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ABSTRACT

In this study, we consider the setup of source-free domain adaptation and address
the challenge of calibrating the confidence of a model adapted to the target domain
using only unlabeled data. The primary challenge in addressing uncertainty cali-
bration is the absence of labeled data which prevents computing the accuracy of
the adapted network on the target domain. We address this by leveraging pseudo-
labels generated from the source model’s predictions to estimate the true, unob-
served accuracy. We demonstrate that, although the pseudo-labels are noisy, the
network accuracy calculated using these pseudo-labels is similar to the accuracy
obtained with the correct labels. We validate the effectiveness of our calibration
approach by applying it to standard domain adaptation datasets and show that it
achieves results comparable to, or even better than, previous calibration methods
that unlike us, relied on the availability of labeled source data.

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated impressive accuracy in tasks like classification
and detection when enough data and supervision are available. However, in real-world applications,
it is essential not only for models to be accurate but also to provide users with a measure of confi-
dence in their predictions. DNNs produce confidence scores that are correlated with the likelihood
of correct classification, though these scores do not necessarily align with actual probabilities (Guo
et al., 2017). Despite their high generalization accuracy, neural networks often exhibit overcon-
fidence in their predictions, partly due to potential overfitting on the negative log-likelihood loss,
which does not impact classification error (Guo et al., 2017; Lakshminarayanan et al., 2017; Hein
et al., 2019). A classifier is considered calibrated for a dataset sampled from a specific distribution
if the predicted probability of correctness matches the true probability. To address overconfidence,
various methods have been developed. Network calibration can be integrated with training (see e.g.
(Mukhoti et al., 2020; Müller et al., 2019; Zhang et al., 2022)), or it can be performed post-hoc using
scaling methods like Platt scaling (Platt et al., 1999), isotonic regression (Zadrozny & Elkan, 2002),
and temperature scaling (Guo et al., 2017). These techniques learn a calibration map that adjusts the
model’s confidence scores for better alignment with true probabilities.

The deployment of deep learning systems in real-world scenarios is often challenged by a drop in
performance when a network trained on data from one domain is applied to data from a different
domain, where the feature distribution varies between domains. This issue is known as the domain
shift problem. In an Unsupervised Domain Adaptation (UDA) setup, it is assumed that data from the
target domain is available but lacks annotations. Numerous UDA methods have been developed to
address this problem, including adversarial training techniques that aim to align the distributions of
the source and target domains (Ganin et al., 2016)), as well as self-training algorithms that generate
pseudo-labels for the target domain data (Zou et al., 2019). In a UDA setup, we assume that during
the process of adapting the source model to the target domain, we have access to labeled source do-
main data in addition to the unlabeled data from the target domain. Source-Free Domain Adaptation
(SFDA) introduces an additional challenge by restricting access to the source domain data during
the adaptation process. As a result, SFDA relies heavily on unsupervised learning and self-training
techniques. Most existing methods in SFDA primarily focus on self-training using target pseudo-
labels and entropy minimization techniques. Liang et al. (2020) achieved effective error reduction
by assigning pseudo-labels to the target data based on class clusters formed in the penultimate layer
of the model, where the pseudo-labels were determined by their proximity to the centroids of these
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clusters. However, due to domain shifts, these generated pseudo-labels are often noisy. To address
this, several approaches have concentrated on refining the target pseudo-labels during training (e.g.
(Chen et al., 2022; Karim et al., 2023; Yi et al., 2023; Zhang et al., 2023)). A common strategy
involves updating the pseudo-labels at each epoch to improve their alignment with the target distri-
bution (Liang et al., 2020). Zhang et al. (2023), tackled this issue by pseudo-labeling with a robust
pre-trained network and filtering out samples with low confidence.

Here, we address the problem of confidence calibration of a model obtained by an SFDA process
based only on unlabeled data from the target domain and with no access to the source domain
labeled data. Direct calibration using data from the target domain is challenging due to the absence
of ground-truth labels. Current UDA calibration methods heavily rely on the availability of labeled
data from the source domain. Salvador et al. (2021) and Tomani et al. (2021) proposed modifying
the calibration set to represent a generic distribution shift. Park et al. (2020), Wang et al. (2020) and
Pampari & Ermon (2020) applied Importance Weighting (IW) by assigning higher weights to source
examples that resemble those in the target domain. However, these UDA calibration models are not
applicable when access to the source domain data is restricted. In this study, we propose the Source-
Free Confidence Calibration (SFCC) algorithm that uses pseudo-labels which were generated by
the source model, to estimate the average accuracy of the adapted model on the target domain data.
We demonstrate that, although the pseudo-labels are noisy, the network accuracy calculated using
these pseudo-labels is similar to the accuracy obtained with the correct labels. We implemented
our approach across several standard domain shift datasets: VisDA (Peng et al., 2017), DomainNet
(Peng et al., 2019) and Office-Home (Venkateswara et al., 2017) and several SFDA methods: AaD
(Yang et al., 2022), SHOT (Liang et al., 2020), and DCPL (Diamant et al., 2024). We are not
aware of previous methods for source-free domain adaptation calibration. We show that we achieve
results comparable to, or even better than, previous calibration methods that rely on the availability
of labeled source data.

2 BACKGROUND

Consider a network designed to classify an input x into one of k categories. Although the output
of the softmax layer has the mathematical structure of a probability distribution, it does not always
reflect the true posterior distribution of the classes. Networks often exhibit overconfidence in their
predictions (Guo et al., 2017; Lakshminarayanan et al., 2017; Hein et al., 2019). The network
prediction is defined as ŷ = argmaxi p(y = i|x) and its confidence is p̂ = maxi p(y = i|x). A
network is calibrated if p(ŷ = y|p̂ = p) = p, for all p ∈ [0, 1]. The Expected Calibration Error
(ECE) (Naeini et al., 2015) is a practical way to measure model calibration. It involves partitioning
confidence values of a given set into M equal-size bins, with Bm is the index-set of samples falling
into the m-th bin. The ECE measure calculates the weighted average of the accuracy-confidence
difference across all bins:

ECE =

M∑
m=1

|Bm|
n

|Am − Cm| (1)

such that Am and Cm are the average accuracy and confidence at the m-th bin and n is the number of
samples used to compute the ECE measure. Adaptive ECE (adaECE) is a variant of ECE where the
bin sizes are calculated to ensure evenly distribute samples across the bins (Nguyen & O’Connor,
2015):

adaECE =
1

M

M∑
m=1

|Am − Cm| (2)

such that each bin contains 1/M of the data points with similar confidence values.

Temperature Scaling (TS) is a widely used and highly effective method for calibrating the output
distribution of a classification network (Guo et al., 2017). This technique involves using a single
parameter, T , to rescale the logit scores before computing the class distribution.

pT (y = i|x) = exp(zi/T )∑k
j=1 exp(zj/T )

, i = 1, . . . , k (3)

s.t. z1, ..., zk are the logit values obtained by applying the network to input vector x. The optimal
T can be found by minimizing either the ECE or the adaECE measures for the held-out validation
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dataset. The adaECE measure was found to be more effective for calibration than ECE because the
sample is evenly split across the bins.

3 SOURCE FREE CONFIDENCE CALIBRATION

We begin by defining the source-free confidence calibration problem setup. We consider an SFDA
scenario with a K-way classification task. Let gs be a model that was trained on labeled data from
the source domain. We are given unlabeled target domain {xi}ni=1. Part of it is used to adapt the
source model to the target domain in an unsupervised manner. Another part of it is used to calibrate
the adapted target model, both of which are done without access to the labeled source domain data.
We aim to calibrate the target network by minimizing the ECE or adaECE score. We must calculate
the bin-wise accuracy and confidence values to compute the adaECE and determine the optimal
temperature T . In the case of source-free confidence calibration, we can still compute the network
confidence for each sample. However, since we do not have labeled data from the target domain, the
challenge is to estimate the bin-wise average accuracy by solely using the unlabeled target domain
data.

In the context of SFDA, we can use pseudo-labels generated based on the source model predictions
to adapt the source model to the target domain. These pseudo-labels tend to be noisy for two reasons:
(1) they are derived from predictions made by deep learning models and (2) the model generating
these pseudo-labels is applied to a different domain from the one it was trained on. Many SFDA
methods are based on explicitly handling the inaccuracy of the pseudo-labels by transforming the
SFDA problem into the problem of learning with noisy labels (Chen et al., 2022; Karim et al.,
2023; Kumar et al., 2023; Litrico et al., 2023; Yi et al., 2023; Diamant et al., 2024). These SFDA
methods consider the pseudo-labels as noisy labels and apply standard methods for learning with
noisy labels, e.g. (Sukhbaatar et al., 2015; Xiao et al., 2015; Goldberger & Ben-Reuven, 2017;
Zhang et al., 2021; Li et al., 2021; Lin et al., 2023). Inspired by this successful line of research
for SFDA, a natural strategy for source-free confidence calibration is considering pseudo-labels as
noisy labels and transforming the source-free calibration problem into the problem of confidence
calibration with noisy labels, e.g. Noisy Temperature Scaling (NTS) (Penso et al., 2024).

All the noisy-labels algorithms mentioned above are based on an unrealistic assumption that condi-
tioned on the true label, the noisy label and the input image are independent, i.e. p(ỹ|y, x) = p(ỹ|y)
such that x is the input sample and y and ỹ are the correct label and its noisy version. Noisy labels
in real-world scenarios often arise from ambiguity in image content. Some images may be difficult
to categorize due to subjective interpretation or overlapping classes, leading to inconsistent labeling.
For example, certain images can belong to multiple categories, (e.g. an image featuring both a cat
and a dog), but the labeling system may only allow a single label. Thus, the assumption that given
the true label, label noise is independent of the image, is unrealistic. In our setup of using noisy
pseudo-labels (computed with the source model) instead of true labels, the label noise is strongly
correlated with the image content. Specifically, we expect a correlation between the correctness of
the pseudo-label assigned to an image and the confidence of the target model in this image. The
dependency between the image content and its pseudo-label causes noisy-label calibration meth-
ods such as NTS to be ineffective for our problem of confidence calibration based on the noisy
pseudo-labels. Note that the SFDA methods mentioned above also assume conditional indepen-
dence between the features and the noisy labels. However, training methods tend to be less sensitive
to the label noise modeling assumption than calibration due to the highly non-linear structure of the
network compared to the linearity of the temperature scaling process (Penso et al., 2024).

In this study, we propose directly using the pseudo-labels to replace the true labels when minimiz-
ing the ECE or adaECE score to find the right scaling temperature for the model adapted to the
target domain. To generate more accurate pseudo-labels, we can use unsupervised techniques and
self-training (Zhang et al., 2023; Liang et al., 2020)). This involves utilizing the source model’s
predictions on target data along with a pre-trained strong feature extractor fp (Swin-B) (Liu et al.,
2021), to create centroids for each class. Cosine distance is then used to assign each example to
its nearest centroid. We denote the obtained labels Enhanced Pseudo Labels (EPL). The complete
process for EPL generation is detailed in Algorithm 1.

We expect the average accuracy based on the pseudo-labels to increase monotonically as a function
of the confidence bin. However, enhanced pseudo-labels are still very noisy (see Fig. 4a). The
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Algorithm 1 Generating Enhanced Pseudo-Labels (EPL)
Input: Source model gs, Target dataset {xi}ni=1, pre-trained feature extractor fp.
Output: enhanced pseudo-labels on target data {ỹi}ni=1

1: Calculate class centroids as a weighted average of the features fp(x):

Ck =

∑
i p(yi = k|xi)fp(xi)∑

i p(yi = k|xi)
, k = 1, ...,K

where p(yi = k|xi) is the class probability based on the source model gs.
2: For each target instance xi, generate a pseudo-label ỹi based on its nearest centroid using the

cosine distance:
ỹi = argmin

k
cos(Ck, fp(xi))

crux of our approach is the observation that achieving good calibration results does not require the
pseudo-labels to be noise-free. We only need the network binwize average accuracy evaluated with
the pseudo-labels, to be similar to the one evaluated with the true labels.

Next, we show that pseudo-labels can be used to estimate network accuracy. The average accuracy
at the i-th confidence bin is defined as:

Ai =
∑
t∈Bi

1{ŷt=yt} =
∑

t∈Bi∧yt=ỹt

1{ŷt=yt} +
∑

t∈Bi∧yt ̸=ỹt

1{ŷt=yt}
def
= Ai,1 +Ai,2 (4)

s.t. yt is the correct label, ỹt is the pseudo-label and ŷt is the predicted label. We denoted the number
of model predictions that agree with both pseudo-labels and true labels by Ai,1 and the number of
model predictions that agree with the true labels but not with the pseudo-labels by Ai,2. To simplify
notation we do not divide the sums by |Bi|. The corresponding approximate accuracy, based on the
pseudo-labels, is:

Ãi =
∑
t∈Bi

1{ŷt=ỹt} =
∑

t∈Bi∧yt=ỹt

1{ŷt=ỹt} +
∑

t∈Bi∧yt ̸=ỹt

1{ŷt=ỹt}
def
= Ãi,1 + Ãi,2. (5)

To achieve good calibration results using pseudo-labels we do not need them to be accurate. We
only need Ãi (the network accuracy evaluated with the pseudo-labels), to be similar to Ai (the true
accuracy). Since by definition Ai,1 = Ãi,1, to make the approximate accuracy estimation effective,
we only need that Ai,2 ≈ Ãi,2, i.e.

|{t ∈ Bi|yt ̸= ỹt, ŷt = yt}| ≈ |{t ∈ Bi|yt ̸= ỹt, ŷt = ỹt}|. (6)

In higher confidence bins, since both the network prediction and the pseudo-labels are more accurate,
both Ai,2 and Ãi,2 are small which makes their difference |Ai,2 − Ãi,2| also small. In the lower
bins both the network prediction and the pseudo-labels are not accurate, so that Ai,2 and Ãi,2 are
not negligible. However, as we empirically validate in Section 5, the difference between Ai,2 and
Ãi,2 is still small. Intuitively, we expect to observe incorrect pseudo-labels in cases where the
learned features do not represent well the image class in the target domain, which results that both
the true label y and pseudo-label ỹ seem plausible. In such cases, it can be also difficult for the
adapted network to decide between y and ỹ and as a result, the adapted network tends to classify
these examples as either y or ỹ in nearly equal proportions which implies that the binwize accuracy
estimations based on the pseudo-label and the correct label are similar. Fig. 4b empirically validates
this observation across many source-target domain pairs.

This empirical fact that Ai,2 ≈ Ãi,2 can also be viewed by the process of computing the enhanced
pseudo-labels. The EPL ỹ is selected as the class of the nearest centroid to the embedding fp(x). Let
dỹ(x), and dy(x) represent the distances of fp(x) to the closest centroid and the true label centroid
respectively. When ỹ ̸= y we expect that dy(x) ≈ dỹ(x). Fig. 3 illustrates that this is indeed the
case across many source-target domain pairs. This implies that both y and ỹ are reasonable labels
for x and they can be selected as the pseudo-label with nearly identical probabilities. As a result,
the adapted model tends to classify x as either y or ỹ in nearly equal proportions. This finally yields
that the binwize accuracy estimation based on the pseudo-labels Ãi is similar to Ai.
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Algorithm 2 Source Free Confidence Calibration (SFCC)
Input: Source model gs, Target model gt and Target held out dataset {xi}ni=1, pre-trained

feature extractor fp
Output: Optimal temperature T that can be used to calibrate the model.

1: Apply Algorithm 1 to get enhanced pseudo-labels ỹi, i = 1, .., n.
2: Compute the target network predictions and their confidence values (ŷi, p̂i), i = 1, .., n.
3: Compute the average confidence at each confidence bin and estimate the average accuracy Ãi

at each bin based on the pseudo-labels.
4: Find a temperature T̂ that minimizes the adaECE score: T̂ = argminT

∑M
i=1 |Ãi − Ci(T )|

Based on the observations described above, we propose to apply Temperature Scaling (TS) calibra-
tion of the target model directly to the target domain data. The binwize average confidence can be
computed on the unlabeled target data. The binwize average accuracy can be estimated by using
the enhanced pseudo-labels as a replacement of the unknown true labels. We dub this calibration
algorithm Source Free Confidence Calibration (SFCC). The SFCC procedure is summarized in Al-
gorithm 2.

4 EXPERIMENTS

In this section, we evaluate the capabilities of our SFCC technique to calibrate a network on a target
domain after applying a SFDA procedure.

Compared methods. We compared our SFCC method against four baselines: (1) Uncalibrated:
The adapted classifier used without any post-hoc calibration; (2) Source-TS: using the temperature
learned on the source model with the source data to calibrate the target model, representing a sce-
nario where this temperature was available in the adaptation process; (3) NTS: Applying the NTS
method (Penso et al., 2024) to the pseudo-labels we generated (only applicable for DCPL method,
as it requires estimation of the noise transition matrix); (4) SFCC*: A variant of our SFCC method
that uses less accurate pseudo-labels (without applying Algorithm 1). It is presented as an ablation
study to show the importance of applying Algorithm 1.

Oracle methods. Additionally, we implemented the following oracle results: (5) CPCS, (Park
et al., 2020) and (6) TransCal, (Wang et al., 2020), both of which are importance-weighted UDA
calibration methods. (7) UTDC*, UTDC (Penso & Goldberger (2024)) is a UDA calibration method
that uses both the adapted model’s source domain accuracy for each bin and an estimation of the
target domain accuracy to calibrate the model. For comparison, we used UTDC* where the exact
target domain accuracy of the adapted model was used instead of an estimation; (8) Target-TS,
Temperature Scaling calibration (Guo et al., 2017) applied to the adapted network using the labeled
validation set from the target domain.

Datasets. We report experiments on the following standard domain adaptation benchmarks: Office-
Home (Venkateswara et al., 2017), VisDA (Peng et al., 2017), and DomainNet (Peng et al., 2019).
Office-home is a dataset that contains 4 domains where each domain consists of 65 categories. The
four domains are: Art (A) – artistic images in the form of sketches, paintings, ornamentation, etc.;
Clipart (C) – a collection of clipart images; Product (P) – images of objects without a background
and Real-World (R) – images of objects captured with a regular camera.VisDA is a simulation-to-real
dataset for domain adaptation with over 280,000 images across 12 categories. DomainNet is a large
UDA dataset featuring common objects. The full dataset has 345 classes, but due to labeling noise
in the complete version, we used two subsets: one with 126 classes (Zhang et al., 2023; Diamant
et al., 2024) and the other with 40 classes (Tan et al., 2020; Diamant et al., 2022). We refer to these
subsets as DomainNet126 and DomainNet40. Both subsets included four distinct domains: Clipart
(C), Product (P), Real (R) and Sketch (S) images.

Implementation Details. In our experiments, we employed three SFDA methods: DCPL (Diamant
et al., 2024), SHOT (Jian Liang, 2020), and AaD (Yang et al., 2022) training all models to conver-
gence using their official implementations. The CPCS and TransCal baselines were implemented
with the code provided by the respective authors. To evaluate the UTDC* and NTS methods, we
also used the authors’ provided code. Each dataset was tested using three different random seeds,
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Table 1: Adaptive ECE for top-1 predictions (in %) on Office-Home, using 15 bins (with the lowest
in bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA Type Method AC AP AR CA CP CR PA PC PR RA RC RP Avg

DCPL

Oracle

CPCS 19.0 9.5 8.1 22.8 7.7 4.6 23.8 21.9 11.8 11.5 18.2 4.8 13.6
TransCal 17.1 7.4 5.6 13.2 6.9 4.5 10.8 17.4 7.3 9.8 16.7 3.8 10.0
UTDC* 9.1 6.4 3.7 6.6 6.8 4.4 10.3 8.9 6.8 11.1 8.8 3.6 7.2
Target-TS 7.4 6.0 3.4 6.1 5.3 3.5 7.5 8.6 4.7 6.0 7.9 3.2 5.8
Uncalibrated 23.5 10.3 6.1 10.6 8.8 7.5 10.8 26.7 7.3 9.8 23.0 6.4 12.6
Source-TS 28.6 13.1 10.0 16.6 11.4 11.6 16.6 32.0 11.3 15.6 27.1 8.9 16.9
NTS 21.5 12.6 10.1 17.3 12.0 9.8 19.7 23.7 10.3 17.9 19.8 8.1 15.2
SFCC* 15.2 12.7 7.2 15.3 18.5 13.8 16.8 13.9 7.1 6.7 13.9 8.4 12.5
SFCC 8.4 7.1 3.6 6.4 6.1 4.4 7.7 11.5 5.2 7.0 10.7 3.8 6.8

SHOT

Oracle

CPCS 29.7 15.3 13.2 18.0 15.8 10.3 26.8 33.8 12.7 17.2 18.6 12.3 18.6
TransCal 28.4 11.3 8.1 18.2 9.8 8.5 11.6 29.8 6.8 9.2 18.9 8.4 14.1
UTDC* 6.5 7.3 4.5 7.8 6.7 5.0 8.6 8.6 7.1 11.9 7.4 5.1 7.2
Target-TS 5.8 6.9 3.9 6.6 5.9 4.3 7.7 7.4 4.2 6.7 6.9 3.9 5.9
Uncalibrated 28.6 13.6 8.1 12.4 13.3 10.9 11.6 30.6 6.8 9.2 28.1 8.4 15.1
Source-TS 36.2 17.9 13.5 19.7 17.1 16.0 18.6 38.7 12.6 16.4 33.6 12.0 21.0
SFCC* 6.5 7.7 4.1 9.5 9.4 6.2 11.5 8.3 4.6 7.2 7.4 4.4 7.2
SFCC 7.4 8.4 5.3 7.9 6.7 4.9 8.8 11.3 4.8 9.1 10.3 4.5 7.4

AaD

Oracle

CPCS 29.2 11.3 11.5 25.9 14.4 6.5 25.1 24.7 12.0 15.4 22.0 7.1 17.1
TransCal 26.0 9.2 11.5 18.8 9.5 6.5 15.3 16.6 12.1 13.8 14.8 6.6 13.4
UTDC* 9.7 8.6 5.3 6.5 8.1 6.0 10.2 10.8 5.2 9.0 10.3 6.6 8.0
Target-TS 8.8 7.8 5.1 5.9 7.2 4.9 9.3 10.3 4.6 7.1 10.0 6.1 7.3
Uncalibrated 33.4 15.9 13.1 18.6 17.4 14.3 20.9 33.7 12.1 14.9 32.0 10.8 19.8
Source-TS 38.3 18.9 16.7 24.2 20.1 18.5 26.8 39.1 16.4 21.4 36.1 13.4 24.2
SFCC* 10.7 9.7 5.6 9.9 11.7 8.7 12.2 14.8 5.1 8.3 11.7 7.6 9.7
SFCC 10.2 8.9 5.4 6.5 8.7 5.7 11.1 11.1 5.3 8.2 11.9 6.4 8.3

Table 2: Adaptive ECE for top-1 predictions (in %) on VisDA, using 15 bins (with the lowest in
bold) across various SFDA methods with different calibration methods.

Type Method DCPL SHOT AaD

Oracle

CPCS 12.1 18.5 11.5
TransCal 10.6 14.2 9.5
UTDC* 5.0 3.4 3.1
Target-TS 4.6 3.3 2.9
Uncalibrated 13.7 15.5 12.2
Source-TS 16.3 19.5 14.0
NTS 9.8 N/A N/A
SFCC* 31.0 25.6 30.1
SFCC 5.7 4.2 4.5

and we report the average results. Due to the probabilistic nature of TransCal and CPCS, we con-
ducted 10 runs per seed and averaged the outcomes. For the calibration assessment, we followed
the evaluation protocol described in the TransCal Paper (Wang et al., 2020), which involves splitting
each target domain into 80% for training and 20% for validation. Adaptation was performed on
the training set, and calibration was conducted on the validation set using adaptive ECE as the loss
function. We report adaptive ECE results for the validation set. Additional ECE results, along with
adaptive ECE results for the Office-31 dataset (Saenko et al., 2010), are included in the Appendix.
For reproducibility, we have made our code available 1.

Calibration Results. Tables 1, 2, 3, and 4 present the calibration results for Office-Home, VisDA,
DomainNet40, and DomainNet126, respectively. The findings show that SFCC outperformed the
baseline methods in nearly all tasks. Additionally, compared to Oracle methods, SFCC consis-
tently aligned with UTDC* and Target-TS. SFCC achieved good results for both SFDA methods
that are based on pseudo-labels (DCPL and SHOT) and those which treat the SFDA problem as
an unsupervised clustering problem (AaD). Furthermore, SFCC surpassed CPCS and TransCal in
nearly all tasks, even though both methods have access to source domain data. Target domain cali-
bration methods using labeled source data can generally be divided into two main approaches: (1)
importance-weighting methods and (2) binwise average accuracy estimation methods. CPCS and
TransCal follow the first approach, while UTDC follows the second. Importance-Weighting meth-

1https:///anonymous.4open.science/r/SFCC-40E1

6

https:///anonymous.4open.science/r/SFCC-40E1


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Adaptive ECE for top-1 predictions (in %) on DomainNet40, using 15 bins (with the lowest
in bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA Type Method CP CR CS PC PR PS RC RP RS SC SP SR Avg

DCPL

Oracle

CPCS 13.7 2.0 14.0 15.2 5.8 9.0 10.3 4.9 15.1 8.7 10.1 14.3 10.3
TransCal 5.4 9.6 7.4 5.5 11.7 7.4 4.3 4.8 10.4 7.0 8.0 14.2 8.0
UTDC* 2.7 12.5 4.3 4.5 4.2 3.6 3.6 3.9 4.7 5.1 2.9 5.3 4.8
Target-TS 2.2 0.9 3.8 3.7 1.5 3.2 3.3 2.2 3.6 4.8 2.7 1.8 2.8
Uncalibrated 5.5 2.4 8.5 5.3 3.4 9.7 3.9 6.1 12.4 5.7 7.0 4.4 6.2
Source-TS 13.9 5.6 16.2 12.1 6.0 16.9 10.9 11.7 19.1 11.7 13.2 7.3 12.1
NTS 12.4 5.6 14.8 16.9 6.0 15.6 13.2 12.1 16.5 16.9 13.9 7.0 12.6
SFCC* 18.9 13.1 12.8 11.1 5.6 6.4 7.0 2.3 8.3 11.5 10.1 10.5 9.8
SFCC 2.6 1.0 4.8 4.6 2.0 3.5 3.7 2.3 3.8 5.3 3.2 2.6 3.3

SHOT

Oracle

CPCS 13.0 6.8 13.5 20.4 3.7 5.6 6.3 4.0 9.0 13.0 15.9 14.9 10.5
TransCal 6.4 12.4 3.9 7.6 5.4 7.0 5.4 2.1 4.3 4.3 3.7 17.2 6.6
UTDC* 4.2 7.3 6.0 4.6 3.6 3.1 8.8 7.7 9.0 4.6 2.6 4.2 5.5
Target-TS 2.9 1.5 3.0 4.2 2.3 2.6 3.8 1.9 2.9 4.1 2.6 1.9 2.8
Uncalibrated 3.1 1.7 3.9 4.5 3.2 3.7 5.3 2.1 4.3 4.2 3.6 2.7 3.5
Source-TS 13.0 6.2 14.0 11.1 7.2 13.2 7.4 8.9 14.2 10.0 11.6 7.4 10.4
SFCC* 14.8 11.5 9.3 6.3 3.0 4.3 4.7 3.8 6.2 8.4 8.3 8.7 7.4
SFCC 2.9 1.6 4.0 4.3 2.7 4.3 4.3 2.0 4.7 4.3 3.2 2.6 3.4

AaD

Oracle

CPCS 13.7 1.8 15.6 13.1 4.1 3.4 7.1 7.4 9.2 14.3 13.5 22.9 10.5
TransCal 10.5 10.7 4.5 14.4 4.2 6.3 4.3 3.8 6.8 6.2 10.4 19.4 8.5
UTDC* 2.7 8.4 3.2 4.1 3.2 2.4 9.2 6.7 6.6 3.6 2.9 6.3 4.9
Target-TS 2.1 1.3 2.6 3.6 1.1 1.7 3.0 2.3 2.2 3.5 2.8 1.1 2.3
Uncalibrated 3.3 2.9 4.5 3.9 3.5 5.5 3.4 3.8 6.6 3.7 4.2 2.4 4.0
Source-TS 13.0 6.3 13.5 10.2 6.1 13.7 8.6 10.4 14.9 8.8 10.4 5.5 10.1
SFCC* 17.4 12.1 11.8 8.5 3.8 5.6 4.9 2.7 7.2 13.5 12.7 12.9 9.4
SFCC 3.8 1.3 6.8 5.6 1.2 6.6 5.8 3.5 5.6 6.6 4.8 1.5 4.4

Table 4: Adaptive ECE for top-1 predictions (in %) on DomainNet126, using 15 bins (with the low-
est in bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA Type Method CR CS PC PR PS RC RS SC SR Avg

DCPL

Oracle

CPCS 11.5 20.6 14.3 8.6 20.8 14.2 16.1 9.8 8.0 13.8
TransCal 6.4 20.4 12.3 5.6 9.8 13.4 18.9 10.1 7.2 11.6
UTDC* 7.0 5.8 6.4 4.4 5.8 5.4 6.6 4.7 7.1 5.9
Target-TS 4.3 5.3 6.0 3.5 5.5 5.0 6.3 4.6 4.0 4.9
Uncalibrated 13.1 24.5 19.1 11.7 24.0 16.4 26.5 13.6 13.8 18.1
Source-TS 15.5 30.0 25.5 14.2 29.6 21.5 31.3 19.7 16.2 22.6
NTS 14.9 19.4 18.7 13.7 18.6 15.8 22.4 14.3 15.0 17.0
SFCC* 11.2 7.2 11.5 6.1 13.6 7.5 8.1 7.4 11.7 9.4
SFCC 5.7 5.5 6.1 5.0 5.8 5.6 6.6 5.2 5.9 5.7

SHOT

Oracle

CPCS 12.7 19.3 21.8 11.7 21.8 17.5 16.1 11.9 6.7 15.5
TransCal 11.6 16.7 15.4 10.2 12.3 13.3 21.2 8.1 4.5 12.6
UTDC* 4.4 5.3 7.5 4.0 5.2 6.7 5.3 7.9 3.6 5.5
Target-TS 4.3 4.9 6.3 3.4 4.2 5.7 5.1 4.7 3.3 4.7
Uncalibrated 12.6 16.7 15.4 10.8 17.9 13.3 22.2 8.1 13.4 14.5
Source-TS 17.0 25.7 25.3 15.2 27.3 21.5 30.0 17.4 17.9 21.9
SFCC* 7.8 4.9 8.3 3.7 9.6 6.1 5.8 5.8 7.5 6.6
SFCC 5.3 4.9 6.4 4.9 4.5 6.3 5.5 5.0 4.9 5.3

AaD

Oracle

CPCS 15.3 16.9 13.7 10.1 16.0 12.3 12.8 8.6 7.6 12.6
TransCal 10.0 20.7 13.8 7.5 6.5 11.1 14.2 9.2 8.0 11.2
UTDC* 7.7 5.4 7.6 5.3 5.1 6.7 6.6 4.1 7.0 6.2
Target-TS 6.7 4.9 7.1 4.7 4.9 5.4 5.5 3.6 5.7 5.4
Uncalibrated 17.0 22.9 21.4 12.3 22.4 15.8 26.5 9.7 15.8 18.2
Source-TS 19.8 29.7 29.1 15.2 29.6 22.3 32.6 17.3 18.8 23.8
SFCC* 9.2 6.3 10.7 6.2 11.4 8.0 7.8 7.9 9.7 8.6
SFCC 7.0 6.4 7.6 5.2 7.3 8.1 7.9 7.3 6.0 7.0

ods assume that source domain examples that are similar to target samples are more effective for
calibrating target predictions, but this assumption often fails in practice (see (Penso & Goldberger,
2024)). On the other hand, methods that focus on estimating accuracy directly in the target domain
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Table 5: Distance between predicted accuracy and true accuracy of the target model for all domain-
shift tasks.

SFDA Est. Method DomainNet126 DomainNet40 Office-Home VisDA Avg

DCPL ATC 10.45 5.61 10.43 6.42 8.23
SFCC 2.40 1.17 3.87 3.74 2.79

SHOT ATC 13.37 5.19 14.58 6.82 9.99
SFCC 1.93 1.63 5.44 3.66 3.17

AaD ATC 13.07 4.09 14.19 6.19 9.38
SFCC 4.37 3.97 3.86 6.03 4.56

tend to be more effective for calibration. SFCC is more closely aligned with this second category,
as it estimates bin accuracy without relying on source domain data. As a result, our calibration
outcomes were more consistent with the second approach and outperformed those from the first
category.

Network accuracy estimation using the pseudo-labels. Our major goal is calibrating the target
model. However, by considering the pseudo-labels as the ground truth, the SFCC can be also used
to estimate the accuracy of the adapted model on the target domain as follows:

Ãcc =
1

n

n∑
i=1

1{ŷi=ỹi}, (7)

s.t. ỹi is the pseudo label and ŷi is the predicted label. All existing UDA accuracy estimation
methods, e.g. Projection Norm (PN) (Yu et al., 2022) Average Thresholded Confidence (ATC)
(Garg & Balakrishnan, 2022) and Meta target domain accuracy estimation (Deng & Zheng, 2021)
rely on access to labeled source data for accuracy estimation. In contrast, our approach does not
use the source domain data. We compared our method to ATC, an efficiently computed method that
obtained good accuracy prediction results. Table 5 displays the Mean Absolute Error (MAE) of the
predicted accuracy compared to the true accuracy on each domain shift dataset averaged over all the
domain pairs in the task. The results show that our method outperformed ATC in all datasets and for
all SFDA methods, even though ATC relies on the labeled data from the source domain while our
method is source-free. Note that our method is also very efficient.

5 ANALYSIS

We next illustrate and analyze several key features of our calibration method. We implemented three
variants of pseudo-labels: (1) Enhanced PL: pseudo-labels that were generated using Algorithm 1
(2) PL: pseudo-labels based solely on the source model’s predictions. (3) Synthetic: synthetic noisy
labels that were generated by a noise transition matrix computed from the conditional statistics
p(ỹ|y) of the enhanced pseudo-labels given the true labels.

Figure 1: Pseudo-label accuracy as a function of the confidence bin.

The correlation between pseudo-labels and the image class ambiguities. Fig. 1 shows the
pseudo-label accuracy as a function of the confidence bin. It shows that the pseudo-label noise

8
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(a) Enhanced PL (b) PL

(c) Synthetic

Figure 2: Statistics of network binwize accuracy: (red) model predictions agree with both pseudo-
labels and true labels (Ai,1), (green) model predictions agree only with true labels (Ai,2) and (or-
ange) model predictions agree only with pseudo-labels (Ãi,2).

is highly correlated with the confidence of the target model. Fig. 2a demonstrates that the enhanced
pseudo-labels satisfy Ai,2 ≈ Ãi,2 for each confidence bin i. In contrast, Fig. 2c illustrates a similar
analysis of synthetic noisy labels and indeed in this case Ai,2 ̸≈ Ãi,2. The results in Figs. 1 and 2
are demonstrated on DomainNet40, where we took Sketch as the source domain and Product as the
target domain and applied the SFDA method: DCPL (Diamant et al., 2024).

(a) correct pseudo-labels (b) incorrect pseudo-labels

Figure 3: (a) Histogram of d2 − dỹ in case of correct pseudo-labels. (b) Histogram of dy − dỹ in
case of incorrect pseudo-labels. Results are demonstrated on DomainNet40, source domain: Sketch,
target domain: Product, SFDA method: DCPL (Diamant et al., 2024).

Analysis of the network predictions when the pseudo-label is incorrect. Our method assumes
that when the true labels differ from the pseudo-labels, it indicates that these examples are challeng-
ing to classify, and the image can be misclassified as ỹ instead of y. Consequently, the model tends
to select pseudo-labels and true labels in roughly equal proportions.
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(a) pseudo-labels’ noise level (b) binwize target model accuracy estimation error
when using pseudo-labels

Figure 4: (a) Box plots showing the noise-level of different pseudo-labeling methods. (b) Box plots
of the error caused by estimating binwize model accuracy using pseudo-labels instead of the true
labels.

First, we validate that these examples are indeed difficult to classify. When an enhanced pseudo-
label is assigned to a sample x (as described in Algorithm 1), it is determined by the nearest centroid
to the embedding fp(x). Recall that dỹ(x), d2(x), and dy(x) represent the distances of fp(x) to the
nearest centroid, the second closest centroid, and the centroid of the true label, respectively. Fig. 3
illustrates the histogram of d2(x)−dỹ(x) for correctly predicted pseudo-labels, and the histogram of
dy(x)− dỹ(x) for incorrectly predicted pseudo-labels. It is clear that when y ̸= ỹ, dy(x) ≈ dỹ(x),
implies that classifying example x as either y or ỹ is equally plausible.

Next, we demonstrate that estimating the target model’s binwize accuracy using pseudo-labels is
indeed accurate. Fig. 4a shows the noise level of the pseudo-labels across all 102 source-target
pairs in our experiments. We can see that enhancing the pseudo-labels reduces the average label
noise level from 40% to 20% which is still high. For each source-target domain pair and for each
confidence bin, we calculated the difference between binwize accuracy estimation based on the
enhanced pseudo-labels and based on the true labels:

|Ãi −Ai| = |Ãi,2 −Ai,2| =
1

|Bi|
| |{t ∈ Bi|ŷt = ỹt}| − |{t ∈ Bi|ŷt = yt}| |. (8)

Fig. 4b presents box plots of this value across all the bins of the source-target pairs (102 × 3 SFDA
methods) in our experiments. We can see that even though the noise level of the enhanced pseudo-
labels is 20%, when using them to estimate the network accuracy the error is only 4%. This justifies
our approach which is based on using the pseudo-labels to calibrate the target domain model. Note
that the binwize network accuracy estimation results shown in Fig. 4b are aligned with the global
network accuracy estimation shown in Table 5.

6 CONCLUSIONS

In this study, we calibrated a model that was adapted to a new domain in an unsupervised manner,
with restricted access to the source domain data. We proposed a calibration method that relies on
pseudo-labels to estimate the average binwise accuracy. We demonstrated that our approach yielded
improved results, surpassing those obtained by methods that leverage labeled source domain data.
We also presented the first source-free domain adaptation accuracy estimation and showed that its
performance is comparable with current methods that have access to the source data. Potential
future research directions include utilizing insights from pseudo-label errors to develop enhanced
unsupervised domain adaptation methods and exploring whether similar strategies can be applied to
general cases of model calibration based on real-world noisy labels, where the noise is dependent
on the image content.
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A APPENDIX / SUPPLEMENTAL MATERIAL

This appendix offers a schematic overview of the SFCC algorithm, additional results not included
in the main paper, accuracy levels of the SFDA methods, empirical evidence demonstrating that
varying bin numbers do not impact the superiority of our method, comparison of SFCC method to
a new source free domain adaptation calibration and additional Analysis that was not include in the
main paper.

A.1 SFCC SCHEMA

Fig. 5 presents the full schema of SFCC algorithm (blue) as well as the SFDA process (green).

Figure 5: Diagram of the SFCC method: (blue) calibration process, (green) adaptation process,
(orange) SFCC output

A.2 ADDITIONAL EXPERIMNETAL RESULTS

In this section we provided additional adaECE results on Office-31 dataset (Saenko et al., 2010),
which contains 31 object categories across three domains: Amazon (A), DSLR (D), and Webcam
(W). These categories include common office items such as keyboards, file cabinets, and laptops. In
this case we use adaECE for optimization and evaluating the results.

Additionally, we provide results for various calibration losses, including Expected Calibration Error
(ECE), Negative Log-Likelihood (NLL), Brier Score (BS), and Static Calibration Error (SCE). In
this context, all calibration methods used ECE optimization to find the optimal temperature, except
for the UTDC* method. UTDC* optimized the adaECE metric but was still evaluated using ECE,
NLL, BS, and SCE scores. This approach was chosen because UTDC* can experience a significant
performance drop if the bin sizes are not roughly equal.

A.2.1 ADAECE RESULTS

Table 6 presents adaECE score on Office-31 (Saenko et al., 2010) dataset, in this case SFCC algo-
rithm outperforms all other calibration methods.
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Table 6: Adaptive ECE for top-1 predictions (in %) on Office-31, using 15 bins (with the lowest in
bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA Type Method AD AW DA DW WA WD Avg

DCPL

Oracle

CPCS 3.0 5.9 16.5 1.1 17.7 0.7 7.5
TransCal 2.9 26.1 13.1 2.2 12.6 2.4 9.9
UTDC* 3.7 3.4 6.2 1.7 5.6 0.9 3.6
Target-TS 1.7 2.1 4.2 1.3 5.0 0.9 2.5
Uncalibrated 2.8 2.5 13.1 2.2 14.3 2.4 6.2
Source-TS 2.1 3.8 16.3 1.7 17.2 1.0 7.0
NTS 2.5 3.6 13.8 1.7 14.3 0.9 6.1
SFCC* 11.6 16.8 12.5 2.0 8.8 0.9 8.8
SFCC 2.0 4.3 6.2 1.8 8.0 0.9 3.9

SHOT

Oracle

CPCS 5.0 11.7 17.4 1.4 21.1 0.6 9.5
TransCal 4.9 17.5 11.5 4.8 14.7 5.2 9.8
UTDC* 4.3 5.2 6.5 2.0 5.6 0.9 4.1
Target-TS 3.2 4.5 4.9 1.7 4.5 0.9 3.3
Uncalibrated 4.9 5.2 11.5 4.8 14.7 5.2 7.7
Source-TS 4.1 7.6 17.1 1.8 19.9 1.1 8.6
SFCC* 8.6 11.7 11.3 2.8 5.0 0.9 6.7
SFCC 3.2 5.2 7.0 1.5 8.5 0.9 4.4

AaD

Oracle

CPCS 6.7 4.5 20.4 1.3 17.2 0.6 8.4
TransCal 3.3 17.9 15.7 2.6 15.4 2.4 9.5
UTDC* 3.4 3.8 6.8 1.5 5.3 0.9 3.6
Target-TS 3.3 3.1 5.9 1.2 4.4 0.9 3.1
Uncalibrated 3.3 3.1 15.7 2.6 15.4 2.4 7.1
Source-TS 5.1 4.7 19.0 1.6 18.7 0.9 8.3
SFCC* 9.4 14.7 10.4 2.9 6.7 0.9 7.5
SFCC 4.2 5.5 7.3 1.9 7.3 0.9 4.5

A.2.2 ECE RESULTS

Tables 7, 8, 9, and 10 provide the ECE calibration results for Office-Home, VisDA, DomainNet40,
and DomainNet126, respectively.

Table 7: ECE for top-1 predictions (in %) on Office-Home, using 15 bins (with the lowest in bold)
across various SFDA classification tasks and methods with different calibration methods.

SFDA Type Method AC AP AR CA CP CR PA PC PR RA RC RP Avg

DCPL

Oracle

CPCS 18.5 8.7 7.0 18.9 6.6 4.5 20.8 20.6 11.0 8.1 18.8 3.6 12.3
TransCal 15.1 5.8 4.3 12.7 5.0 4.8 8.7 16.9 6.8 6.8 15.5 2.9 8.8
UTDC* 8.5 4.9 3.4 5.2 4.2 3.8 7.9 8.6 5.8 7.3 8.7 2.8 5.9
Target-TS 7.6 3.9 2.4 3.9 3.5 3.0 5.5 8.1 3.3 2.9 7.5 2.1 4.5
Uncalibrated 22.2 8.9 5.4 7.5 7.7 6.5 8.7 25.0 6.8 6.8 22.1 4.6 11.0
Source-TS 24.2 10.4 8.3 11.7 9.2 8.3 10.9 27.8 9.1 10.3 24.0 6.2 13.4
NTS 21.2 8.4 5.3 9.8 7.6 6.0 7.8 23.2 7.9 8.3 20.4 4.7 10.9
SFCC* 14.5 11.7 6.6 16.7 19.0 13.8 18.0 12.7 4.3 3.4 14.2 6.4 11.8
SFCC 8.1 5.2 3.1 4.6 4.6 3.5 6.0 10.9 4.1 5.1 11.0 2.5 5.7

SHOT

Oracle

CPCS 29.1 13.7 11.6 14.7 13.8 9.3 21.5 32.7 11.8 12.8 18.9 9.9 16.7
TransCal 26.8 9.4 7.5 16.9 9.2 8.4 9.3 28.6 6.5 7.2 18.8 7.0 13.0
UTDC* 6.6 6.8 4.8 6.5 5.9 4.8 7.0 7.8 7.4 8.9 6.9 4.3 6.5
Target-TS 5.6 5.5 3.3 4.3 5.0 3.9 5.4 7.0 3.0 4.6 6.5 3.1 4.8
Uncalibrated 27.7 12.2 7.5 10.3 11.8 10.4 9.3 29.9 6.5 7.2 27.0 7.1 13.9
Source-TS 32.8 15.0 11.2 16.6 14.3 14.0 14.3 35.0 10.6 11.7 30.8 10.3 18.0
SFCC* 6.3 7.5 4.3 9.8 7.9 6.3 8.9 7.4 4.0 5.6 7.8 3.8 6.6
SFCC 8.3 6.8 4.2 6.4 6.2 5.3 6.5 12.3 3.8 6.2 10.1 3.7 6.6

AaD

Oracle

CPCS 28.1 10.2 10.4 22.3 13.0 7.0 20.1 23.9 11.1 11.5 19.9 6.3 15.3
TransCal 24.7 8.2 10.6 15.3 9.0 6.8 12.9 16.6 10.8 10.7 13.4 5.4 12.0
UTDC* 9.1 7.7 5.2 5.9 7.5 5.9 8.5 10.6 5.6 7.6 9.9 5.4 7.4
Target-TS 8.3 6.5 4.5 4.7 6.5 4.8 7.8 9.6 4.3 5.0 9.1 4.4 6.3
Uncalibrated 31.4 13.7 11.6 14.0 14.9 13.3 15.5 30.8 10.8 11.5 29.6 9.4 17.2
Source-TS 33.9 15.8 14.0 18.6 17.4 15.9 19.4 34.4 14.2 13.3 32.5 10.7 20.0
SFCC* 10.5 9.9 5.0 7.1 11.8 9.0 12.5 13.5 4.8 6.1 12.4 5.9 9.0
SFCC 10.3 6.8 5.8 5.7 7.1 5.8 8.3 11.1 5.5 5.9 11.1 4.5 7.3
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Table 8: ECE for top-1 predictions (in %) on VisDA, using 15 bins (with the lowest in bold) across
various SFDA methods with different calibration methods.

Type Method DCPL SHOT AaD

Oracle

CPCS 12.3 19.2 11.6
TransCal 10.5 14.4 9.2
UTDC* 4.6 3.2 3.2
Target-TS 4.0 2.9 2.8
Uncalibrated 13.7 15.5 12.1
Source-TS 15.3 18.1 13.2
NTS 12.3 N/A N/A
SFCC* 29.4 26.1 27.8
SFCC 5.6 4.2 4.8

Table 9: ECE for top-1 predictions (in %) on DomainNet40, using 15 bins (with the lowest in bold)
across various SFDA classification tasks and methods with different calibration methods.

SFDA Type Method CP CR CS PC PR PS RC RP RS SC SP SR Avg

DCPL

Oracle

CPCS 14.1 1.7 11.9 14.7 5.9 10.2 10.1 5.6 14.8 9.3 10.6 13.6 10.2
TransCal 5.5 8.2 6.8 5.8 11.9 9.6 4.8 4.4 11.0 8.0 9.0 12.9 8.2
UTDC* 3.1 12.6 4.4 4.7 3.6 3.5 3.9 4.0 4.6 5.2 2.9 4.6 4.8
Target-TS 2.3 0.7 3.8 3.9 0.9 2.8 3.3 1.9 3.0 4.5 2.5 1.8 2.6
Uncalibrated 5.9 2.4 8.6 5.5 3.6 9.8 4.4 6.2 12.4 6.1 7.2 4.5 6.4
Source-TS 12.5 5.0 15.1 11.9 5.8 17.0 11.1 11.7 19.5 8.0 13.1 6.8 11.5
NTS 14.5 5.5 16.1 17.8 5.4 15.4 14.8 12.0 16.4 14.7 14.8 7.0 12.9
SFCC* 19.6 13.2 12.3 10.2 5.6 6.3 7.0 2.3 7.9 11.2 9.8 10.4 9.6
SFCC 2.7 0.8 5.3 4.3 2.1 4.1 3.8 2.4 3.8 4.7 2.9 2.7 3.3

SHOT

Oracle

CPCS 13.5 8.0 12.8 20.8 3.7 6.5 6.5 4.3 9.3 10.7 16.3 16.9 10.8
TransCal 6.0 12.9 4.1 5.9 5.3 10.0 5.2 2.1 4.6 5.8 4.5 16.1 6.9
UTDC* 4.2 7.3 6.5 5.0 2.5 3.4 8.8 7.8 9.1 4.6 2.6 3.8 5.5
Target-TS 2.9 1.2 3.0 4.1 1.9 2.2 3.8 1.7 2.4 4.1 2.4 1.9 2.6
Uncalibrated 3.1 1.5 4.1 4.2 3.3 4.0 5.2 2.1 4.6 4.4 3.9 3.0 3.6
Source-TS 11.0 5.2 12.3 11.1 6.8 13.5 8.1 9.2 15.1 6.4 11.7 6.6 9.8
SFCC* 16.1 11.6 9.0 6.6 2.5 5.1 5.2 3.9 6.0 7.9 8.1 8.5 7.5
SFCC 3.0 1.4 3.9 4.4 2.2 4.5 4.5 2.0 4.8 4.4 2.9 2.5 3.4

AaD

Oracle

CPCS 12.1 1.6 14.3 12.7 3.9 4.1 6.8 7.5 9.0 12.9 13.0 23.7 10.1
TransCal 10.8 11.1 4.6 14.9 4.9 7.7 4.6 4.1 6.7 6.1 8.3 17.7 8.5
UTDC* 2.4 8.3 3.4 4.7 3.0 2.4 9.1 6.9 6.9 4.2 2.9 6.4 5.0
Target-TS 2.1 1.0 2.6 3.9 0.6 1.8 3.3 2.2 2.2 3.8 2.8 0.9 2.3
Uncalibrated 3.3 2.8 4.6 4.1 3.4 5.5 3.7 4.1 6.7 4.1 4.2 2.4 4.1
Source-TS 11.1 5.5 12.0 10.0 5.7 13.8 9.2 10.6 15.6 5.7 10.3 4.7 9.5
SFCC* 16.9 12.7 12.2 9.3 3.8 5.4 5.5 3.0 8.3 13.0 12.6 13.4 9.7
SFCC 4.1 1.1 6.6 5.2 1.1 7.1 6.1 3.7 6.2 6.2 5.0 2.0 4.5
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Table 10: ECE for top-1 predictions (in %) on DomainNet126, using 15 bins (with the lowest in
bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA Type Method CR CS PC PR PS RC RS SC SR Avg

DCPL

Oracle

CPCS 11.6 20.5 14.2 8.8 22.5 14.3 16.1 10.0 8.1 14.0
TransCal 6.7 20.1 11.2 5.6 10.2 13.9 19.0 10.1 7.2 11.6
UTDC* 6.7 5.9 6.6 4.2 5.6 5.5 6.8 4.8 6.8 5.9
Target-TS 4.3 5.1 6.1 3.6 5.4 4.8 6.2 4.4 4.0 4.9
Uncalibrated 13.1 24.5 19.1 11.6 23.9 16.4 26.5 13.7 13.8 18.1
Source-TS 15.4 29.5 25.0 14.0 29.1 21.0 30.9 18.9 15.9 22.2
NTS 14.7 20.5 20.3 13.4 18.3 16.4 22.6 13.6 14.5 17.1
SFCC* 11.2 6.9 11.8 6.1 14.0 7.1 8.5 7.4 11.4 9.4
SFCC 5.8 5.4 6.3 5.1 5.9 5.6 6.6 5.2 6.0 5.8

SHOT

Oracle

CPCS 12.5 19.3 21.7 11.8 23.4 17.6 16.2 12.1 6.8 15.7
TransCal 11.6 16.7 15.5 10.3 12.5 13.4 20.8 8.6 4.5 12.7
UTDC* 4.5 5.3 7.6 3.9 5.2 6.9 5.4 8.1 3.7 5.6
Target-TS 4.4 4.8 6.3 3.4 4.2 5.8 5.1 4.8 3.4 4.7
Uncalibrated 12.7 16.7 15.5 10.8 17.9 13.4 22.2 8.6 13.4 14.6
Source-TS 16.7 24.9 24.5 14.8 26.5 20.8 29.4 16.1 17.4 21.2
SFCC* 7.9 5.2 8.9 3.8 9.9 6.3 6.0 5.5 7.5 6.8
SFCC 5.2 5.0 6.7 4.8 4.4 6.4 5.2 5.2 4.8 5.3

AaD

Oracle

CPCS 15.4 17.2 13.4 10.2 15.5 12.5 13.0 8.8 7.7 12.6
TransCal 10.2 20.9 14.2 7.6 7.6 11.2 14.3 9.3 7.9 11.5
UTDC* 7.6 5.7 7.8 5.3 5.2 6.7 6.6 4.4 7.0 6.3
Target-TS 6.7 5.0 7.1 4.7 5.1 5.3 5.3 3.6 5.8 5.4
Uncalibrated 17.0 22.9 21.5 12.3 22.4 15.9 26.5 10.0 15.8 18.3
Source-TS 19.5 29.1 28.4 15.0 29.0 21.8 32.1 16.2 18.4 23.3
SFCC* 9.3 6.5 10.9 6.1 12.0 8.3 7.9 7.3 9.7 8.7
SFCC 6.9 6.3 7.4 5.2 7.1 8.0 7.8 7.9 6.0 7.0

A.2.3 NEGATIVE LOG-LIKELIHOOD RESULTS

The Negative Log-Likelihood (NLL) (Hastie et al., 2009) is a loss function commonly used in prob-
abilistic models to assess how accurately a probabilistic distribution predicts a set of outcomes. A
lower NLL value indicates better model performance, as it minimizes the negative logarithm of the
predicted probabilities for the observed data. The formal definition of the NLL score is:

NLL = −
n∑

i=1

K∑
k=1

1{yi=k} log p(ŷi = k|xi,θ), (9)

Tables 11, 12, 13, and 14 provide the NLL calibration results for Office-Home, VisDA, Domain-
Net40, and DomainNet126, respectively.
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Table 11: 100 * NLL on Office-Home, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA Type Method AC AP AR CA CP CR PA PC PR RA RC RP Avg

DCPL

Oracle

CPCS 321 166 104 453 92 76 697 240 201 132 193 65 228
TransCal 176 90 65 132 82 74 133 200 79 115 181 60 116
UTDC* 165 87 64 120 82 75 130 183 77 120 167 60 111
Target-TS 164 87 65 120 82 74 124 183 74 109 167 60 109
Uncalibrated 222 104 68 128 97 80 133 256 79 115 228 66 131
Source-TS 305 141 86 160 129 102 163 346 100 142 309 87 172
NTS 224 101 69 148 97 77 131 238 86 126 214 66 131
SFCC* 171 92 69 134 95 85 137 188 75 109 172 64 116
SFCC 164 87 64 120 83 74 125 185 74 110 169 60 110

SHOT

Oracle

CPCS 509 202 160 201 388 102 433 388 172 173 231 179 262
TransCal 246 117 84 156 114 101 150 270 85 124 207 86 145
UTDC* 201 112 81 139 108 99 145 218 86 132 195 79 133
Target-TS 200 112 82 140 108 98 145 217 83 122 195 79 132
Uncalibrated 256 130 84 145 124 105 150 281 85 124 252 87 152
Source-TS 346 173 104 178 165 133 180 375 104 149 339 113 196
SFCC* 201 112 81 144 111 101 148 217 83 121 195 79 133
SFCC 200 112 81 140 108 98 145 218 82 123 195 79 132

AaD

Oracle

CPCS 292 126 109 232 195 111 605 276 118 228 661 92 254
TransCal 253 119 107 174 128 111 196 229 113 152 213 90 157
UTDC* 214 118 96 159 124 110 176 219 97 142 207 89 146
Target-TS 214 118 96 159 124 110 176 219 97 138 207 89 146
Uncalibrated 335 159 114 189 169 133 219 343 113 158 318 110 197
Source-TS 466 219 153 247 232 177 286 468 148 203 437 148 265
SFCC* 215 118 97 161 127 114 180 222 97 139 210 89 147
SFCC 214 119 96 159 126 110 175 220 97 138 209 89 146

Table 12: 100 * NLL on VisDA, using 15 bins (with the lowest in bold) across various SFDA
methods with different calibration methods.

Type Method DCPL SHOT AaD

Oracle

CPCS 90 572 84
TransCal 94 106 81
UTDC* 73 84 62
Target-TS 73 84 62
Uncalibrated 107 114 113
Source-TS 162 171 173
NTS 75 N/A N/A
SFCC* 97 104 85
SFCC 74 85 62

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 13: 100 * NLL on DomainNet40, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA Type Method CP CR CS PC PR PS RC RP RS SC SP SR Avg

DCPL

Oracle

CPCS 295 34 179 173 44 205 105 82 186 100 253 64 143
TransCal 84 39 103 92 50 115 88 79 126 92 93 60 85
UTDC* 81 44 102 91 42 110 88 79 120 90 88 52 82
Target-TS 81 34 101 91 41 110 88 78 120 90 88 51 81
Uncalibrated 83 34 106 91 43 116 88 80 128 91 92 55 84
Source-TS 111 45 136 105 52 155 104 100 170 97 125 70 106
NTS 327 53 273 421 53 140 222 110 143 290 450 73 213
SFCC* 97 44 108 98 44 112 91 78 122 95 92 56 87
SFCC 81 34 102 91 41 111 88 78 120 90 88 52 81

SHOT

Oracle

CPCS 186 53 139 476 54 110 95 81 124 207 343 97 164
TransCal 93 50 105 112 56 110 94 80 117 97 90 72 90
UTDC* 86 44 106 107 53 108 101 89 121 96 89 55 88
Target-TS 86 39 105 108 53 108 93 80 117 95 89 54 86
Uncalibrated 86 39 105 108 53 108 94 80 117 95 89 54 86
Source-TS 102 46 120 115 62 128 99 89 138 98 110 65 98
SFCC* 99 49 110 110 53 110 94 80 119 99 93 58 90
SFCC 86 39 106 108 53 109 94 80 118 96 89 54 86

AaD

Oracle

CPCS 234 37 282 138 42 102 95 87 117 420 212 70 153
TransCal 90 47 98 111 42 106 92 80 113 88 85 56 84
UTDC* 80 43 98 95 41 101 101 86 113 85 81 40 80
Target-TS 80 37 97 95 40 101 92 80 111 85 81 36 78
Uncalibrated 80 38 98 95 41 103 92 80 113 85 82 37 79
Source-TS 99 49 117 102 50 128 100 94 138 88 103 44 93
SFCC* 95 48 105 101 42 104 94 80 116 93 89 47 84
SFCC 81 37 100 96 40 105 94 81 114 87 82 37 80

Table 14: 100 * NLL on DomainNet126, using 15 bins (with the lowest in bold) across various
SFDA classification tasks and methods with different calibration methods.

SFDA Type Method CR CS PC PR PS RC RS SC SR Avg

DCPL

Oracle

CPCS 122 225 180 106 210 156 215 143 114 163
TransCal 107 223 173 98 195 155 222 140 110 158
UTDC* 106 197 169 96 192 144 205 134 109 150
Target-TS 105 197 169 96 192 144 205 134 108 150
Uncalibrated 132 248 196 120 240 164 263 150 139 183
Source-TS 176 326 253 160 316 206 340 190 185 239
NTS 158 224 203 145 211 164 238 150 149 182
SFCC* 109 198 175 97 199 146 206 136 112 153
SFCC 106 197 169 97 192 145 205 135 109 151

SHOT

Oracle

CPCS 132 216 232 124 693 178 218 151 119 229
TransCal 129 205 197 114 201 166 230 142 118 167
UTDC* 116 189 186 104 194 158 208 142 118 157
Target-TS 117 189 186 104 194 158 208 139 118 157
Uncalibrated 132 205 197 116 211 166 235 142 135 171
Source-TS 171 254 241 150 264 199 293 169 174 213
SFCC* 120 190 190 104 199 159 209 140 121 159
SFCC 117 190 186 104 194 159 208 139 118 157

AaD

Oracle

CPCS 167 223 204 121 228 166 225 140 131 178
TransCal 144 236 208 111 202 164 228 139 129 173
UTDC* 136 203 198 106 201 159 220 133 128 165
Target-TS 137 203 198 106 201 159 220 133 129 165
Uncalibrated 184 246 230 134 242 175 272 140 170 199
Source-TS 245 319 295 179 314 217 347 171 226 257
SFCC* 137 204 203 106 207 162 221 135 130 167
SFCC 138 204 198 107 202 161 221 136 130 166
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A.2.4 BRIER SCORE RESULTS

The Brier Score (BS) (Brier, 1950) is a metric that evaluates the accuracy of probabilistic predictions
by calculating the mean squared difference between the predicted probabilities and the true label y,
where lower scores signify better predictive performance. The formal definition of the Brier Score
is

BS =
1

n

n∑
i=1

K∑
k=1

(
p(ŷi = k|xi,θ)− 1{yi=k}

)2
, (10)

Tables 15, 16, 17, and 18 provide the BS calibration results for Office-Home, VisDA, DomainNet40,
and DomainNet126, respectively.

Table 15: 100 * BS on Office-Home, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA Type Method AC AP AR CA CP CR PA PC PR RA RC RP Avg

DCPL

Oracle

CPCS 56 29 25 49 26 26 50 62 28 39 54 20 39
TransCal 53 28 24 43 26 26 42 59 26 37 53 20 36
UTDC* 51 28 23 40 26 26 41 56 26 38 52 20 36
Target-TS 51 28 24 40 26 26 41 56 26 37 51 20 36
Uncalibrated 56 28 24 41 26 27 42 64 26 37 57 20 37
Source-TS 60 29 25 44 27 28 44 67 28 40 60 21 39
NTS 56 28 24 43 26 26 41 62 27 38 56 20 37
SFCC* 53 30 25 44 30 29 46 58 26 37 53 21 38
SFCC 51 28 23 40 26 26 41 57 26 37 52 19 35

SHOT

Oracle

CPCS 75 40 35 53 40 36 58 80 33 45 65 29 49
TransCal 71 37 31 53 36 36 49 75 30 42 64 27 46
UTDC* 63 37 30 48 36 36 48 67 30 42 61 26 44
Target-TS 63 37 30 48 36 35 48 66 30 41 61 26 44
Uncalibrated 72 38 31 49 38 36 49 77 30 42 69 27 46
Source-TS 77 40 33 53 40 39 52 81 32 44 74 28 49
SFCC* 63 37 30 49 37 36 49 66 30 41 61 26 44
SFCC 63 37 30 48 36 36 48 67 30 41 61 26 44

AaD

Oracle

CPCS 74 38 36 60 41 38 64 72 35 49 71 28 50
TransCal 71 37 35 55 39 38 58 68 35 47 64 28 48
UTDC* 65 37 34 51 39 37 56 66 33 46 63 28 46
Target-TS 65 37 34 51 39 37 56 66 33 46 63 28 46
Uncalibrated 76 39 36 55 42 40 60 77 35 47 73 29 51
Source-TS 80 40 38 59 44 42 63 81 37 51 77 30 54
SFCC* 65 38 34 52 40 38 57 67 33 46 64 29 47
SFCC 65 37 34 51 39 37 56 66 33 46 64 28 46

Table 16: 100 * BS on VisDA, using 15 bins (with the lowest in bold) across various SFDA methods
with different calibration methods.

Type Method DCPL SHOT AaD

Oracle

CPCS 30 40 26
TransCal 30 36 25
UTDC* 28 33 24
Target-TS 28 33 24
Uncalibrated 31 36 27
Source-TS 32 39 28
NTS 28 N/A N/A
SFCC* 39 41 34
SFCC 28 33 24
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Table 17: 100 * BS on DomainNet40, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA Type Method CP CR CS PC PR PS RC RP RS SC SP SR Avg

DCPL

Oracle

CPCS 33 12 38 39 15 39 32 27 44 32 32 22 30
TransCal 30 13 35 34 16 38 30 27 42 32 31 19 29
UTDC* 28 14 35 34 14 37 30 27 40 31 29 16 28
Target-TS 28 12 35 34 14 37 30 27 40 31 29 16 28
Uncalibrated 29 12 36 34 14 38 30 27 42 31 30 16 28
Source-TS 31 13 38 36 15 41 32 29 46 32 32 17 30
NTS 33 13 40 41 15 40 36 30 44 36 34 17 32
SFCC* 33 14 37 36 15 37 31 27 41 33 31 18 29
SFCC 28 12 35 34 14 37 30 27 40 31 30 16 28

SHOT

Oracle

CPCS 34 16 40 50 19 37 34 28 40 36 36 25 33
TransCal 32 17 37 40 19 38 33 28 39 34 30 24 31
UTDC* 31 16 37 40 19 37 33 29 40 33 30 18 30
Target-TS 31 15 37 40 19 37 32 28 39 33 30 18 30
Uncalibrated 31 15 37 40 19 37 33 28 39 33 30 18 30
Source-TS 33 16 39 41 19 40 33 29 42 33 32 18 31
SFCC* 34 17 38 40 19 37 33 28 40 34 31 19 31
SFCC 31 15 37 40 19 37 33 28 39 33 30 18 30

AaD

Oracle

CPCS 33 14 40 39 15 35 33 29 40 36 32 25 31
TransCal 31 16 34 39 15 36 32 28 38 31 29 20 29
UTDC* 29 15 34 35 15 35 33 29 38 30 28 14 28
Target-TS 29 14 34 35 14 35 32 28 38 30 28 13 28
Uncalibrated 29 14 34 35 15 35 32 28 38 30 28 13 28
Source-TS 31 15 37 36 15 38 33 30 42 30 30 14 29
SFCC* 33 16 36 37 15 35 33 28 39 32 30 16 29
SFCC 29 14 35 36 14 35 33 28 38 31 28 13 28
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Table 18: 100 * BS on DomainNet126, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA Type Method CR CS PC PR PS RC RS SC SR Avg

DCPL

Oracle

CPCS 32 60 52 29 62 44 58 41 32 46
TransCal 31 59 52 28 56 44 60 41 32 45
UTDC* 31 56 51 28 55 43 56 40 32 44
Target-TS 31 56 51 28 55 43 56 40 31 44
Uncalibrated 32 62 54 30 62 45 64 42 34 47
Source-TS 34 66 58 31 66 48 68 45 35 50
NTS 33 60 55 31 59 45 61 42 34 47
SFCC* 33 56 52 29 58 43 57 41 33 45
SFCC 31 56 51 28 55 43 56 40 32 44

SHOT

Oracle

CPCS 37 59 63 34 66 50 60 44 36 50
TransCal 37 58 59 33 59 49 62 42 36 48
UTDC* 36 55 57 32 57 47 58 42 36 47
Target-TS 36 55 57 32 57 47 58 42 36 47
Uncalibrated 37 58 59 34 60 49 63 42 38 49
Source-TS 39 62 64 36 66 52 68 45 40 53
SFCC* 36 55 57 32 58 47 58 42 37 47
SFCC 36 55 57 32 57 47 58 42 36 47

AaD

Oracle

CPCS 40 60 59 32 61 48 62 40 37 49
TransCal 39 61 60 31 58 48 62 40 37 48
UTDC* 39 57 58 31 57 47 60 40 37 47
Target-TS 39 57 58 31 57 47 60 40 37 47
Uncalibrated 41 63 63 32 63 49 68 41 39 51
Source-TS 43 67 68 34 68 53 72 44 41 54
SFCC* 39 57 59 31 59 48 61 40 38 48
SFCC 39 57 58 31 58 47 61 40 37 48

A.2.5 STATIC CALIBRATION ERROR RESULTS

Static Calibration Error (SCE) (Nixon et al., 2019), which is an extension of ECE to every probability
in the multi class setting. SCE bins predictions separately for each class probability, computes the
calibration error within the bin, and averages across bins. Note, unlike ECE, assuming infinite
data and infinite bins, SCE is guaranteed to be zero if only if the model is calibrated. The formal
definition of the SCE score is:

SCE =
1

K

K∑
k=1

M∑
m=1

nmk

n
|acc(m, k)− conf(m, k)| (11)

Where, acc(m, k) and conf(m, k) are the accuracy and confidence of bin m for class label k, respec-
tively; and nmk is the number of predictions in bin m for class label k;

Tables 19 and 20 present the SCE calibration results for VisDA and DomainNet126, respectively.
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Table 19: 10,000 * SCE on VisDA, using 15 bins (with the lowest in bold) across various SFDA
methods with different calibration methods.

Type Method DCPL SHOT AaD

Oracle

CPCS 13.39 15.93 12.86
TransCal 13.28 16.60 12.91
UTDC* 13.16 16.34 12.46
Target-TS 13.00 16.34 12.46
Uncalibrated 13.42 16.60 12.98
Source-TS 13.16 16.40 12.95
NTS 13.02 N/A N/A
SFCC* 16.74 19.13 15.17
SFCC 13.13 16.47 12.52

Table 20: 10,000 * SCE on DomainNet126, using 15 bins (with the lowest in bold) across various
SFDA classification tasks and methods with different calibration methods.

SFDA Type Method CR CS PC PR PS RC RS SC SR Avg

DCPL

Oracle

CPCS 0.19 0.46 0.41 0.17 0.39 0.32 0.38 0.33 0.19 0.32
TransCal 0.18 0.46 0.41 0.17 0.38 0.32 0.40 0.33 0.18 0.31
UTDC* 0.18 0.38 0.38 0.16 0.38 0.30 0.36 0.30 0.18 0.29
Target-TS 0.18 0.38 0.38 0.16 0.38 0.30 0.36 0.30 0.18 0.29
Uncalibrated 0.19 0.48 0.43 0.17 0.47 0.33 0.43 0.35 0.20 0.34
Source-TS 0.20 0.48 0.44 0.17 0.48 0.33 0.44 0.36 0.20 0.34
NTS 0.20 0.46 0.43 0.17 0.45 0.33 0.41 0.34 0.20 0.33
SFCC* 0.18 0.37 0.39 0.16 0.37 0.30 0.35 0.30 0.18 0.29
SFCC 0.18 0.38 0.39 0.17 0.38 0.30 0.36 0.30 0.18 0.29

SHOT

Oracle

CPCS 0.23 0.46 0.53 0.20 0.45 0.39 0.42 0.35 0.22 0.36
TransCal 0.23 0.45 0.50 0.20 0.45 0.38 0.44 0.34 0.21 0.35
UTDC* 0.21 0.38 0.46 0.18 0.41 0.34 0.37 0.33 0.21 0.32
Target-TS 0.21 0.38 0.46 0.18 0.41 0.34 0.37 0.31 0.21 0.32
Uncalibrated 0.23 0.45 0.50 0.20 0.48 0.38 0.45 0.34 0.23 0.36
Source-TS 0.23 0.48 0.54 0.20 0.52 0.41 0.48 0.38 0.23 0.39
SFCC* 0.21 0.37 0.45 0.18 0.39 0.34 0.37 0.30 0.20 0.31
SFCC 0.21 0.38 0.46 0.19 0.41 0.34 0.37 0.31 0.21 0.32

AaD

Oracle

CPCS 0.28 0.48 0.58 0.20 0.46 0.41 0.43 0.35 0.24 0.38
TransCal 0.26 0.50 0.59 0.20 0.44 0.41 0.43 0.35 0.23 0.38
UTDC* 0.25 0.41 0.52 0.19 0.43 0.38 0.40 0.31 0.24 0.35
Target-TS 0.25 0.40 0.53 0.19 0.43 0.38 0.39 0.31 0.24 0.35
Uncalibrated 0.28 0.51 0.63 0.20 0.55 0.43 0.49 0.35 0.27 0.41
Source-TS 0.28 0.54 0.67 0.21 0.58 0.46 0.52 0.38 0.26 0.43
SFCC* 0.25 0.39 0.50 0.19 0.39 0.37 0.38 0.29 0.23 0.33
SFCC 0.25 0.39 0.52 0.19 0.41 0.37 0.38 0.29 0.24 0.34

A.3 MODELS ACCURACY

Tables 21, 22, 23, and 24 provide the accuracy levels are associated with the displayed calibration
levels for Office-Home, VisDA, DomainNet40, and DomainNet126, respectively.

Table 21: Accuracy on Office-Home, across various SFDA classification tasks and methods
SFDA AC AP AR CA CP CR PA PC PR RA RC RP Avg

DCPL 66.1 83.3 84.5 72.4 84.5 82.6 72.7 62.4 83.5 75.0 66.4 87.6 76.7
SHOT 55.5 77.2 79.4 66.3 76.9 75.9 67.4 53.5 80.4 72.5 58.2 83.2 70.5
AAD 56.0 77.4 77.6 64.4 75.6 75.1 62.4 55.4 77.8 68.8 57.5 82.8 69.2
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Table 22: Accuracy on VisDA, across various SFDA classification tasks and methods

SFDA SR

DCPL 82.4
SHOT 78.7
AAD 84.9

Table 23: Accuracy on DomainNet40, across various SFDA classification tasks and methods
SFDA CP CR CS PC PR PS RC RP RS SC SP SR Avg

DCPL 81.0 92.4 76.7 77.0 91.1 75.4 79.8 81.9 73.0 80.1 80.7 90.2 81.6
SHOT 78.7 90.3 74.2 72.0 88.2 74.1 78.1 81.0 72.7 77.4 79.7 88.6 79.6
AAD 79.5 91.0 76.1 75.1 90.5 75.1 77.8 80. 73.3 79.7 81.3 91.4 80.9

Table 24: Accuracy on DomainNet126, across various SFDA classification tasks and methods

SFDA CR CS PC PR PS RC RS SC SR Avg

DCPL 80.8 62.0 65.4 82.3 61.8 71.6 61.5 73.2 80.4 71.0
SHOT 77.0 61.0 59.8 79.0 58.8 67.9 59.1 71.1 76.3 67.8
AAD 75.9 59.6 59.0 80.5 58.9 68.4 57.8 72.6 77.1 67.8

A.4 CALIBRATION COMPARATIVE RESULTS AS A FUNCTION OF THE NUMBER OF BINS

We verified that the number of bins used for calibration does not impact our method’s performance.
We tested various bin counts ranging from 3 to 21 and observed that SFCC consistently outper-
formed the compared methods across all tested bin numbers. This phenomenon is illustrated in
Fig. 6.

Figure 6: adaECE results on the DomainNet126 dataset across different bin numbers. Calibration
and evaluation were conducted using the adaECE.
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A.5 COMPARISON WITH PSEUDOCAL

PseudoCal (Dapeng Hu & Foo, 2023) is a recently introduced source-free calibration method. It
generates new pseudo examples from the original images and uses the original predictions of the
adapted model to find the optimal temperature. We compared SFCC to PseudoCal on the VisDA
dataset using SHOT as the SFDA method. We used the original code published by the Pseudocal
author. Table 25 shows that SFCC outperforms PseudoCal on all the different seeds that we used.

Table 25: ECE for top-1 predictions (in %) on VisDA, using 15 bins (with the lowest in bold) and
SHOT as SFDA method

Method 2019 2020 2021 Avg

PseudoCal 6.8 6.5 7.0 6.8
SFCC 3.6 4.8 4.1 4.2

A.6 MORE ANALYSIS

Fig. 4b demonstrates that despite the noise in EPL, using them as true labels to evaluate model
accuracy across various confidence bins is highly accurate. Fig. 7 empirically illustrates that the
noisy evaluation Ãi serves as an unbiased estimator of the true accuracy Ai. Note that Fig. 4b
shows the statistics of |Ãi −Ai| while Fig. 7 shows the statistics of Ãi −Ai.

Figure 7: binwize difference between the noisy accuracy and true accuracy of the target model

A.7 SUBSET OF TRUE LABELS

In scenarios where labeling target domain data is inexpensive, one might consider labeling a small
portion of the data for calibration purposes. However, in some instances, a small labeled subset may
not be sufficient, or the target data itself may be limited. Fig. 8 demonstrates the proportion of the
target domain validation set required to surpass the calibration performance of SFCC when using a
subset of true label examples. The results indicate that in certain cases, labeling over 50% of the
validation set may be necessary.
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(a) source domain: S, target domain: C (b) source domain: C, target domain: R

Figure 8: Comparison of ECE loss between SFCC and temperature scaling applied to different
proportions of labeled target examples. Dataset: DomainNet40, SFDA: DCPL, number of bins: 15
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