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Abstract
Large language models (LLMs) can adapt to001
new tasks through in-context learning (ICL)002
based on a few examples presented in dialogue003
history without any model parameter update.004
Despite such convenience, the performance of005
ICL heavily depends on the quality of the in-006
context examples presented, which makes the007
in-context example selection approach a critical008
choice. This paper proposes a novel Bayesian009
in-Context example Selection method (ByCS)010
for ICL. Extending the inference probability011
conditioned on in-context examples based on012
Bayes’ theorem, ByCS focuses on the inverse013
inference conditioned on test input. Follow-014
ing the assumption that accurate inverse in-015
ference probability (likelihood) will result in016
accurate inference probability (posterior), in-017
context examples are selected based on their018
inverse inference results. Diverse and extensive019
cross-tasking and cross-modality experiments020
are performed with speech, text, and image ex-021
amples. Experimental results show the efficacy022
and robustness of our ByCS method on various023
models, tasks and modalities.024

1 Introduction025

Large language models (LLMs) (Touvron et al.,026

2023b; OpenAI, 2023a) have achieved great suc-027

cess on many text-based natural language process-028

ing (NLP) tasks. By connecting with extra visual029

and audio encoders (Sun et al., 2023b; Radford030

et al., 2023), the resulting multimodal LLMs can031

also achieve remarkable performance on image-032

text and audio-text tasks (Li et al., 2023; OpenAI,033

2023b; Tang et al., 2023). With the ability of in-034

context learning (ICL) (Brown et al., 2020), LLMs035

can adapt to new tasks easily and efficiently in a036

training-free manner, to generate output following037

the prompting paradigm based on a few input-label038

pairs pre-pended to the test input. The existence of039

ICL ability has also been verified on image-text and040

audio-text tasks (Tsimpoukelli et al., 2021; Wang041

et al., 2023c; Hsu et al., 2023; Pan et al., 2023).042

(i) Random Selected 
Example(s)

(ii) Inverse 
Inference

(iii) Bayesian Selected
Example(s)

text
similarity

score-based rerankingestimated probabilities datastore

(few-shot with k samples) (k samples in-context learning) 

Figure 1: A brief illustration of the proposed Bayesian
in-context example selection includes: (i) first randomly
selecting k examples; (ii) examining the examples in
the datastore through “inverse inference,” where the test
input-label pair serves as the in-context example; and
(iii) selecting samples with correct label predictions as
good examples (colored in blue), considered to have
high mutual information interaction with the test input.

Although ICL requires no gradient descent and 043

thus does not suffer from the instability caused 044

by stochastic optimisation compared to other test- 045

time adaptation approaches, care still needs to be 046

taken when selecting the in-context examples since 047

they often lead to distinct ICL performance varia- 048

tions (Zhao et al., 2021; Min et al., 2022; Lu et al., 049

2022b). Prior work on in-context example selection 050

trains an example retrieval module (Rubin et al., 051

2022; Zhang et al., 2022; Lu et al., 2022a; Wang 052

et al., 2023b), selects close examples in embedding 053

space (Liu et al., 2022; An et al., 2023; Qin et al., 054

2023), or leverages the feedback of LLMs to score 055

the examples (Su et al., 2022; Nguyen and Wong, 056

2023; Iter et al., 2023; Mavromatis et al., 2023). 057

While boosting ICL performance, most methods 058

treat in-context examples and test input separately, 059

overlooking their mutual interactions. 060

This paper proposes ByCS (Bayesian in-Context 061

example Selection), a novel in-context example 062

selection approach focusing on mutual informa- 063

tion interactions based on the Bayesian formula. 064

Refer to the inference of test input conditioned 065

on in-context examples as ICL inference, and the 066

inference of in-context example’s input based on 067

the test input-label pair as the inverse inference. 068
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By introducing inverse inference via Bayes’ theo-069

rem, ByCS leverages the inverse inference result070

to evaluate the quality of each in-context example.071

Assuming the contextual information interaction072

is mutual, an accurate inverse inference is likely073

to result in an accurate inference. Examples with074

accurate inverse inference results are selected as075

optimal examples. Extensive experiments across076

audio, image, and text modalities are conducted to077

verify the effectiveness and robustness of ByCS,078

such as ASR, visual question answering (VQA), as079

well as NLP tasks (including topic classification,080

sentiment analysis, and text-to-SQL etc). Our main081

contributions are summarised as follows:082

• ByCS, a novel in-context example selection083

method inspired by Bayes’ theorem, is pro-084

posed. To improve the efficiency, the use of a085

smaller model for fast inverse inference imple-086

mentation and a ranking-based pre-selection087

to reduce the number of in-context examples088

are also proposed in this paper.089

• The method is verified using both “decoder-090

only ICL" on NLP tasks and “encoder-091

decoder” ICL on ASR and VQA. To the best092

of our knowledge, this is the first work of an093

in-context example selection method verified094

across text, audio, and visual modalities as095

shown in Figure 2.096

2 Related Work097

Multimodal ICL. Inspired by the decoder-only098

ICL in text-based NLP, efforts have been made to099

extend such a few-shot learning ability to other100

modalities, in particular image and audio. Frozen101

(Tsimpoukelli et al., 2021) is the first attempt to102

exploit ICL ability in the vision-language model103

(VLM). By using a vision encoder to map the in-104

put image to textual tokens in the input embedding105

space of a frozen text language model, Frozen can106

handle interleaved image and text input and achieve107

image-text ICL. Other work manages to improve108

VLM’s ICL ability by using adapter blocks (Eichen-109

berg et al., 2022), adding blockwise modality fu-110

sion structures (Alayrac et al., 2022) and scaling111

up the model size (Sun et al., 2023a).112

In audio modality, Borsos et al. (2023) proposed113

AudioLM, a language model based on quantised114

audio tokens for audio generation tasks, which ex-115

hibits ICL ability for audio continuation. Similarly,116

Speech example inputs Speech test inputText example labels Answer

“好睇。”

𝑋𝐶!"#$% 𝐶&'()& 𝑌

Text example inputs Text test input Answer

Albert Einstein was Marie Curie was     Polish. 
𝑌𝑋𝐶!"#$%

Text example labels
𝐶&'()&

German.

“睇嚟。”

Image example inputs

Text example inputs
𝐶!"#$%

Text example labels
Image test input

Text test input
Answer

𝐶&'()& 𝑋 𝑌

Does this type of train 
transport people or cargo?What is this vehicle used for?

Transporting goods. Cargo.

(a)  text  ICL

(b)  ASR  ICL

(c)  VQA  ICL

Figure 2: Multimodal ICL. Although ICL on differ-
ent modalities shares the same formula expression, the
actual inputs and inference model architectures differ.
For ASR ICL on Whisper, the speech is fed into the en-
coder while the text example is labelled into the decoder,
which is aware of speech input through cross-attention
with the encoder. For VQA ICL, images are first en-
coded to the same embedding space of LM’s input, then
interleaved images and texts are fed into decoder LM.

Wang et al. (2023a) proposed VALL-E, a control- 117

lable text-to-speech synthesis system with ICL abil- 118

ity based on audio and text prompts. Wang et al. 119

(2023c) presented the first ICL work for ASR based 120

on paired speech-text examples, which adapted 121

the Whisper (Radford et al., 2023) model to re- 122

ceive considerable word error rate (WER) reduc- 123

tions on unseen Chinese dialects. Further explo- 124

rations enabled the recent speech-language mod- 125

els to perform ICL on more speech input tasks 126

through warmup training (Hsu et al., 2023) or 127

speech instruction-tuning (Pan et al., 2023). 128

In-Context Example Selection Methods. Rubin 129

et al. (2022) proposed a scoring LM to retrieve in- 130

context examples using contrastive learning, which 131

can also be trained with reinforced learning algo- 132

rithms, such as Q-learning (Zhang et al., 2022) and 133

policy gradient (Lu et al., 2022a). Alternatively, 134

examples that are semantically similar to the test 135

input can be selected. Liu et al. (2022) proposed 136

to select the k nearest neighbours (kNN) in the 137

embedding space of the examples. When combin- 138

ing with chain-of-thought (Wei et al., 2022), Qin 139

et al. (2023) proposed to select examples in the 140

embedding space of the reasoning path. LLM feed- 141

back is often used in in-context example selection. 142

Iter et al. (2023) selected in-context examples with 143

cross-entropy differences of the fine-tuned model 144
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Figure 3: The detailed pipeline of our ByCS method includes: First, conduct the first-round inference to estimate the
label of the test input. Then, perform inverse inference on each example in the datastore, where the test input and
the estimated label serve as in-context examples. A detailed illustration of inverse inference can be found in Figure
5 in the Appendix. Finally, rank in-context examples by the text similarity between the inverse inference result
and the true context label. Examples with high similarity scores are selected due to their high mutual information
interaction.

based on the assumption that ICL may act as im-145

plicit gradient descent (Dai et al., 2022). Nguyen146

and Wong (2023) identified highly impactful exam-147

ples according to the proposed influence score. Al-148

though ByCS also uses LLM feedback when eval-149

uating the quality of in-context examples through150

inverse inference, it leverages the text-similarity of151

the inverse inference results and the corresponding152

ground-truth labels, in no need of complete out-153

put probability distributions which are often not154

available for commercial LLMs.155

Wang et al. (2023d) selected optimal in-context156

examples in the Bayesian framework by viewing157

LLMs as latent variable models and ICL as latent158

concept learning. In comparison, ByCS directly159

extends the ICL inference probability using Bayes’160

theorem. Xu and Zhang (2024) selected exam-161

ples with high discrepancy between the labels and162

LLM’s outputs when performing question answer-163

ing. ByCS also selected examples from candidates164

in a datastore based on LLM’s outputs but com-165

putes the mutual information interactions between166

the in-context examples and test input.167

3 Methodology168

As shown in Figure 3, given a test input X and169

paired in-context examples (Cinput, Clabel), LLMs170

predict the most possible answer Ŷ by maximising171

the inference probability P (Y|Cinput, Clabel,X):172

Ŷ = argmaxP (Y|Cinput, Clabel,X), (1)173

where Cinput and Clabel are the inputs and labels of174

different data types in different tasks. Regarding175

text-based NLP tasks, Cinput and Clabel are referred176

to as text questions and corresponding answers.177

Regarding ASR, Cinput and Clabel are speech audio178

and corresponding text transcriptions. Regarding 179

VQA, Cinput are images and text questions based on 180

the images and Clabel are the text answers. 181

The inference probability can be extended using 182

Bayes’ theorem: 183

P (Y|Cinput, Clabel,X)

=
P (Clabel|X,Y, Cinput)P (Y|X, Cinput)

P (Clabel|X, Cinput)
.

(2) 184

The likelihood P (Clabel|X,Y, Cinput) is termed 185

as inverse inference probability, since it can be 186

interpreted as the probability of the context label 187

Clabel when the test input-label pair (X,Y) is in- 188

versely treated as the in-context example. ByCS 189

is focused on the inverse inference probability and 190

assumes the influence of the prior P (Y|X, Cinput) 191

is subordinate for simplification. 192

In practice, since the ground-truth label Yref of 193

the test input X is not available, the correct like- 194

lihood P (Clabel|X,Yref, Cinput) is approximated by 195

P (Clabel|X, Ŷ, Cinput), where Ŷ is produced by the 196

first-round inference. Specifically, 197

• First, the first-round inference is performed 198

to produce a hypothesized label Ŷ based on 199

the test input X, which can be achieved using 200

decoding rule without any in-context exam- 201

ples by Ŷ = argmaxP (Y|X). Better per- 202

formance can be achieved when using the hy- 203

pothesized label obtained by in-context exam- 204

ples by Ŷ = argmaxP (Y|C̃input, C̃label,X) 205

based on Eqn. (1), where (C̃input, C̃label) is a 206

pair of first-round in-context example selected 207

either randomly or using other example selec- 208

tion methods. 209

• Next, for the datastore with all candidate in- 210

context examples, generate the inverse infer- 211
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ence result in Ĉlabel for every candidate ex-212

ample based on the approximated inverse in-213

ference probability P (Clabel|X, Ŷ, Cinput) by214

Ĉlabel = argmaxP (Clabel|X, Ŷ, Cinput).215

• Last, compute Q = Similarity(Clabel, Ĉlabel)216

as the text similarity between Clabel and Ĉlabel,217

and use Q as the metric for the evaluation of218

the quality of inverse inference. Since more219

accurate inverse inference probability often220

results in higher text similarity, ByCS selects221

the in-context examples with higher Q. Note222

that Q is adopted since it does not require to223

assessment of the model’s output probability224

distribution of the LLM, which is often un-225

available for commercial LLMs.226

To reduce the computation cost of inverse infer-227

ence, two methods are used when the number of228

examples in the datastore is large:229

• Conduct inverse inference using a model in230

the same model family as our inference model231

but has a smaller model size.232

• Apply ByCS to a small number (e.g. N )233

of pre-selected candidate examples. In pre-234

selection, all examples in the datastore are first235

ranked, and only the top N best examples are236

reserved as the pre-selected candidates. The237

pre-selection is performed using fast ranking-238

based algorithms like kNN.239

4 Experimental Setup240

4.1 Models241

Experimental results are performed on audio, text,242

and image modalities. For audio-text and image-243

text tasks, ASR and VQA are used to evaluate the244

ICL ability of encoder-decoder structured models.245

For text-only NLP tasks, topic classification, senti-246

ment analysis, and text-to-SQL are used to evaluate247

the ICL performance with decoder-only models.248

Regarding the NLP tasks, experiments are con-249

ducted using GPT-3.5-Turbo and GPT-4 (OpenAI,250

2023a). For the ASR task, the open-sourced Whis-251

per model (Radford et al., 2023) is used, which252

is a series of speech models released by OpenAI.253

The Whisper model family uses vanilla encoder-254

decoder Transformer (Vaswani et al., 2017) archi-255

tecture ranging from 39 million (M) parameters256

(tiny) to 1.55 billion (B) parameters (large). Specifi-257

cally, the Whisper small (244M) and Whisper large-258

v2/-v3 (1.55B) models are used. For the VQA task,259

experiments are performed on Emu2 (Sun et al., 260

2023a) and GPT-4V (OpenAI, 2023b). Emu2 is a 261

37B text-image model (VLM) which leverages pre- 262

trained EVA-02-CLIP-E-plus (Sun et al., 2023b) 263

and LLAMA-33B (Touvron et al., 2023a), which 264

has ICL ability when taking interleaved inputs of 265

images and texts. For experiments on Emu2, the 266

outputs are generated using a greedy decoding set- 267

ting for fast evaluation. GPT-4V is a GPT4 variant 268

that can directly perceive image inputs, showing 269

state-of-the-art image understanding performance. 270

4.2 Datasets 271

Seven datasets covering NLP, ASR and VQA are 272

used in this paper. For text-only ICL, four datasets 273

are used in four different task categories: the 274

TREC dataset for topic classification (Voorhees 275

and Tice, 2000), the SST2 dataset for sentiment 276

analysis (Socher et al., 2013), the Spider dataset 277

for text-to-SQL (Yu et al., 2018), and the CHiME- 278

4 (Vincent et al., 2017) split of the HyPoradise 279

dataset (Chen et al., 2023) for generative language 280

model re-scoring to correct pre-generated ASR 281

transcriptions. For audio-text ICL, Two datasets 282

are used for ASR tasks, namely RASC863 (Chi- 283

neseLDC.org, 2004) and CORAAL (Gunter et al., 284

2021). RASC863 is a commonly used Chinese 285

dialect ASR dataset and its dialectal words split 286

of Chongqing and Guangzhou dialects are used. 287

CORAAL is an English corpus with speech record- 288

ings from regional African Americans. For image- 289

text ICL, VQA experiments are conducted on 290

OKVQA (Marino et al., 2019), a dataset that re- 291

quires methods to draw upon external knowledge 292

to answer the visual questions. 293

4.3 Baselines 294

On all three modalities, random selection and im- 295

proved KATE (Liu et al., 2022) are used as baseline 296

approaches. For random selection, in-context ex- 297

amples are uniformly selected from the example 298

datastore three times and the average results are re- 299

ported. For KATE (Liu et al., 2022), k neighbours 300

that are nearest to the test input in the embedding 301

space in terms of Euclidean distance are selected. 302

For ASR ICL, the encoder of Whisper large-v2 acts 303

as the embedding retrieval module on the Chinese 304

dataset, while on the English dataset, we use the 305

encoder of Whisper large-v3. In text-ICL, OpenAI 306

text-embedding-ada-002 is used as the em- 307

bedding retrieval model. For VQA ICL, KATE is 308

only based on the embedding space of the query 309
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Corpus & In-context example number k
Setting RASC863 Chongqing RASC863 Guangzhou CORAAL <15s

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1

random 67.1 56.1 52.7 51.0 61.7 38.3 31.2 28.8 13.2
KATE+ 67.1 54.7 51.3 49.7 61.3 36.1 26.9 24.8 12.6
ByCS 62.4 53.4 50.6 48.6 49.5 31.9 27.1 26.6 12.4

oracle ByCS 62.4 52.4 49.5 47.2 49.4 30.7 25.8 24.7 12.4

(a) Results with Whisper-large-v2

Corpus & In-context example number k
Setting RASC863 Chongqing RASC863 Guangzhou CORAAL <15s

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1

random 68.9 60.3 57.0 55.7 67.1 42.8 38.3 35.2 12.4
KATE+ 68.1 58.2 54.8 54.1 67.7 41.3 34.3 31.6 12.1
ByCS 63.5 56.3 53.5 51.8 50.7 36.7 33.0 31.5 12.0

oracle ByCS 63.4 55.2 53.0 50.7 51.3 35.6 31.9 30.7 11.9

(b) Results with Whisper-large-v3

Table 1: %WERs on RASC863 dialectal word dataset and CORAAL with different in-context example selection
methods. For RASC863, the example datastore is the RASC863 dialectal word dataset of the corresponding dialect.
For CORAAL, the size of the example datastore for ByCS is narrowed down to 10 using kNN algorithm. For the
“oracle ByCS” setting, the ground-truth label Yref is used in the inverse reference.

image and EVA02-CLIP-bigE-14-plus (Sun et al.,310

2023b) serves as the embedding retrieval module.311

We use the term “KATE+” to refer to the baseline312

in our paper, putting stress on the fact that it is313

actually an improved KATE version enhanced us-314

ing stronger embedding retrieval models, which315

results in better performance. For text ICL, bm25316

(Robertson et al., 1995) and LLM-R (Wang et al.,317

2023b) are also compared as baselines. bm25 is a318

ranking metric originally designed for search en-319

gines to estimate the relevance of documents to a320

given query based on word-overlapping similarity.321

LLM-R provides a recent and preferment dense re-322

triever distilled using a reward model trained based323

on LLM feedback.324

5 Results325

5.1 ASR ICL326

Results in WER are reported for ASR tasks in Table327

1, and here in Chinese WER is calculated based328

on Chinese characters, which is also termed as329

character error rate.330

The ByCS method outperforms the KATE+ base-331

line in most cases, showing the robustness and ef-332

fectiveness of our method. When the number of333

in-context examples k is small, ByCS surpasses334

KATE+ baseline in a large margin, with a 10.25%335

relative WER reduction on average when k = 1. 336

Such performance advantage of ByCS reduces 337

when the number of in-context examples increases, 338

which may be attributed to the fact that ByCS per- 339

forms the inverse inference of each in-context ex- 340

ample individually by applying an independence 341

assumption that ignores the contextual interactions 342

between different in-context examples. The use 343

of Yref in “oracle ByCS” further boosts the per- 344

formance gain, indicating the upper bound of our 345

method with the same number of k. 346

5.2 Ablation study on ASR ICL 347

5.2.1 Inverse decoding option 348

The influence of different decoding options of in- 349

verse inference is studied on the RASC863 dialec- 350

tal word dataset. The results are shown in Ta- 351

ble 2. For the setting notation, “noprompt” de- 352

notes decoding in the default decoding option, and 353

“prompt” means to decode with a specially designed 354

prompt “识别方言” (meaning to “recognize dialect 355

speech”). “LID” denotes decoding with the correct 356

language identity of Chinese (“zh”). 357

The results show that among the three inverse de- 358

coding options, “noprompt” obtains the best perfor- 359

mance, “prompt” becomes the second, and “LID” 360

the worst. The WERs of inverse inference are re- 361
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ported in Table 3. The WERs under the “noprompt”362

setting are more than 100% due to the high in-363

sertion error rate. The repeated outputs are not364

removed when calculating the WERs of inverse365

inference and when calculating the text similarity,366

making a more obvious distinction between the ex-367

amples with high mutual information interaction368

and those with low.369

Although it may be a little counter-intuitive370

that low inverse inference accuracy results in high371

ByCS selection performance, it is reasonable since372

inverse inference in ByCS helps to separate good373

in-context examples from the rest, which can be374

better achieved by using worse decoding options375

during inverse inference. This is because our de-376

coding options can often make the model make377

more mistakes for worse in-context examples.378

Setting Corpus
Text Inverse

RASC863
Chongqing

RASC863
Guangzhou

similarity decoding
measurement option

Jaccard
coefficient

noprompt 62.4 49.5
prompt 62.9 50.7

LID 64.1 52.3

BERT
wordvecs

noprompt 62.4 51.5
prompt 63.5 56.8

LID 64.5 57.7

Table 2: %WERs of Whisper large-v2 on RASC863 di-
alectal word dataset using ByCS method with different
inverse decoding options and text similarity measure-
ments. The number of in-context examples is k = 1.

Inverse
decoding

option

Corpus
RASC863
Chongqing

RASC863
Guangzhou

noprompt 91.5 125.2
prompt 70.2 70.1

LID 54.6 61.7

Table 3: Inverse inference %WERs of Whisper large-
v2 on RASC863 dialectal word dataset with different
inverse decoding options.

5.2.2 Text similarity measurement379

The results of ByCS with different text similarity380

measurements are also reported in Table 2. For the381

setting notation, the “Jaccard coefficient” is a com-382

Setting
In-context example number k
k = 1 k = 2 k = 3 k = 4

KATE+ 67.1 54.7 51.3 49.7
ByCSlargev2 62.4 53.4 50.6 48.6
ByCSsmall 64.2 53.3 50.5 48.7

(a) Results with Whisper large-v2

Setting
In-context example number k
k = 1 k = 2 k = 3 k = 4

KATE+ 68.1 58.2 54.8 54.1
ByCSlargev3 63.5 56.3 53.5 51.8
ByCSsmall 64.4 56.5 54.1 51.7

(b) Results with Whisper large-v3

Table 4: %WERs on RASC863 Chongqing dialectal
word dataset with ByCS with different inverse inference
models. ByCSlargev3 and ByCSsmall use Whisper-large-
v3 and Whisper-small as the inverse inference model
separately.

monly used statistic to gauge similarity, defined as 383

the intersection over the union of two sentences. 384

“BERT wordvecs” is to measure similarity based 385

on the Euclidean distance in the embedding space 386

of BERT encoded word vectors. The embedding 387

retrieval module is bert-base-chinese 1. 388

ByCS with the Jaccard coefficient as text simi- 389

larity have lower WERs, which may be because the 390

training data of the BERT model doesn’t include 391

sufficient dialectal Chinese words and expressions. 392

It also indicates that ByCS can work well with 393

even a simple rule-based text similarity measure- 394

ment, further verifying its high robustness. The 395

Jaccard coefficient is used as the text similarity 396

measurement in later experiments unless explicitly 397

specified, due to the performance and simplicity. 398

5.2.3 Inverse inference model 399

The inverse inference with different models is also 400

investigated, with the results displayed in Table 401

4. A smaller model is used for inverse inference 402

to speed up ByCS, since it is expensive to per- 403

form inverse inference using the inference model 404

for every candidate example in datastore. Replac- 405

ing Whisper-large-v2/v3 with Whisper-small will 406

speed up six times2. For the notation, the subscript 407

denotes the inverse inference model. For example, 408

ByCSsmall is the ByCS method with Whisper small 409

1https://huggingface.co/
bert-base-chinese

2https://github.com/openai/whisper
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Corpus & In-context example number k
Setting TREC(%Acc. ↑) SST2(%Acc. ↑) Spider(%Acc. ↑) HyPoradise CHiME-4 (%WER ↓)

k = 1 k = 2 k = 4 k = 1 k = 2 k = 1 k = 1 k = 2 k = 5

default 63.0 92.92 67.41 8.0
random 63.5 72.7 75.3 94.96 94.80 67.02 7.5 7.5 7.3
KATE+ 78.8 86.4 91.0 95.05 94.69 69.44 7.7 7.1 6.8
bm25 74.6 89.4 89.8 95.27 95.40 67.41 7.4 7.5 8.1

LLM-R 78.0 88.8 90.4 95.05 94.02 67.82 7.4 6.9 7.0
ByCS 81.2 88.0 90.6 95.16 95.04 69.63 7.1 6.8 6.4

(a) Results using GPT-3.5-Turbo

Corpus & In-context example number k
Setting TREC(%Acc. ↑) SST2(%Acc. ↑) Spider(%Acc. ↑) HyPoradise CHiME-4 (%WER ↓)

k = 1 k = 2 k = 4 k = 1 k = 2 k = 1 k = 1 k = 2 k = 5

default 75.2 95.01 69.63 11.6
random 81.3 82.5 84.6 96.38 96.11 70.66 6.9 6.8 6.5
KATE+ 88.2 91.6 93.4 96.43 95.85 71.95 7.0 6.3 5.8
bm25 81.8 87.4 91.4 96.19 96.09 71.47 6.8 6.6 6.3

LLM-R 88.2 91.0 93.6 95.74 95.06 72.63 6.8 6.3 5.9
ByCS 88.6 92.4 93.6 96.55 96.31 72.82 6.7 6.3 5.9

(b) Results using GPT-4

Table 5: Results of four text ICL tasks on two GPT-family models with different in-context example selection
methods. The evaluation metrics are denoted in the brackets. The example datastore is narrowed down to a small
size using kNN for ByCS. In the ‘default’ setting, the answers are generated directly with the questions without ICL.

as an inverse inference model.410

ByCSsmall has similar results to ByCSlargev2 and411

ByCSlargev3, verifying the effectiveness of using a412

smaller model from the same family for inverse413

inference. This is intuitive since Whisper-small414

is trained using the same data and settings com-415

pared to the inference model Whisper-large-v2 and416

Whisper-large-v3, which therefore processes infor-417

mation similarly and can serve as a good alternative418

when evaluating the quality of the in-context ex-419

amples. The smaller size of Whisper-small makes420

ByCS a more practical method in cost-sensitive421

scenarios. A detailed analysis of time cost is in422

Appendix B.423

5.3 Text ICL424

Text-only ICL results are shown in Table 5. As425

shown, ByCS outperforms all baselines on most426

dataset settings, showing not only the effective-427

ness but also the robustness of ByCS. In particular,428

ByCS outperforms the best baseline on the genera-429

tive ASR rescoring dataset HyPoradise with a con-430

siderable 4.7% relative WER reduction with GPT-431

3.5-Turbo. On TREC and SST2 datasets, ByCS432

does not always outperform the baselines. This in- 433

dicates that ByCS is more suitable for open-ended 434

long-answer datasets due to the calculation of text 435

similarity in ByCS, in which answers are much 436

more diverse and examples with rich information 437

interactions can be better separated. In contrast, 438

in multi-choice classification datasets, only a few 439

short answers are often available, containing lit- 440

tle contextual information. As the example shown 441

in Figure 4, the distribution of the text similarity 442

for ranking the examples is often sharp, merging 443

the optimal and the suboptimal examples. Fur- 444

thermore, considering the hypothesized labels of 445

the test inputs for inverse inference, the hypothe- 446

sized answers in open-ended datasets (in the form 447

of long sentences) are often more similar to their 448

corresponding references compared to those in the 449

multi-choice classification datasets (in the form of 450

a word or phrase or just an index of choice). 451

It is observed that different in-context example 452

selection methods perform differently with differ- 453

ent models, even though on the same dataset. The 454

bm25 method outperforms the KATE+ method 455

with GPT-3.5-Turbo on the SST2 dataset, but not 456

7



with GPT4. Compared to KATE+ and bm25 that is457

model-free in the actual selection step, the perfor-458

mance advantage of ByCS is more consistent since459

it takes into account the influence of the model. The460

outputs of the inverse inference model are used,461

which can serve as a good approximation to the462

inference model as verified in Section 5.2.3.463

Note that for ByCS on GPT-4, although the in-464

verse inference procedure is conducted on GPT-3.5-465

Turbo, the performances of ByCS are still superior.466

This further verifies that smaller models from the467

same model family can serve as a good low-cost468

approximation of the inverse inference model.469

(a) Distribution on SST2

(b) Distribution on HyPoradise

Figure 4: The distribution of text similarity scores on dif-
ferent datasets. The text similarity score is the Jaccard
coefficient. The entropy of distribution is calculated
and placed on the upper left. The distribution on the
multichoice classification dataset SST2 (blue) is much
sharper than that of the open-ended dataset HyPoradise
(red).

5.4 VQA ICL470

ByCS is tested on VQA ICL and the results are471

reported in Table 6. ByCS outperforms the KATE+472

baseline on the VQA ICL task, demonstrating473

strong performances across modalities. The perfor-474

mance improvement from ByCS is not as obvious475

as in audio and text tasks, since the answers of476

VQA are usually short (usually a word or phrase),477

lacking sufficient contextual information. ByCS on478

In-context
example
number k

Example selection method

KATE+ ByCS

k = 2 40.47 40.12
k = 4 45.11 45.14

(a) Results with Emu-2

In-context
example
number k

Example selection method

KATE+ ByCS

k = 2 52.54 52.86
k = 4 54.00 54.39

(b) Results with GPT-4V
Table 6: Results of VQA ICL with different in-context
example selection methods and numbers of examples
on OKVQA dataset.

the VQA dataset suffers from the problem of hav- 479

ing sharp text similarity score distributions, similar 480

to the multichoice classification dataset. For ByCS 481

with GPT-4V, inverse inference results on Emu-2 482

are used to pre-select the candidate examples, and 483

ByCS still outperforms the KATE+ baseline. The 484

performance may be further improved if GPT-4V is 485

also used for inverse inference. This demonstrates 486

that ICL may perform similarly cross models not 487

only on speech and text, but also on images. 488

6 Conclusion 489

This paper proposes ByCS, a novel in-context ex- 490

ample selection method based on Bayes’ theorem, 491

which assumes that contextual information interac- 492

tion is mutual between the test input and in-context 493

examples and selects high-quality examples based 494

on the inverse inference results. Experiments are 495

performed across three modalities: speech, text, 496

and images, using six different tasks and seven 497

datasets. Results demonstrated the robustness and 498

effectiveness of ByCS. It is also validated that the 499

inverse inference results can be approximated using 500

a smaller model from the same model family, which 501

considerably reduces the computational cost. More- 502

over, relying on text similarity to rank in-context 503

examples, ByCS is more suitable for open-ended 504

long-answer datasets which contain sufficient con- 505

textual information. Future work is to extend the 506

inverse inference to sequences with multiple in- 507

context examples to model the interactions among 508

the in-context examples. 509

8



Limitations510

There are three limitations to this work. First,511

ByCS follows the simple assumption that the in-512

fluence of each in-context example is independent513

and treats each in-context example individually,514

which neglects the contextual interactions between515

in-context examples. The approximation may not516

be adapted to the scenario in which the number517

of in-context examples is high. Second, ByCS518

requires sufficient contextual diversity to select op-519

timal examples, which depends on text similarity520

to evaluate inverse inference results. ByCS may521

suffer a performance penalty when applied to a522

short-answer dataset. The third limitation is the523

extra time cost introduced by inverse inference,524

making ByCS less suitable for cost-sensitive sce-525

narios. Future work includes enhancing ByCS in526

more scenarios.527

Ethics Statement528

The work doesn’t give rise to any ethical risks and529

issues. All the models and data used in this paper530

are publicly accessible and used under licenses.531
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A Experimental Details753

A.1 Datasets, baselines and prompt templates754

The dataset details are listed in Table 9. For Spider,755

the evaluation metric is execution accuracy. For756

CORAAL, we use the processing script from the757

FairSpeech project3. For convenience, we only use758

speech less than 15 seconds because Whisper can759

accept input audio up to 30 seconds. For the ASR760

dataset, there is no train/test split, the dataset except761

the test input serves as the in-context example data-762

store. For bm25 implementation, we use the okapi763

variant in rank_bm254 library. The inverse infer-764

ence example is presented in Figure 5 and prompt765

templates are shown in Table 13.766

Text example inputs Text test input Answer

Albert Einstein was Marie Curie was     Polish. 
𝑌𝑋𝐶!"#$%

Text example labels
𝐶&'()&

German.

𝑃(𝐶!"#$!|𝑿, 𝒀(, 𝐶%&'()) Inverse inference

𝑃(𝒀|𝐶%&'(), 𝐶!"#$! , 𝑿) Inference

Text test input Estimated answer

Marie Curie was     Polish. 

𝑌$𝑋

Text example input Example label prediction

Mohandas Gandhi was            male. ❌

Albert Einstein was                  German.
Galileo Galilei was            born in Pisa. ❌

Good example with 
high mutual information interaction

Figure 5: We provide an additional “inverse inference”
illustration of the proposed Bayesian example selection
method for in-context learning in a text format, similar
to Min et al. (2022).

𝑿 !𝒀

Run the first-round inference to produce the estimate of context label. 

Compute the inverse inference probability of candidate example in datastore. 

𝑿 !𝒀 𝐶!"#$% #𝐶&'()&

Calculate the text similarity between the inverse inference result and the true label. 

𝐶&'()&

#𝐶&'()& Text similarity
measurement

Example
score

Sort the examples by the score,
choose the high ones.

①

③

②

!𝑌 = argmax𝑃(𝒀|𝐶#$%&', 𝐶()*+(, 𝑿)

$𝐶!"#$% $𝐶&'()&

𝑠𝑐𝑜𝑟𝑒 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶'+,', =𝐶'+,')

=𝐶()*+( = argmax𝑃(𝐶()*+(|𝑿, >𝒀, 𝐶#$%&')

𝐶!"#$!.𝐶!"#$! 𝑠𝑐𝑜𝑟𝑒

精神爽厉     精神爽利        0.60

讲不切         赶唔切          0.20

就来              就嚟            0.33

⻜翼船         ⻜翼船          1.00

…
Example datastore

赶唔切

⻜翼船

就嚟

精神爽利

…

random selection

Figure 6: An illustration of the calculation of text sim-
ilarity between inverse inference results and their true
labels in Mandarin accent recognition, where the red
inverse inference tokens indicate misrecognition.

3https://github.com/
stanford-policylab/asr-disparities

4https://github.com/dorianbrown/rank_
bm25

A.2 First-round inference of ByCS 767

We experimented with ByCS on different first- 768

round inference settings to examine the influence 769

of first-round inference, and the results are reported 770

in Table 7. The first-round inference produces the 771

hypothesized label of test input. With better first- 772

round inference hypotheses, the approximated in- 773

verse inference probability will be more close to 774

the oracle one. Figure 6 provides an example of 775

text similarity calculation. The first-round accuracy 776

for the ‘default’, ‘random’ and ‘KATE+’ settings 777

is 63.0, 75.8 and 91.0, respectively. The first-round 778

inference with ICL improves the accuracy of the hy- 779

pothesized label, thus boosting the performance of 780

ByCS. In practice, we use ICL with random exam- 781

ple selection as the first-round inference setting for 782

ASR ICL and best ICL baseline as the first-round 783

inference setting for text and VQA ICL. 784

First-round
inference

In-context example number k
k = 1 k = 2 k = 4

default 75.6 83.8 88.4
random k = 4 79.8 87.0 91.6
KATE+ k = 4 81.2 88.0 90.6

(a) Results with GPT-3.5-Turbo

First-round
inference

In-context example number k
k = 1 k = 2 k = 4

default 87.2 91.8 93.0
random k = 4 86.6 92.4 93.0
KATE+ k = 4 88.6 92.4 93.6

(b) Results with GPT-4
Table 7: Results on TREC of ByCS with different first-
round inference settings.

A.3 Pre-selection of ByCS 785

Since the datastore size is usually large, we use a 786

simple ranking algorithm to compress in-context 787

example datastore and then use ByCS inverse infer- 788

ence to select good examples. We usually choose 789

kNN as the ranking algorithm and twice the max- 790

imum number of in-context examples as reduced 791

size after pre-selection. For RASC863, we simply 792

use the speech from the same speaker as in-context 793

examples, so the number of reduced size is approx- 794

imate. We experimented on the TREC dataset to 795

analyze whether reduced size matters, the results 796

are reported in 8. The results imply that reduced 797
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size has nearly negligible impact on the perfor-798

mance of ByCS method. Thus twice the number of799

in-context examples is a balanced choice for exam-800

ple diversity and conducting speed. The details of801

pre-selection are shown in Table 9.802

Reduced
size

In-context example number k
k = 1 k = 2 k = 4

4 81.6 87.6 90.6
8 81.2 88.0 90.6

16 81.0 88.0 90.4

(a) results on GPT-3.5-Turbo

Reduced
size

In-context example number k
k = 1 k = 2 k = 4

4 88.0 92.6 93.2
8 88.6 92.4 93.6

16 88.4 92.8 93.2

(b) results on GPT-4
Table 8: Results on TREC of ByCS with different re-
duced sizes after pre-selection.

B Analysis of time cost803

B.1 Computational complexity804

Although ByCS may be time-consuming, the exist-805

ing improvement methods have reduced the com-806

plexity from O(N) to O(1), where N is the size807

of the example datastore. The original version of808

ByCS will conduct inverse inference on every can-809

didate in the whole dataset, which results in com-810

plexity in O(N). Using a smaller model for fast811

inverse inference decreases the number of compu-812

tations by a constant factor. For instance, Whisper813

small is 6 times faster than Whisper large, and us-814

ing Whisper small for inverse inference reduces the815

inverse inference cost by ∼6 times. Furthermore,816

by using a ranking-based pre-selection, we can re-817

duce the size of the example datastore to a fixed818

number, reducing the computational complexity819

of inverse inference further down to O(1). In our820

experiments, we found empirically that a number821

around 10 is a good choice in balancing the exam-822

ple diversity and conduction speed, as shown in823

Appendix A.3.824

B.2 Attempt to further speed up825

Since inverse inference spends most of its time826

in ByCS, we try to conduct inverse inference on827

examples in the datastore before the test input ar- 828

rives. For each example in the datastore, suitable 829

in-context examples are selected for it using ByCS. 830

In practice, the in-context examples of the test input 831

are those of the nearest neighbour. By this means, 832

the time cost of ByCS is comparable with kNN- 833

based methods. The results of this new sped-up 834

version of ByCS, which is denoted as ByCSfast 835

are shown in Table 14. As expected, ByCSfast 836

always performs worse than ByCS. Furthermore, 837

ByCSfast is more dependent on the contextual di- 838

versity. On the open-ended long-answer speech 839

datasets, ByCSfast can outperform the best base- 840

line. While on short-answer text datasets, the per- 841

formance of ByCSfast suffers a significant deteri- 842

oration. It emphasizes the importance of inverse 843

inference directly on test input, not on a similar 844

substitution. 845
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Modality Task category Dataset Train size Test size Pre-selection
Reduced

size

Text

Topic classification TREC 5452 500 kNN 8
Sentiment analysis SST2 67349 872 kNN 4

Text to SQL Spider 7000 1034 kNN 3
ASR LM rescoring HyPoradise CHiME-4 9728 1320 kNN 10

Audio Automatic speech recognition
RASC863 Guangzhou 1889 1990(1.41h) same speaker ∼ 10
RASC863 Chongqing 2993 2994(3.26h) same speaker ∼ 15

CORAAL <15s 2761 2762(6.77h) kNN 10
Image Vision question answering OKVQA 9009 5046 kNN 8

Table 9: Datasets used in this work

Dataset Template example

TREC
Question: What is the temperature at the centre of the earth?
Available Type: description, entity, expression, human, number, location.
Type: number.

SST2
Review: “The Time Machine” is a movie that has no interest in itself.
Available sentiment: positive, negative.
Sentiment: negative.

Spider

Given the database schema, you need to translate the question into the SQL query.
Database schema:
Table name: Movie
Creation SQL: CREATE TABLE Movie(
mID int primary key,
title text,
year int,
director text
)
Table name: Reviewer
Creation SQL: CREATE TABLE Reviewer(
rID int primary key,
name text
)
Table name: Rating
Creation SQL: CREATE TABLE Rating(
rID int,
mID int,
stars int,
ratingDate date,
FOREIGN KEY (mID) references Movie(mID),
FOREIGN KEY (rID) references Reviewer(rID)
)
Question: Find the names of all reviewers who have contributed three or more ratings.
SQL query: SELECT T2.name FROM Rating AS T1 JOIN Reviewer AS T2 ON T1.rID = T2.rID GROUP BY T1.rID HAVING COUNT(*) >= 3.

HyPoradise
CHiME-4

You need to do language model rescoring in ASR. Given the 5-best hypotheses, you need to report the true transcription from the 5-best hypotheses.
The 5-best hypothesis is:
interest rates rose on torture and treasury bills sold by the government yesterday at its regular weekly auction.
interest rates rose on short-term treasury bills sold by the government yesterday at its regular weekly auction.
interest rates rose at a torture and treasury bill sold by the government yesterday at its regular weekly auction.
interest rates rose on a torture and treasury bill sold by the government yesterday at its regular weekly auction.
interest rates rose on torturing treasury bills sold by the government yesterday at its regular weekly auction.
The true transcription from the 5-best hypotheses is:
interest rates rose on short-term treasury bills sold by the government yesterday at its regular weekly auction.

OKVQA

Answer in one word or phrase.
What softwood is used to close the top of the container in his hand?
cork.

Table 10: Prompt template examples used in this work

14



In-context
example
number k

Inverse
inference

model

Text similarity measurement & inverse decoding option
Jaccard coefficient BERT wordvecs

noprompt prompt LID noprompt prompt LID

k = 1
ByCSlargev2 62.4 62.9 64.1 62.4 63.5 64.5
ByCSsmall 64.2 64.0 65.4 65.0 65.4 66.3

k = 2
ByCSlargev2 53.4 53.3 53.7 53.6 54.1 54.1
ByCSsmall 53.3 53.7 54.0 54.1 54.9 54.8

k = 3
ByCSlargev2 50.6 51.0 50.9 50.2 51.6 50.6
ByCSsmall 50.5 50.5 51.1 51.3 50.9 51.3

k = 4
ByCSlargev2 48.6 48.7 48.7 49.1 48.9 49.1
ByCSsmall 48.7 48.7 48.6 49.6 49.1 49.9

(a) Results with Whisper large-v2

In-context
example
number k

Inverse
inference

model

Text similarity measurement & inverse decoding option
Jaccard coefficient BERT wordvecs

noprompt prompt LID noprompt prompt LID

k = 1
ByCSlargev3 63.5 64.1 65.6 64.5 65.3 65.8
ByCSsmall 64.4 64.7 64.8 65.5 65.0 65.6

k = 2
ByCSlargev3 56.3 56.3 57.0 57.7 57.0 57.8
ByCSsmall 56.5 57.0 57.0 57.3 57.2 57.5

k = 3
ByCSlargev3 53.5 54.1 53.7 55.2 55.6 54.9
ByCSsmall 54.1 54.6 54.4 55.5 55.3 55.4

k = 4
ByCSlargev3 51.8 52.3 52.1 53.1 53.4 53.3
ByCSsmall 51.7 52.2 51.9 53.6 53.4 53.5

(b) Results with Whisper large-v3

Table 11: Full results on RASC863 Chongqing dialectal word dataset of ByCS with different inverse decoding
options, text similarity measurements and inverse inference models. The subscript denotes the inverse inference
model.
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In-context
example
number k

Inverse
inference

model

Text similarity measurement & inverse decoding option
Jaccard coefficient BERT wordvecs

noprompt prompt LID noprompt prompt LID

k = 1
ByCSlargev2 49.5 50.7 52.3 51.5 56.8 57.7
ByCSsmall 52.9 55.1 58.7 56.8 57.1 58.8

k = 2
ByCSlargev2 31.9 33.6 34.3 32.9 34.3 35.0
ByCSsmall 34.5 34.1 35.6 35.1 35.9 37.0

k = 3
ByCSlargev2 27.1 28.4 27.7 27.1 27.4 27.5
ByCSsmall 28.3 27.8 27.6 27.9 28.6 28.3

k = 4
ByCSlargev2 26.6 25.5 24.8 25.4 26.5 25.5
ByCSsmall 25.9 25.7 25.5 25.3 26.3 26.2

(a) Results with Whisper large-v2

In-context
example
number k

Inverse
inference

model

Text similarity measurement & inverse decoding option
Jaccard coefficient BERT wordvecs

noprompt prompt LID noprompt prompt LID

k = 1
ByCSlargev3 50.7 51.8 55.4 56.6 57.1 59.1
ByCSsmall 55.3 55.4 61.7 61.8 58.7 60.7

k = 2
ByCSlargev3 36.7 38.1 38.9 38.2 37.8 38.9
ByCSsmall 37.3 37.3 40.0 39.0 38.0 39.6

k = 3
ByCSlargev3 33.0 33.4 34.0 33.6 33.4 33.3
ByCSsmall 33.3 33.3 34.6 34.8 33.3 34.3

k = 4
ByCSlargev3 31.5 31.3 31.4 31.7 31.7 31.4
ByCSsmall 31.0 31.5 31.9 31.5 31.0 31.0

(b) Results with Whisper large-v3

Table 12: Full results on RASC863 Guangzhou dialectal word dataset of ByCS with different inverse decoding
options, text similarity measurements and inverse inference models. The subscript denotes the inverse inference
model.

Test input KATE+ ByCS

sometime they do not act like they hear nothing
but know nothing about tarboro
when you say you from tarboro

they will talk about where is tarboro at
(CORAAL)

Example:
in the era and th the way

in there them floors along that time
they cut timber certain time of the year

Result:
sometimes it do not work out there

but no nothing about tarver
when you say you from tarver

they will talk about where tarver is

Example:
so they put her and him together

and i was praying to the lord
that he did not try to jump out of there

cause i was so scared me and my husband
Result:

sometimes they do not want to let their hear nothing
but know nothing about tarver
when you say you from tarver

they will talk about where tarver is

What person ’s head is on a dime?
human.
(TREC)

Example:
What is money made of?

entity.
Result:
entity.

Example:
Who is the head of the World Bank?

human.
Result:
human.

Table 13: In-context examples selected by kNN and ByCS and corresponding results.
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Corpus & In-context example number k
Setting RASC863 Chongqing RASC863 Guangzhou CORAAL <15s

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1

best baseline 67.1 54.7 51.3 49.7 61.3 36.1 26.9 24.8 12.6
ByCSfast 63.1 52.5 50.2 48.3 55.8 35.6 29.2 27.1 12.5

ByCS 62.4 53.4 50.6 48.6 49.5 31.9 27.1 26.6 12.4

(a) Results with Whisper-large-v2

Corpus & In-context example number k
Setting RASC863 Chongqing RASC863 Guangzhou CORAAL <15s

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1

best baseline 68.1 58.2 54.8 54.1 67.1 41.3 34.3 31.6 12.1
ByCSfast 66.7 57.5 54.5 52.6 60.5 40.3 34.1 32.3 12.2

ByCS 63.5 56.3 53.5 51.8 50.7 36.7 33.0 31.5 12.0

(b) Results with Whisper-large-v3

Corpus & In-context example number k
Setting TREC(%Acc. ↑) SST2(%Acc. ↑)

k = 1 k = 2 k = 4 k = 1 k = 2

best baseline 78.8 89.4 91.0 95.27 95.40
ByCSfast 77.0 83.8 86.4 94.15 94.61

ByCS 81.2 88.0 90.6 95.16 95.04

(c) Results using GPT-3.5-Turbo

Corpus & In-context example number k
Setting TREC(%Acc. ↑) SST2(%Acc. ↑)

k = 1 k = 2 k = 4 k = 1 k = 2

best baseline 88.2 91.6 93.6 96.43 96.11
ByCSfast 85.4 89.2 92.6 95.07 95.18

ByCS 88.6 92.4 93.6 96.55 96.31

(d) Results using GPT-4

Table 14: Results of ByCSfast on speech and text tasks. Results of best baseline and ByCS are also shown for
comparison.
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