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ABSTRACT

In this study, we consider the setup of source-free domain adaptation and address
the challenge of calibrating the confidence of a model adapted to the target domain
using only unlabeled data. The primary challenge in addressing uncertainty cali-
bration is the absence of labeled data which prevents computing the accuracy of
the adapted network on the target domain. We address this by leveraging pseudo-
labels generated from the source model’s predictions to estimate the true, unob-
served accuracy. We demonstrate that, although the pseudo-labels are noisy, the
network accuracy calculated using these pseudo-labels is similar to the accuracy
obtained with the correct labels. We validate the effectiveness of our calibration
approach by applying it to standard domain adaptation datasets and show that it
achieves results comparable to, or even better than, previous calibration methods
that unlike us, relied on the availability of labeled source data.

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated impressive accuracy in tasks like classification
and detection when enough data and supervision are available. However, in real-world applications,
it is essential not only for models to be accurate but also to provide users with a measure of confi-
dence in their predictions. DNNs produce confidence scores that are correlated with the likelihood
of correct classification, though these scores do not necessarily align with actual probabilities (Guo
et al 2017). Despite their high generalization accuracy, neural networks often exhibit overcon-
fidence in their predictions, partly due to potential overfitting on the negative log-likelihood loss,
which does not impact classification error (Guo et al., 2017; |Lakshminarayanan et al., 2017} Hein
et al, |2019). A classifier is considered calibrated for a dataset sampled from a specific distribution
if the predicted probability of correctness matches the true probability. To address overconfidence,
various methods have been developed. Network calibration can be integrated with training (see e.g.
(Mukhoti et al.,[2020; Miiller et al.l[2019;[Zhang et al.| [ 2022)), or it can be performed post-hoc using
scaling methods like Platt scaling (Platt et al.,|{1999), isotonic regression (Zadrozny & Elkan, |[2002)),
and temperature scaling (Guo et al.,2017). These techniques learn a calibration map that adjusts the
model’s confidence scores for better alignment with true probabilities.

The deployment of deep learning systems in real-world scenarios is often challenged by a drop in
performance when a network trained on data from one domain is applied to data from a different
domain, where the feature distribution varies between domains. This issue is known as the domain
shift problem. In an Unsupervised Domain Adaptation (UDA) setup, it is assumed that data from the
target domain is available but lacks annotations. Numerous UDA methods have been developed to
address this problem, including adversarial training techniques that aim to align the distributions of
the source and target domains (Ganin et al.,|2016)), as well as self-training algorithms that generate
pseudo-labels for the target domain data (Zou et al.,[2019). In a UDA setup, we assume that during
the process of adapting the source model to the target domain, we have access to labeled source do-
main data in addition to the unlabeled data from the target domain. Source-Free Domain Adaptation
(SFDA) introduces an additional challenge by restricting access to the source domain data during
the adaptation process. As a result, SFDA relies heavily on unsupervised learning and self-training
techniques. Most existing methods in SFDA primarily focus on self-training using target pseudo-
labels and entropy minimization techniques. |Liang et al.| (2020) achieved effective error reduction
by assigning pseudo-labels to the target data based on class clusters formed in the penultimate layer
of the model, where the pseudo-labels were determined by their proximity to the centroids of these
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clusters. However, due to domain shifts, these generated pseudo-labels are often noisy. To address
this, several approaches have concentrated on refining the target pseudo-labels during training (e.g.
(Chen et al.l 2022; Karim et al.l 2023} Y1 et al., 2023} Zhang et al., 2023)). A common strategy
involves updating the pseudo-labels at each epoch to improve their alignment with the target distri-
bution (Liang et al., [2020). Zhang et al.| (2023), tackled this issue by pseudo-labeling with a robust
pre-trained network and filtering out samples with low confidence.

Here, we address the problem of confidence calibration of a model obtained by an SFDA process
based only on unlabeled data from the target domain and with no access to the source domain
labeled data. Direct calibration using data from the target domain is challenging due to the absence
of ground-truth labels. Current UDA calibration methods heavily rely on the availability of labeled
data from the source domain. [Salvador et al.| (2021} and [Tomani et al.| (2021) proposed modifying
the calibration set to represent a generic distribution shift. [Park et al.| (2020)),[Wang et al.| (2020) and
Pampari & Ermon|(2020) applied Importance Weighting (IW) by assigning higher weights to source
examples that resemble those in the target domain. However, these UDA calibration models are not
applicable when access to the source domain data is restricted. In this study, we propose the Source-
Free Confidence Calibration (SFCC) algorithm that uses pseudo-labels which were generated by
the source model, to estimate the average accuracy of the adapted model on the target domain data.
We demonstrate that, although the pseudo-labels are noisy, the network accuracy calculated using
these pseudo-labels is similar to the accuracy obtained with the correct labels. We implemented
our approach across several standard domain shift datasets: VisDA (Peng et al., 2017), DomainNet
(Peng et al., [2019) and Office-Home (Venkateswara et al.|[2017) and several SFDA methods: AaD
(Yang et al., 2022), SHOT (Liang et al., |2020), and DCPL (Diamant et al., 2024). We are not
aware of previous methods for source-free domain adaptation calibration. We show that we achieve
results comparable to, or even better than, previous calibration methods that rely on the availability
of labeled source data.

2 BACKGROUND

Consider a network designed to classify an input z into one of k categories. Although the output
of the softmax layer has the mathematical structure of a probability distribution, it does not always
reflect the true posterior distribution of the classes. Networks often exhibit overconfidence in their
predictions (Guo et al., 2017} Lakshminarayanan et al.| 2017; Hein et al.| 2019). The network
prediction is defined as § = argmax; p(y = ¢|z) and its confidence is p = max; p(y = i|z). A
network is calibrated if p(§ = y|p = p) = p, for all p € [0, 1]. The Expected Calibration Error
(ECE) (Naeini et al.,[2015) is a practical way to measure model calibration. It involves partitioning
confidence values of a given set into M equal-size bins, with B,, is the index-set of samples falling
into the m-th bin. The ECE measure calculates the weighted average of the accuracy-confidence
difference across all bins:

o~ |Bul
ECE = A, -Cp 1
mZ:l | | (1)
such that A,,, and C,,, are the average accuracy and confidence at the m-th bin and n is the number of
samples used to compute the ECE measure. Adaptive ECE (adaECE) is a variant of ECE where the

bin sizes are calculated to ensure evenly distribute samples across the bins (Nguyen & O’Connor,
2015):

M
1
daECE = — 3 [A,, — Oy 2
WAECE = 7 3 40~ Cu o

such that each bin contains 1/M of the data points with similar confidence values.

Temperature Scaling (TS) is a widely used and highly effective method for calibrating the output
distribution of a classification network (Guo et al., |2017). This technique involves using a single
parameter, 7', to rescale the logit scores before computing the class distribution.
) exp(z; /T .
pﬂyzz|x)=#, i=1,....k 3)
Zj:l exp(z;/T)

s.t. 21, ..., zx are the logit values obtained by applying the network to input vector . The optimal
T can be found by minimizing either the ECE or the adaECE measures for the held-out validation
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dataset. The adaECE measure was found to be more effective for calibration than ECE because the
sample is evenly split across the bins.

3 SOURCE FREE CONFIDENCE CALIBRATION

We begin by defining the source-free confidence calibration problem setup. We consider an SFDA
scenario with a K -way classification task. Let g5 be a model that was trained on labeled data from
the source domain. We are given unlabeled target domain {x;} ;. Part of it is used to adapt the
source model to the target domain in an unsupervised manner. Another part of it is used to calibrate
the adapted target model, both of which are done without access to the labeled source domain data.
We aim to calibrate the target network by minimizing the ECE or adaECE score. We must calculate
the bin-wise accuracy and confidence values to compute the adaECE and determine the optimal
temperature 7. In the case of source-free confidence calibration, we can still compute the network
confidence for each sample. However, since we do not have labeled data from the target domain, the
challenge is to estimate the bin-wise average accuracy by solely using the unlabeled target domain
data.

In the context of SFDA, we can use pseudo-labels generated based on the source model predictions
to adapt the source model to the target domain. These pseudo-labels tend to be noisy for two reasons:
(1) they are derived from predictions made by deep learning models and (2) the model generating
these pseudo-labels is applied to a different domain from the one it was trained on. Many SFDA
methods are based on explicitly handling the inaccuracy of the pseudo-labels by transforming the
SFDA problem into the problem of learning with noisy labels (Chen et al.l [2022; Karim et al.
2023 [Kumar et al., |2023; [Litrico et al.| [2023; Y1 et al.l 2023} [Diamant et al.| 2024). These SFDA
methods consider the pseudo-labels as noisy labels and apply standard methods for learning with
noisy labels, e.g. (Sukhbaatar et al., 2015; [Xiao et al., 2015} |Goldberger & Ben-Reuven, 2017;
Zhang et al.| 2021} [Li et al., 2021} [Lin et al., 2023). Inspired by this successful line of research
for SFDA, a natural strategy for source-free confidence calibration is considering pseudo-labels as
noisy labels and transforming the source-free calibration problem into the problem of confidence
calibration with noisy labels, e.g. Noisy Temperature Scaling (NTS) (Penso et al., [2024).

All the noisy-labels algorithms mentioned above are based on an unrealistic assumption that condi-
tioned on the true label, the noisy label and the input image are independent, i.e. p(g|y, ) = p(g|y)
such that x is the input sample and y and g are the correct label and its noisy version. Noisy labels
in real-world scenarios often arise from ambiguity in image content. Some images may be difficult
to categorize due to subjective interpretation or overlapping classes, leading to inconsistent labeling.
For example, certain images can belong to multiple categories, (e.g. an image featuring both a cat
and a dog), but the labeling system may only allow a single label. Thus, the assumption that given
the true label, label noise is independent of the image, is unrealistic. In our setup of using noisy
pseudo-labels (computed with the source model) instead of true labels, the label noise is strongly
correlated with the image content. Specifically, we expect a correlation between the correctness of
the pseudo-label assigned to an image and the confidence of the target model in this image. The
dependency between the image content and its pseudo-label causes noisy-label calibration meth-
ods such as NTS to be ineffective for our problem of confidence calibration based on the noisy
pseudo-labels. Note that the SFDA methods mentioned above also assume conditional indepen-
dence between the features and the noisy labels. However, training methods tend to be less sensitive
to the label noise modeling assumption than calibration due to the highly non-linear structure of the
network compared to the linearity of the temperature scaling process (Penso et al., [2024).

In this study, we propose directly using the pseudo-labels to replace the true labels when minimiz-
ing the ECE or adaECE score to find the right scaling temperature for the model adapted to the
target domain. To generate more accurate pseudo-labels, we can use unsupervised techniques and
self-training (Zhang et al.l 2023 [Liang et al.l 2020)). This involves utilizing the source model’s
predictions on target data along with a pre-trained strong feature extractor f, (Swin-B) (Liu et al.,
2021)), to create centroids for each class. Cosine distance is then used to assign each example to
its nearest centroid. We denote the obtained labels Enhanced Pseudo Labels (EPL). The complete
process for EPL generation is detailed in Algorithm|[I]

We expect the average accuracy based on the pseudo-labels to increase monotonically as a function
of the confidence bin. However, enhanced pseudo-labels are still very noisy (see Fig. ). The
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Algorithm 1 Generating Enhanced Pseudo-Labels (EPL)

Input: Source model g, Target dataset {z;}]—,, pre-trained feature extractor f,.
Output: enhanced pseudo-labels on target data {g; }7 ,

1: Calculate class centroids as a weighted average of the features f,(x):

C — 2P = klw) fp(:)
>ip(yi = klzg)
where p(y; = k|z;) is the class probability based on the source model g;.

2: For each target instance x;, generate a pseudo-label g; based on its nearest centroid using the
cosine distance:

k=1,..,K

§i = argmin cos(Cy, fy(x:))

crux of our approach is the observation that achieving good calibration results does not require the
pseudo-labels to be noise-free. We only need the network binwize average accuracy evaluated with
the pseudo-labels, to be similar to the one evaluated with the true labels.

Next, we show that pseudo-labels can be used to estimate network accuracy. The average accuracy
at the ¢-th confidence bin is defined as:

def
Ai = Z 1{’!7t=yt} = Z 1{ﬂt=yt} + Z ]‘{ﬁt=yt} - Ai=1 + Ai»Q (4)

teB; tEBi AYyt=0t tEBi ANyt # Yt

s.t. y, is the correct label, g is the pseudo-label and 3, is the predicted label. We denoted the number
of model predictions that agree with both pseudo-labels and true labels by A; ; and the number of
model predictions that agree with the true labels but not with the pseudo-labels by A; ». To simplify
notation we do not divide the sums by | B;|. The corresponding approximate accuracy, based on the
pseudo-labels, is:

t def 7 rt
A= Z 1{’Qt=l7t} = Z 1{Qt=l7t} + Z 1{Qt=’!?t} = Ai,l + ALZ' o)

teB; tEBiAyt=1yt tEBi ANyt # Yt

To achieve good calibration results using pseudo-labels we do not need them to be accurate. We
only need A; (the network accuracy evaluated with the pseudo-labels), to be similar to A; (the true

accuracy). Since by definition 4; ; = A; 1, to make the approximate accuracy estimation effective,
we only need that A; » ~ A4, 2, i.e.

Ht € Bilys # e, Ur = vt | = [{t € Bilys # s, §¢ = Ut} (6)

In higher confidence bins, since both the network prediction and the pseudo-labels are more accurate,
both A, 5 and A; o are small which makes their difference |A; 2 — A; 2| also small. In the lower

bins both the network prediction and the pseudo-labels are not accurate, so that 4; » and flm are
not negligible. However, as we empirically validate in Section 5, the difference between A; > and

A; 2 is still small. Intuitively, we expect to observe incorrect pseudo-labels in cases where the
learned features do not represent well the image class in the target domain, which results that both
the true label y and pseudo-label y seem plausible. In such cases, it can be also difficult for the
adapted network to decide between y and y and as a result, the adapted network tends to classify
these examples as either y or ¥ in nearly equal proportions which implies that the binwize accuracy
estimations based on the pseudo-label and the correct label are similar. Fig. @b empirically validates
this observation across many source-target domain pairs.

This empirical fact that A, o ~ A; 2 can also be viewed by the process of computing the enhanced
pseudo-labels. The EPL  is selected as the class of the nearest centroid to the embedding f,(z). Let
dg(z), and d, (x) represent the distances of f,(x) to the closest centroid and the true label centroid
respectively. When § # y we expect that d, (x) ~ dy(x). Fig. [3]illustrates that this is indeed the
case across many source-target domain pairs. This implies that both y and ¢ are reasonable labels
for = and they can be selected as the pseudo-label with nearly identical probabilities. As a result,
the adapted model tends to classify x as either y or g in nearly equal proportions. This finally yields
that the binwize accuracy estimation based on the pseudo-labels A; is similar to A;.
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Algorithm 2 Source Free Confidence Calibration (SFCC)

Input: Source model g, Target model g; and Target held out dataset {z;}? ;, pre-trained
feature extractor f,

QOutput: Optimal temperature 7" that can be used to calibrate the model.

1: Apply Algorithm|I]to get enhanced pseudo-labels 7;,7 = 1, .., n.

2: Compute the target network predictions and their confidence values (;, p;), ¢ = 1, .., n.

3: Compute the average confidence at each confidence bin and estimate the average accuracy A;
at each bin based on the pseudo-labels.

4: Find a temperature 7" that minimizes the adaECE score: 17" = arg miny Z?; |A; — Ci(T)]

Based on the observations described above, we propose to apply Temperature Scaling (TS) calibra-
tion of the target model directly to the target domain data. The binwize average confidence can be
computed on the unlabeled target data. The binwize average accuracy can be estimated by using
the enhanced pseudo-labels as a replacement of the unknown true labels. We dub this calibration
algorithm Source Free Confidence Calibration (SFCC). The SFCC procedure is summarized in Al-
gorithm 2]

4 EXPERIMENTS

In this section, we evaluate the capabilities of our SFCC technique to calibrate a network on a target
domain after applying a SFDA procedure.

Compared methods. We compared our SFCC method against four baselines: (1) Uncalibrated:
The adapted classifier used without any post-hoc calibration; (2) Source-TS: using the temperature
learned on the source model with the source data to calibrate the target model, representing a sce-
nario where this temperature was available in the adaptation process; (3) NTS: Applying the NTS
method (Penso et al.,[2024) to the pseudo-labels we generated (only applicable for DCPL method,
as it requires estimation of the noise transition matrix); (4) SFCC*: A variant of our SFCC method
that uses less accurate pseudo-labels (without applying Algorithm [I)). It is presented as an ablation
study to show the importance of applying Algorithm I}

Oracle methods. Additionally, we implemented the following oracle results: (5) CPCS, (Park
et al., 2020) and (6) TransCal, (Wang et al., 2020), both of which are importance-weighted UDA
calibration methods. (7) UTDC*, UTDC (Penso & Goldberger|(2024)) is a UDA calibration method
that uses both the adapted model’s source domain accuracy for each bin and an estimation of the
target domain accuracy to calibrate the model. For comparison, we used UTDC* where the exact
target domain accuracy of the adapted model was used instead of an estimation; (8) Target-TS,
Temperature Scaling calibration (Guo et al.,[2017) applied to the adapted network using the labeled
validation set from the target domain.

Datasets. We report experiments on the following standard domain adaptation benchmarks: Office-
Home (Venkateswara et al.,[2017), VisDA (Peng et al., 2017), and DomainNet (Peng et al., [2019).
Office-home is a dataset that contains 4 domains where each domain consists of 65 categories. The
four domains are: Art (A) — artistic images in the form of sketches, paintings, ornamentation, etc.;
Clipart (C) — a collection of clipart images; Product (P) — images of objects without a background
and Real-World (R) — images of objects captured with a regular camera.VisDA is a simulation-to-real
dataset for domain adaptation with over 280,000 images across 12 categories. DomainNet is a large
UDA dataset featuring common objects. The full dataset has 345 classes, but due to labeling noise
in the complete version, we used two subsets: one with 126 classes (Zhang et al.| 2023} Diamant;
et al.,|2024) and the other with 40 classes (Tan et al.,|2020; Diamant et al., [2022)). We refer to these
subsets as DomainNet126 and DomainNet40. Both subsets included four distinct domains: Clipart
(C), Product (P), Real (R) and Sketch (S) images.

Implementation Details. In our experiments, we employed three SFDA methods: DCPL (Diamant
et al., 2024), SHOT (Jian Liang, |[2020), and AaD (Yang et al., 2022) training all models to conver-
gence using their official implementations. The CPCS and TransCal baselines were implemented
with the code provided by the respective authors. To evaluate the UTDC* and NTS methods, we
also used the authors’ provided code. Each dataset was tested using three different random seeds,
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Table 1: Adaptive ECE for top-1 predictions (in %) on Office-Home, using 15 bins (with the lowest
in bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA | Type | Method | AC| AP| AR| CA| CP| CR| PA| PC| PR| RA| RC| RP| Avg
CPCS 190 | 95| 81|228| 77| 46238219 | 11.8 ] 115|182 | 48 | 136

Oracle | TransCal 171 | 74| 56|132| 69| 45| 108|174 | 73| 98| 167 | 38| 100
UTDC* 9.1| 64| 37| 66| 68| 44103 | 89| 68| 111 | 88| 36| 72

Target-TS 74| 60| 34| 61| 53| 35| 75| 86| 47| 60| 79| 32| 58

DCPL Uncalibrated | 23.5 | 10.3 | 6.1 | 10.6 | 88| 7.5 | 108 | 267 | 73 | 9.8 | 230 | 64 | 126
Source-TS | 28.6 | 13.1 | 10.0 | 16.6 | 11.4 | 11.6 | 166 | 32.0 | 11.3 | 156 | 27.1 | 89 | 16.9

NTS 205 [ 126 | 101 | 173 | 120 | 9.8 | 19.7 | 237 | 10.3 | 17.9 | 198 | 8.1 | 152

SFCC* 152 (127 | 72|153 | 185 | 13.8 | 168 | 139 | 7.1| 67| 139 | 84 | 125

SFCC 84| 71| 36| 64| 61| 44| 77| 115] 52| 70|107 | 38| 68

CPCS 207 | 153 | 13.2] 18.0 | 158 | 103 | 26.8 | 33.8 | 127 | 17.2 | 186 | 123 | 186

Oracle | TransCal 284 | 113 | 81| 182 | 98| 85| 116|298 | 68| 92189 | 84 | 141
UTDC* 65| 73| 45| 78| 67| 50| 86| 86| 71| 119| 74| 51| 72

SHOT Target-TS 58] 69| 39| 66| 59| 43| 77| 74| 42| 67| 69| 39| 59

Uncalibrated | 28.6 | 13.6 | 8.1 | 124 | 13.3 | 109 | 11.6 | 30.6 | 6.8 | 9.2 | 28.1 84 | 15.1
Source-TS 362 | 179 | 13.5 | 19.7 | 17.1 | 16.0 | 18.6 | 38.7 | 12.6 | 16.4 | 33.6 | 12.0 | 21.0

SFCC* 65| 77| 41 95| 94| 62| 115 83| 46| 72| 74| 44| 72
SFCC 74| 84| 53| 79| 67| 49| 88 | 113 | 48| 9.1 | 103 | 45| 74
CPCS 202 | 11.3 | 11.5 | 259 | 144 | 65| 25.1 | 247 | 12.0 | 154 | 220 | 7.1 | 17.1
Oracle TransCal 260 | 92 | 115|188 | 95| 65| 153 | 16.6 | 12.1 | 13.8 | 148 | 6.6 | 13.4
UTDC* 97| 86| 53 6.5 8.1 60| 102 | 108 | 52| 90| 103 | 6.6 | 8.0
Target-TS 88 | 7.8 | 5.1 59| 72| 49| 93103 | 46| 7.1 100 | 6.1 7.3

AaD

Uncalibrated | 33.4 | 159 | 13.1 | 18.6 | 174 | 143 | 209 | 33.7 | 12.1 | 149 | 32.0 | 10.8 | 19.8
Source-TS 383 | 189 | 16.7 | 242 | 20.1 | 185 | 26.8 | 39.1 | 16.4 | 21.4 | 36.1 | 13.4 | 24.2
SFCC* 107 | 97| 56| 99 | 11.7| 87| 122 | 148 | 5.1 83 | 11.7| 7.6 | 9.7
SFCC 102 | 89| 54| 65| 87| 57| 11.1 | 111 53| 82119 | 64| 83

Table 2: Adaptive ECE for top-1 predictions (in %) on VisDA, using 15 bins (with the lowest in
bold) across various SFDA methods with different calibration methods.

Type | Method | DCPL | SHOT | AaD
CPCS 12.1 18.5 | 11.5
Oracle TransCal 10.6 14.2 9.5
UTDC* 5.0 34 3.1
Target-TS 4.6 3.3 2.9
Uncalibrated 13.7 155 | 12.2
Source-TS 16.3 19.5 | 14.0
NTS 9.8 N/A | N/A
SFCC* 31.0 25.6 | 30.1
SFCC 5.7 4.2 4.5

and we report the average results. Due to the probabilistic nature of TransCal and CPCS, we con-
ducted 10 runs per seed and averaged the outcomes. For the calibration assessment, we followed
the evaluation protocol described in the TransCal Paper (Wang et al.l[2020), which involves splitting
each target domain into 80% for training and 20% for validation. Adaptation was performed on
the training set, and calibration was conducted on the validation set using adaptive ECE as the loss
function. We report adaptive ECE results for the validation set. Additional ECE results, along with
adaptive ECE results for the Office-31 dataset (Saenko et al., [2010), are included in the Appendix.
For reproducibility, we have made our code available

Calibration Results. Tables[I] 2] 3] and ] present the calibration results for Office-Home, VisDA,
DomainNet40, and DomainNet126, respectively. The findings show that SFCC outperformed the
baseline methods in nearly all tasks. Additionally, compared to Oracle methods, SFCC consis-
tently aligned with UTDC* and Target-TS. SFCC achieved good results for both SFDA methods
that are based on pseudo-labels (DCPL and SHOT) and those which treat the SFDA problem as
an unsupervised clustering problem (AaD). Furthermore, SFCC surpassed CPCS and TransCal in
nearly all tasks, even though both methods have access to source domain data. Target domain cali-
bration methods using labeled source data can generally be divided into two main approaches: (1)
importance-weighting methods and (2) binwise average accuracy estimation methods. CPCS and
TransCal follow the first approach, while UTDC follows the second. Importance-Weighting meth-

'"https:///anonymous.4open.science/r/SFCC-40E1
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Table 3: Adaptive ECE for top-1 predictions (in %) on DomainNet40, using 15 bins (with the lowest
in bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA | Type | Method | CP| CR| CS| PC| PR| PS| RC| RP| RS| SC| SP| SR | Avg
CPCS 137 20| 140|152 | 58| 90| 103 | 49| 151 | 87 10.1 | 143 | 103

Oracle | TransCal 54| 96| 74| 55117 | 74| 43| 48 |104| 70| 80| 142 | 80
UTDC* 27| 125| 43| 45| 42| 36| 36| 39| 47| 51| 29| 53| 48

Target-TS 22] 09| 38| 37| 15| 32| 33| 22| 36| 48| 27| 18] 28

DCPL Uncalibrated | 5.5 | 24 | 85| 53| 34| 97| 39| 61| 124 | 57| 70| 44| 62
Source-TS | 13.9 | 5.6 | 162 | 121 | 6.0 | 169 | 109 | 11.7 [ 19.1 | 11.7 | 13.2 | 7.3 | 12.1

NTS 124 | 56| 148 [ 169 | 6.0 | 156 | 132 | 12.1 | 165 | 169 | 13.9 | 7.0 | 12:6

SFCC* 189 [ 13.1 | 128 | 111 | 56| 64| 70| 23| 83| 115|101 | 105 | 98

SFCC 26| 10| 48| 46| 20| 35| 37| 23| 38| 53| 32| 26| 33

CPCS 130 | 68135204 | 37| 56| 63| 40| 90130 159 | 149 | 105

Oracle | TransCal 64124 | 39| 76| 54| 70| 54| 21| 43| 43| 37| 172 66
UTDC* 42| 73| 60| 46| 36| 31| 88| 77| 90| 46| 26| 42| 55

SHOT Target-TS 29| 15] 30| 42| 23| 26| 38| 19| 29| 41| 26| 19| 28
Uncalibrated | 3.1 | 17| 39| 45| 32| 37| 53| 21| 43| 42| 36| 27| 35

Source-TS | 13.0 | 62| 140 | 11.1 | 72| 132 | 74| 89 [ 142|100 [ 11.6 | 7.4 | 104

SFCC* 148 [ 115 | 93| 63| 30| 43| 47| 38| 62| 84| 83| 87| 74

SFCC 29| 16| 40| 43| 27| 43| 43| 20| 47| 43| 32| 26| 34

CPCS 137 18156 | 13.1| 41| 34| 71| 74| 92 143 ] 135|229 | 105

Oracle | TransCal 105 [ 107 | 45| 144 | 42| 63| 43| 38| 68| 62| 104|194 | 85
UTDC* 27 ] 84| 32| 41| 32| 24| 92| 67| 66| 36| 29| 63| 49

Target-TS 20 13] 26| 36 11| 17] 30 23] 22| 35| 28] 11| 23

AaD

Uncalibrated | 33 | 29| 45| 39| 35| 55| 34| 38| 66| 37| 42| 24| 4.0
Source-TS 130 | 63| 135|102 | 6.1 | 137 | 86| 104 | 149 | 88 | 104 | 55| 10.1
SFCC* 17.4 | 12.1 | 11.8 | 85| 38| 56| 49| 27| 72| 135|127 | 129 | 94
SFCC 3.8 13| 68| 5.6 12 ] 66| 58| 35| 56| 66| 48 15| 44

Table 4: Adaptive ECE for top-1 predictions (in %) on DomainNet126, using 15 bins (with the low-
est in bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA | Type | Method | CR| CS| PC| PR| PS| RC| RS| SC| SR | Avg
CPCS 115 [ 206 | 143 | 86208 | 142|161 | 98| 8.0 | 138

Oracle | TransCal 64 204|123 | 56| 98| 134 [ 189|101 | 72| 116
UTDC* 70| 58| 64| 44| 58| 54| 66| 47| 71| 59

Target-TS 43| 53| 60| 35| 55| 50| 63| 46| 40| 49

DCPL Uncalibrated | 13.1 | 24.5 | 19.1 | 11.7 | 24.0 | 164 | 265 | 13.6 | 13.8 | 18.1
Source-TS | 15.5 | 30.0 | 25.5 | 142 | 29.6 | 21.5 | 31.3 | 19.7 | 16.2 | 22.6

NTS 149 | 194 | 187 | 13.7 | 18.6 | 15.8 | 224 | 143 | 150 | 17.0

SFCC* 12| 72115 61| 136| 75| 81| 74| 117 | 94

SFCC 57| 55| 61| 50| 58| 56| 66| 52| 59| 57

CPCS 127 [ 193 [ 21.8 | 11.7 | 21.8 | 175 | 16.1 | 11.9 | 6.7 | 15.5

Oracle | TransCal 116 | 167 | 154 | 102 | 123 | 133 [ 212 | 8.1 | 45| 12:6
UTDC* 44| 53| 75| 40| 52| 67| 53| 79| 36| 55

SHOT Target-TS 43| 49| 63| 34| 42| 57| 51| 47| 33| 47
Uncalibrated | 12.6 | 167 | 154 | 10.8 | 17.9 | 133 | 222 | 8.1 | 13.4 | 145

Source-TS | 17.0 | 25.7 | 253 | 152 | 27.3 | 21.5 | 30.0 | 17.4 | 17.9 | 21.9

SFCC* 78| 49| 83| 37| 96| 61| 58| 58| 75| 6.6

SFCC 53| 49| 64| 49| 45| 63| 55| 50| 49| 53

CPCS 153 [ 169 | 13.7 | 10.1 | 160 | 123 | 12.8 | 86| 7.6 | 12.6

Oracle | TransCal 100 [ 207 | 13.8 | 75| 65| 11.1 | 142 | 92| 80| 112
UTDC* 77| 54| 76| 53| 51| 67| 66| 41| 70| 62

AaD Target-TS 67| 49| 71| 47| 49| 54| 55| 36| 57| 54
Uncalibrated | 17.0 | 22.9 | 21.4 | 12.3 | 224 | 158 | 265 | 9.7 | 15.8 | 18.2

Source-TS | 19.8 | 29.7 | 29.1 | 152 | 29.6 | 223 | 32.6 | 17.3 | 18.8 | 23.8

SFCC* 92| 63107 | 62| 114 | 80| 78| 79| 97| 86

SFCC 70| 64| 76| 52| 73| 81| 79| 73| 60| 7.0

ods assume that source domain examples that are similar to target samples are more effective for
calibrating target predictions, but this assumption often fails in practice (see (Penso & Goldberger,
2024]))). On the other hand, methods that focus on estimating accuracy directly in the target domain
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Table 5: Distance between predicted accuracy and true accuracy of the target model for all domain-
shift tasks.
SFDA | Est. Method | DomainNet126 DomainNet40  Office-Home  VisDA | Avg

ATC 10.45 5.61 1043 642 | 823
DCPL | grec 2.40 117 387 374 | 279
stor | ATC 1337 5.19 1458  6.82 | 9.99

SFCC 1.93 1.63 544 3.66 | 317
D | ATC 13.07 4.09 1419 6.19 | 9.38

SFCC 437 3.97 386 6.03 | 4.56

tend to be more effective for calibration. SFCC is more closely aligned with this second category,
as it estimates bin accuracy without relying on source domain data. As a result, our calibration
outcomes were more consistent with the second approach and outperformed those from the first
category.

Network accuracy estimation using the pseudo-labels. Our major goal is calibrating the target
model. However, by considering the pseudo-labels as the ground truth, the SFCC can be also used
to estimate the accuracy of the adapted model on the target domain as follows:

o 1 n

Acc = n ; 1{?31‘:?%'}’ )
s.t. g; is the pseudo label and g; is the predicted label. All existing UDA accuracy estimation
methods, e.g. Projection Norm (PN) (Yu et al., |2022)) Average Thresholded Confidence (ATC)
(Garg & Balakrishnan| [2022)) and Meta target domain accuracy estimation (Deng & Zheng, 2021)
rely on access to labeled source data for accuracy estimation. In contrast, our approach does not
use the source domain data. We compared our method to ATC, an efficiently computed method that
obtained good accuracy prediction results. Table[5]displays the Mean Absolute Error (MAE) of the
predicted accuracy compared to the true accuracy on each domain shift dataset averaged over all the
domain pairs in the task. The results show that our method outperformed ATC in all datasets and for
all SFDA methods, even though ATC relies on the labeled data from the source domain while our
method is source-free. Note that our method is also very efficient.

5 ANALYSIS

We next illustrate and analyze several key features of our calibration method. We implemented three
variants of pseudo-labels: (1) Enhanced PL: pseudo-labels that were generated using Algorithm [I]
(2) PL: pseudo-labels based solely on the source model’s predictions. (3) Synthetic: synthetic noisy
labels that were generated by a noise transition matrix computed from the conditional statistics
p(gly) of the enhanced pseudo-labels given the true labels.

100

80

Accuracy
] 3

Synthetic
Enhanced PL
PL

)
S

2 4 6 8 10 12 14
Confidence Bins (lowest to highest)

Figure 1: Pseudo-label accuracy as a function of the confidence bin.

The correlation between pseudo-labels and the image class ambiguities. Fig. [I] shows the
pseudo-label accuracy as a function of the confidence bin. It shows that the pseudo-label noise
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Figure 2: Statistics of network binwize accuracy: (red) model predictions agree with both pseudo-
labels and true labels (A; 1), (green) model predictions agree only with true labels (A; 2) and (or-

ange) model predictions agree only with pseudo-labels (1211-,2).

is highly correlated with the confidence of the target model. Fig. [2h demonstrates that the enhanced
pseudo-labels satisty A; o ~ 1217;’2 for each confidence bin 7. In contrast, Fig. 2c illustrates a similar
analysis of synthetic noisy labels and indeed in this case A; o % /L,Q. The results in Figs. 1 and 2
are demonstrated on DomainNet40, where we took Sketch as the source domain and Product as the
target domain and applied the SFDA method: DCPL (Diamant et al., [2024)).

10 0[]

8 8
2 2
£ % 6
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o 4 o 4

1 ———

0, 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

d, —dy dy—dy
(a) correct pseudo-labels (b) incorrect pseudo-labels

Figure 3: (a) Histogram of dy — dj in case of correct pseudo-labels. (b) Histogram of d, — dj in
case of incorrect pseudo-labels. Results are demonstrated on DomainNet40, source domain: Sketch,
target domain: Product, SFDA method: DCPL (Diamant et al.| |[2024)).

Analysis of the network predictions when the pseudo-label is incorrect. Our method assumes
that when the true labels differ from the pseudo-labels, it indicates that these examples are challeng-
ing to classify, and the image can be misclassified as y instead of y. Consequently, the model tends
to select pseudo-labels and true labels in roughly equal proportions.
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when using pseudo-labels

Figure 4: (a) Box plots showing the noise-level of different pseudo-labeling methods. (b) Box plots
of the error caused by estimating binwize model accuracy using pseudo-labels instead of the true
labels.

First, we validate that these examples are indeed difficult to classify. When an enhanced pseudo-
label is assigned to a sample x (as described in Algorithm[I), it is determined by the nearest centroid
to the embedding f,(z). Recall that dj(x), d2(x), and d, (x) represent the distances of f,(z) to the
nearest centroid, the second closest centroid, and the centroid of the true label, respectively. Fig.
illustrates the histogram of dy () —dj(z) for correctly predicted pseudo-labels, and the histogram of
dy(z) — dg(z) for incorrectly predicted pseudo-labels. It is clear that when y # ¢, dy(x) = dy(x),
implies that classifying example x as either y or g is equally plausible.

Next, we demonstrate that estimating the target model’s binwize accuracy using pseudo-labels is
indeed accurate. Fig. P shows the noise level of the pseudo-labels across all 102 source-target
pairs in our experiments. We can see that enhancing the pseudo-labels reduces the average label
noise level from 40% to 20% which is still high. For each source-target domain pair and for each
confidence bin, we calculated the difference between binwize accuracy estimation based on the
enhanced pseudo-labels and based on the true labels:

1

|A; — Al = A0 — Aio| = IB,]

| {t € Bilge = 9:}| = {t € Bilge =y} |- ®)

Fig. @p presents box plots of this value across all the bins of the source-target pairs (102 x 3 SFDA
methods) in our experiments. We can see that even though the noise level of the enhanced pseudo-
labels is 20%, when using them to estimate the network accuracy the error is only 4%. This justifies
our approach which is based on using the pseudo-labels to calibrate the target domain model. Note
that the binwize network accuracy estimation results shown in Fig. dp are aligned with the global
network accuracy estimation shown in Table 5]

6 CONCLUSIONS

In this study, we calibrated a model that was adapted to a new domain in an unsupervised manner,
with restricted access to the source domain data. We proposed a calibration method that relies on
pseudo-labels to estimate the average binwise accuracy. We demonstrated that our approach yielded
improved results, surpassing those obtained by methods that leverage labeled source domain data.
We also presented the first source-free domain adaptation accuracy estimation and showed that its
performance is comparable with current methods that have access to the source data. Potential
future research directions include utilizing insights from pseudo-label errors to develop enhanced
unsupervised domain adaptation methods and exploring whether similar strategies can be applied to
general cases of model calibration based on real-world noisy labels, where the noise is dependent
on the image content.

10
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A APPENDIX / SUPPLEMENTAL MATERIAL

This appendix offers a schematic overview of the SFCC algorithm, additional results not included
in the main paper, accuracy levels of the SFDA methods, empirical evidence demonstrating that
varying bin numbers do not impact the superiority of our method, comparison of SFCC method to
a new source free domain adaptation calibration and additional Analysis that was not include in the
main paper.

A.1 SFCC SCHEMA

Fig. 5| presents the full schema of SFCC algorithm (blue) as well as the SFDA process (green).

Train Target
Data

Target Model ———> Logits 3

Optimal T

Soft Pseudo
Labels ERE
Validation
Target Data
Robust
—> Features
Pre-Trained
Network

Figure 5: Diagram of the SFCC method: (blue) calibration process, (green) adaptation process,
(orange) SFCC output

A.2 ADDITIONAL EXPERIMNETAL RESULTS

In this section we provided additional adaECE results on Office-31 dataset (Saenko et al., |2010),
which contains 31 object categories across three domains: Amazon (A), DSLR (D), and Webcam
(W). These categories include common office items such as keyboards, file cabinets, and laptops. In
this case we use adaECE for optimization and evaluating the results.

Additionally, we provide results for various calibration losses, including Expected Calibration Error
(ECE), Negative Log-Likelihood (NLL), Brier Score (BS), and Static Calibration Error (SCE). In
this context, all calibration methods used ECE optimization to find the optimal temperature, except
for the UTDC* method. UTDC* optimized the adaECE metric but was still evaluated using ECE,
NLL, BS, and SCE scores. This approach was chosen because UTDC* can experience a significant
performance drop if the bin sizes are not roughly equal.

A.2.1 ADAECE RESULTS

Table@]presents adaECE score on Office-31 (Saenko et al.,[2010) dataset, in this case SFCC algo-
rithm outperforms all other calibration methods.
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Table 6: Adaptive ECE for top-1 predictions (in %) on Office-31, using 15 bins (with the lowest in
bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA | Type | Method | AD | AW | DA | DW | WA | WD | Avg
CPCS 3.0 59 | 16.5 1.1 | 177 | 07| 7.5

Oracle TransCal 2.9 | 26.1 | 13.1 221126 | 24| 99

UTDC* 3.7 34 62 | 1.7 56| 09 36

Target-TS 1.7 2.1 421 1.3 50| 09| 25

DCPL Uncalibrated 2.8 25131 ] 22| 143 | 24| 62
Source-TS 2.1 3.8 | 16.3 1.7 | 17.2 1.0 7.0

NTS 2.5 3.6 | 13.8 1.7 | 143 | 09| 6.1

SFCC* 11.6 | 16.8 | 125 | 2.0 88| 09| 838

SFCC 2.0 43 6.2 | 1.8 80| 09| 39

CPCS 50| 117|174 | 14| 21.1 06| 95

Oracle TransCal 49 | 175 | 115 | 48 | 147 | 52| 9.8

UTDC* 4.3 5.2 65| 2.0 56| 09| 4.1

SHOT Target.—TS 3.2 4.5 4.9 1.7 45| 09| 3.3
Uncalibrated 49 52 | 115 | 48| 147 52 7.7

Source-TS 4.1 7.6 | 17.1 1.8 | 19.9 1.1 8.6

SFCC* 8.6 | 11.7 | 11.3 | 2.8 50| 09| 6.7

SFCC 32 5.2 7.0 1.5 85| 09| 44

CPCS 6.7 451204 | 13172 | 06| 84

Oracle TransCal 331179 | 157 | 26 | 154 | 24| 95

UTDC* 34 3.8 6.8 1.5 53] 09| 3.6

AaD Target-TS 33| 31 591 12| 44| 09| 3.1
Uncalibrated 33 31 | 157 ] 26| 154 | 24| 7.1

Source-TS 5.1 47 1190 | 16| 187 | 09| 83

SFCC* 94 | 147 | 104 | 29 67| 09| 75

SFCC 4.2 5.5 7.3 1.9 731 09| 45

A.2.2 ECE RESULTS

Tables [7] [8] 0] and [I0] provide the ECE calibration results for Office-Home, VisDA, DomainNet40,
and DomainNet126, respectively.

Table 7: ECE for top-1 predictions (in %) on Office-Home, using 15 bins (with the lowest in bold)
across various SFDA classification tasks and methods with different calibration methods.

SFDA | Type | Method | AC| AP| AR| CA| CP| CR| PA| PC| PR| RA| RC| RP| Avg
CPCS 185 87| 70| 189 | 66| 45208206 | 11.0| 8.1]188| 36 | 123

Oracle | TransCal 151 | 58| 43[127| 50| 48| 87| 169 | 68| 68 |155| 29| 88
UTDC* 85| 49| 34| 52| 42| 38| 79| 86| 58| 73| 87| 28| 59

Target-TS 76| 39| 24| 39| 35| 30| 55| 81| 33| 29| 75| 21| 45

DCPL Uncalibrated | 22.2 | 89 | 54 | 75| 7.7 | 65| 87 250 | 68| 68 221 | 46 | 11.0
Source-TS | 242 | 104 | 83 | 117 | 92| 83109 [ 278 | 9.1 | 103 | 240 | 62 | 134

NTS 212 84| 53| 98| 76| 60| 7.8|232| 79| 83 (204 | 47 |109

SFCC* 145 | 117 | 66 | 167 | 190 | 13.8 | 18.0 | 127 | 43| 34 | 142 | 64 | 118

SFCC 81| 52| 31| 46| 46| 35| 60]109| 41| 51|110] 25| 57

CPCS 200 | 137 | 116 | 147 | 138 | 93 | 215 [ 327 | 118 | 128 | 189 | 9.9 | 167

Oracle | TransCal 268 | 94| 7.5|169 | 92| 84| 93|286| 65| 72| 188 | 7.0 | 13.0
UTDC* 66| 68| 48| 65| 59| 48| 70| 78| 74| 89| 69| 43| 65

SHOT Target-TS 56| 55| 33| 43| 50| 39| 54| 70| 30| 46| 65| 3.1 | 48
Uncalibrated | 27.7 | 122 7.5 | 103 | 11.8 | 104 | 93 [299 | 65| 72 [27.0 | 7.1 | 139

Source-TS | 32.8 | 15.0 | 112 | 16.6 | 143 | 14.0 | 14.3 | 350 | 10.6 | 11.7 | 30.8 | 10.3 | 18.0

SFCC* 63| 75| 43| 98| 79| 63| 89| 74| 40| 56| 78| 38| 66

SFCC 83| 68| 42| 64| 62| 53| 65| 123 | 38| 62[101] 37| 66

CPCS 28.1 [ 102 104 | 223 [ 13.0 | 7.0 | 20.1 [ 239 | 111 | 115 [ 199 | 6.3 | 153

Oracle | TransCal 247 | 82106 | 153 | 90| 68| 129 | 166 | 108 | 107 | 134 | 54 | 12,0
UTDC* 9.1 | 77| 52| 59| 75| 59| 85|106| 56| 76| 99| 54| 74

Target-TS 83| 65| 45| 47| 65| 48| 78| 96| 43| 50| 91| 44| 63

AaD

Uncalibrated | 31.4 | 13.7 | 11.6 | 14.0 | 149 | 133 | 155 | 30.8 | 10.8 | 11.5 | 29.6 | 9.4 | 17.2
Source-TS 339 | 158 | 14.0 | 18.6 | 17.4 | 159 | 194 | 344 | 142 | 133 | 325 | 10.7 | 20.0
SFCC* 105 99| 50| 7.1 |11.8| 90| 125|135 | 48| 6.1 | 124 | 59| 9.0
SFCC 10.3 68| 58| 57| 71 5.8 83 | I1.1 5.5 59 | 111 45| 13
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Table 8: ECE for top-1 predictions (in %) on VisDA, using 15 bins (with the lowest in bold) across
various SFDA methods with different calibration methods.

Type | Method | DCPL | SHOT | AaD
CPCS 12.3 19.2 | 11.6
Oracle TransCal 10.5 14.4 9.2
UTDC* 4.6 3.2 3.2
Target-TS 4.0 29 2.8
Uncalibrated 13.7 155 | 12.1
Source-TS 15.3 18.1 | 13.2
NTS 12.3 N/A | N/A
SFCC* 29.4 26.1 | 27.8
SFCC 5.6 4.2 4.8

Table 9: ECE for top-1 predictions (in %) on DomainNet40, using 15 bins (with the lowest in bold)
across various SFDA classification tasks and methods with different calibration methods.

SFDA | Type | Method | CP| CR| CS| PC| PR| PS| RC| RP| RS| SC| SP| SR | Avg
CPCS 141 L7119 | 147 | 59| 102|101 | 56| 148 | 93| 106 | 13.6 | 10.2

Oracle | TransCal 55] 82| 68| 58119 96| 48| 44| 11.0| 80| 90| 129 82
UTDC* 31[126| 44| 47| 36| 35| 39| 40| 46| 52| 29| 46| 48

Target-TS 23] 07| 38| 39| 09| 28| 33| 19| 30| 45| 25| 18] 26

DCPL Uncalibrated | 5.9 | 24 | 86| 55| 36| 98| 44| 62| 124 | 61| 72| 45| 64
Source-TS | 12.5 | 5.0 | 151 | 119 | 58 | 170 | 11.1 [ 11.7 | 19.5 | 80 | 13.1 | 6.8 | 115

NTS 145 | 55|161 | 178 | 54 | 154 | 148 | 120 | 164 | 147 | 148 | 7.0 | 129

SFCC* 196 | 132|123 [ 102 | 56| 63| 70| 23| 79| 112 | 98| 104 | 96

SFCC 27] 08| 53| 43| 21| 41| 38| 24| 38| 47| 29| 27| 33

CPCS 135 80128208 | 37| 65| 65| 43| 93107163 | 169 | 10.8

Oracle | TransCal 60129 | 41| 59| 53[100| 52| 21| 46| 58| 45| 161 | 69
UTDC* 42 73] 65| 50| 25| 34| 88| 78| 91| 46| 26| 38| 55

SHOT Target-TS 20 12 30| 41| 19| 22| 38| 17| 24| 41| 24| 19| 26
Uncalibrated | 3.1 | 15| 41| 42| 33| 40| 52| 21| 46| 44| 39| 30| 36

Source-TS | 11.0 | 52| 123 | 11.1 | 68 | 135 | 81| 92 [151| 64 [11.7| 66| 98

SFCC* 161 [11.6| 90| 66| 25| 51| 52| 39| 60| 79| 81| 85| 75

SFCC 30| 14 39| 44| 22| 45| 45| 20| 48| 44| 29| 25| 34

CPCS 121 16143127 ] 39| 41| 68| 75| 90| 129 | 13.0 | 23.7 | 10.1

Oracle | TransCal 108 [ 111 | 46| 149 | 49| 77| 46| 41| 67| 61| 83| 17.7| 85
UTDC* 24| 83| 34| 47] 30| 24| 91| 69| 69| 42| 29| 64| 50

Target-TS 21] 10| 26| 39| 06| 18| 33| 22| 22| 38| 28| 09| 23

AaD

Uncalibrated | 3.3 28 | 46| 4.1 34| 55 37 41 6.7 4.1 42| 24| 41
Source-TS 11.1 55 (120|100 | 57 | 138 | 92| 106 | 156 | 57 | 103 | 47| 95
SFCC* 169 | 127 | 122 | 93| 38| 54| 55 30| 83| 130|126 | 134 | 97
SFCC 4.1 1.1 6.6 | 52 1.1 7.1 6.1 371 62| 62| 50| 20| 45
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Table 10: ECE for top-1 predictions (in %) on DomainNet126, using 15 bins (with the lowest in
bold) across various SFDA classification tasks and methods with different calibration methods.

SFDA | Type | Method | CR| CS| PC| PR| PS| RC| RS| SC| SR | Avg
CPCS 11.6 | 20.5 | 142 | 88 [ 225 | 143 | 16.1 | 10.0 | 8.1 | 140

Oracle | TransCal 67201 [ 11.2 | 56| 102|139 | 190 | 10.1 | 7.2 | 116
UTDC* 67| 59| 66| 42| 56| 55| 68| 48| 68| 59

Target-TS 43| 51 61| 36| 54| 48| 62| 44| 40| 49

DCPL Uncalibrated | 13.1 | 24.5 | 19.1 | 11.6 | 23.9 | 16.4 | 26.5 | 13.7 | 13.8 | 18.1
Source-TS | 15.4 | 29.5 | 25.0 | 14.0 | 29.1 | 21.0 | 309 | 189 | 159 | 22.2

NTS 147 | 205 | 20.3 | 13.4 | 183 | 164 | 226 | 13.6 | 14.5 | 17.1

SFCC* 112 69| 118 | 61 [ 140 | 7.1 | 85| 74| 114 | 94

SFCC 58| 54| 63| 51| 59| 56| 66| 52| 60| 58

CPCS 125 [ 193 | 217 | 11.8 | 23.4 | 17.6 | 162 | 12.1 | 6.8 | 15.7

Oracle | TransCal 11.6 | 167 | 155 | 10.3 | 125 | 13.4 | 208 | 86 | 4.5 | 127
UTDC* 45| 53| 76| 39| 52| 69| 54| 81| 37| 56

SHOT Target-TS 44| 48| 63| 34| 42| 58| 51| 48| 34| 47
Uncalibrated | 12.7 | 16.7 | 155 | 10.8 | 17.9 | 13.4 | 222 | 86 | 134 | 146

Source-TS | 16.7 | 249 | 245 | 14.8 | 26.5 | 20.8 | 294 | 16.1 | 17.4 | 21.2

SFCC* 79| 52| 89| 38| 99| 63| 60| 55| 75| 68

SFCC 52| 50| 67| 48| 44| 64| 52| 52| 48| 53

CPCS 154 | 172 | 134 [ 102 | 155 | 125 | 13.0 | 88 | 7.7 | 12.6

Oracle | TransCal 102209 | 142 | 76| 7.6 | 112|143 | 93| 79 | 115
UTDC* 76| 57| 78| 53| 52| 67| 66| 44| 70| 63

AaD Target-TS 67| 50| 71| 47| 51| 53| 53| 36| 58| 54
Uncalibrated | 17.0 | 22.9 | 21.5 | 123 | 22.4 | 159 | 265 | 10.0 | 158 | 183

Source-TS | 19.5 | 29.1 | 28.4 | 15.0 | 29.0 | 21.8 | 32.1 | 162 | 18.4 | 23.3

SFCC* 93| 65[109| 61120 83| 79| 73| 97| 87

SFCC 69| 63| 74| 52| 71| 80| 78] 79| 60| 7.0

A.2.3 NEGATIVE LOG-LIKELIHOOD RESULTS

The Negative Log-Likelihood (NLL) (Hastie et al.l[2009) is a loss function commonly used in prob-
abilistic models to assess how accurately a probabilistic distribution predicts a set of outcomes. A
lower NLL value indicates better model performance, as it minimizes the negative logarithm of the
predicted probabilities for the observed data. The formal definition of the NLL score is:

n K

NLL ==Y 1y,—xy logp(ii = klx;,0), )
=1 k=1

Tables [TT} [T2] [T3] and [T4] provide the NLL calibration results for Office-Home, VisDA, Domain-
Net40, and DomainNet126, respectively.
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Table 11: 100 * NLL on Office-Home, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA | Type | Method | AC | AP | AR | CA| CP| CR| PA| PC | PR | RA | RC | RP | Avg
CPCS 321 | 166 | 104 | 453 | 92 | 76 | 697 | 240 | 201 | 132 | 193 | 65 | 228

Oracle | TransCal 176 | 90 | 65| 132 | 82| 74 133200 | 79 | 115 | 181 | 60 | 116
UTDC* 165 | 87| 64| 120 | 82| 75| 130 | 183 | 77 | 120 | 167 | 60 | 111

Target:TS | 164 | 87 | 65 | 120 | 82| 74 | 124 | 183 | 74 | 109 | 167 | 60 | 109

DCPL Uncalibrated | 222 | 104 | 68 | 128 | 97 | 80 | 133 [ 256 | 79 | 115 [ 228 | 66 | 131
Source-TS | 305 | 141 | 86 | 160 | 129 | 102 | 163 | 346 | 100 | 142 | 309 | 87 | 172

NTS 224 | 101 | 69 | 148 | 97 | 77 | 131 [ 238 | 86 | 126 | 214 | 66 | 131

SFCC* 170 | 92| 69| 134 | 95| 85| 137 | 188 | 75| 109 | 172 | 64 | 116

SFCC 164 | 87| 64| 120 | 83| 74| 125|185 | 74 | 110 | 169 | 60 | 110

CPCS 509 | 202 | 160 | 201 | 388 | 102 | 433 | 388 | 172 | 173 | 231 | 179 | 262

Oracle | TransCal 246 | 117 | 84 | 156 | 114 | 101 | 150 | 270 | 85 | 124 | 207 | 86 | 145
UTDC* 201 | 112 | 81 [ 139 | 108 | 99 | 145 | 218 | 86 | 132 | 195 | 79 | 133

SHOT Target-TS | 200 | 112 | 82 | 140 | 108 | 98 | 145 [ 217 | 83 | 122 | 195 | 79 | 132

Uncalibrated | 256 | 130 | 84 | 145 | 124 | 105 | 150 | 281 85 | 124 | 252 | 87 | 152
Source-TS 346 | 173 | 104 | 178 | 165 | 133 | 180 | 375 | 104 | 149 | 339 | 113 | 196

SFCC* 201 | 112 | 81 | 144 | 111 | 101 | 148 | 217 | 83 | 121 | 195 | 79 | 133
SECC 200 | 112 | 81| 140 | 108 | 98 | 145 | 218 | 82| 123 | 195 | 79 | 132
CPCS 292 | 126 | 109 | 232 | 195 | 111 | 605 | 276 | 118 | 228 | 661 | 92 | 254
Oracle | TransCal 253 | 119 | 107 | 174 | 128 | 111 | 196 | 229 | 113 | 152 | 213 | 90 | 157
acle | yTDC* 214 | 118 | 96 | 159 | 124 | 110 | 176 | 219 | 97 | 142 | 207 | 89 | 146

Target-TS 214 | 118 | 96 | 159 | 124 | 110 | 176 | 219 | 97 | 138 | 207 89 | 146
Uncalibrated | 335 | 159 | 114 | 189 | 169 | 133 | 219 | 343 | 113 | 158 | 318 | 110 | 197
Source-TS 466 | 219 | 153 | 247 | 232 | 177 | 286 | 468 | 148 | 203 | 437 | 148 | 265
SFCC* 215 | 118 | 97 | 161 | 127 | 114 | 180 | 222 | 97 | 139 | 210 | 89 | 147
SFCC 214 | 119 | 96 | 159 | 126 | 110 | 175 | 220 | 97 | 138 | 209 | 89 | 146

AaD

Table 12: 100 * NLL on VisDA, using 15 bins (with the lowest in bold) across various SFDA
methods with different calibration methods.

Type | Method | DCPL | SHOT | AaD
CPCS 90 572 84
Oracle TransCal 94 106 81
UTDC* 73 84 62
Target-TS 73 84 62
Uncalibrated 107 114 113
Source-TS 162 171 173
NTS 75 N/A | N/A
SFCC* 97 104 85
SFCC 74 85 62
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Table 13: 100 * NLL on DomainNet40, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA | Type | Method | CP | CR | CS | PC | PR | PS | RC | RP | RS | SC| SP| SR | Avg
CPCS 205 | 34 | 179 | 173 | 44 | 205 | 105 | 82 | 186 | 100 | 253 | 64 | 143

Oracle | TransCal 84 39103 | 92|50 | 115| 88| 79| 126| 92| 93| 60| 85
UTDC* 81| 44 (102 | 91 | 42110 | 88| 79| 120| 90| 88| 52| 82

Target-TS 81| 34 |101 | 91| 41 |110| 88| 78| 120 | 90| 88| 51| 8l

DCPL Uncalibrated | 83 | 34 | 106 | 91 | 43 | 116 | 88 | 80 [ 128 | 91 | 92| 55| 84
Source-TS | 111 | 45 | 136 | 105 | 52 | 155 | 104 | 100 | 170 | 97 | 125 | 70 | 106

NTS 327 | 53273 | 421 | 53| 140 | 222 | 110 | 143 | 290 | 450 | 73 | 213

SFCC* 97 | 44 | 108 | 98| 44 | 12| 91| 78| 122 95| 92| 56 | 87

SFCC 81| 34102 | 91| 41 |111| 88| 78| 120| 90| 88| 52| 81

CPCS 186 | 53 | 139 | 476 | 54 | 110 | 95 | 81 | 124 [ 207 | 343 | 97 | 164

Oracle | TransCal 93| 50 | 105 | 112 | 56 | 110 | 94 | 80 | 117 | 97| 90| 72| 90

UTDC* 86 | 44 [ 106 | 107 | 53 | 108 | 101 | 89 | 121 | 96 | 89| 55| 88

SHOT Target-TS 86 | 39| 105 | 108 | 53 | 108 | 93| 80 | 117 | 95| 89| 54| 86
Uncalibrated | 86 | 39 | 105 | 108 | 53 | 108 | 94 | 80 [ 117 | 95| 89 | 54 | 86

Source-TS | 102 | 46 [ 120 | 115 | 62 | 128 | 99 | 89 | 138 | 98 | 110 | 65 | 98

SFCC* 99 | 49 | 110 | 110 | 53 | 110 | 94 | 80 | 119 | 99 | 93| 58 | 90

SFCC 86 | 39| 106 | 108 | 53 | 109 | 94 | 80 | 118 | 96| 89| 54| 86

CPCS 234 | 37 | 282 | 138 | 42| 102 | 95| 87 | 117 | 420 | 212 | 70 | 153

Oracle | TransCal 90 | 47 | 98 | 111 | 42| 106 | 92| 80| 113 | 88| 85| 56 | 84
UTDC* 80 | 43| 98| 95| 41 [ 101 | 101 | 86 | 113 | 85| 81| 40 | 80

AaD Target-TS 80 | 37| 97| 95| 40| 101 | 92| 80| 111 | 85| 81| 36| 78
Uncalibrated | 80 | 38 | 98 | 95| 41 | 103 | 92| 80 [ 113 | 85| 82| 37| 79

Source-TS | 99 | 49 | 117 | 102 | 50 | 128 | 100 | 94 | 138 | 88 | 103 | 44 | 93

SFCC* 95| 48 | 105 | 101 | 42 | 104 | 94 | 80| 116 | 93| 89| 47 | 84

SFCC 81| 37100 | 96| 40 | 105 | 94 | 81 | 114 | 87| 82| 37| 80

Table 14: 100 * NLL on DomainNet126, using 15 bins (with the lowest in bold) across various
SEDA classification tasks and methods with different calibration methods.

SFDA \ Type \ Method \ CR \ CS \ PC \ PR \ PS \ RC \ RS \ SC \ SR \ Avg
CPCS 122 | 225 | 180 | 106 | 210 | 156 | 215 | 143 | 114 | 163

Oracle TransCal 107 | 223 | 173 98 | 195 | 155 | 222 | 140 | 110 | 158
UTDC* 106 | 197 | 169 96 | 192 | 144 | 205 | 134 | 109 | 150

Target-TS 105 | 197 | 169 96 | 192 | 144 | 205 | 134 | 108 | 150

DCPL Uncalibrated | 132 | 248 | 196 | 120 | 240 | 164 | 263 | 150 | 139 | 183
Source-TS 176 | 326 | 253 | 160 | 316 | 206 | 340 | 190 | 185 | 239

NTS 158 | 224 | 203 | 145 | 211 | 164 | 238 | 150 | 149 | 182

SFCC* 109 | 198 | 175 97 | 199 | 146 | 206 | 136 | 112 | 153

SFCC 106 | 197 | 169 97 | 192 | 145 | 205 | 135 | 109 | 151

CPCS 132 | 216 | 232 | 124 | 693 | 178 | 218 | 151 | 119 | 229

Oracle TransCal 129 | 205 | 197 | 114 | 201 | 166 | 230 | 142 | 118 | 167

UTDC* 116 | 189 | 186 | 104 | 194 | 158 | 208 | 142 | 118 | 157

SHOT Target-TS 117 | 189 | 186 | 104 | 194 | 158 | 208 | 139 | 118 | 157
Uncalibrated | 132 | 205 | 197 | 116 | 211 | 166 | 235 | 142 | 135 | 171

Source-TS 171 | 254 | 241 | 150 | 264 | 199 | 293 | 169 | 174 | 213

SFCC* 120 | 190 | 190 | 104 | 199 | 159 | 209 | 140 | 121 | 159

SFCC 117 | 190 | 186 | 104 | 194 | 159 | 208 | 139 | 118 | 157

CPCS 167 | 223 | 204 | 121 | 228 | 166 | 225 | 140 | 131 | 178

Oracle TransCal 144 | 236 | 208 | 111 | 202 | 164 | 228 | 139 | 129 | 173

UTDC* 136 | 203 | 198 | 106 | 201 | 159 | 220 | 133 | 128 | 165

AaD Target-TS 137 | 203 | 198 | 106 | 201 | 159 | 220 | 133 | 129 | 165
Uncalibrated | 184 | 246 | 230 | 134 | 242 | 175 | 272 | 140 | 170 | 199

Source-TS 245 | 319 | 295 | 179 | 314 | 217 | 347 | 171 | 226 | 257

SFCC* 137 | 204 | 203 | 106 | 207 | 162 | 221 | 135 | 130 | 167

SFCC 138 | 204 | 198 | 107 | 202 | 161 | 221 | 136 | 130 | 166
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A.2.4 BRIER SCORE RESULTS

The Brier Score (BS) (Brier, [1950) is a metric that evaluates the accuracy of probabilistic predictions
by calculating the mean squared difference between the predicted probabilities and the true label y,
where lower scores signify better predictive performance. The formal definition of the Brier Score
is

n K
BS = (p(§; = k[xi,0) — Liy—iy)” (10)

i=1 k=1

3=

Tables and[I8]provide the BS calibration results for Office-Home, VisDA, DomainNet40,
and DomainNet126, respectively.

Table 15: 100 * BS on Office-Home, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA | Type | Method | AC | AP | AR | CA | CP | CR | PA | PC | PR | RA | RC | RP | Avg
CPCS 56| 29| 25| 49| 26| 26 | S0 | 62| 28 | 39| 54| 20 | 39

Oracle | TransCal 53| 28| 24| 43| 26| 26 | 42| 59| 26 | 37| 53| 20 | 36

UTDC* 51| 28| 23| 40| 26| 26 | 41 | 56| 26 | 38| 52| 20 | 36

Target-TS 51| 28] 24| 40| 26| 26| 41| 56| 26| 37| 51| 20| 36

DCPL Uncalibrated | 56 | 28 | 24 | 41 | 26 | 27 | 42| 64 | 26 | 37 | 57 | 20 | 37
Source-TS | 60 | 29 | 25| 44 | 27| 28 | 44| 67 | 28 | 40 | 60 | 21 | 39

NTS 56| 28| 24| 43| 26| 26 | 41| 62| 27 | 38| 56| 20 | 37

SFCC* 53| 30| 25| 44| 30| 29| 46| 58| 26 | 37| 53| 21 | 38

SFCC 51 28] 23| 40 26| 26| 41| 57| 26| 37| 52| 19| 35

CPCS 75| 40 | 35| 53| 40| 36 | 58| 80| 33| 45| 65| 29 | 49

Oracle | TransCal 71| 37| 31| 53| 36| 36| 49| 75| 30| 42| 64| 27| 46

UTDC* 63| 37| 30| 48| 36| 36 | 48 | 67| 30 | 42| 61 | 26 | 44

SHOT Target-TS 63 | 37| 30| 48| 36| 35| 48 | 66| 30 | 41| 61 | 26 | 44
Uncalibrated | 72 | 38 | 31 | 49 | 38 | 36 | 49| 77 [ 30 | 42| 69 | 27 | 46

Source TS | 77 | 40 | 33 | 53| 40 | 39 | 52| 81 | 32| 44 | 74 | 28| 49

SFCC* 63| 37| 30| 49| 37| 36 | 49| 66| 30 | 41| 61| 26 | 44

SFCC 63 | 37| 30| 48| 36| 36 | 48 | 67 | 30 | 41| 61| 26 | 44

CPCS 74| 38| 36| 60| 41| 38| 64| 72| 35| 49| 71| 28 | 50

Oracle | TransCal 71| 37| 35| 55| 39| 38| 58| 68| 35| 47| 64 | 28 | 48

UTDC* 65| 37| 34| 51| 39| 37| 56| 66| 33| 46| 63| 28 | 46

AuD Target-TS 65| 37| 34| 51| 39| 37| 56| 66| 33| 46| 63| 28 | 46
Uncalibrated | 76 | 39 | 36 | 55| 42| 40| 60 | 77 | 35 | 47| 73 | 29| 51

Source-TS | 80 | 40 | 38 | 59 | 44 | 42| 63| 81 | 37| 51| 77| 30| 54

SFCC* 65| 38| 34| 52| 40| 38| 57| 67| 33| 46| 64 | 29 | 47

SFCC 65| 37| 34| 51| 39| 37| 56| 66| 33| 46| 64| 28 | 46

Table 16: 100 * BS on VisDA, using 15 bins (with the lowest in bold) across various SFDA methods
with different calibration methods.

Type | Method | DCPL | SHOT | AaD
CPCS 30 40 26
Oracle TransCal 30 36 25
UTDC* 28 33 24
Target-TS 28 33 24
Uncalibrated 31 36 27
Source-TS 32 39 28
NTS 28 N/A | N/A
SFCC* 39 41 34
SFCC 28 33 24
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Table 17: 100 * BS on DomainNet40, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA | Type | Method | CP|CR [ CS|PC|PR|PS|RC|RP|RS|SC]|SP|SR|Avg
CPCS 33 12| 38|39 15[39] 32| 27| 44| 3232 22| 30

Oracle | TransCal 30| 13|35 34| 16 (38| 30| 27| 42| 32|31 | 19 29

UTDC* 28| 14| 35|34 14| 37| 30| 27| 40| 31| 29| 16| 28

Target-TS 28| 12 35| 34| 14| 37| 30| 27| 40| 31| 29| 16| 28

DCPL Uncalibrated | 29 | 12 | 36 | 34 | 14 | 38 | 30 | 27 | 42 | 31 | 30 | 16 | 28
Source TS | 31| 13| 38| 36| 15| 41| 32| 29| 46| 32| 32| 17| 30

NTS 33| 13| 40| 41| 15|40 | 36| 30| 44| 36| 34| 17| 32

SFCC* 33| 14| 37| 36| 15|37 | 31| 27| 41| 33|31 ] 18] 29

SECC 28| 12| 35| 34| 14 37| 30| 27| 40| 31|30]| 16| 28

CPCS 34| 16| 40 | 50 | 19| 37| 34| 28| 40| 36 | 36 | 25 | 33

Oracle | TransCal 32| 17| 37| 40| 19|38 | 33| 28| 39| 34|30 | 24| 31

UTDC* 31| 16| 37| 40| 19|37 | 33| 29| 40| 33|30 | 18| 30

SHOT Target-TS 31| 15| 37| 40| 19|37 ] 32| 28| 39| 33|30 18| 30
Uncalibrated | 31 | 15 | 37 | 40 | 19 | 37 | 33 | 28 | 39 | 33 | 30 | 18 | 30

Source-TS | 33| 16| 39 | 41| 19| 40| 33| 29| 42| 33| 32| 18| 31

SFCC* 34| 17| 38| 40| 19| 37| 33| 28| 40| 34| 31| 19| 31

SFCC 31| 15| 37| 40| 1937 ] 33| 28| 39| 33|30/ 18| 30

CPCS 33 14|40 39| 15[35] 33| 29| 40| 36|32 25| 31

Oracle | TransCal 31 16| 34| 39| 15[ 36| 32| 28| 38| 31|29 20| 29

UTDC* 29| 15| 34|35 15| 35| 33| 29| 38| 30| 28| 14| 28

AuD Target-TS 29| 14| 34|35 14| 35| 32| 28| 38| 30| 28| 13| 28
Uncalibrated | 20 | 14 | 34 | 35| 15| 35| 32| 28 | 38 | 30 | 28 | 13 | 28

Source TS | 31| 15| 37| 36| 15[ 38| 33| 30| 42| 30| 30| 14| 29

SFCC* 33| 16| 36| 37| 15|35] 33| 28| 39| 32|30 16| 29

SECC 29| 14| 35|36| 14]35| 33| 28| 38|31 |28]| 13| 28
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Table 18: 100 * BS on DomainNet126, using 15 bins (with the lowest in bold) across various SFDA
classification tasks and methods with different calibration methods.

SFDA | Type | Method | CR|[CS|PC|PR|PS|RC|RS|SC]|SR]|Avg
CPCS 321 60 52| 29| 62| 44 | 58| 41| 32| 46

Oracle | TransCal 31| 59| 52| 28| 56| 44| 60| 41 | 32| 45

UTDC#* 31| 56| 51| 28| 55| 43| 56| 40| 32| 44

Target-TS 31| 56| 51| 28| 55| 43| 56| 40| 31| 44

DCPL Uncalibrated | 32 | 62 | 54| 30 | 62| 45| 64 | 42| 34 | 47
Source-TS 34| 66| 58 | 31| 66| 48 | 68| 45| 35| 50

NTS 331 60| 55| 31|59 45| 61| 42| 34 | 47

SFCC* 33| 56| 52| 29| 58| 43| 57| 41| 33| 45

SFCC 31| 56| 51| 28| 55| 43| 56| 40| 32| 44

CPCS 371 59 63| 34| 66| 50| 60| 44| 36| 50

Oracle | TransCal 37 | 58| 59| 33|59 | 49| 62| 42| 36 | 48

UTDC* 36 | 55| 57| 32| 57| 47| 58| 42| 36| 47

SHOT Target-TS 36 | 55| 57| 32| 57| 47| 58| 42| 36| 47

Uncalibrated | 37 | 58 | 59 | 34 | 60 | 49 | 63 | 42 | 38 49
Source-TS 39| 62| 64| 36| 66 | 52| 68| 45| 40 53

SFCC* 36 | 55| 57| 32| 58 | 47| 58 | 42| 37 47
SFCC 36 | 55| 57| 32| 57| 47| 58 | 42| 36 47
CPCS 40 | 60 | 59 | 32| 61 | 48 | 62 | 40 | 37 49
Oracle TransCal 39| 61| 60| 31 | 58| 48| 62 | 40 | 37 48
UTDC* 39 | 57| 58| 31 | 57| 47| 60 | 40 | 37 47
Target-TS 39 | 57| 58 | 31| 57| 47| 60| 40 | 37 47

AaD

Uncalibrated | 41 | 63 | 63 | 32 | 63 | 49| 68 | 41 | 39 51
Source-TS 43 | 67| 68 | 34| 68 | 53 | 72| 44 | 41 54
SFCC* 39| 57| 59| 31|59 | 48| 61 | 40| 38 48
SFCC 39 | 57| 58| 31 | 58| 47| 61 | 40 | 37 48

A.2.5 STATIC CALIBRATION ERROR RESULTS

Static Calibration Error (SCE) (Nixon et al.,2019), which is an extension of ECE to every probability
in the multi class setting. SCE bins predictions separately for each class probability, computes the
calibration error within the bin, and averages across bins. Note, unlike ECE, assuming infinite
data and infinite bins, SCE is guaranteed to be zero if only if the model is calibrated. The formal
definition of the SCE score is:

SCE = Z Z M lacc(m, k) — conf(m, k)| (11)

klml

Where, acc(m, k) and conf(m, k) are the accuracy and confidence of bin m for class label k, respec-
tively; and n,,, is the number of predictions in bin m for class label k;

Tables[19] and [20] present the SCE calibration results for VisDA and DomainNet126, respectively.
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Table 19: 10,000 * SCE on VisDA, using 15 bins (with the lowest in bold) across various SFDA
methods with different calibration methods.

Type | Method | DCPL | SHOT | AaD
CPCS 13.39 | 1593 | 12.86
Oracle TransCal 13.28 16.60 | 12.91
UTDC* 13.16 | 16.34 | 12.46
Target-TS 13.00 16.34 | 12.46

Uncalibrated | 13.42 16.60 | 12.98
Source-TS 13.16 16.40 | 12.95

NTS 13.02 N/A | N/A
SFCC* 16.74 | 19.13 | 15.17
SFCC 13.13 | 1647 | 12.52

Table 20: 10,000 * SCE on DomainNet126, using 15 bins (with the lowest in bold) across various
SFDA classification tasks and methods with different calibration methods.

SFDA | Type |[Method | CR| CS| PC| PR| PS| RC| RS| SC| SR| Avg
CPCS 0.19 | 046 | 0.41 | 0.17 | 0.39 | 032 | 0.38 | 033 | 0.19 | 0.32

Oracle | TransCal 0.18 | 0.46 | 0.41 [ 0.17 | 0.38 | 032 | 0.40 | 033 | 0.18 | 0.31
UTDC* 0.18 | 0.38 | 0.38 | 0.16 | 0.38 | 0.30 | 0.36 | 0.30 | 0.18 | 0.29

Target:-TS | 0.18 | 0.38 | 0.38 | 0.16 | 0.38 | 0.30 | 0.36 | 0.30 | 0.18 | 0.29

DCPL Uncalibrated | 0.19 | 0.48 | 0.43 | 0.17 | 0.47 | 033 | 0.43 | 035 | 0.20 | 0.34
Source-TS | 0.20 | 0.48 | 0.44 | 0.17 | 0.48 | 033 | 0.44 | 0.36 | 0.20 | 0.34

NTS 0.20 | 0.46 | 0.43 | 0.17 | 0.45 | 033 | 0.41 | 034 | 0.20 | 0.33

SFCC* 0.18 | 0.37 | 0.39 | 0.16 | 0.37 | 030 | 0.35 | 0.30 | 0.18 | 0.29

SFCC 0.18 | 0.38 | 0.39 | 0.17 | 0.38 | 030 | 0.36 | 030 | 0.18 | 0.29

CPCS 0.23 | 046 | 0.53 | 0.20 | 0.45 | 0.39 | 0.42 | 035 | 0.22 | 0.36

Oracle | TransCal 0.23 | 045 | 050 | 020 | 0.45 | 038 | 0.44 | 0.34 | 021 | 035
UTDC* 021 | 0.38 | 0.46 | 0.18 | 0.41 | 034 | 0.37 | 033 | 0.21 | 0.32

SHOT Target:-TS | 021 | 0.38 | 0.46 | 0.18 | 0.41 | 034 | 0.37 | 031 | 0.21 | 032
Uncalibrated | 0.23 | 0.45 | 0.50 | 0.20 | 0.48 | 0.38 | 0.45 | 0.34 | 0.23 | 0.36

Source-TS | 0.23 | 0.48 | 0.54 | 0.20 | 0.52 | 0.41 | 0.48 | 0.38 | 0.23 | 0.39

SFCC* 021 | 0.37 | 0.45 | 0.18 | 0.39 | 0.34 | 0.37 | 030 | 0.20 | 0.31

SFCC 021 | 0.38 | 046 | 0.19 | 0.41 | 034 | 0.37 | 031 | 0.21 | 032

CPCS 0.28 | 0.48 | 0.58 | 0.20 | 0.46 | 0.41 | 0.43 | 035 | 0.24 | 0.38

Oracle | TransCal 0.26 | 0.50 | 0.59 | 0.20 | 0.44 | 0.41 | 0.43 | 0.35 | 0.23 | 0.38
UTDC* 025 | 041 | 052 | 0.19 | 0.43 | 038 | 0.40 | 031 | 0.24 | 035

AaD Target:-TS | 0.25 | 040 | 0.53 | 0.19 | 0.43 | 038 | 0.39 | 031 | 0.24 | 0.35
Uncalibrated | 0.28 | 0.51 | 0.63 | 0.20 | 0.55 | 0.43 | 0.49 | 035 | 0.27 | 0.41

Source-TS | 0.28 | 0.54 | 0.67 | 021 | 0.58 | 0.46 | 0.52 | 0.38 | 0.26 | 0.43

SFCC* 025 | 0.39 | 0.50 | 0.19 | 0.39 | 0.37 | 0.38 | 0.29 | 0.23 | 0.33

SFCC 0251039 | 052 | 0.19 | 0.41 | 037 | 0.38 | 029 | 0.24 | 0.34

A.3 MODELS ACCURACY

Tables 21] [22] 23] and [24] provide the accuracy levels are associated with the displayed calibration
levels for Office-Home, VisDA, DomainNet40, and DomainNet126, respectively.

Table 21: Accuracy on Office-Home, across various SFDA classification tasks and methods
SFDA \ AC AP AR CA CP CR PA PC PR RA RC RP \ Avg
DCPL | 66.1 833 845 724 845 826 727 624 835 750 664 87.6 | 76.7

SHOT | 555 772 794 663 769 759 674 535 804 725 582 832|705
AAD | 560 774 776 644 756 751 624 554 778 68.8 575 828 | 69.2
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Table 22: Accuracy on VisDA, across various SFDA classification tasks and methods

SFDA | SR
DCPL | 82.4
SHOT | 78.7
AAD | 849

Table 23: Accuracy on DomainNet40, across various SFDA classification tasks and methods
SFDA ‘ CP CR CS PC PR PS RC RP RS SC SP SR ‘ Avg
DCPL | 81.0 924 767 770 91.1 754 79.8 819 73.0 80.1 80.7 902 | 81.6

SHOT | 7877 903 742 720 882 741 78.1 810 727 774 79.7 88.6 | 79.6
AAD | 795 910 761 751 905 751 778 80. 733 79.7 813 914 | 809

Table 24: Accuracy on DomainNet126, across various SFDA classification tasks and methods
SFDA | CR CS PC PR PS RC RS SC SR \ Avg
DCPL | 80.8 62.0 654 823 618 71.6 615 732 804 | 71.0

SHOT | 77.0 61.0 598 79.0 588 679 59.1 71.1 763 | 67.8
AAD | 759 596 59.0 805 589 684 578 726 77.1 | 678

A.4 CALIBRATION COMPARATIVE RESULTS AS A FUNCTION OF THE NUMBER OF BINS

We verified that the number of bins used for calibration does not impact our method’s performance.
We tested various bin counts ranging from 3 to 21 and observed that SFCC consistently outper-
formed the compared methods across all tested bin numbers. This phenomenon is illustrated in

Fig.[6]
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‘ uTDC*
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Figure 6: adaECE results on the DomainNet126 dataset across different bin numbers. Calibration
and evaluation were conducted using the adaECE.
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A.5 COMPARISON WITH PSEUDOCAL

PseudoCal (Dapeng Hu & Foo, [2023)) is a recently introduced source-free calibration method. It
generates new pseudo examples from the original images and uses the original predictions of the
adapted model to find the optimal temperature. We compared SFCC to PseudoCal on the VisDA
dataset using SHOT as the SFDA method. We used the original code published by the Pseudocal
author. Table[25]shows that SFCC outperforms PseudoCal on all the different seeds that we used.

Table 25: ECE for top-1 predictions (in %) on VisDA, using 15 bins (with the lowest in bold) and
SHOT as SFDA method

Method | 2019 | 2020 | 2021 | Avg

PseudoCal 6.8 6.5 7.0 6.8
SFCC 3.6 4.8 4.1 4.2

A.6 MORE ANALYSIS

Fig. @b demonstrates that despite the noise in EPL, using them as true labels to evaluate model
accuracy across various confidence bins is highly accurate. Fig. |/| empirically illustrates that the
noisy evaluation A; serves as an unbiased estimator of the true accuracy A;. Note that Fig.
shows the statistics of |/~1Z — A;| while Fig. [7|shows the statistics of A; — A,

¢  Mean

Enhanced PL PL Synthetic
Figure 7: binwize difference between the noisy accuracy and true accuracy of the target model

A.7 SUBSET OF TRUE LABELS

In scenarios where labeling target domain data is inexpensive, one might consider labeling a small
portion of the data for calibration purposes. However, in some instances, a small labeled subset may
not be sufficient, or the target data itself may be limited. Fig. [§]demonstrates the proportion of the
target domain validation set required to surpass the calibration performance of SFCC when using a
subset of true label examples. The results indicate that in certain cases, labeling over 50% of the
validation set may be necessary.
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Figure 8: Comparison of ECE loss between SFCC and temperature scaling applied to different
proportions of labeled target examples. Dataset: DomainNet40, SFDA: DCPL, number of bins: 15
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