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Abstract
In the Fourier frequency domain, luminance information is primar-
ily encoded in the amplitude component, while spatial structure
information is significantly contained within the phase component.
Existing low-light image enhancement techniques using Fourier
transform have mainly focused on amplifying the amplitude compo-
nent and simply replicating the phase component, an approach that
often leads to color distortions and noise issues. In this paper, we
propose a Dual-Stage Multi-Branch Fourier Low-Light Image En-
hancement (DMFourLLIE) framework to address these limitations
by emphasizing the phase component’s role in preserving image
structure and detail. The first stage integrates structural information
from infrared images to enhance the phase component and employs
a luminance-attention mechanism in the luminance-chrominance
color space to precisely control amplitude enhancement. The second
stage combines multi-scale and Fourier convolutional branches for
robust image reconstruction, effectively recovering spatial struc-
tures and textures. This dual-branch joint optimization process
ensures that complex image information is retained, overcoming
the limitations of previous methods that neglected the interplay
between amplitude and phase. Extensive experiments across mul-
tiple datasets demonstrate that DMFourLLIE outperforms current
state-of-the-art methods in low-light image enhancement.

CCS Concepts
• Computing methodologies → Computer vision; Image pro-
cessing; Low level.
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1 Introduction

Input FECNet FourLLIE DMFourLLIE

(a) First column is input, second to fourth columns represent the outputs of the
respective methods in the first stage.

Ground Truth FECNet FourLLIE DMFourLLIE

(b) First column is ground truth image, second to fourth columns represent
the outputs of the respective methods in the second stage.

Figure 1: Comparison with State-of-the-Art Two-Stage
Fourier-Based Methods. (a) displays initial results from FEC-
Net [14] and FourLLIE [37], which exhibit color distortion
and noise. Our method, in contrast, enhances brightness and
preserves color fidelity, eliminating noise. (b) shows the su-
perior noise suppression and color accuracy of our approach,
particularly in highlighted areas.

Due to environmental constraints and hardware limitations, im-
ages often suffer from issues like diminished visibility, uneven
exposure, loss of detail, and color inaccuracies. These challenges sig-
nificantly hinder the performance of computer vision applications,
affecting critical tasks such as autonomous driving [35], pedes-
trian recognition [56], and object detection [13]. The primary aim
of low-light image enhancement (LLIE) techniques is to restore
images to a state of normal lighting, preserving as much texture
detail as possible, thereby enhancing the efficiency of subsequent
vision processing tasks. With the advancement of neural networks,
traditional non-learning methods are becoming less prevalent. Re-
cent years have seen the emergence of innovative LLIE methods
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Figure 2: Our Motivations. (a): Illustrates issues from replac-
ing the amplitude component of a low-light image with that
of a normally illuminated image, resulting in 𝐼𝑎 . (b): High-
lights the importance of the phase component, as shown by
the distorted image 𝐼𝑏 from replacing the phase component.

[9, 25, 27, 39, 53, 60, 61] in computer vision, yet a balance between
method performance and computational demand remains elusive.
High-performing models [44, 52] often come with substantial com-
putational costs, whereas Fourier-based strategies [14, 37] present a
cost-effective solution by leveraging Fourier frequency information
for image brightening.

Researches have validated the efficacy of Fourier domain-based
low-level image enhancement techniques across various tasks, in-
cluding enhancement under low-light conditions [14, 37], denoising
[49, 62], and super-resolution [8]. In LLIE tasks, since luminance
information is predominantly encoded in the amplitude component,
common strategies [14, 37] involve amplifying the amplitude com-
ponent and duplicating the phase component. However, the efficacy
of such strategies warrants scrutiny. Through rigorous experimen-
tation, we have arrived at the following two critical insights:

(1) As demonstrated in Fig. 2(a), directly replacing the amplitude
component of a low-light image with that of a normally illuminated
image results in the generated image 𝐼𝑎 suffering from compromised
brightness and texture, thereby introducing noise. Therefore, this
indicates significant limitations in previous methods [14, 37], where
they directly approximate the amplitude component between the
low-light input and the ground truth image. This approach leads to
the degraded image 𝐼𝑎 being used as the learning target for the net-
work, making the subsequent optimization challenging. We employ
difference maps and histogram difference curves to visually demon-
strate the disparity between 𝐼𝑎 and 𝐼𝑔𝑡 . Furthermore, enhancing the
amplitude component may result in overflow of inherently brighter
regions in the original image, introducing distorted patches in the
visual output (highlighted by the red boxes in 𝐼𝑎). As consistently
demonstrated in our results shown in Fig. 1, although FECNet [14]

and FourLLIE [37] attempt to mitigate degradation by restoring
the phase component and spatial information in the second stage,
merely recovering these aspects does not fully address the distor-
tions caused by the first stage.

(2) As depicted in Fig. 2(b), the distorted image 𝐼𝑏 demonstrates
that the phase component also contains a significant amount of
image information, which likewise requires meticulous handling
during the process of frequency domain information transfer. The
phase component retains more detailed information of the image,
sometimes even more critical than the amplitude component. Fur-
thermore, swapping the phase components between two images
while keeping their amplitude components unchanged results in
the content of the images being exchanged along with the phase
information, underscoring the significance of phase information
for the structure and content of images.

Building upon the insights garnered, we propose a novel frame-
work, DMFourLLIE (Dual-Stage Multi-Branch Fourier Low-Light
Image Enhancement), which employs a two-stage design rooted in
Fourier-based methods [14, 20, 37], as illustrated in Fig. 3. The inau-
gural stage, detailed in Fig. 4, is dedicated to Fourier reconstruction.
Within the Fourier frequency domain, our aim is to concurrently
augment the expressiveness of both amplitude and phase compo-
nents. To bolster the structural integrity of the phase component
in low-light images, we integrate infrared prior information. For
the amplitude component, we employ a luminance attention map
to transition the luminance space, thereby enhancing the accuracy
of amplification across various brightness levels. Progressing to
the second stage, depicted in Fig. 5, our focus shifts towards the
reconstruction of spatial structures and textures. Here, we intro-
duce a dual-pathway architecture that merges multi-scale spatial
convolution branches with branches based on Fourier convolution
[4]. This configuration is strategically designed to refine spatial
structure representation while capturing intricate texture details.

Overall, the main contributions of this paper can be summarized
as follows:

• In this paper, we introduce a framework named Dual-Stage
Multi-Branch Fourier Low-Level Image Enhancement (DM-
FourLLIE). It addresses the limitations of existing meth-
ods by accurately enhancing frequency domain information
through cross-modal enhancements within the Fourier do-
main. Additionally, it employs a dual-pathway architecture
that combines multi-scale spatial convolution with Fourier
convolution techniques to reconstruct fine-grained textures
and spatial structures with high fidelity.

• To the best of our knowledge, DMFourLLIE is the first ap-
proach in the LLIE field to leverage the synergistic potential
of infrared and luminance priors in the Fourier space. By
using cross-modal infrared images to guide the structural in-
formation of the phase component and luminance attention
maps for precise amplitude component enhancement, our
method introduces a novel strategy for embedding comple-
mentary perceptual priors within the Fourier space.

• Extensive experiments validate the effectiveness of our hy-
potheses and the architectural advantages of DMFourLLIE.
Our approach outperforms current state-of-the-art methods
in the LLIE domain.
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Figure 3: Overall framework of DMFourLLIE.

Figure 4: Structure of the Fourier Reconstruction Stage.

2 Related Work
Non-learning and Learning-based LLIE Methods. The spec-
trum of Low-Light Image Enhancement (LLIE) techniques is bifur-
cated into non-learning and learning-based methodologies. Tra-
ditional non-learning strategies encompass Histogram-based [1,
18, 31] and Retinex-based [6, 21, 43] methods. These approaches,
however, fall short in accurately capturing scene dynamics and
perceptual cues, leading to suboptimal brightness and color fi-
delity in real-world scenarios, along with exacerbated noise in
extremely low-light conditions. The advent of deep learning cat-
alyzed the development of a plethora of learning-based LLIE strate-
gies [9, 25, 27, 53, 60]. Notably, [7] introduced an unsupervised
model that derives adaptive priors from pairs of low-light images.
Similarly, [42] unveiled a semantic-aware framework that imbues
models with a rich tapestry of semantic knowledge. Furthermore,
studies [14, 37] have validated the efficacy of Fourier space manip-
ulation for enhancing illumination in low-light scenes, achieving
nuanced improvements with minimal model complexity.

Infrared and Visible Image Fusion. In computer vision, com-
bining infrared and visible light imagery [3, 58] enhances visual
representation in various tasks. However, the lack of annotated
visible-infrared image pairs hinders the development of infrared-
based deep learning models. This challenge has led to methods
[16, 29] for training models in visible-to-infrared image translation.
[15, 19] introduced a translation model focused on edge preserva-
tion to maintain spatial textures. Unlike traditional shared encoder
designs, [59] explored a novel approach for feature extraction and
fusion. Inspired by the unique properties of infrared imagery and

Figure 5: Structure of the Spatial and Texture Reconstruction
Stage.

previous research, we investigate the application of infrared in the
Fourier domain for illumination enhancement.

Fourier-based LLIE Methods. The exploration of Fourier fre-
quency information for LLIE is still in its early stages. [8] investi-
gated Fourier loss for super-resolution enhancement, while [62]
used Fourier transform for image fusion to combine spatial-frequency
signals. [49] tackled dehazing by exploring both frequency and spa-
tial domains. Additionally, [14] highlighted the role of amplitude
in encoding brightness and phase in capturing structural details,
proposing a network for exposure correction. FourLLIE [37] showed
that global feature extraction via Fourier analysis can be achieved
without increasing model parameters. UHDFour [20] noted the
similarity of amplitude components across image resolutions and
proposed an illumination technique for ultra-high-definition con-
tent. Despite these advancements, the isolated manipulation of
amplitude and phase components has limitations, highlighting the
need for further exploration of Fourier frequency information.

3 Method
3.1 Fourier Frequency Information
Firstly, we provide a brief introduction to Fourier frequency infor-
mation. Fourier frequency information refers to the representation
of an input image 𝑥 in the Fourier space 𝑋 through a transform
function F . The input image 𝑥 has a shape of 𝐻 ×𝑊 , where 𝐻
represents the height and𝑊 represents the width. F is expressed
as:

F (𝑥) (𝑢, 𝑣) = 𝑋 (𝑢, 𝑣) = 1√
𝐻×𝑊

∑𝐻−1
ℎ=0

∑𝑊 −1
𝑤=0 𝑥 (ℎ,𝑤)𝑒− 𝑗2𝜋 ( ℎ

𝐻
𝑢+ 𝑤

𝑊
𝑣) ,
(1)

where ℎ,𝑤 are the coordinates in the spatial space and 𝑢, 𝑣 are the
coordinates in the Fourier space, 𝑗 is the imaginary unit, the inverse
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process F is denoted as F −1. Each complex component𝑋 (𝑢, 𝑣) can
be represented by the amplitude component A(𝑋 (𝑢, 𝑣)) and phase
component P(𝑋 (𝑢, 𝑣)). These two components are expressed as:

A(𝑋 (𝑢, 𝑣)) =
√︁
𝑅2 (𝑋 (𝑢, 𝑣)) + 𝐼2 (𝑋 (𝑢, 𝑣)), (2)

P(𝑋 (𝑢, 𝑣)) = arctan[ 𝐼 (𝑋 (𝑢, 𝑣))
𝑅(𝑋 (𝑢, 𝑣)) ], (3)

where 𝑅(𝑥) and 𝐼 (𝑥) represent the real and imaginary part of
𝑋 (𝑢, 𝑣) respectively. In our method, the Fourier transform and in-
verse procedure is computed independently on each channel of
feature maps.

3.2 Fourier Reconstruction Stage
As shown in Fig .4, the low-light input image 𝐼𝑙𝑜𝑤 is fed into the
Fourier reconstruction phase, resulting in the output of the first
stage, 𝐼𝑠1. This stage consists of six identical components with
skip connections, where the first component is visualized in detail.
The LA-Net and pretrained models of Infrared Branch are only
activated in the first component, with their outputs being passed
and processed in the subsequent five components. The branches
are described as follows:

Fourier Branch: The input image is first transformed into the
Fourier space to obtain the amplitude component𝐴𝑖𝑛 and the phase
component 𝑃𝑖𝑛 . Once transformed into the Fourier space, the as-
sumption of spatial invariance no longer holds [8]. Therefore, we
apply a 1×1 convolutional layer and LeakyReLU activation function
in this space to extract the amplitude component, to avoid informa-
tion loss. The amplitude and phase components are each extracted
through a 1 × 1 convolutional layer with LeakyReLU activation,
resulting in 𝐴𝑜𝑢𝑡 and 𝑃𝑜𝑢𝑡 . Unlike existing methods [14, 37], which
only enhance the amplitude component and adopt a strategy of
replicating the phase component, our analysis in Fig .2 emphasizes
the importance of phase information for the structure and content
of images, indicating that merely replicating the phase component
is not the best strategy.

Luminance Branch: To address the potential overflow issue
in the Fourier domain space, we learn a luminance attention map
through the luminance branch to precisely guide the enhancement
level of the amplitude component in different areas, correctly en-
hancing underexposed areas while avoiding over-enhancement
of correctly exposed areas. According to the study by Bread [10],
among various color spaces, the luminance component (Y) in the
YCbCr color space performs best and is least affected by noise. In-
spired by this finding, we predict the luminance attention map 𝐿𝑎𝑡𝑡
through LA-Net (Luminance Attention Net) based on the luminance
component 𝑌𝑙𝑜𝑤 from the YCbCr color space. LA-Net follows the
classic U-Net architecture with an encoder-decoder structure. This
process and the learning target can be represented as:

𝐿𝑎𝑡𝑡 = 𝐿𝐴-𝑁𝑒𝑡 (𝑌𝑙𝑜𝑤), 𝐿𝑎𝑡𝑡 =
|𝑌𝑙𝑜𝑤 − 𝑌𝑔𝑡 |

𝑌𝑔𝑡
, (4)

where 𝑌𝑙𝑜𝑤 and 𝑌𝑔𝑡 represent the luminance components (Y chan-
nel) extracted from the input low-light image and the ground truth
image, respectively. In the predicted 𝐿𝑎𝑡𝑡 , brighter areas correspond
to darker areas in the input low-light image, and vice versa. Then,
𝐿𝑎𝑡𝑡 is transformed into the Fourier space to obtain the amplitude

component 𝐴𝑙𝑢𝑚 , and features are extracted through two 1 × 1
convolutional layers with LeakyReLU activation, resulting in �̃�𝑙𝑢𝑚 .

Luminance Augment: To address the issue of varying bright-
ness across different regions and the potential overflow problem
during the transfer of amplitude components in the Fourier space,
we propose a Luminance Augment operation. This operation lever-
ages 𝐿𝑎𝑡𝑡 to make 𝐴𝑜𝑢𝑡 pay more attention to darker areas while
reducing focus on brighter areas. Specifically, �̃�𝑙𝑢𝑚 undergoes a
sigmoid operation and is then element-wise multiplied by𝐴𝑜𝑢𝑡 , and
through a residual connection, we obtain the enhanced amplitude
component 𝐴𝑎𝑢𝑔 . The process can be described as follows:

𝐴𝑎𝑢𝑔 = 𝐴𝑜𝑢𝑡 · 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (�̃�𝑙𝑢𝑚) +𝐴𝑜𝑢𝑡 , (5)

through the aforementioned operation, 𝐴𝑎𝑢𝑔 effectively adjusts the
attention towards enhancing different areas, thereby more accu-
rately amplifying the amplitude component.

Infrared Branch: The input 𝐼𝑙𝑜𝑤 is processed by a pre-trained
RGB-to-TIR image translation model [15, 19], which focuses on
edge preservation. This model, trained on the VIPER[32], FLIR-
ADAS, and STheReO[50] datasets, generates infrared images from
low-light scenes, improving infrared image performance in dark
conditions. This process retains spatial texture information and
generates the corresponding infrared image 𝐼𝑖𝑛𝑓 from 𝐼𝑙𝑜𝑤 . Infrared
images, unaffected by illumination, color, and distortion, enhance
object outlines. Since contour information primarily resides in the
phase components of the Fourier domain, we extract the phase
component 𝑃𝑖𝑛𝑓 of 𝐼𝑖𝑛𝑓 using FFT. Features are then extracted
through two 1 × 1 convolutional layers with LeakyReLU activation,
resulting in 𝑃𝑖𝑛𝑓 .

Infrared Augment: The phase component in the Fourier space
is crucial for the structure and content of an image. Considering
the rich structural information of infrared images and their high
robustness in dark scene tasks, we are inspired by the transposed
attention in Restormer [51] and design an Infrared Augment opera-
tion. This operation achieves phase attention maps𝑀𝑝ℎ𝑎 through
cross-modal fusion of phase component features of infrared and
visible light images in the Fourier space. The phase attention map
𝑀𝑝ℎ𝑎 is described as follows:

𝑀𝑝ℎ𝑎 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(𝑃𝑜𝑢𝑡 ) × 𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(𝑃𝑖𝑛𝑓 )

)
, (6)

then, 𝑃𝑜𝑢𝑡 is multiplied by 𝑀𝑝ℎ𝑎 and added through a residual
connection, resulting in the enhanced phase component 𝑃𝑎𝑢𝑔 . This
process is as follows:

𝑃𝑎𝑢𝑔 = 𝑃𝑜𝑢𝑡 ×𝑀𝑝ℎ𝑎 + 𝑃𝑜𝑢𝑡 , (7)

to this end, we obtain the enhanced amplitude component 𝐴𝑎𝑢𝑔

and phase component 𝑃𝑎𝑢𝑔 , which are then transformed back into
the spatial domain through the inverse Fourier transform to yield
the output 𝐼𝑠1:

𝐼𝑠1 = F −1 (𝐴𝑎𝑢𝑔 × cos(𝑃𝑎𝑢𝑔) +𝐴𝑎𝑢𝑔 × sin(𝑃𝑎𝑢𝑔)) . (8)

3.3 Spatial and Texture Reconstruction Stage
While the Fourier space conveys global information, it lacks the
enhancement of spatial details and may introduce additional noise
and feature loss during the Fourier transform and feature trans-
fer processes. To address this, we design the Spatial and Texture
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Figure 6: Visual comparison on LSRW-Huawei, LOL-v2-real, and LOL-v2-Synthesis datasets. DMFourLLIE effectively enhances
visibility while preserving image texture and original colors without introducing additional noise.

Reconstruction Stage to further refine image details and texture
structures. Specifically, as shown in Fig. 5, this stage consists of two
branches: the Multi-scale Convolution Branch and the Fourier Con-
volution Branch. The first-stage output 𝐼𝑠1 is initially downsampled
by an encoder, then processed through dual-path branches com-
posed of six Multi-scale Convolutions and Fourier Convolutions,
respectively. Finally, features from both branches are concatenated
and fed into a decoder, producing the final brightening result 𝐼𝑠2.
These two branches work collaboratively to optimize pixel-level re-
construction, effectively recovering important details and structural
patterns in the original image.

Multi-scale Convolution Branch: The structure of the Multi-
scale Convolution is depicted below Fig. 5. In this branch, multiple
convolutional layers with varying kernel sizes are utilized to cap-
ture a wide range of spatial features across multiple scales and
enhance the overall representation of spatial structures. To reduce
computational cost, we downscale the dimension from (C=64) to
(C/4=16), and gradually increase the kernel size by 2 from 3 × 3 to
9 × 9. After applying a sigmoid operation to the reduced features,
they are multiplied with the output features of different convo-
lutional kernels, then concatenated, restoring the dimension to
(C=64). The features fused with multi-scale spatial information are
processed through a 1 × 1 convolutional layer and combined with
the input via a residual connection.

Fourier Convolution Branch: Fast Fourier Convolution (FFC)
[4] has been proven to handle high-resolution restoration cases
with strong periodic texture, achieving robust enhancement at the
resolution level. It consists of two branches: 1) a local branch that

uses regular convolution, and 2) a global branch that convolves
features after a fast Fourier transform. The outputs of both branches
are then merged to obtain a larger receptive field and local invari-
ance during the restoration process [36]. However, such a powerful
model is unable to learn a reasonable overall spatial structure [5].
Therefore, we pair it with the Multi-scale Convolution to form a
dual-path structure, complementing it to achieve precise overall
spatial structure through the final feature fusion.

3.4 Loss Function
To further improve image quality from both qualitative and quanti-
tative aspects by considering perceptual information and regional
differences, our loss function consists of four parts:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆1L𝑠1 + 𝜆2L𝑠2 + 𝜆3L𝑝𝑒𝑟 + 𝜆4L𝑙𝑢𝑚, (9)

where 𝜆 denotes the loss weights, we empirically set 𝜆1, 𝜆2, 𝜆3, 𝜆4 =
[0.5, 1, 0.2, 0.1]. L𝑠1 = ∥𝐼𝑠1 −𝐺𝑇 ∥2 represents the 𝑙2 loss between
the preliminary enhanced result 𝐼𝑠1 and ground truth image 𝐺𝑇 .
Similar to L𝑠1, L𝑠2 = ∥𝐼𝑠2 −𝐺𝑇 ∥2 represents the loss between the
final output 𝐼𝑠2 and𝐺𝑇 . L𝑝𝑒𝑟 is the perceptual loss between the 𝐼𝑠2
and 𝐺𝑇 , which constrains the features extracted from VGG [34] to
obtain better visual results.

Additionally, to acquire the luminance attention map for cor-
rectly guiding enhancement of luminance in image regions by
𝐿𝐴-𝑁𝑒𝑡 , we adopt 𝑙2 error to measure the prediction error:

L𝑙𝑢𝑚 = ∥𝐿𝐴-𝑁𝑒𝑡 (𝐼𝑙𝑜𝑤) − 𝐿𝑎𝑡𝑡 ∥2 , (10)

where 𝐿𝐴-𝑁𝑒𝑡 (𝐼𝑙𝑜𝑤) and 𝐿𝑎𝑡𝑡 represent the predicted and expected
luminance attention maps, respectively.
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Methods LOL-v2-Real LOL-v2-Syn LSRW-Huawei #Param #FLOPs
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ (M) (G)

NPE [38] (TIP, 13) 17.33 0.4642 0.2359 16.60 0.7781 0.1079 17.08 0.3905 0.2303 - -
LIME [11] (TIP, 16) 15.24 0.4190 0.2203 16.88 0.7578 0.1041 17.00 0.3816 0.2069 - -
SRIE [6] (ICCV, 16) 14.15 0.5524 0.2160 14.50 0.6640 0.1484 13.42 0.4282 0.2166 - -
Kind [57] (MM, 19) 20.01 0.8412 0.0813 22.62 0.9041 0.0515 16.58 0.5690 0.2259 8.02 34.99

MIRNet [52] (ECCV, 20) 22.11 0.7942 0.1448 22.52 0.8997 0.0568 19.98 0.6085 0.2154 31.79 785.1
Kind++ [55] (IJCV, 21) 20.59 0.8294 0.0875 21.17 0.8814 0.0678 15.43 0.5695 0.2366 8.27 -
SGM [47] (TIP, 21) 20.06 0.8158 0.0727 22.05 0.9089 0.4841 18.85 0.5991 0.2492 2.31 -

FECNet [14] (ECCV, 22) 20.67 0.7952 0.0995 22.57 0.8938 0.0699 21.09 0.6119 0.2341 0.15 5.82
HDMNet [22] (MM, 22) 18.55 0.7132 0.1717 20.54 0.8539 0.0690 20.81 0.6071 0.2375 2.32 -

SNR-Aware [44] (CVPR, 22) 21.48 0.8478 0.0740 24.13 0.9269 0.0318 20.67 0.5911 0.1923 39.12 26.35
Bread [10] (IJCV, 23) 20.83 0.8217 0.0949 17.63 0.8376 0.0681 19.20 0.6179 0.2203 2.12 1.54

FourLLIE [37] (MM, 23) 22.34 0.8403 0.0573 24.65 0.9192 0.0389 21.11 0.6256 0.1825 0.12 4.07
SNR-SKF [42] (CVPR, 23) 20.66 0.8128 0.0757 17.21 0.7738 0.0731 16.21 0.5560 0.1615 39.44 27.88
UHDFour [20] (ICLR, 23) 19.42 0.7896 0.1151 23.64 0.8998 0.0341 19.39 0.6006 0.2466 17.54 4.78

Retinexformer [2] (ICCV, 23) 22.79 0.8397 0.0724 25.67 0.9295 0.0273 21.23 0.6309 0.1699 1.61 15.57

DMFourLLIE (Ours) 22.64 0.8589 0.0520 25.83 0.9314 0.0234 21.47 0.6331 0.1781 0.41 1.69

Table 1: Quantitative comparison on LOL-v2-Real [47], LOL-v2-Syn [47], and LSRW-Huawei [12]. The best results are marked
in red, the second-best are in blue.

Methods LIME VV DICM NPE MEF AVG

Kind 4.772 3.835 3.614 4.175 4.819 4.194

MIRNet 6.453 4.735 4.042 5.235 5.504 5.101
SGM 5.451 4.884 4.733 5.208 5.754 5.279
FECNet 6.041 3.346 4.139 4.500 4.707 4.336
HDMNet 6.403 4.462 4.773 5.108 5.993 5.056
Bread 4.717 3.304 4.179 4.160 5.369 4.194
Retinexformer 3.441 3.706 4.008 3.893 3.727 3.755
FourLLIE 4.402 3.168 3.374 3.909 4.362 3.907

DMFourLLIE 3.233 3.298 3.613 3.564 3.565 3.455

Table 2: NIQE scores on LIME, VV, DICM, NPE, and MEF
datasets. The top results are highlighted in red and the
second-best in blue. "AVG" denotes the average NIQE scores
across these five datasets. All evaluated methods have been
pre-trained on the LSRW-Huawei dataset.

4 Experiments
4.1 Datasets and Experimental Setting
DMFourLLIE is trained on three commonly used LLIE datasets:
LOL-V2-Real [47], LOL-v2-synthesis [47] and LSRW-Huawei [12].
LOL-v2-Real is captured under varying exposure times and ISO in
real scenes, including 689 low/normal light image pairs for training
and 100 pairs for testing. LOL-v2-synthesis is synthesized from
original images by analyzing the luminance channel distribution of
low/normal light images. It contains 900 low light/normal light im-
age pairs for training and 100 pairs for testing. Compared with the
original LOL dataset [41], LOL-v2 is larger and more diverse, pro-
viding more convincing evaluation of performance. LSRW-Huawei
was captured in real scenes using different devices, containing 3150
training image pairs and 20 test image pairs. Additionally, we also
evaluated DMFourLLIE on five unpaired datasets: DICM [17] (64
images), LIME [11] (10 images), MEF [26] (17 images), NPE [38] (85
images) and VV(24 images).

Settings PSNR↑ SSIM↑ LPIPS↓

w/o Fourier Reconstruction Stage 20.92 0.8435 0.0473
w/o Spatial and Texture Reconstruction Stage 20.88 0.8337 0.0596
w/o Luminance Branch 22.51 0.8504 0.0524
w/o Fourier Branch 20.85 0.8391 0.0579
w/o Infrared Branch 22.63 0.8476 0.0673
w/o Luminance Augment 20.84 0.8382 0.0532
w/o Infrared Augment 20.63 0.8317 0.0567
w/o Fourier Convolution Branch 22.46 0.8492 0.0576
w/o Multi-scale Convolution Branch 21.60 0.8404 0.0732

DMFourLLIE 22.64 0.8585 0.0520

Table 3: Ablation Studies on DMFourLLE with the LOL-v2-
Real Dataset. The term ’w/o’ denotes the absence of a specific
component. ’w/o Fourier Branch’ refers to a configuration
that enhances only the amplitude component, similar to pre-
vious Fourier-based illumination networks, without involv-
ing the phase component. ’w/o Fourier Convolution Branch’
and ’w/o Multi-scale Convolution Branch’ represent scenar-
ios where traditional convolutional layers replace these spe-
cialized modules.

DMFourLLIE adopts an end-to-end training strategy to jointly
optimize the network parameters of both stages. We implement
DMFourLLIE in Pytorch. During training, images are randomly
cropped to 256 × 256 and augmented with random flipping. An
ADAM optimizer with an initial learning rate of 4.0 × 10−4 is used
to optimize the network, along with a multi-step scheduler. The
batch size is set to 8 and the total number of training iterations
is set to 1.0 × 105. Training takes approximately 18 hours on an
NVIDIA 3090 GPU.

4.2 Comparison with Current Methods
In this paper, our DMFourLLIE is compared to thirteen state-of-
the-art LLIE methods, including traditional approaches LIME [11],
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Figure 7: Visualizing Component Ablation in DMFourLLIE.
Visual comparisons show noticeable differences against the
ground truth when specific components of DMFourLLIE are
removed. Each omitted component causes varying levels of
color distortion and noise, highlighting their importance for
high-fidelity image enhancement.

Metrics Loss Settings

w/o L𝑠1 w/o L𝑠2 w/o L𝑙𝑢𝑚 w/o L𝑝𝑒𝑟 DMFourLLIE +L𝑎𝑚𝑝

PSNR↑ 21.61 20.41 21.98 21.31 22.64 22.33
SSIM↑ 0.8480 0.8419 0.8531 0.8319 0.8589 0.8403

Table 4: Ablation experiments on the loss function.

NPE [38] and SRIE [6], Fourier-based methods FourLLIE [37], FEC-
Net [14] and UHDFour [20]. Deep learning-based methods involved
in the comparison are Kind [57], Kind++ [55],MIRNet [52], SGM [47],
HDMNet [22], SNR-Aware [44], Bread [10], SNR-SKF [42] and
Retinexformer [2]. All deep learning models are trained on the
same datasets using their original public codes, ensuring a fair
evaluation.

Quantitative results on LOL-v2-Real, LOL-v2-synthesis
and LSRW-Huawei datasets. In this work, we use Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [40] and
Learned Perceptual Image Patch Similarity (LPIPS) [54] as our eval-
uation metrics. Generally, higher PSNR and SSIM as well as lower
LPIPS indicate higher similarity between two images.

As shown in Tab. 1, we evaluate our approach using the LOL-v2-
Real, LOL-v2-synthesis, and LSRW-Huawei datasets. Compared to
the current state-of-the-art methods, it is evident that DMFourLLIE
achieves nearly the best performance across the PSNR, SSIM, and
LPIPS metrics. Furthermore, we also have advantages in terms of
model parameters and computational efficiency.

Visual Quality Comparisons. Due to space limitations, we
select the most recent and superior methods FECNet [14], SNR-
SKF [42], FourLLIE [37], UHDFour [20] and Retinexformer [2]
for an intuitive comparison with our DMFourLLIE. Fig. 6 shows
the comparison results on LSRW-Huawei, LOL-v2-real, and LOL-
v2-Synthesis datasets. In LSRW-Huawei, FourLLIE causes over-
brightening leading to image overexposure, while SNR-SKF and
Retinexformer do not achieve fully brightened visualization results.

FourLLIE FourLLIE𝑠1 + DMFourLLIE𝑠2 DMFourLLIE

PSNR ↑ 24.65 24.94 (↑ 0.29) 25.83
SSIM ↑ 0.9192 0.9269 (↑ 0.0077) 0.9314
LPIPS ↓ 0.0389 0.0235 (↓ 0.0154) 0.0234

Table 5: Objective validation of effectiveness by replacing the
second stage of FourLLIE with our DMFourLLIE.

Figure 8: Stage-wise performance comparison.

Figure 9: Fourier transform loss. 𝐼𝑎 number is average error
with GT.

UHDFour exhibits an issue of insufficient brightness. FECNet, even
with better brightening effects, lacks the clarity in motorcycle de-
tail and overall image color (especially the floor) compared to our
results, which are closer to ground truth (GT). In LOL-v2-real, FourL-
LIE and Retinexformer evidently introduce unavoidable blotchiness,
greatly affecting the visualization results. FECNet and SNR-SKF
show noticeable noise issues, whereas our method produces the
clearest and most natural brightening results. In LOL-v2-synthesis,
FECNet, SNR-SKF, FourLLIE, and Retinexformer suffer from insuf-
ficient brightness or overexposure issues, as well as some degree
of color deviation. UHDFour introduces noise leading to blurry
images, while our method achieves visually similar results to the
GT.

Quantitative results on LIME, VV, DICM, NPE and MEF
datasets.Wemeasure the no-reference Natural Image Quality Eval-
uator (NIQE [28]) scores on five non-paired datasets. Lower NIQE
scores indicate images with higher naturalness quality. Tab. 2 shows
the NIQE evaluation results. It can be seen that our DMFourLLIE
outperforms most of the existing LLIE methods.

4.3 Effectiveness of the second stage
We elaborate on the effectiveness of the second stage from three
perspectives: (1) As shown qualitatively in Fig.8 and quantitatively
through mean square error metrics, the second stage demonstrates
its effectiveness and outperforms other methods; (2) By replacing
the second stage of FourLLIE with the second stage of our DM-
FourLLIE, as reflected in Tab.5, all performance metrics indicate
improvements compared to the FourLLIE baseline; (3) Due to the
inevitable information loss introduced during Fourier transform
and its inverse in the first stage (refer to Fig.9, owing to discretiza-
tion), and after multiple transformations and network inferences,
the refinement provided by the second stage is essential.
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Infrared Image
(StawGAN [33])

Infrared Image
(PearlGAN [24]) Depth Map [46] Edge Map [45] DMFourLLIE

PSNR ↑ 25.17 25.32 24.97 25.15 25.83
SSIM ↑ 0.9287 0.9307 0.9256 0.9275 0.9317
LPIPS ↓ 0.0265 0.0225 0.0238 0.0245 0.0234

Table 6: The impact of infrared image , depth map , and edge
map on model performance was investigated. Comparative
analysis revealed that infrared images achieve superior per-
formance.

Metrics FourLLIE UHDFour DMFourLLIE

UICM ↑ 0.9133 0.7464 0.9426
NIQE ↓ 3.143 5.385 3.047

Table 7: Visualization quality comparison on Dark Face.

4.4 Ablation Studies
Ablation experiments on components: In Tab. 3 and Fig. 7, we
conducted quantitative and qualitative ablation studies on each com-
ponent of DMTourLLIE to assess their effectiveness. By controlling
a single variable, we verified the effectiveness of each component
and the overall network design.

Ablation experiments on loss function: To further analyze
the impact of loss functions on model performance, we conducted
an ablation study. As shown in Tab. 4, following the principle of
controlling a single variable, we observed the contributions of differ-
ent loss function configurations to model performance. The results
indicate that among all compared configurations, DMFourLLIE
achieved the best performance.

Moreover, to further validate the limitations in the design of
the first-stage loss functions in FECNet and FourLLIE, we present
the results of adding L𝑎𝑚𝑝 in the last column of Tab. 4 (following
the design of FECNet and FourLLIE, where L𝑎𝑚𝑝 is defined as the
difference between the enhanced amplitude component 𝐴𝑎𝑢𝑔 and
the ground truth amplitude component 𝐴𝑔𝑡 ). We found that the
performance actually decreases after adding L𝑎𝑚𝑝 , which again
supports our motivational hypothesis that the strategy of solely
boosting the amplitude component leads to using degraded images
as the learning target for the network.

4.5 Impact of different pre-trained model
We examined the effects of different models on infrared information
extraction, and the impact of incorporating depth and edge maps.
In Tab.6, we provide a comprehensive analysis of the impact of dif-
ferent models on infrared information extraction, including the use
of depth maps and edge maps. It is well-known that infrared images
have significant advantages in extremely low-light conditions. In
contrast, depth maps and edge maps are often susceptible to inter-
ference from factors such as lighting and color noise. This validates
our motivation for using infrared images to enhance the structural
integrity of the phase component. The infrared extraction model
employed by DMFourLLIE achieves optimal overall performance.

4.6 Object Detection and Visualization
On the Dark Face dataset [48], we conducted object detection ex-
periments under low-light conditions to evaluate the preprocessing

Figure 10: Detection comparison results on the Dark Face
dataset.

effects of the latest Fourier-based methods on advanced visual
understanding tasks. The Dark Face dataset consists of 6000 low-
light images with real-world annotations. For testing, we randomly
selected 200 images from the dataset and validated using the offi-
cial YOLOv5 model pre-trained on the COCO [23] dataset. Fig. 10
presents the visual comparison results, where our method outper-
forms other methods significantly in terms of detection accuracy
and recall rate. Notably, in the results of the second row, DMFourL-
LIE successfully detects the backpack, while in the fourth row, the
detection rate of bicycles is significantly higher than other methods,
with other methods showing instances of false detections.

Furthermore, through visual analysis, it is evident that DMFourL-
LIE surpasses other methods in terms of brightness enhancement,
naturalness, and clarity. This is particularly noticeable when ob-
serving the faces in the second and fifth rows. In contrast, both
FourLLIE and UHDFour methods exhibit blurriness and noise is-
sues. Therefore, as shown in Tab. 7, we also compared image quality
metrics (NIQE [28] and UICM [30]) on the Dark Face dataset to
further support the advantages of our method.

5 Conclusion
In this paper, we introduce the Dual-Stage Multi-Branch Fourier
Low-Light Image Enhancement (DMFourLLIE) framework, a novel
structure designed to enhance the expressiveness of Fourier fre-
quency domain information and improve the spatial and textural
details of images. The first stage of our framework utilizes a distinc-
tive multi-branch structure that integrates infrared and brightness
priors, thereby refining the expressiveness and accuracy of fre-
quency domain information. This integration significantly bolsters
the phase component’s capacity to preserve image structure while
enabling precise amplification of the amplitude component, tailored
to regional luminance variations. In the second stage, DMFourLLIE
employs a multi-scale spatial perception module in conjunction
with the innovative application of fast Fourier convolution. This
dual-branch approach markedly enhances the representation of
spatial structures and the delineation of subtle texture details in
the enhanced images, leading to superior image quality.
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