
ar
X

iv
:2

50
7.

01
55

1v
2

 [
cs

.L
G

]
 3

 J
ul

 2
02

5
Preprint.

SELF-GUIDED PROCESS REWARD OPTIMIZATION WITH
REDEFINED STEP-WISE ADVANTAGE FOR PROCESS RE-
INFORCEMENT LEARNING

Wu Fei1,2 Hao Kong1,∗ Shuxian Liang1 Yang Lin1

Yibo Yang4 Jing Tang2,3 Lei Chen2,3 Xiansheng Hua1

1Terminus Group
2The Hong Kong University of Science and Technology (Guangzhou)

3The Hong Kong University of Science and Technology
4King Abdullah University of Science and Technology

∗Corresponding author

ABSTRACT

Process Reinforcement Learning (PRL) has demonstrated considerable potential in
enhancing the reasoning capabilities of Large Language Models (LLMs). However,
introducing additional process reward models incurs substantial computational
overhead, and there is no unified theoretical framework for process-level advan-
tage estimation. To bridge this gap, we propose Self-Guided Process Reward
Optimization (SPRO), a novel framework that enables process-aware RL through
two key innovations: (1) we theoretically demonstrate that process rewards can
be derived intrinsically from the policy model itself, and (2) we redefine the step-
wise advantage by introducing well-defined Cumulative Process Rewards (CPR)
and Masked Step Advantage (MSA), which facilitates rigorous step-wise action
advantage estimation within shared-prompt sampling groups. Our experimental
results demonstrate that SPRO outperforms vaniila GRPO with 3.4× higher training
efficiency and a 17.5% test accuracy improvement. Furthermore, SPRO maintains
a stable and elevated policy entropy throughout training while reducing the aver-
age response length by approximately 1/3, evidencing sufficient exploration and
prevention of reward hacking. Notably, SPRO incurs no additional computational
overhead compared to outcome-supervised RL methods such as GRPO, which
benefit industrial implementation.

17.5% Higher
3.4x Efficient

Figure 1: Performance comparison on math and code benchmarks up to 432 steps. SPRO
outperforms outcome-supervised GRPO with 3.4× higher training efficiency and a 17.5% test accuracy
improvement. Notably, SPRO reduces per-step computation time owing to its shorter trajectories.

1This work was conducted during the first author’s internship at TERMINUS Group. Please contact us at
fwu750@connect.hkust-gz.edu.cn, kong.hao@tslsmart.com, or konghao@pku.edu.cn.

1

fwu750@connect.hkust-gz.edu.cn
kong.hao@tslsmart.com
konghao@pku.edu.cn
https://arxiv.org/abs/2507.01551v2

Preprint.

Prompt

a1,1 a2,1

a1,2 a2,2

Step 1

Step 2

Step Terminal
(with Length T,S,K,L)

Rollout

a4,L

a4,L-1

routcome

rprocess rprocess

rprocess

GRPO
Outcome Reward

PRIME
Process Reward

PPO
A(a,s)=Q(a,s)-V(s)

SPRO(Ours)
Cumulative

Process Reward

a1,T

a1,T-1

routcome

rprocess

a2,S

a2,S-1

routcome

rprocess

a3,1

a3,2

rprocess

a4,1

a4,2

rprocess

a3,K

a3,K-1

rprocess

routcome

(a) The directions of advantage calculation across
different framework.

Policy Model

Ref Model

N samplesPrompt Outcome
Verifier

Cumulative
Reward

Outcome
Reward

Masked Step
Advantage

Outcome
Advantage

Advantage

update

(b) Illustration of SPRO.

Figure 2: (a): GRPO treats all terminal states as one-step transitions from the initial prompt state.
PRIME aggregates all process rewards into a single group for normalization. PPO estimates advan-
tages based on single-step state transitions. In contrast, we propose SPRO, which groups rewards
at the same step for calculation. (b): SPRO utilizes Cumulative Process Rewards directly derived
from the policy model, thereby eliminating the need for an additional process reward model and
establishing a dual-model framework comparable to outcome-supervised approaches.

1 INTRODUCTION

Reasoning capacity constitutes a fundamental component of language models’ general intelligence,
playing a pivotal role in advancing artificial general intelligence (AGI). Recent open source rea-
soning models, such as OpenAI’s o1 [1] and DeepSeek’s R1 [2], demonstrate the effectiveness of
reinforcement learning in reasoning tasks. Most current RL algorithms [2, 3, 4, 5] optimize policy
models based exclusively on outcome rewards while neglecting intermediate feedback. This sparse
reward paradigm leads to inefficient learning [6, 7], highlighting the need for efficient and scalable
process-based reinforcement learning algorithms. This naturally leads to a fundamental research
question: how to provide well-defined process rewards and guide the policy optimization effectively?

Although significant research [8, 9, 10, 11] has been devoted to addressing this question, there is
no unified theoretical framework for process-level advantage estimation. Training auxiliary process
reward models (PRMs), which estimate the future success of intermediate steps, is a commonly
adopted strategy. However, PRMs exhibit several widely recognized practical limitations:
(1) Difficult to train: Human-annotated process-level labels lack scalability [8], while automatic
annotation often fails to provide reliable supervision [2].
(2) High computational cost: In contrast to the widely adopted dual-model framework (policy and
reference model) in outcome-supervised algorithms such as [2, 3, 5], which significantly contributes
to scalability and industrial adoption, PRM-based methods introduce an auxiliary reward model.
Loading of the additional model requires considerable GPU memory allocation, which constrains the
batch size and substantially degrades training throughput and efficiency.
(3) Non-scalable utilization: Existing methods typically leverage PRMs to rerank candidate re-
sponses [12] or perform Monte Carlo Tree Search (MCTS) [8, 10, 11], aiming to improve reasoning
trajectories. However, constructing the reasoning search space requires sequential rollouts at each
step [9], making these approaches non-scalable in online RL.

Recent works have proposed novel methods for acquiring high-quality PRM. Rafailov et al. [13]
demonstrate that a well-trained DPO model can inherently achieve credit assignment, effectively ex-
pressing token-level rewards in the Markov Decision Process (MDP) framework of LLMs. Extending
the DPO framework, Yuan et al. [14] introduce a more generalized implicit PRM training paradigm
that replaces preference pairs with point-wise labeled trajectories, which can be trained using standard
cross-entropy loss. Subsequently, Cui et al. [15] improve the implicit PRM methodology by propos-
ing the PRIME framework, which effectively combines token-level rewards with outcome rewards
to calculate trajectory advantages. The rigorously derived token-level reward functions proposed
in [13, 14, 15] eliminate the need for explicit process annotations, thus streamlining the training
pipeline. The annotation-free token-level reward addresses the practical limitation (1) mentioned
earlier in training PRMs, making this methodology widely adopted in subsequent research.

2

Preprint.

However, PRIME relies on an auxiliary reward model πφ to parameterize implicit PRM, which
requires iterative training updates throughout the optimization process. This approach not only
consumes additional GPU memory but also introduces non-negligible computational overhead.
Additionally, after deriving token-level dense rewards, PRIME estimates advantages via a Monte
Carlo estimator combined with a leave-one-out baseline. Notably, since each token decoding have
distinct states under token-level MDPs [13, 15], the implementation that aggregating all process
rewards into a single group for normalization (refer to Fig. 2a) deviates from the advantage-based
policy gradient method such as PPO, which will introduce a significant estimation bias.

To address the computational inefficiency of auxiliary process reward models in industrial process
reinforcement learning while achieving a less biased process advantages estimation, in this paper,
we propose Self-guided Process Reward Optimization (SPRO), a PRM-free algorithm for process
reinforcement learning as shown in Fig. 2b. We demonstrate that process rewards can be self-
guided directly from the policy model itself, as SPRO eliminates both the annotation requirements
and computational overhead inherent to PRM-based approaches and preserves the simplicity and
scalability of outcome-supervised RL algorithms [3, 5], which benefit the industrial implementation.

Moreover, SPRO offers a theoretical framework for step-level advantage estimation by redefining
the step-wise advantage through a novel Cumulative Process Reward (CPR). This approach aligns
with the traditional advantage-based policy gradient framework, while leveraging the capability
of encoder-based mask attention to structurally encode prefix-sequence information. Specifically,
CPR implicitly aggregates the process rewards from all preceding steps in the prefix sequence as a
surrogate for process rewards, enabling more accurate expected return estimation at each timestep.
For advantage estimation, we extend the formulation of group-relative advantage from outcome-
supervised algorithms [3, 5] and investigate the estimation of step-level advantage. To enable fair
comparisons, we introduce Masked Step Advantage (MSA), which enforces strict per-step comparison
within shared-prompt sampling groups.

As shown in Fig. 2a, we compare the computation of advantage functions across mainstream methods.
Assume that four responses are sampled, where each response receives a outcome reward, and each
intermediate step is assigned a process reward. GRPO [2] estimates policy gradients by computing
relative advantages within trajectory groups using outcome rewards, while PRIME generalizes the
grouping paradigm across all prefix sequences as a unified group for normalization. As for our SPRO,
we employ the Cumulative Process Reward (CPR) to compute the step-wise rewards from the initial
state to each time step t. Subsequently, for each identical step across different trajectories, we perform
group-wise normalization of these rewards to obtain the Masked Step Advantage (MSA).

The experimental results demonstrate significant improvements of SPRO over baseline methods. As
shown in Fig. 1, our SPRO achieves 17.5% higher test accuracy than vanilla GRPO and 8.3% higher
than PRIME, while reducing computational costs to 29% (vs. GRPO) and 15% (vs. PRIME) of
GPU hours for equivalent performance. The comparisons on response length and policy entropy
also demonstrate that our approach simultaneously addresses two long-standing challenges that have
attracted significant community attention: (1) improving token efficiency in reasoning [6, 16], and
(2) mitigating policy entropy collapse (or reward hacking) during RL training [7]. We discuss these
phenomena in Sec. 5. This dual improvement indicates that our framework enables the policy model
to better be aware of the advantages of each step, resulting in both computationally efficient reasoning
and more effective action space exploration.

The main contributions are summarized as follows:

• We introduce a novel RL framework for LLMs Self-Guided Process Reward Optimization (SPRO),
which eliminates the need for expensive Process Reward Models and retains the same simplicity
and scalability as outcome-supervised RL.

• We redefine the step-level advantage by introducing a novel Cumulative Process Reward (CPR) as
a surrogate for self-guided process rewards and further propose Masked Step Advantage (MSA),
which enables a strict per-step comparison within shared-prompt sampling groups to estimate
step-level advantages.

• Our experimental results demonstrate that SPRO simultaneously improves accuracy and training
efficiency while resolving two critical challenges: token efficiency and policy entropy collapse.
SPRO significantly reduces the length of reasoning sequences while achieving higher accuracy.
Moreover, SPRO maintains higher policy entropy, promoting more efficient exploration and
mitigating reward hacking.

3

Preprint.

2 PRELIMINARIES

In this section, we first introduce the token-level MDP for large language models, along with some
definitions of reward and objective function in reinforcement learning.

2.1 TOKEN-LEVEL MDP FOR LARGE LANGUAGE MODELS

Following with [14, 15, 13], the token-level MDP is defined as a tupleM = (S,A, f, r, ρ).
• The action space A consists of the combined input and output vocabulary of any given large

language model, while the state space S comprises all input-output states during the inference
process. For example, state st at timestep t could be represented as st = (x,y<t), where x is the
initial input (prompt) and y<t is the sequence of tokens generated up to step t− 1.

• f(st,at) represents a state transition model that updates the state st+1 by concatenating the newly
generated token at to st. Formally, this can be expressed as st+1 = f(st, at).

• ρ(st) represents a state distribution constraint that limits the sampling range for each state st.
• r(st,at) denotes the token-level reward given after the model outputs token at with input state st.

2.2 MAXIMUM ENTROPY REINFORCEMENT LEARNING IN THE TOKEN-LEVEL MDP

Given a well-defined token-level MDPM = (S,A, f, r, ρ), we can optimize the process reinforce-
ment policy πθ by using the following entropy-augmented [17, 18], KL-constrained objective [19, 13]:

max
πθ

E s0∼ρ(s0),
at∼πθ(·|st)

 T∑
t=0

(r(st,at)︸ ︷︷ ︸
token reward

+β log πref(at|st)︸ ︷︷ ︸
KL penalty

+ βH(πθ)︸ ︷︷ ︸
entropy

 . (1)

As mentioned in [13, 18], in the general maximum entropy RL setting, the fixed point solution of
Eq. (1) is given as:

π∗(at|st) = e(Q
∗(st,at)−V ∗(st))/β , (2)

where π∗(a|s) is the optimal policy and Q∗(s,a) is the corresponding optimal soft Q-function. The
optimal value function V ∗ is defined as:

V ∗(st) = β log
∑
a∈A

eQ
∗(st,a)/β . (3)

As shown in Eq. (2), the relationship between the reward function r(s,a) and optimal policy π(a|s)
is not a direct mapping. Instead, the policy is expressed through Q-function and V-function, which
themselves represent estimates of total future returns.

To further investigate the reward-policy relationship, Rafailov et. al. [13] introduced a modified
equality between reward function and value functions using KL-divergence penalty, where:

Q∗(st,at) =

{
r(st,at) + β log πref(at|st) + V ∗(st+1), if st+1 is not terminal,
r(st,at) + β log πref(at|st), if st+1 is terminal.

(4)

It should be noted that some prior work [20, 21] has also proposed similar definitions, but they
required an assumption that the discount factor γ < 1. Rafailov et. al. [13] further proved that
the relationship in Eq. (4) is indeed one-to-one in the token MDP under mild assumptions, which
means there is a bijection between reward functions and corresponding optimal Q-functions in the
token-level MDP.

By log-linearizing the optimal policy fixed point in Eq. (2)

β log π∗(at|st) = Q∗(st,at)− V ∗(st). (5)

Substituting in the Bellman equation from Eq. (4) [22, 23], we have the following function:

r(st,at) + V ∗(st+1)− V ∗(st) = β log
π∗(at|st)
πref(at|st)

. (6)

This establishes a mathematical relationship between the process reward function and the policy
model.

4

Preprint.

3 SELF-GUIDED PROCESS REWARD OPTIMIZATION

In this section, we propose a novel PRM-free process reinforcement learning framework for token-
level Markov Decision Processes (MDPs) in LLMs. Our framework uniquely enables the policy
model to serve dual roles during optimization: (i) as an Actor module for policy improvement
through reinforcement learning, and (ii) as a Reward module for token-level credit assignment
during the generation process. Therefore, we refer to our framework as Self-Guided Process Reward
Optimization.

We introduce our framework through three steps:

• Sec. 3.1: We propose the hypothesis that any LLM can provide credit assignment for token-level
MDP, which is independent of the specific training objective used to train the LLM.

• Sec. 3.2: We redefine step-wise advantage by introducing Cumulative Process Reward (CPR) for
token-level MDP and further propose Masked Step Advantage for process RL training.

• Sec. 3.3: We introduce the Self-Guided Process Reward Optimization (SPRO) algorithm, detailing
its objective function and training procedure.

This self-guided framework has three key advantages: (i) it avoids the reward modeling bottleneck
inherent in traditional RLHF pipelines; (ii) credit assignment dynamically improves in alignment
with policy improvement, creating a virtuous cycle of mutual refinement; and (iii) it enables effective
process reinforcement learning.

3.1 THE PROCESS REWARDS COULD BE SELF-GUIDED

As shown in Eq.(6), the process reward r(st,at) is defined as the log-ratio between the probability of
at under the optimal policy and the given reference policy. Rafailov et al.[13] argue that the trained
DPO model π∗ yields the best estimate of an optimal Q-function, since the value term V ∗(s) is
reduced using Bradley-Terry preference model. Building upon this, Yuan et al.[14] further extend the
idea to Cross-Entropy (CE) loss. Cui et al.[15] apply CE loss to train an implicit PRM, and further
use the resulting process rewards to compute advantages to update the policy model.

Obviously, the accuracy of r(st,at) directly depends on the quality of the optimal policy. Since the
policy model is trained to directly approximate π∗, the near-optimal solution πθT inherently provides
more accurate rewards than a PRM πφ trained separately. Otherwise, the policy model itself would
be inferior, contradicting its optimality hypothesis, which means that the separately trained PRM
could be a better solution than our trained policy model πθ. This observation forms the theoretical
foundation for our self-guided reward formulation.
Proposition 1. Any LLM is always the optimal soft Q-functions for some reward functions in the
token-level MDP [13], thus enabling token-level credit assignment. In particular, LLMs with stronger
downstream task performance provide more accurate credit assignment.

Proof. Let ℓ(at|st) denote the output logits of a given LLM policy π for token at conditioned on state
st. We define Q-function as a scaled version of the logits: Q(st,at) = βℓ(at|st). The corresponding
partition function is derived by taking the log-sum-exp of logits over all possible actions a ∈ A
and defined as Z(st). Consequently, the optimal value function corresponding to such Q is exactly
V (st) = β logZ(st). This yields the following form of the policy:

π(at|st) = softmax(ℓ(at|st)) =
eℓ(at|st)∑
a∈A eℓ(a|st)

=
eQ(st,at)/β

Z(st)
= e(Q(st,at)−V (st))/β . (7)

Eq. (7) shows that any LLM is a soft Q-function for some reward function [13]. Since downstream
task performance provides an explicit indicator of how closely an LLM approximates the optimal
policy, combined with Eq. (2) and Eq. (6), it follows that the quality of corresponding token-level
credit assignment is also observable. Importantly, this property is independent of the specific training
objective used to train the LLM.

In our framework, we utilize log-probabilities extracted from the policy model itself, rather than use a
well-trained reward model. Since both the policy and reference models are initialized from the same
SFT model, the process rewards are initially zero. As training progresses and the policy model shifts
away from the reference, the process rewards start contributing to the RL optimization.

5

Preprint.

a1,1

a2,1

a3,1

a4,1

a1,t

a2,t

a3,t

a4,t

a1,T-2

a3,T-2

a4,T-2

a3,T-1 a3,T

MaskValid

Prompt

V0

Step t

Group
Cumulative Reward

Adv.

Figure 3: Illustration of Masked Step Advantage. Assume that four responses are sampled for
each prompt. At each step t, we calculate cumulative rewards and further compute the step-level
advantages within the vertical valid masked groups, excluding empty step units from all calculations.

3.2 REDEFINE STEP-WISE ADVANTAGE

In the previous section, we propose that the process reward can be self-guided by the policy model.
In this section, we redefine step-wise advantage by introducing Cumulative Process Reward (CPR)
and Masked Step Advantage (MSA).

Cumulative Process Reward (CPR). We argue that the mechanism of LLMs should inform the
design of process rewards in token-level MDPs. Since auto-regressive generation employs masked
attention, the hidden state at step t inherently encodes all information of the prefix sequence [24],
which means each hidden state represents the complete trajectory up to its corresponding time step.
Prior work has effectively utilized this property: Lightman et al. [8] employ the final token’s hidden
state at each step to predict correctness in process reward models, aligning with probing studies that
leverage such representations to analyze model properties [25, 26, 27, 28, 29, 30]. Therefore, we
propose that intermediate reward signals at step t should similarly capture contributions from all
preceding steps, which we formalize as the definition of the Cumulative Process Reward (CPR).

Given a policy model πθ during training iterations (we omit the iteration subscript for convenience),
Proposition 1 establishes that there always exists an implict reward function r(st,at) together with
corresponding Q(st,at) and V (st) functions. By virtue of the optimality of the Q-function, these
functions also satisfy the equality relation in Eq.(6) as follows:

r(st,at) + V (st+1)− V (st) = β log
πθ(at|st)
πref(at|st)

. (8)

For an arbitrary time step t within a trajectory τ = {s0,a0, . . . ,aT−1, sT }, we define a cumulative
reward w.r.t. step t by accumulating Eq. (8) from 0 to t:

t∑
j=0

(r (sj ,aj) + V (sj+1)− V (sj)) =

t∑
j=0

β log
πθ(aj |sj)
πref(aj |sj)

. (9)

By telescoping the value function V (sj+1)− V (sj) on the left-hand side, we can get the following:
t∑

j=0

r(sj ,aj) + V (st+1) = V (s0) +

t∑
j=0

β log
π(aj |sj)
πref(aj |sj)

. (10)

The left-hand side of Eq. (10) represents the cumulative reward up to step t plus the future expected
return starting from st+1 (discount factor γ = 1). LetRt denote Cumulative Process Reward (CPR):

Rt :=

t∑
j=0

r(sj ,aj) + V (st+1) = V (s0) +

t∑
j=0

β log
π(aj |sj)
πref(aj |sj)

. (11)

We adopt CPR to align with the cumulative nature of LLM representations. Additionally, since all
responses start from the same initial state s0,Rt facilitates subsequent advantage computation.

6

Preprint.

Algorithm 1: Self-guided Process Reward Optimization (SPRO)
Input: Initial policy model πθinit ; outcome reward verifier ro; task prompts D.

1 policy model πθ ← πθinit

2 reference model πref ← πθinit

3 for iteration = 1 to K do
4 Sample a batch Db from D
5 Update the old policy model πθold ← πθ

6 Sample G outputs {yi}Gi=1 ∼ πθold(· | x) for each x ∈ Db

7 Compute outcome rewards {ro(yi)}Gi=1 for each sampled output yi

8 Apply accuracy filter on prompts in Db

9 Compute the Cumulative Process RewardRi,t and Masked Step Advantage MSAi,t for the
tth token of all responses {yi} with Eqs. (11-12)

10 Compute Ai,t for the tth token of all responses {yi} through Eq.(13)
11 for iteration = 1 to µ do
12 Update the policy model πθ by maximizing the SPRO objective Eq.(14)
13 end
14 end

Output: Policy Model πθ.

Masked Step Advantage (MSA). For trajectories {τi} of the same prompt, the Cumulative Process
Rewards {Ri,t} at the same step t are comparable because they all start from the same initial state s0
and can be regarded as one-step state transition rewards, similar to GRPO that the outcome reward
can be seemed as one-step transition rewards. We formally define Masked Step Advantage (MSA)
corresponding to the cumulative reward as follows:

MSAi,t := Ri,t − bt = R̃i,t − b̃t = R̃i,t −mask_mean({R̃i,t}), (12)

where i represents the ith response and R̃i,t =
∑t

j=0 β log
πθ(aj |sj)
πref(aj |sj) . The term bt (or b̃t) denotes

the vertical group-wise average of valid scores at step t, serving as an advantage baseline. Here, we
compute them using a masked_mean operator. Note that the constant V (s0) on the right-hand side of
Eq. (11) will cancel out in all responses, makingRi,t and R̃i,t equivalent for advantage calculation.

Taking Fig. 3 as an example, if only the 3th response contains a valid step at time T−1, then
bT−1 = R3,T−1 and MSA3,T−1 = 0. This indicates that MSA does not introduce the length bias,
since the third response does not gain additional advantage even if it is longer than the others. In
this way, strict per-step comparisons within shared-prompt sampling groups are achieved without
introducing length bias.

3.3 SELF-GUIDED PROCESS REWARD OPTIMIZATION

Following common practice in Policy Gradient algorithm [31], we incorporate MSA into the outcome-
supervised RL method Group Relative Policy Optimization (GRPO) [3], resulting in the SPRO
advantage function:

Ai,t =
ro (yi)−mean ({ro (yi)})

std ({ro (yi)})︸ ︷︷ ︸
GRPO with outcome rewards

+
(
Ri,t −masked_mean ({Ri,t})

)
︸ ︷︷ ︸

MSAi,t

, (13)

Then the policy model can be optimized by maximizing the objective as follows:

JSPRO(θ) = Ex,{yi}G
i=1∼πθold (·|x)

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min(
πθ(yi,t | x,yi,<t)

πθold(yi,t | x,yi,<t)
Ai,t,CLIP

(
πθ(yi,t | x,yi,<t)

πθold(yi,t | x,yi,<t)
, 1− ε, 1 + ε

)
Ai,t

)
.(14)

7

Preprint.

6.7x Efficient

8.3% Higher

(a) GPU Hours (b) Steps

Figure 4: Performance of SPRO on math and code benchmarks with respect to GPU hours and
training steps. SPRO outperforms the previous SoTA process reinforcement learning method PRIME
with 6.7× higher training efficiency and an 8.3% performance improvement. Notably, SPRO reduces
per-step computation time owing to its shorter trajectories.

Table 1: Comparison of test accuracy between SPRO and other baselines using the same base
model and training data. We present pass@1 accuracy scores at step 400 on four math benchmarks
and two code benchmarks.

Methods AMC MATH Olympiad K12 CodeForces CodeContests Avg.

Base Model 21.1 48.1 13.9 40.0 5.2 11.3 22.8
vanilla GRPO 23.6 51.8 20.5 48.6 28.6 28.1 33.5
PRIME 31.2 52.7 25.4 54.6 26.4 25.9 36.0
Ours (SPRO) 31.9 53.6 28.2 55.0 29.4 32.1 38.4

Alg. 1 illustrates the detailed implementation of our proposed SPRO framework. It can be observed
that the calculations of cumulative rewards and masked step advantages depend exclusively on the
current policy model during training, which motivates our designation of the approach as self-guided.
Furthermore, our proposed advantage function computes relative advantages by grouping tokens
from the identical timestep across all sampled responses, ensuring a less biased advantage estimation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base model and Dataset. We adopt Eurus-2-7B-SFT [15] as our base model, which is fine-tuned
from Qwen2.5-Math-7B-Base [32] on mathematical and programming tasks. The RL dataset is
Eurus-2-RL-Data [15], which contains math problems ranging from the high school level to Interna-
tional Mathematical Olympiad competition questions, as well as programming tasks, primarily at
the competitive programming level. We evaluate models on AMC [33], MATH-500 [34], Olympiad-
Bench [35], CodeForces [36], and CodeContests [37].

Resources and Hyper-parameters. All experiments are conducted on a single node equipped with
8x NVIDIA A800 GPUs (80G memory) using the veRL framework [38]. For optimization, we use
the AdamW optimizer with a cosine decay learning rate schedule, initialized at 1× 10−6. For rollout
stage, we collect 256 prompts with an oversampling factor of 2 and generate 4 responses per prompt.
We apply an accuracy filtering threshold between 0.2 and 0.8, and prompts that fall within this range
are prioritized. For training, the batch size is 256 and the micro batch size is 16. The KL coefficient
is set to 0, and the entropy coefficient is set to 0.001 for all experiments.

Outcome Verifiers. We employ rule-based reward modeling for outcome verification, aligning
with common practices in the recent literature [2, 15, 39]. Specifically, we assign a score of 1 if a
math answer matches the ground truth and 0 otherwise. For code generation task, we compute the
reward as the proportion of passed test cases.

8

Preprint.

(a) Average length of policy model-generated
responses.

(b) Entropy of policy model’s generation
probabilities.

Figure 5: Effective process reinforcement learning enables efficient reasoning traces and exploration
of action space.

Baseline Algorithms. We use vanilla GRPO [3] as the baseline algorithm for outcome-supervised
RL training, and the previous SoTA PRIME [15] as the baseline algorithm for process-supervised RL
training. We maintain consistency in the base model, training dataset, and key hyperparameters with
those employed in our proposed method.

4.2 MAIN RESULTS

Experiments on mathematical and programming tasks demonstrate that SPRO effectively enables
process RL for reasoning, yielding substantial improvements over GRPO and PRIME.

Accuracy Improvement As shown in Fig. 1 and Fig. 4, SPRO achieves a 17.5% higher test
accuracy than vanilla GRPO [3], and 8.3% higher than PRIME [15]. The comparative results in
Table. 1 further demonstrate that our SPRO achieves significant performance advantages in enhancing
the reasoning capabilities of policy models.

Training Efficiency. As shown in Fig. 1 and Fig. 4a, our SPRO requires only 29% and 15% of
the GPU hours needed by vanilla GRPO and PRIME respectively to achieve equivalent accuracy.
Furthermore, the shorter sampling sequence length generated by SPRO (as illustrated in Fig. 5a)
contributes to a significant computational advantage in each optimization step. This is evidenced
by comparing the computation time required for the same number of training steps across different
methods (see comparative results in Fig. 4).

Entropy Stability. As shown in Fig. 5b, unlike PRIME which suffers from entropy collapse, our
method maintains effective state-action space exploration during training, preserving optimization
efficiency and avoiding reward hacking.

5 ANALYSIS

5.1 SPRO ENABLES EFFICIENT REASONING TRAJECTORIES

As proposed by Qu et al. [6], “efficiency is the essence of intelligence”. Efficient reasoning is
essential for training, inference, and real-world deployment. However, existing RL training algorithms
struggle to achieve such token-efficient behaviors. Fig. 5a shows that SPRO reduces the average
response length of vanilla GRPO [3] by nearly one-third while improving test accuracy by 17.5%,
demonstrating the effectiveness of our framework in process reinforcement learning.

This improvement is primarily attributed to the rigorous step-wise comparison mechanism introduced
in Eq. (12). Our approach provides the policy model with MSA feedback at each generation step,
making it aware which tokens contribute positively to the overall return. Such a fine-grained feedback
mechanism effectively encourages more concise and task-focused output.

In contrast, existing methods such as PRIME [15] employ a coarser reward signal by averaging the
returns across all trajectories and timesteps. This design results in an advantage function that is
relative to both groups and timesteps, consequently diminishing the effectiveness of the intended
group-level comparison.

9

Preprint.

The Cumulative Process Rewards defined in Eq. (11) not only provide the theoretical foundation for
MSA in Eq. (12), but also exhibit intrinsic alignment with the hidden state dynamics of LLMs. This
insight, inherent in LLMs mechanisms and different from conventional RL scenarios, is deserving of
wider attention in future developments of LLM reinforcement learning.

5.2 SPRO ENABLES EXPLORATION OF ACTION SPACE

The collapse of policy entropy is a widely observed phenomenon in reinforcement learning, as
extensively documented in prior works [7, 40], and our experimental results are consistent with this
trend. In our experiments, the entropy coefficient is fixed at 0.001 across methods. As shown in Fig. 5,
the policy entropy starts at 0.13 due to SFT initialization. PRIME [15] suffers a sharp entropy drop
within the first 100 steps, while GRPO [3] remains largely stable. In contrast, our SPRO demonstrates
active state action space exploration, whose policy entropy increases to 0.35 and remains relatively
high up to 500 steps before gradually declining and fluctuating within a narrow range around 0.2.

This persistent exploration constitutes a key feature of SPRO, enabling longer and more effective
training. By maintaining output diversity, our SPRO prevents premature convergence to suboptimal
behaviors while preserving the potential for further improvement. Cui et al. [7] demonstrate that
the policy entropy naturally decreases when high-advantage actions already have high probability,
but increases when the model selects rare yet high-advantage actions. SPRO encourages the latter
behavior, validating the effectiveness of our advantage function design in Eq. 13. This exploration
mechanism directly contributes to the 17.5% improvement in test accuracy over vanilla GRPO.
Importantly, this performance gain stems not from implementation tricks such as policy loss clipping,
but from genuine exploration dynamics.

In particular, our SPRO successfully combines active exploration with more concise reasoning
trajectories. The reduced response length does not mean shortcutting; instead, the policy model
thoroughly explores the state-action space while strategically selecting concise, diverse, and effective
solutions. This demonstrates a form of intelligent exploration, where the model identifies efficient
solutions without compromising the correctness or diversity.

5.3 SPRO ENABLES INDUSTRY-SCALE PROCESS REINFORCEMENT LEARNING

Even in advanced industrial Large Reasoning Models, PRM has been identified as a failure case due
to its inherent limitations [2]. Training inefficiency significantly reduces its potential benefits. This is
clearly demonstrated in Fig. 4 when the x-axis is changed from training steps to GPU hours. Taking
PRIME [15] as an illustrative example, loading the additional PRM model consumes significant GPU
memory, which constrains the micro-batch size for the forward and backward propagation of the
policy model. Moreover, updating the PRM introduces non-negligible computational overhead.

As shown in Fig. 4a, our method reduces the additional computational overhead. Due to hardware
limitations, our experiments are conducted on 7B models. However, SPRO demonstrates considerable
potential for industrial-scale implementation, as its principle of self-guided process rewards capitalizes
on the inherent capacity of the policy model, enabling scaling laws to remain effective.

6 CONCLUSION

In this work, we introduced Self-Guided Process Reward Optimization (SPRO), a novel and scal-
able RL framework for LLMs that eliminates the dependency on costly Process Reward Models
while preserving the simplicity of outcome-supervised RL. By introducing the Cumulative Process
Reward (CPR) as a surrogate for self-guided process signals and proposing Masked Step Advan-
tage (MSA), our method enables rigorous step-level advantage estimation through shared-prompt
comparisons. Experiments demonstrate that SPRO significantly improves both accuracy and training
efficiency. In particular, it addresses two critical challenges in RL for LLMs: (1) token efficiency,
where SPRO reduces reasoning sequence lengths while achieving higher task accuracy, and (2)
policy entropy collapse, where our method maintains higher entropy levels, promoting more efficient
exploration and mitigating reward hacking during training. The scalability and ease of deployment of
SPRO make it particularly suitable for industrial implementation, offering a practical and effective
alternative to traditional process reward approaches.

10

Preprint.

REFERENCES

[1] OpenAI. Learning to reason with LLMs. https://openai.com/index/
learning-to-reason-with-llms/, 2024. Accessed: 15 March 2025.

[2] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[3] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[4] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

[5] Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier
Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization
for learning from human feedback in llms. CoRR, 2024.

[6] Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025.

[7] Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning
for reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

[8] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, 2023.

[9] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[10] Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-
like tree-search can guide large language model decoding and training. In NeurIPS 2023
Foundation Models for Decision Making Workshop, 2023.

[11] Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9426–9439, 2024.

[12] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process-and outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

[13] Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to Q∗: Your language model
is secretly a q-function. In First Conference on Language Modeling, 2024.

[14] Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou,
Zhiyuan Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint
arXiv:2412.01981, 2024.

[15] Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv
preprint arXiv:2502.01456, 2025.

[16] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

[17] Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3(3):241–268, 1991.

[18] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Preprint.

[19] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[20] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems,
34:4028–4039, 2021.

[21] Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox,
and Dorsa Sadigh. Contrastive preference learning: Learning from human feedback without
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024.

[22] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing
systems, 30, 2017.

[23] Joe Watson, Sandy Huang, and Nicolas Heess. Coherent soft imitation learning. Advances in
Neural Information Processing Systems, 36:14540–14583, 2023.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[25] Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207–219, 2022.

[26] Carlos Aspillaga, Marcelo Mendoza, and Álvaro Soto. Inspecting the concept knowledge
graph encoded by modern language models. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 2984–3000, 2021.

[27] Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni.
What you can cram into a single vector: Probing sentence embeddings for linguistic properties.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2126–2136, 2018.

[28] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 8493–8502, 2022.

[29] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 5484–5495, 2021.

[30] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: part 3.1, knowledge storage
and extraction. In Proceedings of the 41st International Conference on Machine Learning,
pages 1067–1077, 2024.

[31] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

[32] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report, 2025.

[33] Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

[34] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

12

Preprint.

[35] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 3828–3850, 2024.

[36] Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng
Ren, Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level
code generation of llms with human-comparable elo ratings. arXiv preprint arXiv:2501.01257,
2025.

[37] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022.

[38] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In
Proceedings of the Twentieth European Conference on Computer Systems, pages 1279–1297,
2025.

[39] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[40] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale. CoRR, 2025.

13

	Introduction
	Preliminaries
	Token-level MDP for Large Language Models
	Maximum Entropy Reinforcement Learning in the Token-level MDP

	Self-Guided Process Reward Optimization
	The process rewards could be self-guided
	Redefine Step-wise Advantage
	Self-Guided Process Reward Optimization

	Experiments
	Experimental setup
	Main Results

	Analysis
	SPRO enables efficient reasoning trajectories
	SPRO enables exploration of action space
	SPRO enables industry-scale process reinforcement learning

	Conclusion

