M is the value of some deterministic policy, Lemma 3 implies that V ∗

M ∈ V . Thus,
Lemma 12 implies that V̂ π

1 (s0, ⌊V ∗
M⌋G) ≥ ⌊V

∗
M⌋G (1 − δ)(S+1)H ≥ V ∗

M (1 − δ)(S+1)H+1 =

V ∗
M (1 − ϵ

(S+1)H+1 )
(S+1)H+1 ≥ V ∗

M (1 − ϵ) and Ĉπ
1 (s0, V

∗
M ) ≤ C∗

1 (s0, V
∗
M ) ≤ B. Consequently,

running π with initial state s̄0 = (s0, ⌊V ∗
M⌋G) is an optimal solution to (CON). In either case,

Algorithm 5 is correct.

Complexity. For the complexity claim, we observe that the running time of Algorithm 5 is
O(HS2A|V̂|2|Û |). To bound |V̂|, we observe that the number of vmin-scaled powers of 1/(1− δ)
required to capture the range [0, Hrmax] is at most one plus the largest power needed, which is

O(log1/(1−δ)(
Hrmax

vmin
)) = O(log(

Hrmax

vmin
)/ log(1/(1− δ)))

= O(log(
Hrmax

vmin
)/δ)

= O(log(HS
Hrmax

pHminrmin
)/ϵ)

= O(H2S log(
rmax

pminrmin
)/ϵ),

by definition of δ and the fact that log( 1
1−δ ) = − log(1 − δ) ≥ − log(e−δ) = δ. Moreover,

|Û | = O(|V̂|).
We see that the range of the rounded sums is at widest [0, 2Hrmax] since for any t + 1 rounding
non-negative sums is at least 0 and,⌊

⌊rh(s, a) + Ph(1 | s, a)v̂1⌋G + . . .+ Ph(t | s, a)v̂t

⌋
G ≤ rh(s, a) +

t∑
s′=1

Ph(s
′ | s, a)v̂s′ ,
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which is at most 2Hrmax. Then, the same analysis from before shows that the number of scaled pow-
ers of 1/(1− δ) needed to cover this interval is O(|V̂|). Thus, we see that O(|V̂|2|Û |) = O(|V̂|3) =
O(H6S3 log( rmax

pminrmin
)3/ϵ3) implying that the total run time is O(H7S5A log( rmax

pminrmin
)3/ϵ3) as

claimed.

F Extensions

F.1 Stochastic Costs

Suppose each cost ch(s, a) is replaced with a cost distribution Ch(s, a). Here, we consider finitely
supported cost distributions whose supports are at most m ∈ N. Then, instead of the agent occurring
cost ch(s, a) upon taking action a in state s at time h, the agent occurs a random cost ch ∼ Ch(s, a).
Generally, this necessitates histories be cost dependent, and so the policy evaluation equations
become,

V π
h (τh) = rh(s, a) +

∑
c′,s′

Ch(c
′ | s, a)Ph(s

′ | s, a)V π
h+1(τh, a, c

′, s′). (CPE)

Cover MDP. This implicitly changes the definition of V since the histories considered in the
definition must now include cost history. Since the cost distributions are finitely supported, V remains
a finite set. The main difference for M̄ is that the future value demands must depend on both the
immediate cost and the next state. This slightly changes the action space:

Āh(s, v)
def
=

(a,v) ∈ A× Vm×S | rh(s, a) +
∑
c′,s′

Ch(c
′ | s, a)Ph(s

′ | s, a)vc′,s′ ≥ v

 .

Bellman Updates. In order to solve M̄ using Algorithm 4, we must extend the definition of TSR
to also be recursive in the immediate costs. The key difference of the TSRC condition is that g’s
recursion is now two dimensional.
Definition 11 (TSRC). We call a criterion C time-space-cost-recursive (TSRC) if Cπ

M = Cπ
1 (s0)

where Cπ
H+1(·) = 0 and for any h ∈ [H] and τh ∈ Hh letting s = sh(τh) and a = πh(τh),

Cπ
h (τh) = ch(s, a) + f

((
Ch(c

′ | s, a), Ph(s
′ | s, a), Cπ

h+1 (τh, a, c
′, s′)

)
c′,s′

)
. (22)

In the above, c′ ∈ Ch(s, a) and s′ ∈ Ph(s, a). We now require that f be computable in O(mS)
time. We also require that the f term above is equal to gτh,ah (1, 1), where, gτh,ah (m + 1, 1) = 0,
gτh,ah (k, S + 1) = gτh,ah (k + 1, 1), and,

gτh,ah (k, t) = α
(
β
(
Ch(ck | s, a), Ph(t | s, a), Cπ

h+1 (τh, a, t)
)
, gτh,ah (k, t+ 1)

)
. (23)

In the above, we assume ck is the kth supported cost of Ch(s, a). Again, both α, β can be computed
in O(1) time, but now α(β(y, ·), x) = x whenever 0 ∈ y.

Our examples from before also carry over to the stochastic cost setting.
Proposition 5 (TSCR examples). The following classical constraints can be modeled by a TSCR
cost constraint.

1. (Expectation Constraints) We capture these constraints by defining α(x, y)
def
= x + y and

β(x, y, z)
def
= xyz.

2. (Almost Sure Constraints) We capture these constraints by defining α(x, y)
def
= max(x, y)

and β(x, y, z)
def
= [x > 0 ∧ y > 0]z.

3. (Anytime Constraints) We capture these constraints by defining α(x, y)
def
= max(0,

max(x, y)) and β(x, y, z)
def
= [x > 0 ∧ y > 0]z.

We can then modify our approximate recursion from before.
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Definition 12. We define, ĝs,ah,v(m+ 1, 1, u)
def
= χ{u≥v}, ĝs,ah,v(k, S + 1, u)

def
= ĝs,ah,v(k + 1, 1, u) and

for t ≤ S,

ĝs,ah,v̂(k, t, u)
def
= min

vk,t∈V
α
(
β
(
Ch(ck | s, a), Ph(t | s, a), C̄∗

h+1 (t, vk,t)
)
,

ĝs,ah,v

(
k, t+ 1, ⌊u+ Ch(ck | s, a)Ph(t | s, a)vk,t⌋G

) )
.

(24)

Approximation. Lastly, our rounding now occur error over time, space, and cost. Thus, we simply
need to slightly modify our rounding functions. The main change is we use δ

def
= ϵ

H(mS+1)+1 . We

also further relax our lower bounds to κ(v)
def
= v − δ(mS + 1) and κ

def
= v(1− δ)mS+1 respectively.

Our running times correspondingly will have m3 terms now.

F.2 Infinite Discounting

Approximations. Since we focus on approximation algorithms, the infinite discounted case can
be immediately handled by using the idea of effective horizon. We can treat the problem as a finite
horizon problem where the finite horizon H defined so that

∑∞
h=H γh−1rmax ≤ ϵ′. By choosing ϵ′

and ϵ small enough, we can get traditional value approximations. The discounting also ensures the
effective horizon H is polynomially sized implying efficient computation. We just need to assume
that 0-cost actions are always available so that the policy can guarantee feasibility after the effective
horizon has passed.

Hardness. We also note that all of the standard hardness results concerning deterministic policy
computation carries over to the infinite discounting case even if all quantities are stationary.

F.3 Faster Approximations

We can significantly improve the running time of our FPTAS. The main guarantee is given in
Corollary 1. They key step is to modify Algorithm 3 to use the differences instead of the sums. It is
easy to see that this is equivalent since,

rh(s, a) +
∑
s′

Ph(s
′ | s, a)vs′ ≥ v ⇐⇒ v −

∑
s′

Ph(s
′ | s, a)vs′ ≤ rh(s, a).

Since rounding down the differences make them larger, it becomes harder to be below rh(s, a).
Consequently, we now interpret κ as an upper bound for rh(s, a) instead of a lower bound on v The
approximate dynamic programming method based on differences can be seen in Definition 13.
Definition 13. Fix a rounding down function ⌊·⌋G and upper bound function κ. For any h ∈ [H],
s ∈ S, v ∈ V , and u ∈ R, we define, ĝs,ah,v(S + 1, u) = χ{u≤κ(rh(s,a))} and for t ≤ S,

ĝs,ah (t, u)
def
= min

vt∈V
α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, ĝs,ah (t+ 1, ⌊u− Ph(t | s, a)vt)⌋G

)
. (DIF)

The recursion is nearly identical to the originally, and unsurprisingly, it retains the same theoretical
guarantees but in the reverse order. The guarantees can be seen in Lemma 13, which is straightforward
to prove following the approach in the proof of Lemma 1.
Lemma 13. For any t ∈ [S + 1] and u ∈ R, we have that,

ĝs,ah (t, u) = min
v∈VS−t+1

ĝs,ah,v̂(t)

s.t. σ̃s,a
h,v(t, u) ≤ κ(rh(s, a)),

(25)

where σ̃s,a
h,v(t, u)

def
=
⌊
⌊u− Ph(t | s, a)vt⌋G − . . .− Ph(S | s, a)vS

⌋
G .

The difference version so far does not help us get faster algorithms. The key is in how we use it.
Since the base case of the recursion is rh(s, a) and not v, we can compute the approximate bellman
update for all v’s simultaneously. This ends up saving us a factor of |V| that we had in the original
Algorithm 4. The new algorithm is defined in Algorithm 6. The inputs to the recursion are define in
Definition 14.
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Algorithm 6 Approx Solve
Input: (M̄, C̄)

1: Ĉ∗
H+1(s, v)← χ{v≤0} for all (s, v) ∈ S̄

2: for h← H down to 1 do
3: for s ∈ S do
4: for a ∈ A do
5: ĝs,ah (S + 1, u)← χ{u≤κ(rh(s,a))} ∀u ∈ Û

s,a
h

6: for t← S down to 1 do
7: for u ∈ Ûs,a

h do
8: v̂t,aĝ

s,a
h (t, u)← (DIF)

9: for v ∈ V do
10: a∗, Ĉ∗

h(s, v)← mina∈A ch(s, a) + ĝs,ah (1, v)
11: πh(s, v)← a∗

12: return π and Ĉ∗

Definition 14. For any h ∈ [H], s ∈ S, and a ∈ A, we define Ûs,a
h (1)

def
= V and for any t ∈ [S],

Ûs,a
h (t+ 1)

def
=
⋃

vt∈V

⋃
σ̂∈Ûs,a

h (t)

{
⌊σ̂ − Ph(t | s, a)vt⌋G

}
. (26)

Proposition 6. The running time of Algorithm 6 is O(HS2A|V|σ̂).
Corollary 1 (Running Time Improvements). Using Algorithm 6, the running time of our additive-
FPTAS becomes O(H5S4Ar2max/ϵ

2), and the running time of our relative-FPTAS becomes
O(H5S4A log( rmax

rminpmin
)2/ϵ2)

Approximation Details. Although the running times our clear from removing the factor of |V̂ |, we
need to slightly alter our approximation schemes for this to work. First, we need to use κ(rh(s, a))

def
=

rh(s, a) + δ for the additive approximation. The proof from before goes through almost identically.

However, for the relative approximation, no choice of upper bound can ensure enough feasibility.
Thus, we simply use κ(rh(s, a))

def
= rh(s, a) and apply a different analysis. We also note that

technically, differences can become negative. To deal with this the relative rounding function should
simply send any negative number to 0: ⌊−x⌋G

def
= 0. The analysis is mostly the same, but the

feasibility statement must be slightly modified.
Lemma 14. Suppose all rewards are non-negative. For any h ∈ [H + 1] and (s, v) ∈ S̄,
Ĉ∗

h(s,
⌊
v(1− δ)H−h+1

⌋
G) ≤ C̄∗

h(s, v).

The idea is that since no fixed upper bound can capture arbitrary input values, we simply input relative
values. Then, the feasibility part of Lemma 11 goes through as before. The proofs mostly remain the
same, but the rounding must again change. We must now start at the smaller vmin that is the original
vmin scaled by a factor of (1− δ)H to ensure that

⌊
V ∗
M (1− δ)H

⌋
is in V̂ . This makes V̂ larger, but

not by too much as we argued in previous analyses.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe the claims made are accurate.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We point out our assumed reward bounds and note they are unavoidable under
worst-case analysis.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Our paper provides all proofs in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: Our paper is purely theoretical and does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: Our paper is purely theoretical and does not include any experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper is purely theoretical and does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper is purely theoretical and does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our paper is purely theoretical and does not include any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We beleive our paper follows the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss in the introduction and conclusions potential positive impacts of
our work. We do not believe there are any direct negative impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper is purely theoretical and does not include any releasable materials.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper is purely theoretical and does not include any experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper is purely theoretical and does not include any experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper is purely theoretical and does not use any crowdsourcing nor human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper is purely theoretical and does not use any crowdsourcing nor human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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