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Abstract

Despite the promising results of disentangled representation learning in discovering
latent patterns in graph-structured data, few studies have explored disentangle-
ment for hypergraph-structured data. Integrating hyperedge disentanglement into
hypergraph neural networks enables models to leverage hidden hyperedge seman-
tics, such as unannotated relations between nodes, that are associated with labels.
This paper presents an analysis of hyperedge disentanglement from a category-
theoretical perspective and proposes a novel criterion for disentanglement derived
from the naturality condition. Our proof-of-concept model experimentally showed
the potential of the proposed criterion by successfully capturing functional relations
of genes (nodes) in genetic pathways (hyperedges). Our implementation is available
athttps://github.com/Yoonho-Lee-AI4Science/Natural-HNN.

1 Introduction

Disentangled representation learning, which aims to identify underlying factors behind observed data,
has been applied to graph neural networks (GNNs) to capture hidden semantics or mechanisms in
graph-structured data. In molecular graphs, for example, molecular properties are determined by
underlying graph-level mechanisms, where specific substructures play distinct roles in shaping these
properties. To reflect such graph-level mechanisms, graph-level disentanglement can be designed
to capture multiple substructures, each corresponding to different molecular properties. As another
example, in opinion dynamics [54, 29, 28], which studies how individuals’ opinions evolve through
interactions within a social network, an individual’s opinion can change after engaging in discussions
with neighbors. These discussions act as edge-level mechanisms that influence opinion updates. To
reflect edge-level mechanisms, edge-level disentanglement can be designed to capture multiple topics
underlying discussions, each affecting different aspects of individual opinions. Depending on the
type of mechanism, several types of disentanglement, including node-level [47], edge-level [85], and
graph-structure-level [77] approaches, have been proposed.

A fundamental challenge lies in designing a criterion for disentanglement, which determines how
relevant each factor is to each mechanism (e.g., each node, edge, or subgraph). Since the represen-
tation reflects each factor in proportion to its relevance determined by the criterion, the criterion
should be designed in accordance with the type of disentanglement to ensure that the intended type
of mechanism is properly captured in the representation. Thus, many disentanglement models strive
to identify fundamental characteristics associated with the type of disentanglement and incorporate
them into the design of the criterion.
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Figure 1: The factor representation consistency criterion assigns a high relevance score when the
factor representation learned by two different routes is similar (i.e., consistent factor representation).

Despite numerous studies on disentanglement conducted so far [47, 85, 77, 31, 51], hyperedge disen-
tanglement remains largely unexplored. Hyperedge disentanglement assumes that group interactions
(i.e., hyperedges) have mechanisms that determine the labels, and aims to capture the factors (i.e.,
context or condition) that influence these group interactions. A representative example is the genetic
pathway, which is a set of genes (i.e., a hyperedge) that interact to perform a specific biological
function. When a pathway becomes dysregulated, its associated biological function can be impaired,
potentially leading to diseases such as cancer. The functional context of a pathway can thus be re-
garded as an underlying factor that governs how group interaction among genes influences high-level
labels, such as disease types [65, 74]. Therefore, we aim to design a criterion for hyperedge-level
disentanglement that enables a model to capture hyperedge-level factors, such as the functional
context of genetic pathways.

To the best of our knowledge, we are the first to propose a criterion designed for hyperedge dis-
entanglement. To identify characteristics that can be derived from the definition of hyperedge
disentanglement, rather than from any data-specific assumptions, we analyzed the hypergraph mes-
sage passing neural network (MPNN) and hyperedge disentanglement from a category-theoretical
perspective, as this viewpoint provides a global structural understanding of ‘how the system works.’
We discovered that the naturality condition holds between entangled and disentangled representations,
and we used this as a characteristic associated with hyperedge disentanglement. Based on this
characteristic, we defined factor representation consistency as the criterion. Figure 1 briefly illustrates
our criterion for hyperedge disentanglement. As shown in Figure 1, there are two ways to obtain
hyperedge factor representations: one by disentangling first and then performing message passing
(i.e., (it) — (i) — (iv)), and the other by performing message passing first and then disentangling
(i.e., (if) = (v) — (iv)). Our criterion suggests that the hyperedge factor representation learned
by both methods should be similar (i.e., consistent representation) when the factor is relevant to
hyperedge disentanglement. To validate whether our novel criterion can disentangle hyperedges,
we created a proof-of-concept model, Natural-HNN (Naturality-guided disentangled Hypergraph
Neural Network), and performed a cancer subtype classification task with hypergraphs of genetic
pathways. Our model outperformed the baselines by successfully capturing the functional context of
pathways, which are the underlying factors influencing group interactions.

Our main contributions are summarized as follows:

m This paper, for the first time, provides an analysis of hypergraph message passing neural networks
and hyperedge disentanglement through the lens of category theory.

= Based on the analysis, we derive a novel criterion for hyperedge disentanglement. To the best of
our knowledge, this is the first paper to propose a criterion for hyperedge disentanglement.

= We create a simple yet effective proof-of-concept model, Natural-HNN, and performed a cancer
subtype classification task. Experimental results showed that the model could capture the functional
context of pathways, which are factors associated with hyperedge disentanglement.

2 Related Work

In Section 2.1, we briefly describe a criterion widely used in disentangled representation learning and
discuss why it may not be suitable for hyperedge disentanglement. In Section 2.2, we discuss how
category theory has been applied in the field of deep learning and explain how we adopt the theory to
our problem at hand. In Section 2.3, we briefly summarize several hypergraph neural networks.



2.1 Disentangled Representation Learning (DRL)

Disentangled representation learning consists of three components: factor encoder, factor discrimina-
tion loss, and criterion. A factor encoder projects the entangled representation into factor-specific
representations. These factor encoders are implemented as K MLPs, where K denotes the number
of factors, given as a hyperparameter. To encourage each factor representation to contain distinct
information, factor discrimination losses, including factor classifier-based loss [85], factor-wise
contrastive learning loss [41], and the Hilbert-Schmidt Independence Criterion (HSIC) [47], are used.

The disentanglement criterion is the most crucial component of DRL, as it determines the relevance of
each factor and consequently how much it is reflected in the representation. This criterion is designed
based on the characteristics that the intended disentangled factors should ideally possess. Although
defining the criterion based on such ideal properties does not theoretically guarantee successful
disentanglement, numerous studies have empirically confirmed that these criteria indeed enable
effective disentanglement. For example, in the early image generative models that pioneered DRL,
disentanglement was guided by adopting the equivariant property as the disentanglement criterion
[30], since an ideal generative factor should cause the image to vary equivariantly with changes in the
generative factor. Therefore, many studies have strived to identify suitable ideal characteristics for
the type of disentanglement they pursue, under the assumption that such ideal properties of factors
facilitate effective disentanglement.

In the field of graph and hypergraph representation learning, disentanglement has been used to exploit
hidden semantics behind subgraphs or interactions with neighbors. Since such hidden semantics are
highly abstract concepts, it is difficult to identify generally applicable properties. Consequently, as
these semantics exhibit different characteristics depending on the data, the design of criteria has often
relied heavily on assumptions about the data. The most widely used criterion for disentanglement
is the factor representation similarity-based approach. For example, DisenGCN [49] assumes that
the k-th factor is likely the reason behind the existence of an edge in a graph if the k-th factor
representations of the two connected nodes are similar. A similar criterion is also used by HSDN
[31], which performs hypergraph-structure-level disentanglement aimed at identifying substructures
that contribute to hypergraph properties. The authors of the paper assume that important hyperedges
would share commonalities and therefore need to have similarity in the factor representations of
nodes.

However, factor representation similarity-based criterion may not be suitable for hyperedge dis-
entanglement because the way group interactions influence labels are not necessarily related to
the similarity or commonalities between participants. For instance, consider the case of opinion
dynamics involving a group engaged in a discussion; the topic of such discourse need not necessarily
pertain to the commonalities shared among its participants. One can easily imagine a situation where
researchers from diverse fields gather to discuss and solve complex and challenging problems. As
another example, in genetic pathways, the similarity of gene expression values (i.e., gene features)
of the constituent genes bears no relation to the functional context. Therefore, since the existing
criteria based on data-specific assumptions are not suitable for hyperedge disentanglement, we aim to
develop a broadly applicable hyperedge disentanglement criterion that does not rely on heuristics.

To develop a universally applicable criterion that does not rely on heuristics or data-specific as-
sumptions, we first need to analyze how hidden semantics are involved in the mechanisms through
which group interactions contribute to labels, and to derive the corresponding characteristics or
properties from this analysis. However, since the hidden semantics underlying group interactions
are highly abstract concepts, conducting such an analysis is inherently challenging. To address this
challenge, we employ category theory, which is well-suited for representing and analyzing systems as
compositional structures. By formulating hyperedge disentanglement and investigating how factors
contribute to the label-mapping mechanism through the lens of category theory, we discovered that a
naturality condition must hold between the entangled and disentangled representations of nodes and
hyperedges. Based on this observation, we derive a novel criterion based on hyperedge representation
consistency. Finally, we conclude this section with a formal definition of hyperedge disentanglement.

Hyperedge Disentanglement. A hypergraph with N nodes and M hyperedges can be represented
by incidence matrix Z € {0, 1}NXM, which indicates whether a node belongs to a hyperedge or
not. Hyperedge disentanglement assumes the existence of multiple hidden factors underlying group
interactions, which influence how labels are determined, and aims to capture these factors while
predicting the labels. In other words, it is assumed that there exists a set of disentangled incidence



matrices 7% = {Z,, ..., Zx} which are not explicitly provided in the data, where Z; denotes incidence
matrix of subhypergraph for factor i. The objective of hyperedge disentanglement is to learn a
hypergraph neural network fyyy(Z, X) that approximates the ground-truth label mapping function

Jiata (Idis, X) by learning an approximation of 7% Note that hyperedge-level disentanglement differs
from hypergraph structure-level disentanglement, as the latter assumes that the presence of certain

substructures determines the labels (i.e., £, (Idi“)).

2.2 Category Theory for Deep Learning

Category theory is an abstract language of mathematics that focuses on the compositional structure
of a system. One of the applications in the field of deep learning that uses category theory is
neural algorithmic reasoning [68] which aims to train a neural network that can execute algorithmic
computation in latent space. Several studies [14, 15] have attempted to align the computational
structure of an algorithm with that of the model to effectively approximate computer algorithms. The
motivation for aligning the structures comes from the theoretical conclusion [75] that structurally
aligned models generalize better due to lower sample complexity (i.e., they require fewer samples
in training to ensure low test error). Motivated from the works above, we analyze a hyperedge
disentanglement model using category theory from the perspective that the computational structure of
the model should be structurally aligned with the factor-related mechanism. Through this formulation,
we identify a characteristic that can serve as a criterion. Note that the basic concepts in category
theory we used are described in Appendix A.

2.3 Hypergraph Neural Networks (HNNs)

Several HNN models have been recently proposed to leverage information contained in multiway
interaction. HGNN [20] and HCHA [3] use a normalized hypergraph Laplacian, which is math-
ematically equivalent to clique expansion (CE) [67], and apply the traditional graph convolution
mechanism. HNHN [12] additionally adopts nonlinearity when calculating hyperedge representations
to differentiate a hypergraph from a clique expanded graph, while UniGNN [32] unifies HNNs and
GNN s into the same framework. Moreover, HyperGAT [11] adopts the attention mechanism to HNN
for text classification, and SHINE [48] proposes dual attention mechanism for the disease classifica-
tion task. ED-HNN [70] proposes equivariant message passing HNN, which allows hyperedges to
propagate different messages to its incident nodes. AllDeepSets and AllSetTransformer [6] consider
a hyperedge as a set and apply DeepSets [83] and Set Transformer [37], respectively, to increase
expressive power of HNN.

Efforts to apply disentanglement to hypergraph-structured data have been relatively limited. HIDE
[42] and DisenHCN [43] applied hypergraph disentanglement in the context of recommender systems.
However, in these works, the hyperedge semantics were explicitly provided as hyperedge types in the
data, and their approaches focused on disentangling node features corresponding to each hyperedge
type, rather than capturing the underlying hyperedge semantics. HSDN [31] proposed hypergraph
structure-level disentanglement, rather than hyperedge-level disentanglement.

3 Categorical Interpretation of Message Passing HNN and disentanglement

Before addressing hyperedge disentanglement, we first analyze the relationship between the mecha-
nism by which group interactions influence labels and hypergraph MPNNs from the perspective of
category theory, which will be discussed in Section 3.1. In Section 3.2, we further concretize this
analysis by examining how factors relate to the mechanism and describe the process of deriving the
characteristic (i.e., naturality condition) from it.

Notation. Let G = (V, £) denote a hypergraph, where V = {v, v, ..., vy} indicates a set of nodes
and & = {e,, ey, ..., ¢y} indicates a set of hyperedges, where N = |V| and M = |&| are the number
of nodes and the number of hyperedges in a hypergraph G, respectively. A set of node features given
as input to each layer of the model is denoted as X = {x, , ..., x, }, a set of hyperedge representations
(calculated in each layer of the model) is denoted as H = {he1 e Pg,, }, and a set of representations
obtained after message passsing is denoted as Y = {y, ,...,y, }. ‘en’ denotes an entangled object
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Figure 2: Compositional structure in hypergraph representation learning.

or morphism and is written in superscript or subscript, while ‘dis’ denotes a disentangled object or
morphism. The symbol ‘3’ is used to denote the composition of morphisms.1

3.1 Compositionality in Hypergraph Representation Learning

Most hypergraph representation learning methods produce the representation of a node by integrating
its own representation and its neighbors’ representations defined by a hypergraph topology. The
fundamental assumption underlying these models is that group interactions with neighbors contribute,
in some manner, to the labels. To further elucidate this assumption, consider the hypergraph example
depicted in Figure 2 (a). Although not given by the hypergraph topology, we introduced the set N,
which includes the center node v, and its neighbors, in order to represent the information that v,
possess after message passing. Then, the assumption can be illustrated as in Figure 2 (b). Each group
interaction, given as a hyperedge, can produce new meanings or information (e.g., a new meaning for
e,) through some interaction mechanisms (e.g., f;1, f.1). Subsequently, the assumption posits that
this newly generated information influences the participants (e.g., v.) of the group interaction via
some mechanism (e.g., g;., g2.), thereby resulting in new information (e.g., N,) for the participants
(e.g., v.) that may be associated with the label.

The abstract description above can be formalized through the lens of category theory. Specifically, if
we consider each node as a set, since a hyperedge contains nodes, there are morphisms (inclusion)
between nodes and hyperedges induced by the poset structure. We defined this as PISet, the category
with poset structure where morphisms are inclusions and objects are sets. Thus, we can see nodes
(v1, Ve, Vo, v3) and hyperedges (e, e5) constitute PISet as shown in Figure 2 (b), where gray-colored
nodes and hyperedges are set objects, and inclusions are morphisms (blue arrow) between sets.
The same mechanism holds between hyperedges (e;, e5) and a set N.. that includes node v, and its
neighbors. In Figure 2 (b), for instance, we can see hyperedges (e, ¢;) and N, constitute PISet as
they have morphisms (green arrow) induced by the poset structure.

In order to learn and predict with computers, such objects and morphisms must be expressed in
numerical values and their transformations. Hence, we define a category of deep learning repre-
sentations, DLRep, where objects are vector representations and morphisms are transformations
between them. Figure 2 (c) shows the result of applying a functor F : PISet — DLRep, which can
be simplified to a diagram in Figure 2 (d). Thus, any kind of hypergraph MPNNs can be seen as
a way of learning representations and their transformations respecting compositional structure of
entities. In other words, hypergraph MPNN s can be seen as structurally aligned, to some extent, with
the mechanisms by which group interactions present in hypergraph data influence the labels.

However, the degree to which a model is structurally aligned depends on implementation details. For
example, convolution-based models are structurally well-aligned with mechanisms in which all nodes
contribute equally during group interactions. Conversely, when node contributions vary within the
group interaction, attention-based methods are more structurally aligned with the mechanism than
convolution-based ones. Therefore, to perform hyperedge disentanglement, we structurally analyze
how factors are involved in the mechanism and, in Section 3.2, investigate the characteristics of a
hyperedge disentanglement model that is well structurally aligned with the mechanism.

3.2 Guiding Disentanglement with Naturality Condition

Since entangled and disentangled representations are different ways of representing the same
compositional structure, we can regard them as the result of applying two different functors
F : PISet — DLRep (for entangled representations) and G : PISet — DLRep (for disentan-
gled representations) as shown in Figure 3 (a). Thus, we have the naturality condition between

"Two notations f ¢ gand g of have the same meaning : “applying f first, and then applying g”. We use the
notation ‘g’ following [23].
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Figure 3: Naturality condition in disentangled representation learning to capture group interaction
mechanism related factors. X denotes a set of node representations and H denotes hyperedge
representation. V and E denote nodes and hyperedge in PISet. ‘c’ and ‘d’ denotes factors.

entangled and disentangled representations. Figure 3 (b) is equivalent to Figure 3 (a), but only
the components related to the factor ‘c’ are shown (explanations are in Appendix A.6). Note that
oy . = oy 3p. where p,. : X% — X% If factor ‘¢’ is relevant to the morphism between node set V
and hyperedge E, the naturality COIldlthl’l must hold for the perspective of factor ‘c’. Thus, factor

¢’ representation of a hyperedge (.e., Hd”) must be the same (or similar) regardless of applying
f “ea 1 o (i.e., message passing on entangled representation first, and then disentangling factors) or

Qx e ff” (i.e., disentangling factors first, and then message passing on disentangled representation).
In other words, the factor representation must be consistent regardless of the sequence of operations
if that factor is relevant to the interaction context of a hyperedge. We use this property as a guidance
for disentanglement, since it must hold for any kind of hypergraph message passing neural networks,
and must work regardless of data characteristics.

4 Proof-of-concept model : Natural-HNN

To validate whether our criterion can effectively capture factors relevant to hyperedge disentanglement,
we implemented a simple yet effective model, Natural-HNN. Each layer of the model is consisted with
3 components as shown in Figure 4: 1) Node-to-hyperedge propagation step that learns hyperedge
factor representations and relevance scores, which is calculated by our criterion. 2) Hyperedge-to-
Node propagation step that propagates factor representations of hyperedges to nodes with weights
proportional to relevance scores. 3) The last component concatenates factor representations and
produces final outputs by interpolating with the node representations given as input to the layer. Note
that each layer of Natural-HNN has K factors where K is a hyperparamter.

4.1 Node-to-Hyperedge Factor Propagation
Obtaining Two Disentangled Hyperedge Representations. To validate whether the naturality
condition (Figure 4 (a)) holds, we need to get two disentangled hyperedge factor representations for

every factor (i.e. Hk for every factor k € [1, K]). The two disentangled representations are obtained
through 1) Aggregatlon -first Branch and 2) Disentalgle-first Branch. In the following, we describe how
morphisms in Figure 4 (a) are implemented as operations in the two branches shown in Figure 4 (b).

m Aggregation-first Branch. The first disentangled representation is obtained from the aggregation-
first branch performing £ g ay i for each factor k. This process is implemented as performing
aggregation agg,s, (.., f" in Figure 4 (a)) first, and then disentangling into hyperedge factor
representations using a factor encoder ay 4. The factor representations of hyperedge e; obtained

from this branch are denoted as h .. hK
= Disentangle-first Branch. The other one is obtained from the disentangle-first branch performing

Oy ks f,f’ for each factor k. This process is implemented as disentangling into node factor represen-
tations with factor encoder ay j first, and then performing aggregation agg,s, (i.€., fc‘] " in Figure 4
(a)). Factor representations of hyperedge e¢; obtained from this branch are denoted as hell_, ey hfl

For both branches, we used mean aggregation as agg,», and K MLPs as factor encoders for disentan-

~ d .
gling factors. Factor representations are vectors with size d/K (i.e., hf_f,_, hf_f’_ € R¥), when the desired
size for node representations after message passing is d. In summary, operations of the two branches
regarding factor k can be written as follows:

he, = MLP; (mean({x, v € ¢;})), /e, = mean({MLP(x,,)|v; € ¢;}) (1)
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Figure 4: Architecture of proof-of-concept model Natural-HNN. It calculates the relevance of factor
k (af) and performs weighted message passing for each factor.

Deciding Factors with Consistency. The extent to which the naturality condition is satisfied can be
measured by calculating the similarity between the two disentangled hyperedge factor representations
hfj and hle‘j In other words, we can consider that the naturality condition holds when the two

representations are similar (i.e., consistent), and does not hold when the two representations are
largely different. We introduce a similarity scorer that calculates the similarity of two Ly-normalized
vectors. Specifically, we calcualte the relevance or importance of factor k for a hyperedge e; as
k he, i
o = o(m
sigmoid function. Lastly, we obtain the final hyperedge factor representations by multiplying af-‘ to
the corresponding hyperedge factor representations obtained from the disentangle-first branch?, i..,

afhifi, that reflects the relevance of the factor k for the hyperedge e;.

B, dyd . .
ka), where W, € R¥ “¥ is a learnable parameter matrix for factor k, and o is the
e 112

4.2 Hyperedge-to-Node Factor Propagation

When aggregating hyperedge representations (i.e., afhfi) to update node representations, the sum

of neighboring hyperedge representations with respect to factor k must be divided by the sum of a?

so that hyperedge relevance scores (i.e., af‘) are normalized during aggregation. Thus, the updated
factor k representation of node v;, i.e., y’j , can be written as ylj_ =1 Do aj]»‘h’;j.
i i j=vi

k
Zejav,- @

4.3 Final Output of each Layer of Natural-HNN

To allow a model to determine its focus between information from neighbors (i.e., y, ) and information
from the node itself (i.e., x,,), one can introduce a hyperparameter (3 that determines the interpolation
ratio between them (i.e., interpolate in 8 : 1 — 3 ratio). However, for simplicity, we set 8 = 0.5,
so that the two pieces of information are interpolated in a 1:1 ratio. To make sure that interpolation
is performed on disentangled representations, we used the factor encoder used in the message

passing step (i.e., h];/_ = MLP;(x, ). Specifically, z, = LayerNorm(0.5y, + 0.5h, ), where y, =
Concat(yii, . 7yf‘_), h, = Concat(h&i, . ,hf)

4.4 Optional: Factor Discrimination Loss

Existing disentangled representation learning methods [47, 77] have widely adopted a factor discrim-
ination loss aiming at promoting factors to contain different information. Following [85], we added a

factor discrimination loss L ; to the final loss, i.e., £L = Lg + A Cdif, where ) is a factor discrimi-
nation loss weight given as a hyperparameter. Details can be found in the Appendix C.2. Using the
factor discrimination loss increases the performance of our model (Table 7) and helps each factor to
contain different information (Figure 6). However, introducing this loss requires additional hyperpa-
rameter tuning for A\, which often involves a large search space and increases experimental runtime.
Considering that this loss is not closely related to our primary experimental objective—validating
whether our proposed criterion captures factors relevant to hyperedge disentanglement—we consider
it an optional component of the proof-of-concept model.

2Although we choose the disentangle-first branch here, we can instead use the output of the aggregation-first
branch. Both choices give similar results. Please refer to Appendix E.1.

3£msk denotes the task related loss calculated from cross-entropy loss with labels and predictions. Details are
available at Appendix C.3



Table 1: Model performance on cancer subtype classification task (Macro F1). Top two models are
colored by First, Second. T : the variant of the model using multihead attention. x : L ; is not used.

Method BRCA STAD SARC LGG HNSC CESC
x T x + x x

HCHA 0.704 +£0.051 0.558 £0.044 0.675+0.068 0.682+0.041 0.783 +0.055 0.844 +0.054
HNHN 0.697 £0.046 0.573 £0.072 0.688 +0.075 0.674 £0.038 0.791 £0.035 0.837 £ 0.059
UniGCNII 0.697 £0.052 0.617 £0.059 0.728 +0.066 0.663 +£0.039 0.830+0.030 0.841 +0.046
AllDeepSets 0.716 £0.058 0.557 £0.044 0.599 +0.058 0.665+0.046 0.801 +0.058 0.870 + 0.044
AllSetTransformer 0.743 +£0.057 0.553+0.046 0.719+0.052 0.653+£0.038 0.814+0.036 0.847 +0.046
HyperGAT 0.637 £0.121 0.534 £0.063 0.574+0.153 0.665£0.054 0.789 +0.061 0.832 £ 0.046
HyperGATT 0.641 £0.115 0.502+£0.087 0.584 +0.150 0.646+£0.043 0.791 £0.079 0.827 £ 0.041
SHINE 0446 +0.155 0.371£0.135 0.529+0.160 0.628 £0.104 0.718 £0.055 0.745 +£0.159
SHINE' 0.651 +0.053 0.532+0.064 0.673+0.059 0.650+0.046 0.770+0.040 0.837 +0.061
HSDN 0.757 £0.044  0.629 £0.045 0.726 +£0.063 0.692 £0.038 0.811 £0.044 0.867 +0.033
ED-HNN 0.735+0.047 0.615+0.050 0.718 +£0.071  0.700 £ 0.030 0.835+0.047 0.875+0.053
ED-HNNIIL 0.722 £0.045 0.536 £0.057 0.650+0.087 0.695+0.039 0.845+0.025 0.895 + 0.044
Natural-HNN” (Ours) | 0.804 £0.036  0.659 +0.049  0.745+0.045 0.707 £ 0.035 0.862 + 0.045 0.881 + 0.042

S Experiment

To evaluate our criterion, we performed a cancer subtype classification task from genetic pathways
using our proof-of-concept model, Natural-HNN. Genetic pathways possess unannotated or hidden
functional contexts (i.e., factors) underlying group interactions. Since these are closely linked to
cancer and disease, they serve as appropriate data for validating the criterion. Through experiments,
we aim to answer the following questions:

= RQ1 Does Natural-HNN perform well on data where factors, such as functional context, underlying
the mechanism are present? (Section 5.2)

= RQ2 Are the factors captured by Natural-HNN related to hyperedge disentanglement? In other
words, are they related to the functional context? (Section 5.3)

= RQ3 Can Natural-HNN generalize well? And how much is Natural-HNN affected by hyperparam-
eters? (Section 5.4)

5.1 Experimental Setup

Dataset. For the cancer subtype classification task, we downloaded clinical data for 6 cancer
types (BRCA, STAD, SARC, LGG, CESC, HNSC) and preprocessed data following Pathformer [46]
(Details in Appendix B.2). Every patient (i.e., a hypergraph) has the same genes (i.e., nodes) and
pathways (i.e., hyperedges), but the clinical data (i.e., gene features) are different. The data statistic
of each cancer data is provided in Appendix B.1.

Compared Methods. We compared Natural-HNN with HNNs introduced in Section 2.3. Specif-
ically, HGNN[20], HCHA [3], HNHN [12], UniGCNII [32], AllDeepSets [6], AllSetTransformer
[6], HyperGAT [11], SHINE [48], ED-HNN [70], ED-HNNII [70] and a hypergraph disentangling
method HSDN [31] are used as baselines. Implementation details of some baselines and their variants
are described in Appendix C.1.

Evaluation. We randomly split the data into 50%/25%/25% for training/validation/test set. We
measured average and standard deviation of the performances for 10 different data splits. The
hyperparameter search space is provided in Appendix C.5.

5.2 Results for Cancer Subtype Classification (RQ1)

The cancer subtype classification task can be considered as a hypergraph classification task, since
every patient (i.e., a hypergraph) has the same genes (i.e., nodes) and pathways (i.e., hyperedges).
Specifically, we generated the representation of a hyperedge by simply concatenating representations
of hyperedges in a hypergraph following Pathformer [46], due to the lack of an effective pooling
method reflecting the hypergraph topology developed to date. Then, we applied one layer MLP
as the classifier. We have the following observations in Table 1. 1) Natural-HNN shows superior
performance in most of the cancers with large performance gap compared with most of the models.
Especially in the case of BRCA, we achieve approximately a 5% performance improvement compared
to the second-best model. It can be concluded that incorporating the functional context (i.e., factors)
of pathways has contributed to improved performance. 2) Natural-HNN outperforms the hypergraph-
structure-level disentanglement model, HSDN, with a significant performance gap. HSDN uses
a factor similarity-based criterion to determine the relevance of factors. However, the superior
performance of Natural-HNN validates that naturality-guided disentanglement is more effective at
integrating the context behind group interactions.
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5.3 Capturing the Interaction Context of Hyperedges (RQ2)

To validate that Natural-HNN captured factors relevant to hyperedge disentanglement, we checked
whether our model captures the functional semantics of genetic pathways. Because the models rely

solely on cancer subtype labels during training4, we expect the interaction contexts of informative
hyperedges (such as cancer-related pathways) to be captured by the models, while non-informative
hyperedges (such as pathways not relevant to cancer) are not. For this experiment, we first selected

top-15 pathways5 based on the SHAP value for each model (Natural-HNN in Figure 5 top and
HSDN in Figure 5 bottom). Note that we rely on the SHAP value since information regarding
which pathways are relevant to cancers is not given. Then, after clustering these 15 pathways with
CliXO algorithm [34], we calculate the similarity between clusters based on the average similarity
of pathways that belong to each cluster. Our goal is to check how well Natural-HNN preserves
the functional semantic similarity between pathway clusters compared with the cluster similarity
calculated with Lin’s method [44] (BMA), which we consider as the ground-truth. For HSDN and

Natural-HNN, cluster similarity is calculated based on the relevance score vector of each hyperedge

e; across all factors, i.e., oy = [a;, ..., a |, which can be calculated as 1/(1 + ||a; — @jll2). As the

experiment setting is somewhat complicated, we described the detailed procedure in Appendix B.3.

The result on the BRCA datset is shown in Figure 5. The row and column of each heatmap is the
index of the pathway clusters and color represents similarity between clusters. Figure 5 (a), (b) and (c)
shows the measured similarity between clusters with pathways selected by Natural-HNN. Comparing
(b) and (c) with (a), we observe that Natural-HNN preserves the functional similarity (red box) better
than HSDN, which fails to do so (orange box). Moreover, Figure 5 (d), (e) and (f) shows the measured
similarity between clusters with pathways selected by HSDN. An interesting observation is that even
with the pathways that were informative to the HSDN, HSDN fails (orange box) to preserve the
functional similarity between clusters while Natural-HNN could capture them. The results imply
that the naturality condition in category theory is effective in capturing the interaction context of a
hyperedge.

Finally, we checked whether each factor captures a different context by calculating Pearson correlation
coefficients among hyperedges captured by each factor, following [85]. As shown in Figure 6
(b), factors tend to exhibit only weak correlations. Note that even when factors are completely
disentangled, a small degree of correlation can naturally exist between factors, as described in [59].
We observe that the factor discrimination loss decreases correlation between factors when comparing
Figures 6 (b) and (a).

*“This means that models do not use external data related to pathway types or pre-trained models.

5Only a few pathways are related to each type of cancer. We can also observe this with the SHAP value
distribution in Figure 15 of Appendix B.4.
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5.4 Generalizability and hyperparameter sensitivity of Natural-HNN (RQ3)

Generalizability. To validate the generalizability of Natural-HNN, we measured performance while
gradually reducing the training set ratio from 50% to 10% in 10% decrements. Figure 7 shows the
performance of our model (blue) and baselines. Figure 7 (a) shows a comparison with convolution-
or DeepSet-based models. These baselines rely on a strong inductive bias that nodes contribute
equally to hyperedges during the group interaction process. Models with such strong inductive
biases typically exhibit strong generalizability. Observing the extent of performance degradation as
the training ratio decreases, we can see that Natural-HNN also demonstrates good generalizability.
Figure 7 (b) compares Natural-HNN with attention-based models, which are known for their strong
expressivity. As shown in the figure, Natural-HNN consistently outperforms these models. This
indicates that Natural-HNN possesses both strong generalizability and sufficient expressivity. Figure
8 (a) presents experimental results evaluating whether the functional context (i.e., factors) is well
captured even as the training ratio decreases. As can be seen, a significant portion of the functional
context is well captured despite the reduced training data, demonstrating that our proposed criterion
effectively captures the factors.

Hyperparameter Sensitivity. We conducted experiments to evaluate the impact of hyperparameters,
such as the number of factors, on Natural-HNN’s ability to capture factors. Figure 8 (b) reveals
the following insights: 1) When the number of factors is 2 or 8, the overall similarity tends to be
slightly higher than the ground truth; however, the core strong similarities are still well captured. 2)
Regardless of the value of the factor discrimination loss weight A, the functional context (factors) is
consistently well captured. 3) When the dimensionality is too large, the core strong similarities are
well captured, but the overall similarity tends to be slightly higher than the ground truth. Conversely,
when the dimensionality is too small, some functional similarities are missed. These observations
suggest that, except when the dimensionality is too small, Natural-HNN can generally capture the
functional context well, regardless of hyperparameter settings.

Additional Experiments. In the Appendix, we provide ablation studies (Appendix E), time complex-
ity analysis (Appendix F.1) and results on hypergraph benchmark datasets (Appendix D).

6 Conclusion

In this work, we propose a criterion for hyperedge disentanglement by discovering a characteristic
called factor representation consistency. To uncover this characteristic, we analyzed the compositional
structure in hypergraph message passing and focused on the naturality condition that is satisfied
between entangled and disentangled representations. The characteristic derived from a hyperedge
disentanglement model that structurally aligns with the underlying mechanism demonstrated effec-
tiveness in capturing the functional context (i.e., factors) of genetic pathways (i.e., group interactions).
Experiments showed that this simple criterion generalizes well and consistently captures factors
regardless of hyperparameter choices.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

= You should answer [Yes] , ,or [NA]J.

= [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

m Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

= Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist'',
= Keep the checklist subsection headings, questions/answers and guidelines below.
= Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?

Answer: [Yes]

Justification: We have clearly mentioned our scope(disentangle, hypergraph, interaction context)

and summarized contributions

Guidelines:

= The answer NA means that the abstract and introduction do not include the claims made in the
paper.

® The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

® The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

® [t is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix G

Guidelines:

» The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

= The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
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asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

= The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

» The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

» If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

= While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: Although our paper uses concepts in category theory, it is not about theoretical result.
We used existing concepts to create our model.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

m All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

= All assumptions should be clearly stated or referenced in the statement of any theorems.

= The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-

mental results of the paper to the extent that it affects the main claims and/or conclusions of the

paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix B

Guidelines:

» The answer NA means that the paper does not include experiments.

m [f the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

= If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

» Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

= While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of closed-
source models, it may be that access to the model is limited in some way (e.g., to registered
users), but it should be possible for other researchers to have some path to reproducing or
verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We provide instructions for downloading original data, preprocessing codes at
https://anonymous.sopen.science/r/Natural_HNN well as preprocessed data at

Guidelines:

® The answer NA means that paper does not include experiments requiring code.

= Please see the NeurIPS code and data submission guidelines (https://nips.cc/public
/guides/CodeSubmissionPolicy) for more details.

= While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

® The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

» The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

» The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

= At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

» Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Appendix C.5

Guidelines:

® The answer NA means that the paper does not include experiments.

= The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For the most of the tables, we provide standarad deviations.

Guidelines:

» The answer NA means that the paper does not include experiments.

® The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
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The method for calculating the error bars should be explained (closed form formula, call to a

library function, bootstrap, etc.)

The assumptions made should be given (e.g., Normally distributed errors).

= [t should be clear whether the error bar is the standard deviation or the standard error of the
mean.

= ]t is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

m [f error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-

ments?

Answer: [Yes]

Justification: Appendix C.6

Guidelines:

® The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

» The paper should provide the amount of compute required for each of the individual experimen-
tal runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it

into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

Justification: We have read Code of Ethics. Our work does not violate the contents in the Code of

Ethics.

Guidelines:

® The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

» If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

» The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal

impacts of the work performed?

Answer: [Yes]

Justification: Appendix G

Guidelines:

= The answer NA means that there is no societal impact of the work performed.

» If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

= Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

® The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
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as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: This paper does not contain such risks

Guidelines:

» The answer NA means that the paper poses no such risks.

m Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

® We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]

Justification: For biological datasets, we provided links(URL), their paper in Appendix B.2 and
acknowledgement in the main text.

Guidelines:

» The answer NA means that the paper does not use existing assets.

= The authors should cite the original paper that produced the code package or dataset.

» The authors should state which version of the asset is used and, if possible, include a URL.

m The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

» [f assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

» For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

» If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation

provided alongside the assets?

Answer: [Yes]
Justification: Yes, we have well described how to use our code in the repository.

Guidelines:

® The answer NA means that the paper does not release new assets.

m Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

= The paper should discuss whether and how consent was obtained from people whose asset is
used.

= At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as well as

details about compensation (if any)?
Answer: [NA]
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Justification: This paper does not contain crowdsourcing or human subject research.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

» Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

= According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals

(or an equivalent approval/review based on the requirements of your country or institution) were

obtained?

Answer: [NA|
Justification: This paper only uses publicly available datasets.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

» Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

m We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

® For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard

component of the core methods in this research? Note that if the LLM is used only for writing,

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, declaration is not required.
Answer: [NA]

Justification: Our model does not use LLM.

Guidelines:

» The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

® Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Category Theory

A.1 Category Theory

Category theory [23, 39] is widely used to represent and analyze the structure or relation of a system.
Instead of focusing on the details, category theory takes bird’s eye view to see global structure
and patterns. Recently, category theory is used to explain learning mechanism of machine learning
methods [5, 40, 25, 22,24, 9, 63, 10, 4, 82, 13, 14, 81]. In this paper, we only use simple, fundamental
concepts of category theory: category, functor, natural transformation and product.

A.2 Category
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Figure 9: Category and Functor

A category C is contains four components: collection of objects, morphisms, composition rule and
identities.

= Collection of objects : Ob(C) (ex : {A, B, C} in Figure 9 (a))

» For every pair of objects A, B € Ob(C), there exists a set Homg(A, B). Element of the set is
morphism and is denoted as: f : A — B.

» For every three objects A, B, C € Ob(C), morphisms f € Hom¢(A,B) (i.e. f : A — B) and
g € Homc(B, C) (i.e. g : B— C), composition rule holds : f 5 g = g of € Hom¢(A, C)°.

» For every object A € Ob(C), there exists an identity morphism id, € Homc(A, A) satisfying the
following : id, §f = f = f §idp for morphismf : A — B.

Fig. 9 (a) shows an example of a category with three objects (A, B, C). For each object, there
is an identity morphism (idy, idg, id.-). For every object pair, there is morphism (f, g,f g g) with
composition rules.

One of the most important categories is Set. In Set, the objects are sets and morphisms are functions
mapping two sets. The composition rule is satisfied since a composition of two functions becomes
a function. Another important category is category of relations, which is denoted as Rel. The objects
of Rel are sets and relations R € A x B are morphisms between objects A and B. Partially ordered
set or poset can be considered as a category where objects are sets and morphisms are partial orders
<. Since partial order is a kind of a relation, we can consider this category is a kind of Rel.

In Section 3, we analyzed hypergraph message passing framework, and found that, as nodes (con-
sidering node as set) are included in hyperedges, hypergraph message passing framework has poset
structure with inclusion maps between them. We will define it PISet, a category for poset with
inclusion morphisms (object is a set, morphisms are inclusions). Since inclusions are partial orders,
which is also a relation, we can consider PISet as a kind of Rel category.

We can define our own category, similar to the one in a prior work [62], such that objects are vector
representations and their (linear or non-linear) transformations are morphisms. We will call this
a ‘category of Deep Learning Representations’ and denote DLRep.

Two notations f ¢ gand g of have the same meaning : “applying f first, and then applying g”
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Figure 10: Natural transformation. Identity morphisms are omitted in the figure for simplicity.
A.3 Functor

Functor is a structure preserving map between categories. Objects and morphisms in one category
are mapped to objects and morphisms in different category, respectively. Figure 9 (b) shows an
example of a functor mapping from category D to category [E. Each object in category D (i.e., A, B, C)
is mapped to objects in category E (i.e., F(A), F(B),F(C)). The morphisms, including identity
morphism, and their compositions in category D (i.e., id,, idg, idc,f, g,f ¢ g) are also mapped to
morphisms in category E (i.e., F(id,), F(idg), F(id¢), F(f), F(g), F(f) s F(g)). In a metaphorical
sense, functors serve as bridges that connect two distinct realms while maintaining an identical
compositional structure’ .

One example can be a functor mapping from Set to DLRep. Each set (object) in Set is mapped to a
vector representation (object) in DLRep. Functions (morphisms) in Set are mapped to transformations
(morphism) between vector representations in DLRep. This functor is related to representation
learning, since entities (i.e. concept or set) are mapped to their vector representations preserving their
compositional structure (relation).

A.4 Natural Transformation

Given two functors mapping from one category to another category, i.e., F and G : D — E,
natural transformation is a way of relating these two functors using morphisms in target category E.
Specifically, for each object A € D, there exists a morphism «, : F(A) — G(A) in E. The natural
transformation must satisfy the following condition. For every morphismf : A — Bin D,

F(f) g ap = a, 3 G(f) 2

must hold. This condition is called the naturality condition. Figure 10 shows an example of natural
transformation. Functors F and G map objects and morphisms in category ID to category [E. Natural
transformation « : F = G maps F(A) and F(B) with oy and maps G(A) and G(B) with . The
objects and morphisms mapped by two functors as well as natural transformation « all belong to
the category E. Thus, natural transformation can be seen as a way of relating different views using

. . 8
morphisms in E°.

"The typical example of deep learning method using this concept is sheaf neural network [26], motivated
from cellular sheaf [27]. There are also numerous studies in data science with a similar perspective [50, 69, 36].

One typical example of deep learning method using this concept is Natural Graph Networks [10].
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Figure 11: Product Flgure 12: Coproduct Figure 13: Product of morphisms.

A.5 Product

Product (Objects) Let C be a category. For two objects X;,X, € Ob(C), one can define product
of two objects X; x Xy with morphisms p; : X; x Xy — X; and py : X; x X5 — X, which are
called projections. Then, the composition of objects in Figure 11 must be satisfied. Given object
Y € Ob(C) with two morphisms f; : ¥ — X; and f, : ¥ — X,, there exists a unique morphism
called ‘paring’ [84] {f1,f2) : ¥ — X; X X, that satisfies the composition : f; = {f},f5) 3 p1 and

fo = {fi.fa) 8P
Coproduct (Objects)

A coproduct is the dual of a product, which can be obtained by reversing the direction of the arrows.
Let C be a category. For two objects X1, Xy € Ob(C), one can define coproduct of two objects X; 11X,
with morphisms i; : X; — X; x X, and iy : X9 — X; x X, which are called injections. Then, the
composition of objects in Figure 12 must be satisfied. Given object ¥ € Ob(C) with two morphisms
fi:X; > Yandf, : X, — Y, there exists a unique morphism [f;,f>] : X; 11 Xy — Y that satisfies the
composition : f; =iy § [f1.fo] and fo = iy 5 [f1,£2].

Product of Morphisms

Let C be a category. For objects X;,X5,Y;, Y, € 0b(C) and morphisms f; : X; — Y and f5 : Xy —
Y,, we can define product of morphisms f; x f5 : X; x Xy — Y; X Yy := {p; 31, P2 3fo) satisfying
the compositional structure shown in Figure 13.

A.6 Derivation of Figure 3 (b) from Figure 3 (a).

Since we are dealing with the commutative diagram between entangled and disentangled representa-
tions, we focus on the morphisms between X", X**, H*, H in Figure 3 (a). Since the morphism
(.e. fcd” X fj") in the disentangled representation is the product of factor-specific morphisms f‘]

and £ we apply the diagram at Figure 13 to £ x £ Then we can get the morphisms between
H H g x4 x% X9 in the Figure 14 where H™ = H™ x HY and X" = X% x X% Note

that morphisms between H", H* H"* H%" are products shown in the Figure 11. If we extract

components in Figure 14 that are related to factor ‘c’ and entangled representation, we have the
diagram in Figure 3 (b).

m

dz s H;,ils

‘]

Xéj]is

Qx

dls

Figure 14: Derivation of Figure 3 (b) from Figure 3 (a).
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B Dataset and Experiment Details

Note that KIPAN and NSCLC are known to be cancers where subtypes can be easily classified
based on features alone [71, 56]. Because these datasets offer limited value for evaluating model
performance, we excluded them in this study. The results of Natural-HNN and baselines for these
datasets (i.e., KIPAN and NSCLC) are reported in [38].

B.1 Statistics : Cancer Subtype Classification Dataset

The statistics of cancer datasets are shown in the Table 2. Note that every hypergraphs in all 6 cancers
have 1497 pathways (hyperedges) and 11552 genes (nodes) with 9 feature dimension. The degree
statistics of cancer dataset is shown in the Table 3. When converted to a graph with star-expansion,
the graph contains 98013 edges. When converted to a graph with clique-expansion, the graph contains
10114890 edges. Thus, converting the hypergraph into a graph with clique-expansion requires large
computation during message passing. The downloading and preprocessing details are provided in
Appendix B.2.

Table 2: Statistics of 6 cancer datasets used for cancer subtype classification task.

dataset || summary \ class distribution(counts)

BRCA || 5class, 769 hypergraphs | Normal-like 33, Her2 44, Basal-like 134, LumB 143, LumA 415
STAD 5 class, 341 hypergraphs CIN 200, EBV 29, GS 46, MSI 59, HM-SNV 7

SARC || 4 class, 257 hypergraphs LMS 104, MFS/UPS 75, DDLPS 57, Other 21

LGG 2 class, 503 hypergraphs G2 242, G3 261

HNSC || 2 class, 507 hypergraphs HPV- 411, HPV+ 96

CESC || 2 class, 280 hypergraphs AdenoCarcinoma 46, SquamousCarcinoma 234

Table 3: statistics of hypergraphs in cancer subtype classification task

min median mean max std
node degree 2 5 8.485 239 13.301
hyperedge degree | 13 35 57 1371 84.720

B.2 Preprocessing : Cancer Subtype Classification Dataset

The overall procedure was adopted from Pathformer [46]. However, statistics of the data can be
slightly different due to the difference of time at which the data was downloaded.

Creating Hypergraph

We downloaded pathways from several pathway databases including KEGG [33], PID [61], Reactome
[8] and Biocarta.[55]. The pathways were selected based on their size and overlap ratio with other
pathways. These two conditions must be considered as 1) extremely large pathways do not represent
specific functions but rather general functions, 2) small pathways complicate interpretations 3)
overlapping pathways cause redundancies. The more detailed explanations can be found in [58].
Pathways with too small or too big size or large overlaps are excluded. A specific threshold was
chosen following the Pathformer.

Generating Hypergraph Labels

For BRCA and STAD, we gathered cancer subtypes from TCGA [73] using TCGAbiolinks [7, 64, 53]
R library. For the rest of 4 cancer datasets we downloaded cancer subtypes from Broad GDAC

Firehose (https://gdac.broadinstitute.org/)’.

Pathformer used labels from pan-cancer atlas study [60] for HNSC, CESC and SARC. However, we decided
to use the one in Broad GDAC Firehose since it was easier to process the same data
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Generating Node Features

We gathered mRNA/miRNA expression, DNA methylationlo, DNA copy number variation (CN W'
using TCGAbiolinks. Gene lengths were acquired from biomaRt R package [17, 16]. The procedure
of processing each data with Gistic2 [52], normalization by TPM are adopted from Pathformer. At
the end of the processing step, we calculate statistics (mean, min, max, count) of modalities as values
for each feature dimension.

B.3 Experiment Details of Capturing Context Types

To check whether HNNs could capture functional semantics of pathways (i.e, interaction context
of hyperedges), we need functional context annotations for each hyperedge. However, there is no
data that annotates the functional semantics of genetic pathways. Instead, to assign function-related
hyperedge types or labels, we clustered pathways based on the functional similarity between pathways,
which can be calculated with computational biology method.

Now that we have obtained the hyperedge types, one might think we can simply check whether there
is a one-to-one correspondence between hyperedge types and factors. However, there is another issue:
hyperedge types themselves can be similar to each other. In other words, due to functional correlations
between hyperedge types, a single factor may appear not in just one hyperedge type but across multiple
hyperedge types. Therefore, examining the relationship between factors and hyperedge types alone
makes it difficult to determine whether disentanglement has captured the functional context. Instead,
we can indirectly verify that factors are related to the functional context by checking whether the
functional similarity between hyperedge types aligns with the functional similarity inferred from the
model’s factor relevance. Thus, we evaluated whether the model effectively captured the functional
context by comparing the ground truth functional similarity between hyperedge types (i.e., clusters)
with the similarity inferred from the model. If the functional similarity predicted by the model shows
some correlation with the functional similarity defined as ground truth, we can say that the model has
captured the functional context. We do not directly compare the exact values of prediction and the
ground truth since the way of calculating the value is different in prediction (calculation based on

relevance scores o/;) and ground truth (algorithm used in computational biology). Therefore, instead
of comparing exact values, we assessed it based on the similarity of patterns observable in a heatmap,
as shown in Figure 5.

In summary, our experiment involves selecting pathways to be analyzed, collecting function-related
information for each pathway, measuring the functional similarity between pathways based on the
collected information, and performing clustering based on this similarity. Afterward, we compute the
similarity between clusters to derive the ground truth similarity, which is then compared with the
model’s predictions. Thus, in order to perform the experiment, we need to consider the followings: 1)
Which pathways need to be analyzed? 2) How to get ground truth pathway functions? (i.e. How to
get function related information?) 3) How to calculate ground truth functional similarity between
pathways 4) How to cluster functionally similar pathways in a reliable manner 5) How to measure
ground truth cluster similarity and how to predict cluster similarity with model outputs.

Which pathways need to be analyzed? There are two reasons behind selecting pathways : 1) Since
CliXO algorithm (Appendix B.6) used for clustering pathways takes a lot of time, the number of
pathways to be analyzed must be reduced. 2) The ground truth functional similarity (Appendix B.5)
contains vast biological context derived from biological domain knowledge or researches, which
might not be present in our dataset. Since our dataset contains only cancer-specific information, there
is no way to capture non-existing context (contexts that are not related to cancer) without external
supervision. Thus direct comparison between the ground truth and our result is impossible. The most
ideal way for fair comparison would be selecting the ground truth that is only relevant to our dataset
or task. However, it is impossible since there are no databases with annotated context (cancer or
environment) specific pathway functionalities. An alternative way was selecting the pathways that
were informative or important in the decision of the model. If a model can correctly capture functional
context of pathways, since pathway functions are highly related to the cancers [74, 65], informative
pathways (for the model prediction) are the pathways that contain cancer-specific contexts. Since
we only need to check whether functional context are correctly captured under the cancer specific

"but we do not use promoter methylation
"but we do not use gene level CNV
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circumstances or condition, by selecting those pathways, we can compare functional similarities that
are specific to our data or cancer'”. The details for selecting pathways are described in Appendix B.4.

How to get ground truth pathway functions. Since there is no database that annotates functional
similarity scores between pathways, we rely on methods used in computational biology. Hence, we
need to get pathway function information. Similarity calculations and clusterings are based on the
annotation of pathway functions. The details are described in Appendix B.5.

How to calculate ground truth functional similarity between pathways. Based on the functions
of pathways, pathway functional similarity can be calculated. The calculated similarity will be used
in clustering and generating ground truth functional similarity between clusters. The details are dealt
in Appendix B.5.

How to cluster functionally similar pathways in a reliable manner. With functional similarity
between pathways, we can cluster functionally similar pathways with CliXO algorithm. The details
and example results are shown in Appendix B.6.

How to measure ground truth cluster similarity and how to predict cluster similarity with
model outputs. Finally, we need to devise a way to measure the similarity between clusters based
on the model outputs. Also, we need to measure ground truth functional similarity between clusters.
The details are described in Appendix B.7.

In summary, the procedure of experiments can be described as follows. First, we get functional
annotation of pathways (hyperedges). Second, we calculate functional similarity between pathways
based on annotations. Third, we select pathways to be analyzed based on the model output. Fourth, we
cluster the selected pathways with pathway similarity. Finally, we calculate the predicted functional
similarity between clusters from model prediction and compare that with the ground truth cluster
similarity.

B.4 Selecting Pathways with SHAP values

To select pathways that were the most informative for prediction, we provide the final representation of
pathways generated by a model, 1 layer classifier (MLP) that predicts labels from final representation
as well as labels to the DeepExplainer to get SHAP values. Then we select top-k pathways based on
the SHAP value. Note that only small number of pathways are relevant to the task as shown in Figure
15. This is due to the fact that not all pathways are related to very specific type of cancer. Although
Natural-HNN and HSDN both use the same number of pathways (top-k), the pathways selected by
each model can be different. This also leads to different number of clusters in Figure 5 and 18.
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(a) SHAP value for all pathways (b) SHAP value for top-30 pathways

Figure 15: SHAP value distribution of Natural-HNN on BRCA dataset. We sorted pathways with
SHAP value. X axis represents ranking of pathways and Y axis represents SHAP value for pathways
with corresponding ranking.

">On the other hand, if the model could not correctly capture pathway functionalities, cancer irrelevant
pathways will be selected and will have different result from the ground truth in section 5.3
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Figure 16: The result of applying CliXO algorithm to top-15 pathways of Natural-HNN and HSDN
on BRCA and CESC. The pathway number denotes the index of pathway in our dataset (hyperedge
index).

B.5 Calculating Functional Similarity between Pathways

This process consists of two steps: 1) assigning pathway level function to pathways and 2) calculating
functional semantic similarities between pathways. For both two steps, we adopted the most frequently
used and verified methods through several studies. For the assignment of pathway functions, we use
GO enrichment analysis. Gene ontology (GO) [2, 1] is a functional annotation of genes that has a
hierarchical structure. Note that, however, the hierarchical structure of functional annotations is close
to a directed acyclic graph (DAG) rather than a tree-like hierarchical structure. As an example, we
can see DAG structure in the result of CliXO algorithm in the Figure 16. We can computationally
annotate pathway functions with GO terms using GO enrichment analysis. We use ‘enrichGO’
function provided by R package clusterProfiler [80], with pvalue of 0.01 followig the paper [65].
Then we selected the most specific GO terms with set cover algorithm proposed in [65] to assign
pathways precise representation of their functions.

The next step is calculating functional semantic similarities between pathways. We used Lin’s method
[44] with best matching average (BMA) as the combination was proven to perform well with CliXO
and was proven to be robust in incomplete annotation cases in [45]. We used mgoSim function in R
package GOSemSim [79, 78] for the calculation of Lin’s method.

B.6 Assigning Pathway Type with CliXO

To cluster functionally similar pathways, we adopted CliXO [34]. It was originally designed to
cluster gene function annotations (GO) and has been used in multiple biological studies[35, 57].
However, it can also be effectively applied to higher functional semantics such as pathways as in [86].
We used official implementation of CliXO 1.0 for our research. We used the following 4 values as
hyperparameter of CliXO : a=0.1,b=0.6, m =0.005, s = 0.2.

Since CliXO can cluster functionally similar pathways, we can assign interaction types to pathways
by assigning them to the cluster. Figure 16 shows the result of applying CliXO for top-15 pathways
selected by Natural-HNN or HSDN for BRCA as well as CESC. Unlike other hierarchical clustering
based methods, CliXO created clusters having DAG structure. Considering that GO also has DAG
structure, CliXO can be seen as a natural way of reflecting complex structure or relations in biology.
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B.7 Calculating Functional Similarity between clusters

Ground Truth Given a pair of clusters, calculating functional similarity between them is simple. We
average the similarity of all possible pathway pairs belonging to different clusters to get functional
similarity between clusters.

Model’s prediction If a model correctly captures functional context of pathways, then the relevance
scores (ozf) of two similar pathways must be similar for all factors. Thus we define the similarity
between pathways as m2 where ; = [ozi1 s ey oz,K] is a factor vector of pathway (hyperedge)
e;. The cluster similarity can be calculated in the same way as in the ground truth case. We average
the similarity of all possible pathway pairs belonging to different clusters to get functional similarity
between clusters.
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C Implementation Details

In Appendix C.1, we describe some implementation details of baselines and their variants, which can
be different from official implementations. From Appendix C.2 to C.5, we describe implementation
details for the components of Natural-HNN.

C.1 Baselines and their variants

We implemented HyperGAT based on the paper as its official implementation is different from what
is explained in the paper. Moreover, as the original version of SHINE and HyperGAT do not involve
multihead attention, we implement it for fair comparisons. For SHINE, we also implemented two
versions, one without using £,,, and the other with £,,, which is a loss introduced by the paper for the
purpose of making node representations to be similar if the nodes are included in the same hyperedge.
However, we did not use the version with £,,, in cancer subtype classification task since the loss
converts a hypergraph to a graph using clique expansion, which causes tremendous computational
cost.

C.2 Factor Discrimination Loss

We defined a factor discrimination loss L similar to the one used in [85]. In order to promote
factors to contain different information, we use a factor classifier implemented with one layer MLP.
Each factor representation of every hyperedge will be given as input to the factor classifier. The
classifier needs to identify to which factor the factor representation belongs. If the classifier can
correctly identify the factor with factor representation, i.e. if factor representations of two different
factors of a hyperedge are distinguishable, it is highly likely that factors contain different information.

Specifically, we can calculate the loss by creating pseudo labels. For each factor representation of
each hyperedge (hfi), we assign a pseudo label Yfi = k. Then the loss can be defined as follows:

Lyis = Z 2 Z 1(Y, = c)log softmax(MLP(h ) 3)

;€€ k=1c=1

This loss is applied to each layer of Natural-HNN. As described in Section 4.4, the final loss would be
L = L, + ALy, As mentioned before, L, is an optional part of our model. The hyperparameter
search space for ) is provided in Appendix C.5

C.3 Loss used for training L,

After the final message passing layer of Natural-HNN, we get the final node embeddings z, . The

classifier of Natural-HNN will predict labels p, € R where C denotes the number of classes. In
other words, p,. . denotes the probability that node v; has class ¢ as answer. If we denote l,, as the
label (one-hot vector) for node v;, the task loss can be calculated with cross-entropy loss.

V| ¢

‘Ctaxk == Z Z lv,,c IOg(pv,,C) )

i=1c=1

Note that, we use hyperedge embedding of the final layer instead of node embeddings for cancer
subtype classification task.

C.4 Factor Encoder

In Section 4, we explained that we use K number of MLPs to get K factor representations. The
resulting factor representation is a vector with size d/K when desired output representation size of a
layer is given as d. When implementing the factor encoder as a code, we use single MLP that outputs
vector with size d. Note that applying K different MLPs (with output vector size d/K) is the same
as applying one MLP (with output vector size d) and chunking the vector to smaller ones with size
d/K. (i.e. First d/K values corresponds to the 1* factor representation, and following d/K values
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Table 4: Hyperparameter search space in standard benchmark dataset. | : MLP layers used in
AllDeepSets, AllSetTransforer, ED-HNN, ED-HNNII

models dcl | classifier dim | head (factor) 4 MLP layer f A for Ly # Total
HGNN 1 - 1 - - 32
HCHA 1 1 - - 32
HNHN 1 1 - - 32
UniGCNII 1 - 1 - 32
AllDeepSets 1,2 | 64,128,256,512 1 1,2 - 320
AllSetTransformer 1,2 | 64,128,256,512 1,2,4,8 1,2 - 1280
HyperGAT 1 - 1,2,4,8 - - 128
SHINE 1 - 1,248 - - 128
HSDN 1 - 1,248 - 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 896
ED-HNN 1,2 | 64,128,256,512 1 [0,1,2] x [1,2] x [0,1,2] - 2880
ED-HNNII 1,2 | 64,128,256,512 1 [0,1,2] x [1,2] x [0,1,2] - 2880
Natural-HNN 1 - 24,8 1 - 96
Natural-HNN+ L ;;¢ 1 - 2,48 1 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 672

Table 5: Hyperparameter search space in cancer subtype classification task. { : MLP layers used in
AllDeepSets, AllSetTransforer, ED-HNN, ED-HNNII

models head (factor) # MLP layer ' A for L # Total
HGNN 1 - - 24
HCHA 1 - - 24
HNHN 1 - - 24
UniGCNII 1 - - 24
AllDeepSets 1 1,2 - 48
AllSetTransformer 1,2,4,8 1,2 - 192
HyperGAT 1248 - - 96
SHINE 1,248 - - 96
HSDN 1,2,4,8 - 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 672
ED-HNN 1 [0,1] x [1] x [0,1] - 96
ED-HNNII 1 [0,1] x [1] x [0,1] - 96
Natural-HNN 24,8 - - 72

corresponds to the 2" factor representation and so on.) The nonlinear activation function we used for
factor encoder is hyperbolic tangent (tanh).

C.5 Hyperparameter search space

We report the hyperparameter search space of each model in standard benchmark dataset as well as
cancer subtype classification task. We used Adam optimizer for Natural-HNN. For the baselines,
we closely followed optimizers or schedulers they used in their paper. Table 4 and Table 5 shows
the hyperparameter search space in the standard benchmark dataset and cancer subtype datasets
respectively. ‘4 Total’ denotes the number of all possible hyperparameter combinations that each
model needs to search. ‘cl’ denotes the number of classifier layers. When the number of classifiers is
larger than 1, those models have an additional hyperparameter that decides the hidden dimension
of the classifier. §f MLP layer denotes the number of layers in MLP that was used in AllDeepSets,
AllSetTransformer, ED-HNN, ED-HNNII. In the case of ED-HNN and ED-HNNII, there were three
types of MLPs and each MLP could have different number of layers. A for £ is hyperparameter
that changes the reflection ratio of the factor discrimination loss.

For standard hypergraph benchmark datasets, we used [64, 128, 256, 512] as hidden dimension and
[0.1, 0.01, 0.001, 0.0001] as learing rate. For weight decay, we used [0, 1e-5]. We fixed the number
of layers to 2, except for HSDN, because HSDN uses only a single layer. Generally, we used 0.5 as
dropout. (If the paper of a model specified dropout to a specific value, we used the value following the
paper.) As we can see, our model generally has a small hyperparameter search space comparable to
GAT (when not using L;). Although ED-HNN and ED-HNNII had good performance on standard
hypergraph benchmark datasets, they had to rely on very large hyperparameter search space.

For cancer subtype classification tasks, we used [16, 32, 64] as the hidden dimension and [0.1, 0.01,
0.001, 0.0001] as learning rate. For weight decay, we used [0, le-5]. We fixed the number of layers
to 2, except for HSDN, because HSDN uses only a single layer. During training, we set 50 as
the batch size. Generally, we used 0.5 as dropout. (If the paper of a model specified dropout to a
specific value, we used the value following the paper.) Since we fixed the number of classifiers to 1,
the hyperparameter search space of some models are largely reduced when compared to the node
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classification task. For ED-HNN and ED-HNNII, we reduced the search space of the number of
MLPs since it took too much time to get the results.

C.6 Environment for experiment
We used 48GB NVIDIA RTX A6000 GPU. We created a anaconda environment with python

3.7.16, pytorch 1.11.0 and pytorch geometric with version 2.0.4. Details can also be found at
https://github.com/Yoonho-Lee-AI4Science/Natural-HNN.
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Table 6: Dataset statistics of standard hypergraph benchmark dataset

Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups

# nodes 2708 3312 19717 2708 41302 2012 12311 16242
# edge 1579 1079 7963 1072 22363 2012 12311 16242
# feature 1433 3703 500 1433 1425 100 100 100
# classes 7 6 3 7 6 67 40 4
avg. le 3.03 3.200 4.349 4.277 4.452 5 5 654.51
CE Homophily 0.897 0.893 0.952 0.803 0.869 0.753 0.853 0.461

Table 7: Model performance on standard hypergraph benchmark datasets (Accuracy). The last row
is the result with extreme hyperparameter search space that includes hyperparmeter searching for
dropout and interpolation ratio 3 (introduced in Section 4.3). Top three models (excluding the last
row) are colored by First, Second, Third. T : the variant of the model using multihead attention. * :
the variant of the model using £,,, defined in SHINE[48].

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
HGNN 79.453+1.003 73.092+1.582 87.336+0.443 83383+1.028 91.410£0.365 88350+1.082 95.567+0.411  81.246£0.435
HCHA 79276 £1.158  73.693+1.687 87.230£0.511 83.191 £0.868 91.358£0.374 88270+ 1.304  94.703+0.283  81.189 £0.397
HNHN 76.765 £ 1.560  72.524 +1.570 87.237+0.523 77.480+0.932 86.927+0.346  88.489+0.878  97.811+0.231  81.059 +0.485
UniGCNII 79.498 +£1.508 73.514+2.107 88.124£0.376 83.840£0.693 91.728 £0.225  89.245+0.882  97.243+0.334  81.687 £ 0.452
AllDeepSets 79.306 £ 1.627 72.959 £ 1.795 89.418 £0.360 84.594 +£0.793  91.594 +0.308  88.847£0.984  97.532+0.185  81.721 +0.653
AllSetTransformer 79.749 £1.620  73.140 + 1.804  88.667 £ 0.388 84.786 £ 0.690  91.593£0.309  89.404 +1.074  98.217+0.138  81.783 £ 0.569
HyperGAT 55908 £4.128 41.751 £ 1.814 48.191+£0.443 73.560+1.829 90.292+0.468  83.857£1.490  92.465+0.387  80.997 +0.390
HyperGATT 58.183£2.079 42.246+1.874 48.389+0.426 73.752+1.508 90.394+0.362 85467 £1.876  92.481+0.463  81.083 +0.374
SHINE 57.755£3.198 41.413£0.680 48.576+0.455 75.037+1912 90.759+0.292  87.256+1.393  93.803+0.395  81.061 +0.632
SHINE' 56.307 £4.452  41.763 £0.693 48.576+0.433 75.613+1.508 90.697 £0.329  87.157+1.426  93.878+0.332  81.239 £ 0.459
SHINE® 58.818 £ 1.591 41.413+1.563 46.682+ 1.177 74.623 + 1.444 61.507 £12.169  81.451£2.399  89.406 +0.775  61.492 + 12.666
SHINE™ 58.065+1.616 41.123+1.707 43.619+1.402 73.087+1.077 36.215+17.676 70.835+23.388 75.956 £23.688 56.452+ 13.043
HSDN 76.632+1.509 71.824+1.779 87.193£0.323 81.595+1.011 90.229+0.242  89.722+1.196  83.439+1.204  81.372+0.435
ED-HNN 80.635+1.670 73.696+1.992 88.911+0410 85.480+0.828 92.151£0.291  87.594+0.811  97.999+0.199  81.608 + 0.695
ED-HNNII 78951 +1.445 72.524+1.682 79.355+0.953 83.693+0.839 91.702+0.325  86.223+0.958  95.749+0.335  80.150 £ 0.753
Natural-HNN (ours) 80.709 £ 1.635 73285+1.742 87.136£0.450 84.993+0.491 90961 £0.137 89.900+1.017  98.558 £0.295 81.734£0.745

Natural-HNN (ours + L) 80.739 £ 1.570  73.551+1.964 88.475+0.466 85.081£0.583 91.032+0.179  90.060 + 1.565  98.584 +0.254  81.827 + 0.695
Natural-HNN (ours, extreme) 81.300+ 1.323  74.058 £ 1.335 88.746 £0.511 85.583+£0.774 91.910+0.192 90417 +0.919  98.629 £ 0.229  82.083 + 0.742

D Standard Hypergraph Benchmark dataset

We performed experiments with standard hypergraph benchmark dataset to check whether Natural-
HNN can be applied to the datasets that are not verified to have multiple factors behind group
interactions. Considering how hyperedges were created for benchmark datasets, it is not likely
that those datasets contain meaningful or task related interaction contexts. In co-citation and
co-authorship networks, for example, hyperedges are created by simply connecting all documents
cited by a paper or written by an author. Citations between a pair of papers might have context that is
related to a reason for citation, however, it is hard to expect that a group of documents (papers) cited
by a paper creates a special meaning or have a special context. Even if we assume that hyperedges in
co-citation networks contain interaction context, it is still not clear how these interaction contexts are
related to the labels of nodes. It is also hard to expect interaction context in co-authorship networks
for a similar reason. Thus, the benchmark dataset experiment will verify whether Natural-HNN
can be applied to the datasets where the existence of factors behind group interactions is not
known.

For the node classification task with standard hypergraph benchmark datasets, we randomly split the
data into 50%/25%/25% for training/validation/test set. We measured average and standard deviation
of the performances for 10 different data splits. The hyperparameter search space is provided in
Appendix C.5.

D.1 Statistics : Standard Hypergraph Benchmark Dataset

Cocitaion networks and coauthor networks are adopted from [76]. The node features are bag-of-
words representation of each documents. NTU2012 and ModelNet40 dataset is computer vision and
graphics datasets where features are generated by applying GVCNN[19] and MVCNNI[66]. Node
feature of 20Newsgroups are generated by TF-IDF representations of news. The statistics of standard
benchmark dataset is given in Table 6. Homophily ratio was calculated after converting hypergraph
into a graph with clique expansion (CE)[67] following the method described in the other work [70].
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Table 8: Model performance on standard hypergraph benchmark datasets (Accuracy) trained with
only 5% of data

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
HGNN 66.773£2.806 61.445+2.465 81.161+0.531 71.548+2.652 89.689+0.384 58.884+5.045 94.795+0.381 79.690 £ 0.675
HCHA 67.403 £2.865 61.600+2.279 81.135+0.549 71379 +2.465 89.689+0.274 59.032+5.083 93.939 +0.448 79.596 + 0.652
HNHN 58.272+1.970 584735296 79.793+0.804 58.831£2.399 82.855+0.499 58.737+5.344 96.845+0.382 78.456 + 0.602
UniGCNIT 68.212+2.559 63.600+1.203 83.024+0.820 70.799 £2.606 88.751 £0.281  60.255+5.022  96.584 £ 0.248  79.061 + 0.506
AllDeepSets 65.694 £2.306 61.388+4.012 84.485+0.647 713192964 59.689+0.296 59.892+4.833 96.055+0.286 78.868 +0.534
AllSetTransformer 65914 £2.155 62.506+1.720 82.942+0.491 71.249£2796 89.665+0.216 60.444 +£5.204 96.608 £0.291 79.409 + 0.590
HSDN 58.332+2.882 57.812+1.808 80.195+0.45 64.845+4.025 87.636+0.243 51.949+17.016 97.159£0.179 79.406 + 0.594
ED-HNN 66.433 £2.824 61759 £2.296 82348 +£0.559 69.809 +£2.569 90.039+0.342 57.984 +6.477 96.698 £ 0.265 78.386 + 0.542
Natural-HNN (ours) 67.343 £ 1.837 62.620£2.277 82.393 +0.467 70.809 £2.789 88.700 £0.251  60.511 £5.338  98.031 £0.196  79.329 + 0.666

Natural-HNN (ours + L) 67.393+1.938 62,694 +2.218 82.838+0.609 70.909 +3.439 88.906+0.204 61.384£4.570 98.141 +0.116 79.431 +0.552

D.2 Node Classification on Benchmark Datasets

Table 7 summarizes the node classification performance in standard hypergraph benchmark datasets.
We have the following observations: 1) Our model generally performs well on various datasets
by taking the first or second place in terms of accuracy. In the case of Citeseer and Cora-CA, the
performance of our model is comparable to the best performing model. The results indicate that
our model can be applied to various circumstances, even when the context variety of hyperedges is
not guaranteed. 2) Attention-based models (i.e., AllSetTransformer, SHINE, and HyperGAT) and
disentangle-based model (i.e., HSDN) generally perform similar to or worse than convolution-based
models (i.e., HGNN, HCHA, HNHN, UniGCNII) and AllDeepSets (which also does not have heads
or factors) on Citeseer, Pubmed and DBLP-CA. Through the results, we can guess that those datasets
do not contain various interaction contexts that is helpful for the model performance. This can also
be a reason why our model does not perform well on those datasets as much as on other datasets.

We consider a model that achieves sufficiently good performance without relying excessively on
hyperparameter tuning to be reliable. However, there has been an increasing number of papers, such
as Sheaf Hypergraph Networks [18], PhenomNN [72], and ED-HNN [70], that report performance
obtained through an extreme level of hyperparameter tuning. Therefore, to enable a fair comparison
with these works, we also included dropout and the interpolation ratio 8 (introduced in Section
4.3) in the hyperparameter tuning and conducted additional experiments. For both dropout and the
interpolation ratio 3, we set the hyperparameter search space from 0.1 to 0.9 with an interval of 0.1.
The results are reported in the last row of Table 7. Comparing the results of Natural-HNN with the
official performance results of the papers mentioned earlier that rely on extreme hyperparameter
tuning, we can see that Natural-HNN outperforms them despite having a much simpler model
architecture.

D.3 Training with only 5% of data

To check the generalization power of our model, we performed an experiment of training with only 5%
of data. Following the split ratio of HGNN for Cora dataset, we trained with 5% of data, validated with
18.5% and tested with 37% of data. Table 8 shows the result. We have the following observations: 1)
The performance of Natural-HNN tends to be similar or slightly better than convolution-based models.
This shows that Natural-HNN has good generalization power that is comparable to convolution-based
methods. 2) Our model performs better than recently introduced model, ED-HNN. Even if ED-HNN
has much larger hyperparameter search space, Natural-HNN performs better due to generalization
power.
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E Ablation studies and Hyperparameter sensitivity

E.1 Selecting Alternative Branch

In Section 4, we used the representation earned from ‘Disentangle-first Branch’ (h’;,,) when creating
final hyperedge factor representations (afh’;). The experiment results below shows the result when
using the other branch, ‘Aggregation-first Branch’ for creating final hyperedge factor representations

(afizlgi). Table 9 shows the result for standard hypergraph benchmark dataset and Table 10 shows the
result for cancer subtype classification task.

Table 9: Comparison of our model (first two rows) with alternative model that uses the other type of
hyperedge factor representation (last two rows)

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 ~ 20Newsgroups

Natural- HNN 80.709 £ 1.635 73285+ 1.742 87.163 £0.450 84.993+0.491 90.961 +0.137 89.900 + 1.0I17 98.558 +£0.295 81.734+0.745
Natural-HNN (+£ ;) 80.739 £1.570 73.551 +1.964 88.475+0.466 85.081+0.583 91.032+0.179 90.060 + 1.565 98.584 +0.254 81.827 +0.695
Natural-HNN (other branch) 80.650 £ 1.684 73237 +1.678 87.137£0.408 84.993 £0.434 90.968 £0.137 89.821+£0.847 98.557+0.232 81.729 +0.701

Natural-HNN (other branch + L) 80.827 £ 1.157  73.575+ 1.790  88.521 £0.424 85.081 £0.503 91.030£0.178 90.060 £0.795 98.577 +£0.227 81.837 £0.534

As we can see in Table 9, there is no big difference in the performance between using ‘Disentangle-first
Branch’ and ‘Aggregation-first Branch’.

Table 10: Comparison of our model (first row) with alternative model that uses the other type of
hyperedge factor representation (last row).

Method BRCA STAD SARC LGG HNSC CESC
Natural-HNN 0.804 £0.036 0.659+0.049 0.745+0.045 0.707 £0.035 0.860+0.042 0.881 +0.042
Natural-HNN (other branch)  0.797 +£0.028 0.654 £0.041 0.747 £0.063  0.707 £0.033  0.863 £0.022 0.875 £ 0.051

As we can see in Table 10, there is no big difference in the performance between using ‘Disentangle-
first Branch’ and ‘Aggregation-first Branch’. The reason for this phenomenon is quite simple. We

can consider the two cases: 1) when hlefi and izif’_ are similar and 2) when they are largely different.
1) When hfjl_ and iz’e‘[ are similar, the result will not differ a lot between using hle‘i or iz]; as similar
representations will be used. 2) When hf and 13];’, are largely different, the result will not be different
a lot since relevance score af will be very small. In other words, afhlg, - afizfi = af(hfi — ﬁf) will

be very small for very small ozf»‘. This case means that the factor representation will not be reflected a
lot during message passing since the representation is inconsistent (different result for two branches).

E.2 Natural-HNN without naturality constraint

We performed another ablation study to check whether naturality condition proposed in the paper
is important part that contributes to the model. We created an ablation model that do not satisfies
naturality condition by not reflecting relevance score af during message passing. The results for
standard hypergraph benchmark dataset is provided in Table 11. The results for the cancer subtype
classification task are provided in Table 12.

Table 11: Model performance on standard hypergraph benchmark datasets (Accuracy). The ablation
model does not satisfy the naturality condition.

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40  20Newsgroups
Natural-HNN (ours) 80.709 £ 1.635 73285+ 1.742 87.136 £0.450 84.993+0.491 90.961 £0.137 89.900 + 1.017 98.558 +0.295 81.734 +0.745
Natural-HNN (ours + L ;) 80.739 £ 1.570  73.551 £1.964 88.475+0.466 85.081+0.583 91.032£0.179 90.060 + 1.565 98.584 +0.254  81.827 £ 0.695

Natural-HNN (ablation) 80.220 £ 1.573  73.237+1.745 87.121+0.170 84.874+0.424 90.896£0.165 89.281+0.718 98.144+£0.226 81.685 £ 0.675
Natural-HNN (ablation + L)  80.250 + 1.555  73.392+£1.832 88.448 £0.407 85.022+0.508 90.968 +0.169 89.679 +1.129 98.177 +0.216 81.783 £ 0.771

In Table 11, we can see that there is a slight to moderate level of performance gap between Natural-
HNN and its ablation model. It is not a surprising result that there is not big difference between them
since standard benchmark datasets do not seem to have informative interaction contexts related to the
task (Appendix D).

In Table 12, we can observe that there is a big difference between Natural-HNN and its ablation
model. Since interaction context matters in cancer subtype classification task, naturality condition
seems to boost the performance by capturing interaction context.
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Table 12: Model performance on cancer subtype classification task (Macro F1). The ablation model
does not satisfy the naturality condition.
Method BRCA STAD SARC LGG HNSC CESC

Natural-HNN™ (ours) 0.804 £0.036  0.659 +£0.049 0.745+0.045 0.707 £0.035 0.862+0.045 0.881 +0.042
Natural-HNN* (ablation)  0.756 £ 0.031  0.605 £ 0.039 0.713 £0.071 0.692 +0.034 0.814 £0.037 0.852 £ 0.032

E.3 Hyperparameter Analysis

Since Natural-HNN does not have many hyperparameters, we analyzed how performance changes
by the number of factors. Table 13 shows the result for the standard hypergraph benchmark dataset.
Table 14 shows the result for cancer subtype classification task. Note that the tables below show the
result of Natural-HNN without £ ;.

Table 13: Performance of Natural-HNN with a different number of factors. The best performances
(reported in Table 7) are marked in red.

number of factors Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 ~ 20Newsgroups
I 80384 £1.820 73.133+1.767 87.063+0.373 84.934+0.418 90.951+0.139 89.622+0.953 98.480+0.310 81.684 +0.725
2 80.532£1.638 73285+ 1.742 87.055+0.401 84.904+0.432 90.961 £0.137 89.622+0.759 98.513+0.272 81.734 +£0.745
4 80.709 £1.652  73.188 £1.967 87.083 £0.450 84.993+0.491 90.939+0.151 89.821+1.070 98.558 +0.295 81.635+0.716
8 80.591£1.673 73.237+1.783 87.136 £0.450 84.934+0.385 90.955+0.131 89.900 £1.017 98.513+0.286 81.660 +0.714

We have interesting observations when we analyze the result in Table 7 with Table 13. 1) In Table
7, we observe that Natural-HNN does not perform well on the Citeseer, Pubmed, and DBLP-CA
datasets. Except for Pubmed, Table 13 shows that Natural-HNN used two or fewer factors on these
datasets.

2) Natural-HNN demonstrated good performance on the remaining five datasets in Table 7. Except for
the 20Newsgroups dataset, Natural-HNN used four or more factors to achieve its best performance,
as shown in Table 13. These observations suggest that Natural-HNN generally performs well
when capturing multiple factors. Furthermore, since the model did not benefit from using more
than two factors on Citeseer and DBLP-CA, we suspect that these datasets lack diverse interaction
contexts that would enhance performance. A similar trend is observed for other attention-based
(AllSetTransformer) and disentanglement-based (HSDN) models in Table 7. Although these models
are capable of capturing relational information, they showed poor performance—sometimes even
worse than some convolution-based models.

Table 14: Performance of Natural-HNN with different number of factors. The best performance
(reported in Table 1) are marked in red.

number of factors BRCA STAD SARC LGG HNSC CESC
1 0.789 £0.036  0.630 £0.046 0.729 £0.055 0.695+0.030 0.853£0.047 0.869 £0.048
2 0.787 £0.038 0.642 £0.043 0.745+£0.045 0.707 £0.035 0.858 £0.031 0.867 £ 0.043
4 0.804 £0.036 0.659 +£0.049 0.725+0.048 0.689 +0.047 0.858 £0.036 0.881 +0.042
8 0.785+£0.027 0.637 £0.032 0.729 £0.058 0.691 £0.044 0.860 £0.042 0.878 +£0.034

We have similar observations when comparing the result in Table 1 and Table 14. 1) For the SARC
and LGG datasets in Table 14, Natural-HNN achieved its best performance when using two factors.
2) For the remaining datasets, Natural-HNN achieved its best performance with four or more factors.
Except for CESC, these cases showed a meaningful increase in performance. Therefore, we can draw
a similar conclusion to the one derived from the comparison of Table 7 and Table 13.
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F Additional Experiment Result

F.1 Computational Complexity

Let d; be the input embedding dimension, d, be the output embedding dimension, K be number of
factors. N denotes number of nodes and M denotes number of hyperedges, E denotes the number of
node(v)-hyperedge(e) pair (v, ¢) satisfying v € e. We will assume thatd; > d,,d, > K, E > M and
E>N.

The computational complexity of one layer of Natural-HNN can be calculated by the following:

Aggregation-first Branch (aggregation + MLP): O(Ed;) + O(Md,d,)

Disentangle-first Branch (MLP + aggregation): O(Nd,d,) + O(Ed,,)
2 2

Similarity («) calculation : O(K (% + %)) O(df”)

® propagation back to nodes : O(KE + Ed,) = O(Ed,)

other calculations (concat, interpolation by /) : O(Nd,) Thus, total computational complexity

becomes O((M + N)did, + E(d; + d, + 1) + Nd, + &) = O(M + N)dd, + E(d; + d,))

For HGNN with dimension d; > d, > d, (d, denotes dimension of hyperedge embedding), com-
putational complexity becomes O(E(d; + d,) + (Md; + Nd,)d,). The computational complexity of
HGNN and Natural-HNN differs only by constant times. It is not surprising since Natural-HNN is
quite similar to HGNN but instead use two branches (only) during Node-to-Hyperedge propagation
and use factor similarity calculation. Thus, Natural-HNN is as scalable as HGNN.

F.2 Scalability Analysis (training time)

We measured the time it takes for the model to train for 10 epochs. We averaged the values after
measuring 5 times each. Also, we conducted the experiment in two settings: one with 2 heads
and 16-dimensional vector as hidden representation and the other with 8 heads and 64-dimensional
vector as hidden representation. Note that convolution-based models, AllDeepSets and ED-HNN
(II) use 1 head as they do not have a multi-head attention mechanism. The table 15 shows the
result of our model’s scalability. We have the following observations: 1) Our model is slower than
convolution-based models and HSDN. Since convolution-based models use strong inductive bias
with simple computations, they are naturally scalable than our model. HSDN took less time since
they use only one message passing layer. 2) Our model is much faster than all attention-based models.
Thus, we can conclude that our model scales well with hypergraph and parameter size next to the
convolution-based models.

Table 15: Time took for training 10 epochs for BRCA. We tested with two cases by differing hidden
dimension size and number of headst: multihead attention version

(dimension , head ) | (16, 2) (64, 8))
HGNN 2.171 £0.003 8.492 +0.010
HCHA 2.130 £ 0.003 8.322 £0.011
HNHN 1.169 £ 0.005 4.362 +0.005

UniGCNII 2.384 £ 0.004 9.166 + 0.009

AllDeepSets 7.870 £0.026  18.679 +0.040
AllSetTransformer | 11.213 £0.030 27.004 + 0.024
HyperGATT 7.191 £0.024  24.579 +0.047
SHINE' 9.099 £ 1.419 22.253+0.162
HSDN 2.944 £ 0.003  10.130 +0.006
ED-HNN 11.937 £0.026 22.738 £ 0.026
ED-HNNII 21.621 £0.029 36.418 £0.026

Natural-HNN (ours) 479 £ 0. 18. +0.07

F.3 Generalization power of Natural-HNN

To check the generalization power of our model, we experimented with different training set split
ratio, while maintaining the validation and test set ratio to 25%. From 50%, we gradually reduced
training set proportion to 10% as shown in Figure 17. Figure 17(a) and (b) are the result of measuring
performance with accuracy or Macro-F1 scores and (c) and (d) are the result of measuring relative
degradation of performance to the performance when trained with 50% For example, for BRCA
dataset experiment, which is measured with Macro-F1 score, the relative degradation of performance
is caculated by (Fg5y — F,)/F5¢ X 100% where F, denotes the Macro-F1 score when trained with
x%. The same applies to Cora-CA, which is measured with accuracy. Figure 17 (a) and (c) are
the result in Cora-CA dataset, which is standard hypergraph benchmark, (b) and (d) are the result
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Figure 17: The performance of models when reducing training set proportion. First row shows Macro
F1 score and the second row shows relative performance degradation compared to the performance
when using 50% of dataset as training set. Natural-HNN (ours, colored in blue) maintains best Macro
F1 score and small relative performance degradation on both Cora-CA and BRCA dataset.

for BRCA dataset, which is dataset used for cancer subtype classification task. The left figure in
each Figure 17 (a,b,c,d) is the result of comparing ours (blue) and convolution of deepset based
models. These baselines cannot perform context-dependent message passing. The right figure in each
Figure 17 (a,b,c,d) is the result of comparing ours (blue) and other baselines that have potential for
context-dependent message passing

We have the following observations : 1) The degradation of performance for Natural-HNN was
smaller when compared with most of the baselines in both Cora-CA and BRCA. Specifically, we
can see that Natural-HNN has comparable result with convoluation based models in left figures
of Figure 17 (c) and (d). Considering that convolutions based models have strong generalization
performance due to their strong inductive bias, we can say that our model has good generalization
power comparable to convolution based models. When compared with other baselinese in Figure
17 (b) and (d), we can observe that Natural-HNN had very small degradation in performance. In
other words, Natural-HNN had nearly the smallest degradation when compared with models that
have more expressive power than convolution based methods. We can consider our model had
good generalization among baselines with more expressive powers. Specifically, in Figure 17 (d),
Natural-HNN showed outstanding result in cancer dataset which has various context of interactions.
This might be due to the fact that the inductive bias (context of interaction) that Natural-HNN used
matched the actual data characteristics.

2) Natural-HNN had the best Macro-F1 score for all different training ratio. Our model always had
the best performance compared to convolution or deepset based models in left figures of Figure
17 (a) and (b). Specifically, we can see that Natural-HNN had outstanding performance in BRCA
cancer dataset in the left figure of Figure 17 (b). Thus, we can conclude that Natural-HNN is more
expressive compared to convolution based models. Also, when inductive bias (interaction context)
matches the data characteristics (BRCA), Natural-HNN provides outstanding performances. From
the result, we could verify that Natural-HNN can utilize context information to get good performance.
When compared with other baselines, in the right figures of Figure 17 (a) and (b), we can see that
our model could achieve better, or at least comparable performance when compared with baselines.
We can conclude that our model has expressive power comparable to other attention (including Set
Transformer) or equivariance based models. Again, we can observe that Natural-HNN achieved
outstanding performance in BRCA dataset by capturing context types. Considering that Natural-HNN
had good generalization and expressivity, we argue that our model made a proper trade-off between
expressive power and generalization.
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F.4 Captured Context in CESC

(i) With pathways selected by Natural-HNN
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Figure 18: Captured interaction context. Pathways are selected by SHAP value. Captured patterns
are shown in red box and not captured patterns are shown with orange box. Weakly captured case is
marked as dotted red block.

Figure 18 shows the captured context result in CESC. The evaluation and interpretation method is
identical to that of Section 5.3. As we can see in the figure, for pathways selected by Natural-HNN,
Natural-HNN correctly captures context similarities between clusters (red box) while HSDN does not
(orange box). For the pathways selected by HSDN, Natural-HNN and HSDN partially captures cluster
similarity. However, when comparing orange box in (d) and (f), we can observe that Natural-HNN
captures interaction context slightly better than HSDN even with the pathways selected by HSDN.

F.5 Cancer Subtype Classification (Micro F1)

We briefly provide Micro F1 scores of each model in cancer subtype classification task. The Table 16
also shows that our model generally performs well on most of cancer datasets.

Table 16: Micro F1 score of each model with parameter and hyperparameter of the best Macro F1
score. Top two models are colored by First, Second. {: the variant of the model using multihead
attention. * : we did not use L ;.

Method BRCA STAD SARC LGG HNSC CESC
HGNN 0.817£0027 0.727£0.026 0.739%£0.057 0.696£0.034 0.888=0.031 0.903 £0.034
HCHA 0.808 £0.024 0.725+0.036 0.731 £0.058 0.685+0.039 0.876+0.034 0.911 +0.034
HNHN 0.806 £0.027 0.729+0.067 0.733+0.046 0.676 +0.037 0.8840.018 0.910+0.033

UniGCNII 0.791 £0.027 0.797+0.038 0.761 £0.046 0.665+0.038 0.910+0.013 0.911 +0.018
AllDeepSets 0.823+0.025 0.748£0.039 0.657+0.035 0.669 £0.045 0.895%0.025 0.927 +0.024
AllSetTransformer ~ 0.827+0.031 0.710 £0.047 0.749+0.047 0.656 +0.037 0.898+0.016 0.908  0.025
HyperGAT 0754 £0.116 0.725+0.050 0.645+0.106 0.669+0.051 0.889+0.030 0.900 + 0.025
HyperGAT' 0.753 £0.072 0.676+0.108 0.643 £0.098 0.665+0.042 0.8830.053 0.896 + 0.021
SHINE 0.659 £0.090 0.590+0.127 0.618£0.106 0.649 £0.058 0.846+0.032 0.890 + 0.044
SHINE! 0.783 £0.027 0.711+0.061 0.709 £0.045 0.654 +0.044 0.873+0.027 0.907 +0.031
HSDN 0.838 £0.022 0.801+0.033 0.758 £0.047 0.694 £0.036 0.892+0.025 0.925 +0.024
ED-HNN 0.826+0.024 0.793 £0.047 0.761+0.039 0.703 £0.028 0.913+0.021 0.925 +0.035
ED-HNNII 0.815+£0.027 0.748+0.024 0.694+0.050 0.696+0.038 0.916+0.013 0.942 +0.024

Natural-HNN™ (ours)  0.869 £ 0.024  0.824 £0.027 0.770 £0.040 0.709 £0.033  0.923 £0.020 0.932 + 0.024
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Table 17: Hyperedge classification result (accuracy). Top two models are colored by First, Second.

Dataset HGNN HCHA HNHN UniGCNIT AllDeepSets  AllSetTransformer HSDN Natural-HNN (ours)
Chemical Reaction  0.449 £0.005 0.482+0.010 0.257+0.008 0.672+0.004 0.493 +0.023 0.727 £ 0.026 0.491 £0.023 0.773 £ 0.008

F.6 Chemical Reaction Classification (Hyperedge Classification)

To validate whether Natural-HNN performs well not only on cancer subtype classification but also on
other hypergraph datasets that contains meaningful hyperedge semantics, we performed hyperedge
classification task on a chemical reaction dataset [21]. Among the three datasets proposed in that
paper, we used the first dataset for validation, as the other two datasets have relatively small number
of samples and the prediction tasks are too easy to serve as a meaningful evaluation of the model. The
hyperparameter search space was kept the same as that used for the standard hypergraph benchmark
datasets, and Natural-HNN was evaluated without L. As shown in Table 17, Natural-HNN
demonstrates overwhelmingly superior performance compared to other models, including HSDN.
Therefore, Natural-HNN proves to be highly effective not only for cancer subtype classification but
also for datasets in which hyperedges contain hidden semantics related to labels.

F.7 Reliability of Natural-HNN in Biology

In order for a model to be reliable, the model should provide consistent output regardless of the choice
of hyperparameters. So we conducted an experiment to check whether models consistently rely on
the same pathways. If a model consistently rely on the same pathways for prediction regardless of
the hyperparameter, biologists might consider the model to be reliable since it potentially captured
and used what can be explained with biological domain knowledge. On the other hand, if the model
relies on different pathways for different hyperparameters, biologists might not trust the model.

To check whether model relies on the same pathways, we ranked the pathways with SHAP value and
selected top-k pathways. These pathways are the ones that models relied most for their prediction.
Then, we calculated Jaccard similarity of top-k pathways for different hyperparameters. If top-k
pathways earned from each hyperparameter combination is similar, then we can conclude that model
always rely on the same pathways regardless of the hyperparameters.

Figure 19 and Figure 20 are the result of calculating Jaccard similarity between different hyperparam-
eter combinations on BRCA dataset. The hyperparameters we changed was the hidden dimension
size and the number of factors. Values in each tick of row and column is the pair of the two hyper-
parameters (i.e., the value in the ticks represent (hidden dimesion, number of factors) pair). Each
heatmap shows Jaccard similarity when selecting top 10, 15, 20, 50, 100 and 500 pathways. Figure
19 is the results for Natural-HNN and Figure 20 is the result for HSDN. We also calculated average
Jaccard similarity for each heatmap.

The ideal result would show dark blue colors (high similarity) to all cells in the heatmap. It means
that top-k pathways that a model relied on are always the same regardless of the hyperparameter.
When comparing Figures 19 and 20, we can see that Natural-HNN tends to rely on the same pathway
regardless of the hyperparameter while HSDN does not. When comparing average Jaccard similarity
scores, we can quantitatively observe that Natural-HNN has better consistency when compared to
HSDN. For example, Jaccard similarity with top 15 pathways of Natural-HNN (19 (b)) has average
similarity of 0.759 while that of HSDN (20 (b)) has average similarity of 0.555.

From this experiment, we can conclude that Natural-HNN is reliable since it consistently focuses on
the same pathways regardless of the choice of hyperparameters. Also, we could again verify that our
model captures the functionality of pathways (interaction context of hyperedge) and expect that our
model will work reliably in different dataset or different biological applications. Note that similar
analysis for Figure 21 and Figure 22 provides similar conclusion.
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Figure 19: Jaccard similarity calculation result for Natural-HNN on BRCA. We can observe that
Natural-HNN generally relies on similar pathways regardless of hyperparameters by showing high

Jaccard similarity value.
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Figure 20: Jaccard similarity calculation result for HSDN on BRCA. We can observe that HSDN
relies on different pathways for different hyperparameters by showing strong diagonal pattern. This
inconsistency makes HSDN an unreliable model for biology.
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Figure 21: Jaccard similarity calculation result for Natural-HNN on HNSC. We can observe that
Natural-HNN generally relies on similar pathways regardless of hyperparameters by showing high

Jaccard similarity value.
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Figure 22: Jaccard similarity calculation result for HSDN on HNSC. We can observe that HSDN
relies on different pathways for different hyperparameters by showing strong diagonal pattern. This
inconsistency makes HSDN an unreliable model for biology.
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G Limitations, impacts and Future Work

G.1 Broader Impacts

Potential Positive Societal Impacts. As demonstrated through various experiments, Natural-HNN
has the potential to capture the inherent heterogeneity of interactions and diverse interaction contexts.
In complex systems such as biological organisms, many interactions have unknown functionalities.
Natural-HNN’s ability to capture these latent interaction contexts can contribute to the development
of more reliable models for a wide range of real-world problems.

Potential Negative Societal Impacts. Our proposed method is designed to automatically identify
and incorporate the factors underlying interactions. The relevance scores indicate which factors are
most relevant to each interaction. However, if this method is applied to data where privacy is critical,
it could potentially lead to indirect leakage of sensitive information through those relevance scores.

G.2 Limitation

Natural-HNN uses hyperparameter K to decide number of factors instead of automatically discovering
the number of factors within data. In real world problems, it might require a lot of time to get optimal
number of factors. This is a kind of a problem that all disentangle-based methods need to solve in the
future.

G.3 Future Work 1 : Model for Graph Neural Network

Since Natural-HNN is designed for hypergraph neural network, we can apply our model to graphs.
However, it is computationally inefficient since Natural-HNN performs two step message passing
(node-to-hyperedge, hyperedge-to-node) while most of the gnns perform one step message pass-
ing. Thus, we need to devise a novel criterion for disentangling edge types in graphs without
using edge representations. Since there are many interaction types in graphs, developing reliable
edge disentangling model in the perspective of category theory will be useful for many real world
applications.

G.4 Future Work 2 : Hyperedge-Node co-disentanglement

Our goal was to disentangle the factors behind group interactions, and thus we assumed that the
nodes participating in an interaction share the same context (factor). However, it is also possible
that individual nodes have their own distinct contexts (factors) when participating in an interaction.
For example, consider a group discussion involving multiple individuals. In Natural-HNN, the
disentanglement focused on hyperedge-level factors, such as the discussion topic. However, node-
level disentanglement could also be applied in this scenario. Each participant might have a specific
role in the discussion. Separately from the discussion topic, factors such as the context or role
of each participant in the discussion could also be disentangled. Performing a hyperedge-node
co-disentanglement, which is disentangling both hyperedge-level and node-level factors, would allow
for a more nuanced approximation of diverse underlying mechanisms.
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