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ABSTRACT

Vision-Language Models (VLMs) excel in diverse multimodal tasks. However, user requirements
vary across scenarios, which can be categorized into fast response, high-quality output, and low
energy consumption. Relying solely on large models deployed in the cloud for all queries often
leads to high latency and energy cost, while small models deployed on edge devices are capable of
handling simpler tasks with low latency and energy cost. To fully leverage the strengths of both
large and small models, we propose ECVL-ROUTER, the first scenario-aware routing framework
for VLMs. Our approach introduces a new routing strategy and evaluation metrics that dynamically
select the appropriate model for each query based on user requirements, maximizing overall utility.
We also construct a multimodal response-quality dataset tailored for router training and validate the
approach through extensive experiments. Results show that our approach successfully routes over
80% of queries to the small model while incurring less than 10% drop in problem solving probability.

1 INTRODUCTION

Vision-Language Models (VLMs), which integrate visual and textual understanding, have become crucial components
in a wide range of Al applications, from robotics control to user interface navigation (Zhang et al.,2024; |Shinde et al.}
2025} ILi et al., 2024)). In practice, predominant deployment strategy relies heavily on powerful, cloud-hosted Large
VLMs (LVLMs) to serve all user queries (Jang & Morabito, [2025; [Navardi et al., 2025 |[Zheng et al., 2025)), which
excel at complex reasoning but incur latency and energy costs (Fernandez et al.| 2025} Jegham et al., 2025} Charyyev
et al.| 2020) while underutilizing capable small VLMs (SVLMs) on edge devices (Sharshar et al., 2025} Belcak et al.|
2025). Moreover, a one-size-fits-all deployment strategy is suboptimal, as users increasingly expect systems that not
only deliver high-quality responses but also adapt to diverse real-world scenarios with varying demands for latency,
cost, and privacy.

To effectively integrate the strengths of both LVLMs and SVLMs, edge—cloud collaborative routing(Yuan et al., [2025}
Hao et al., |2024) is a natural fits. At its core is a lightweight model router (Ding et al., 2024; |Ong et al., [2024)
that inspects each query and selects an appropriate VLM. However, a general router is insufficient, routing must be
scenario-aware: behaviors vary across diverse application contexts and can be configured by users or automatically
inferred by scenario detection algorithms (Fifty et al.,2023;|Someki et al.| 2025). Existing routers are often text-centric
and optimize a fixed trade-off between cost and quality, failing to adapt to multimodal, scenario-aware user needs. For
example, real-time games interaction prioritizes low latency, medical diagnostics emphasizes answer quality, and
mobile assistants require low energy use and strong privacy (Asgari et al.l [2025). Therefore, an ideal model router
should align with diverse user requirements and make the most appropriate routing decision in different scenarios.

In this work, we introduce Edge-Cloud Vision-Language Router (ECVL-ROUTER), a novel, scenario-aware routing
framework for VLMs. Motivated by heterogeneous real-world scenarios, we distill three primary user requirements:
(1) fast response, (2) high-quality output, and (3) low energy consumption & data privacy. Accordingly, our routing
objective is to maximize the use of small edge models while meeting user satisfaction. To achieve this, we introduce
the Minimal Expectation Score (MES) to quantify the user’s acceptable quality threshold in different scenarios. Guided
by MES, the router prefers an SVLM whenever its predicted output meets the MES threshold and escalates to a larger
cloud model otherwise. To implement this strategy, we design a lightweight routing classifier and construct a response
quality dataset using an MES-based annotation policy to support its training. For evaluation, we propose the Rout-
ing Comprehensive Score (RCS), integrating three key aspects: Average Problem-Solving Probability (APSP), Cost
Advantage (CA), and Average Inference Latency (AIL), which correspond directly to three core user requirements. Ex-
tensive experiments demonstrate that our routing strategy and framework delivers favorable trade-offs across quality,
latency, and cost while adhering to scenario-specific user requirements.

The main contributions of this paper can be summarized as follows:
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1. We propose a novel, scenario-aware routing strategy for VLMs and a new set of model routing evaluation
metrics (Section [3). This strategy moves beyond the traditional cost-quality trade-off by centering on the
user’s dynamic requirements to maximize the system’s overall utility.

2. We design and implement ECVL-ROUTER, the first cloud-edge collaborative, scenario-aware routing frame-
work for VLMs, which effectively combines the high performance of large cloud models with the low-cost
advantages of small edge models (Section d.2)).

3. We construct the first response quality dataset for training and evaluating VLM routers (Section[d.I)). Through
extensive experiments on this dataset, we have thoroughly validated the effectiveness of our ECVL-ROUTER
framework (Section[5)). We also open source our dataset and framework for users to train their routers based
on their specific requirements. [[]

2 RELATED WORK

2.1 SVLMyvs.LVLM

Vision-Language Models now underpin applications from accessibility assistance and Ul navigation to robotics and
scientific content creation (Zhang et al.,|2024; |Shinde et al., 2025)). User requirements in these domains differ widely.
Some applications, like real-time games or augmented reality, demand fast response where low latency is critical (Vasu
et al., 2025} [Liu et al. [2025). Others, such as medical diagnostics, insist on high-quality answers where accuracy
is paramount (Singhal et al., |2025; [2023). For applications on mobile or IoT devices, low energy consumption and
privacy constraints are decisive factors (Chu et al., 2023} [Wang et al.| [2025).

Cloud-hosted LVLMs (e.g., GPT-40 and Gemini 2.5 Pro) offer strong multimodal reasoning but impose round-trip
latency and significant compute costs, making them ill-suited for latency-sensitive or privacy-constrained settings
(Hurst et al., 2024; [Team et al., 2023} |Charyyev et al., 2020; Fernandez et al., [2025)). In parallel, SVLMs have become
increasingly capable on consumer hardware. For example, Google’s Gemma 3 270M can run on a mobile phone with
very low power consumption; internal tests showed that 25 conversations on a Pixel 9 Pro consumed only 0.75% of
the battery (Lacombe et al., [2025). Meanwhile, Microsoft’s Phi-4-multimodal, with only 5.6 billion parameters, runs
on personal computers to efficiently handle tasks like OCR and chart understanding (Abouelenin et al., | 2025). Despite
these advances, production stacks still over-rely on cloud LVLMs. This gap motivates scenario-aware edge—cloud
designs that preferentially serve queries on-device and escalate only when quality requirements exceed local capacity.

2.2 MODEL ROUTING

From objective functions and decision paradigms, prior work falls into three types:

(1) Outcome-optimal, non-predictive cascades. These methods prioritize the quality of the final answer by allowing
multiple model calls until a target quality threshold is met. A common strategy is cascading: invoke models from
low to high cost and stop once the response satisfies a predefined criterion. FrugalGPT follows this paradigm (Chen
et al.| [2023). AutoMix first lets a small model self-evaluate its draft and escalates only if quality is predicted to be
insufficient (Aggarwal et al.l|2023). While effective for quality, these approaches often incur significant extra latency
due to repeated or parallel model evaluations.

(2) Resource-optimal, predictive routing. Unlike cascading methods, predictive routing seeks to choose the right
model in a single shot, optimizing cost/latency by training a lightweight router that predicts the appropriate model
before execution. Hybrid-LLM uses a difficulty-aware router to decide between small and large models (Ding et al.,
2024). RouterLLM provides a unified training framework for learning performance—cost aware selectors (Ong et al.|
2024). NVIDIA’s LLM-Router leverages pretrained classifiers to dispatch by task type and complexity (NVIDIA
Corporation, 2024)). Research also explores alternative designs, e.g., graph-based routing in GraphRouter (Feng et al.|
2024) and tool-oriented modular routing in 7O-Router (Stripelis et al., 2024). However, many methods frame routing
as predicting whether a small model can beat a large model, rather than whether the small model is good enough for
the scenario, a crucial distinction for practical deployments.

(3) Compute-aware reasoning control in agentic systems. Beyond model selection, routing principles appear in
system architectures and agent workflows. Modern systems (e.g. GPT-5) use a real-time router to choose between
instant response and deeper thinking for reasoning based on estimated task difficulty and explicit user intent (OpenAl,
2025)). At the agent level, routing determines not only which LLM to use but also which tool or specialized sub-agent
to activate within a complex system. (Wu et al., [2024; |Yao et al.,|[2025)).

'The code is available at https://anonymous.4open.science/t/ECVL-Router-977D
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Despite progress, three limitations remain. (i) Modality limitation: prior routers target only text inputs and do
not account for the unique challenges of multimodal (image—text) inputs required by VLMs. (ii) Oversimplified
routing strategy: many method such as RouterLL.M and Hybrid-LLM are driven by routing to a binary “small-vs-
large wins” signal, by contrast, our router explicitly considers “good enough” performance of small models for the
target scenario, improving edge utilization without unnecessary escalation. (iii) Lack of scenario-aware user needs:
existing evaluations largely collapse to a single cost—quality trade-off and rely on cost/latency alone, overlooking that
user requirements over answer quality, responsiveness, and resource usage vary across applications.

3 SCENARIO-AWARE VLM ROUTING

This section formally defines our scenario-aware routing problem. We begin by defining the models and user-centric
scenarios. Then we introduce the Minimal Expectation Score (MES) to quantify user satisfaction. we formally define
the core routing problem and establish the decision rules. Finally, we propose a suite of evaluation metrics to assess
the router’s effectiveness across three scenarios.

3.1 ROUTING PROBLEM DEFINITION

Model definitions. Our framework considers two types of VLMs: (1) Mcqge, a lightweight SVLM deployed on
consumer hardware such as laptops or mobile phones (typically < 10B parameters); and (2) Mcjoud, @ more powerful
LVLM deployed on the cloud (typically > 10B parameters). Each model M maps a multimodal input—-user query Q
and input data I (text and images)—-to a response:

M : {(Q,I)— Response (1)

Scenario definitions & MES. We categorize user requirements into three primary scenarios: (1) Fast Response
(Speed), (2) High-Quality Output (Quality), and (3) Low Energy Consumption & Data Privacy (Efficiency).

To quantify user requirements in our routing problem, we introduce the Minimal Expectation Score (MES). The
MES represents the lowest response-quality threshold a user is willing to accept in a given scenario. Let Scorecqge =
Scoreny, . (@, ) and Scoreciouq = Scoreny,,,., (@, I) denote response-quality scores (see Appendix [A.2|for criteria).
Any output with Score > MES is deemed satisfactory; scores below MES are not. The MES effectively captures
user needs across different scenarios; for instance, the Quality scenario typically demands a higher MES, while the
Speed scenario may tolerate a lower one. Based on MES, we also construct a multimodal response-quality dataset for
subsequent training and validation (see in Section [4.)).

Routing problem. The core of our work is the routing problem, which aims to maximize the use of Mgz While
satisfying the user’s MES across different scenarios. Define a routing process R that selects Mg € {Medge7 Meioud }-
We say Meqgge is competent for (Q, I) if the binary label L = 1 under the following rule:

L = T |Scorecgge > min{ScoreCloud, MES} or Scorecioua < MES . 2)

Case A: edge reaches the cloud-or-MES floor Case B: cloud fails MES, avoid its cost

Case A routes to Mcqge When it achieves at least the minimum of the cloud score and MES, which means Mqg is
competent. Case B covers failure regimes where even M),,q cannot satisfy MES, which means the problem can’t be
solved. Using this rule, we construct training data Dy, ain = {(Q4, I+, Lt)}ivzl, where N is the total number of samples
in the training set, (Q¢, I}) is the ¢-th input query and data, L; is the ¢-th routing result.

Routing classifier and decision. The routing process is implemented by a routing classifier, which predicts the
probability p that Meqge is competent for a task: p = Py(L=1 | Q, I), where 6 denotes model parameters learned by
minimizing cross-entropy loss on Dy.,i,. We use a decision threshold 7 to convert p into a routing decision:

Medge7 iftp > 7,

. 3)
Mcloud7 lfp < T

R(QJ):{

Adjusting 7 trades off quality, cost, and latency for different scenarios. (see in Section [4.2))
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3.2 EVALUATION METRICS

To evaluate the scenario-aware router, we propose three metrics aligned with the core user requirements, along with a
composite score. For the three, (N, Q;, I;) share the same meaning with Section [3.1{and Mg, is the model selected
by router R for the ¢-th sample.

Average Problem-Solving Probability (APSP). Rate at which routed responses meet MES (aligns with Quality):

N
1
APSP(R) = ¥ ; I{ Scores,, (Q¢, 1) > MES }. 4)
A higher APSP indicates stronger problem-solving capability.

Cost Advantage (CA). Fraction of queries handled by Moqq, (aligns with Efficiency):

1

N
CA(R) = NZH{ Mp, = Medge } - (5)
t=1

A higher CA indicates better resource savings.

Average Inference Latency (AIL). Mean end-to-end latency (aligns with Speed):

N
1
AIL(R) = + ; latency (Mg, (Qs, Ir)) - 6)
A lower AIL indicates faster responses.

Routing Comprehensive Score (RCS). A weighted aggregate (higher is better):
RCS(R) = aAPSP(R) + BCA(R) — ~vAIL(R). @)

The hyperparameters «, 3,y can be tuned based on scenario priorities. A high APSP often leads to a lower CA and a
higher AIL, as more tasks are routed to the LVLM. The RCS enables balanced evaluation. In our experiments (see in
Sec[5), we use three parameterizations to simulate different user priorities:

RCS1 (Quality) © (@, 8,7) = (1.2, 0.1, 0.001), RCS2(Effciency) : (1.0, 0.12, 0.001), RCS3(speeay : (1.0, 0.1, 0.0015).

4 METHODOLOGY

4.1 RESPONSE SCORE DATASET

Dataset construction. Guided by the scenario-aware MES defined in Sec[3] we construct the Response Score
Dataset (RSD) tailored for VLM routing. Our goal is to efficiently estimate model response quality across diverse
tasks via large-scale automated annotation. Concretely, we first select a representative set of 8 VLMs and prompt
them to generate responses on 7 public benchmarks that cover a broad range of task types and difficulty levels (see in
Appendix [A.T). Next, we adopt the LLM-as-a-Judge way, which has shown to correlate strongly with human ratings
in prior work (Zheng et al.,|2023;|Gu et al., 2024) and use GPT-40 as the LLM Response Judge (LRJ). For each model
response, the LRJ assigns a unified score € [1,10] under a consistent rubric. The score evaluates the helpfulness,
relevance, accuracy of the response (see in Appendix [A.2]for details).

Human gold labels To ensure the reliability of automated scoring, we rigorously validated LRJ annotations against
human gold labels. We recruited five human experts to independently score a stratified random sample of 200 in-
stances. LRJ scores show strong alignment with the mean human rating (Pearson correlation » > 0.85), confirming
its effectiveness and reliability as an automated annotator (see Appendix for detailes).

In summary, the Response Score Dataset (RSD) contains approximately 22k image-text instances, each with response
quality scores and inference times for 8 VLMs. Furthermore, we analyze the distribution of response quality and infer-
ence time, as well as the performance of different models across each benchmark (see Appendix [A.4]for full analysis).
This helps us define the difficulty of each benchmark and the capabilities of different models. The distribution result
also supports the hypothesis that larger models typically take more time to provide higher-quality responsesE]

’The construction of RSD—including model inference, LRJ, and human gold validation—incurred USD $1000 cost.
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Figure 1: (a) Overall Structure and (b)Training Strategy of ECVL-ROUTER

4.2 ECVL-ROUTER

We propose ECVL-ROUTER, a transformer-based routing framework for Vision-language models. ECVL-ROUTER
uses a Transformer classifier to process heterogeneous inputs (e.g. text and images). On the training side, ECVL-
ROUTER selects the decision threshold 7 via validation-set analysis, yielding a threshold tailored to each model pair,
MES setting, and application scenario. The overall architecture and training pipeline of ECVL-ROUTER are shown

in Fig[T]
4.2.1 MODEL ARCHITECTURE

Input encoding. We obtain modality-specific embeddings for text and images. For text, we use a pretrained encoder
(e.g.BERT_BASE) to produce e. For images, we adopt a standard vision encoder (e.g., ViT) to obtain ejpae. Each
embedding e,,, € R*" is projected into a shared d-dimensional space via a linear layer, i.e., v,;, = W€, + by,
where W,,, € R¥*n and b,,, € RY, with m € {text,image}, and k,, is the dimensionality of the vector obtained by
applying a linear projection to modality m. .

Modalities fusion. To capture input complexity in addition to semantics, we compute lightweight statistics from raw
inputs (e.g., word count, special-character and numeric-token counts for text; width/height and color-channel indica-
tors for images). These statistics are linearly embedded as v, € R?. We then form the intermediate representation
by concatenation: Viner = [Viext; Vimage; Vstat]-

Routing classifier. ECVL-ROUTER employs a lightweight Transformer encoder (2 layers, hidden size 256, 4 at-
tention heads, FFN size 512, dropout 0.3) followed by a linear classifier. Given viye, as input, the classifier outputs
the probability that the edge-side SVLM can meet the scenario-dependent MES, modeled as pg(SVLM | ¢,x) =
o (w They + b), where 6 denotes all model parameters, hoy, is the final encoder representation, and o (-) is the sigmoid
function. At inference time, we route to the SVLM if py > 7 and otherwise escalate to the cloud-side LVLM, with
7 € (0,1) fixed by the validation procedure described above.

4.2.2 TRAINING STRATEGY

Data construction. We first structure the original corpora into triples D = {(Q, I, L)} following Sec. 3| Here, @
denotes the user query, I denotes the associated input (images and text), and L € {0, 1} is the edge-competency label
computed by equation @ The dataset is then randomly split into the training set Dy,in, validation set Diy,jig, and test
set Dies With a ratio of 6:2:2, while preserving the distribution of sources and labels.

Training stage. At each epoch, an intermediate classifier Ciye, is trained on Dy,j,. The classifier outputs p =
Py(L=1| @, I), the probability that My is competent for (), I) as defined in Sec.|3| Given the ground-truth label
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y = L € {0, 1}, parameters are updated by minimizing the binary cross-entropy £ = — [y log p+ (1 —y)log(1 —p)].
We use Adam with an initial learning rate 10~2 and the OneCycleLR schedule(Smith & Topin, [2019) to leverage
super-convergence. The model is trained for a total of 50 epochs with a batch size of 64.

Validation stage. During validation, we perform a grid search over the decision threshold 7 € [0, 1] with a step of
0.05 to maximize the RCS on D,,jiq. For each epoch, we evaluate RCS(Dyaq; 7) for all candidate 7, record the best
pair (7*, RCS*), and finally retain the Ciy, achieving the highest RCS* together with its 7*. This procedure adapts
the router to scenario-specific requirements and generalizes well to the test set (see in Fig[J).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Base VLMs & Comparison Methods. We run all experiments offline on an NVIDIA A800 (80 GB) and an Intel®
Xeon® Platinum 8250C (128 cores). To avoid API latency and reduce cost, the main study uses open source VLMs
from OpenGVLab at three scales: InternVL3-38B, InternVL3-8B, and InternVL2.5-1B. These form three model pairs,
and we include additional pairs for generalization tests(see in Appendix [B.1I). Due to there are no previous works in
VLM router, following text-only router work (Ong et al.| |2024; |Ding et al.| 2024), we compare against All-at-Large,
All-at-Small: route all queries to large/small model deployed on cloud/edge, and Matrix Factorization(MF). We also
evaluate Gradient Boosted Decision Trees (GBDT, 100 trees) and a multilayer perceptron (MLP) with three hidden
layers. For the MLP, input/output dimensions and the optimizer learning rate match those of ECVL-ROUTER.

Dataset & Evaluation Metrics. We utilize the Response Score Dataset, where samples are labeled based on a MES
of 6. A sample is positive when the SVLM reaches Score.qqe > 6. The dataset is split into training, validation, and
test sets at 60%, 20%, and 20%, respectively, ensuring stratified label distributions. During evaluation, we report the
per-scenario metrics APSP,CA and AIL, along with their composite scores RCS1, RCS2, and RCS3 for the three
different scenarios.

Table 1: Model router performance on three model pairs. APSP, CA, AIL are the metrics in RCS1. RCS1/2/3 are
composite scores for Quality, Efficiency, and Speed scenarios.

. Evaluation metrics(RCS1) Composite Scores
Model Pair -~ Model Router pop . "cA+  AIL[s]| RCS1t RCS2+ RCS37

ECVL-ROUTER 0.506 0.824 4.53 0.685 0.601 0.582

GBDT 0.518 0.631 5.38 0.680 0.596 0.577

InternVL MLP 0.515 0.645 4.41 0.678 0.594 0.575
38B/1B MF 0.503 0.439 4.49 0.643 0.551 0.540
All-at-Large 0.549 0.000 7.44 0.652 0.542 0.538

All-at-Small 0.456 1.000 0.94 0.646 0.575 0.554
ECVL-ROUTER 0.483 0.910 1.34 0.669 0.591 0.572

GBDT 0.478 0.941 1.29 0.666 0.589 0.570

InternVL MLP 0.485 0.873 1.24 0.668 0.589 0.570
8B/1B MF 0.469 0.800 1.18 0.642 0.564 0.547
All-at-Large 0.529 0.000 1.63 0.633 0.527 0.527

All-at-Small 0.456 1.000 0.94 0.646 0.575 0.554
ECVL-ROUTER 0.533 0.982 1.77 0.736 0.649 0.629

GBDT 0.534 0.965 1.86 0.735 0.648 0.628

InternVL MLP 0.534 0.887 2.30 0.727 0.638 0.619
38B/8B MF 0.529 1.000 1.63 0.733 0.647 0.627
All-at-Large 0.549 0.000 7.44 0.652 0.542 0.538

All-at-Small 0.529 1.000 1.63 0.733 0.647 0.627

5.2 ROUTER PERFORMANCE RESULTS

Table 1|shows the performance of our ECVL-ROUTER against comparison methods across three model pairs. Based
on this, we can draw the following observations:
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Obs 1: ECVL-ROUTER achieves optimal performance across all scenarios. The experimental results show that
our proposed ECVL-ROUTER consistently achieves the highest composite scores on all three model pairs across the
three scenarios. Beyond these in-domain results, we also conduct the cross-domain experiments in Appendix [B.2]

Obs 2: ECVL-ROUTER achieve high edge(small) model utilization with minimal quality loss and lower latency.
While maintaining high-quality responses, ECVL-ROUTER substantially increases the utilization of the small model
and significantly reduces response latency. For instance, compared to the All-at-Large baseline on the 38B/1B pair,
ECVL-ROUTER routes 82% of queries to the SVLM. This is achieved with only a minor drop in the APSP of less
than 8% (0.549 — 0.506), while delivering a significant 39.1% reduction in AIL.

5.3 ANALYSIS OF SCENARIO-AWARE HYPERPARAMETERS (7 AND MES)

Our router is controlled by two hyperparameters: the decision threshold 7 and MES. We pick 7 via validation grid
search for each scenario and validate its robustness in further experiments in Appendix [B.2] MES is application-
defined and proxies task difficulty (higher MES = harder). We analyzes the impact of varying 7 and MES on the
router’s performance. For all other experiments, MES is set to 6 by default. From figure[2]and[12] we can find that:

Sensitivity Analysis: Impact of Decision Threshold ©
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Figure 2: Impact of the decision threshold 7. It illustrates how the performance metrics for each model router (ECVL-
ROUTER, MLP, GBDT, MF) change with different values of 7 for the InternVL-38B/1B pair at MES=6.

Obs 3: The decision threshold 7 governs the cost-quality trade-off, with an optimal value 7* that is scenario-
dependent and lies within [0.7, 0.9]. In figure |Zka), as 7 increases, fewer queries go to the SVLM: CA |, while
escalation to the LVLM raises APSP 1 and AIL 1. This captures the core trade-off: higher quality costs more la-
tency/energy; speed efficiency implies some quality drop. By finding the optimal 7 on the validation set, we can
identify the best value for a specific scenario. In figure 2b), across RCS1/2/3, most methods (except MF) show uni-
modal curves peaking in 0.6-0.9 rather than at 7=0.5, whcih means 7 has optimal value and is differed by scenarios.
As seen in the red annotations of figure 2(b), scenarios prioritizing quality (RCS1) favor a higher optimal 7*, while
those focused on low cost and speed (RCS2, RCS3) benefit from a lower optimal 7*. Our router leads across most 7,
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with peak performance often at higher 7 (0.7-0.9). In contrast, MLP and GBDT vary smoothly, whereas MF is limited
by linear factorization and misses rich image—text interactions.

Obs 4: ECVL-ROUTER delivers the largest gains at medium difficulty task (MES € [5, 7]). When MES<
5, tasks are easy and the SVLM already succeeds; when MES> 8, both models often fail, leaving little room for
routing. Concretely, In MES= 5-7, ECVL-ROUTER shows the largest margin over alternatives (e.g., average RCS
gain = +0.7% in figurdI2|b),), because the small-large model capability gap is most informative: the router accurately
escalates only those queries the SVLM cannot solve, maximizing edge usage without undue quality loss. And in
[[2(a), as MES increases, APSP decreases monotonically, while CA (first |, then 1) and AIL (first 1, then |) are
non-monotonic because the rule defaults to the SVLM when neither model meets MES; thus at very high MES, the
proportion of queries handled by the SVLM rises again. A detailed analysis of these cases is provided in Appendix[B.4]

5.4 ROUTER LATENCY ANALYSIS & ABLATION EXPERIMENT

We measure end-to-end inference latency on the test set for the InternVL family and for each component of ECVL-
ROUTER. From Table[2]and[3] we have the following observations:

Obs 5: Routing latency of ECVL-ROUTER is negligible for user experience. One ECVL-ROUTER pass takes
0.0159s, i.e., 1.7% of InternVL2.5-1B, 0.97% of InternVL3-8B, and 0.21% of InternVL3-38B. Within the router, the
ViT encoder dominates (93.7%), while fusion is near zero (0.06%). In practice, routing overhead is amortized by the
subsequent VLM call and does not affect user-perceived latency.

Table 2: Comparison of Inference Latency Across Different Models.

Router-Bert Router-ViT ~ Router-Stat  Router-Fusion  Router-All  InternVL2.5-1B InternVL3-8B InternVL3-38B

Latency [s] 7.5 x 10™% 00149 23 x10"* 88x10°° 0.0159 0.9359 1.6332 7.4391
(1.7% of 1B)  (baseline) (175 1B)  (7.95x 1B)

Obs 6: Visual modality is the dominant driver in VLM routing. Our ablation studies, summarized in Table [3
reveal that visual features are not just beneficial but are the primary signal guiding the routing decision for VLM pairs.
Removing any branch degrades all scenarios while dropping image hurts most (e.g., ARCS2 = —0.022, ARCS3 =
—0.017); compared with removing text (ARCS2 = —0.017) and statistics yields smaller. Furthermore, among single-
branch variants, image-only > text-only on all composites and is competitive with statistics-only.

Table 3: Ablation of ECVL-ROUTER’s Components (Text, Image, Statistics) on the InternVL 38B/1B Model Pair.

Method APSP+ CAt1 AIL[s]/, RCS1{ RCS21 RCS31
ECVL-ROUTER (Full) 0.5064 0.8241 4.5331  0.6855  0.6008  0.5820
w.0. Text 0.5079  0.6720 49529  0.6718  0.5836  0.5767
w.o. Image 0.5174 05496 47378  0.6711 05786  0.5653
w.0. Statistic 05150 0.6567 5.1550  0.6785  0.5886  0.5729
only Text 05152 05710 5.0925  0.6702  0.5786  0.5647
only Image 0.5174  0.5807 4.9666  0.6740  0.5821  0.5680
only Statistic 04804 09032 44539  0.6732 05933  0.5730
Random 04980 05000 4.1653  0.6434  0.5538  0.5418
All-at-Large 0.5492  0.0000 7.4391  0.6516 0.5418  0.5380
All-at-Small 04557  1.0000 0.9359  0.6459  0.5748  0.5543

5.5 ALTERNATE ROUTING STRATEGY & METRICS

We reimplement two widely used routing paradigms: win-hard and win-soft, following the spirit of Hybrid LLM
and RouteLLME] Table 4{ reports per-scenario metrics(APSP/CA/AIL), the quality composite RCS1, router accuracy
(ACC), the RouteLLM metric PGR, HybridLLM metric BARTScore, and aggregate Token/Time saving.

3 All methods use our unified LRJ 1-10 scale for comparison
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Table 4: Offline comparison of routing strategies under a unified label/metric protocol. Bold=best; underline=second-
best. win-hard: direct comparison: Scoreeqge > ScOrecioud. Win-soft(k): Score-offset variant favoring SVLM by
k € 1,2; during labeling and decision the SVLM is judged against Scoreeqge + £ > Scorecioud-

Metric Proposed  win-hard  win-soft (1)  win-soft (2)
APSP 1 0.5064 0.5250 0.5012 0.4784
CA T 0.8241 0.4008 0.7601 0.8609
AIL [s] | 4.5331 6.8286 5.1018 3.5520
RCS1 1 0.6855 0.6633 0.6723 0.6566
ACC 7t 0.8408 0.8159 0.8113 0.8011
PGR 1 0.7720 0.9486 0.6001 0.3645
BARTScore 1 -4.8154 -4.6750 -4.8869 -5.0040
Token saving 1 28,269 9,341 25,292 33,136
Time saving T 12,544 4,858 10,324 14,717

Obs 7: Scenario-Aware routing outperforms Single-Objective strategies. Our method ranks highest on the com-
posite RCS1=0.6855 and on ACC (0.8408), and second on APSP/CA/AIL/PGR/BARTScore. It achieves the highest
RCS1=0.6855 with APSP close to win-hard (0.5064 vs. 0.525), while routing more to the edge (CA +0.42331)
and cutting latency (AIL —2.30s]). Against win-soft(1/2) (MES-shifted), it improves APSP/CA/AIL jointly (e.g.,
vs. soft(1): APSP +0.00527, CA +0.064071, AIL —0.57s]). Notably, PGR is highest for win-hard, consistent with
RouteLLM’s cost—performance emphasis, while our RCS objective aligns better with scenario-aware utility that bal-
ances quality, edge utilization, and latency. Hybrid LLM reports up to 40% fewer large-model calls at no quality drop
under its thresholds; under the same unified LRJ regime, ECVL-ROUTER achieves stronger composite utility while
maintaining high edge coverage. Furthermore, to assess real-world adaptability, we run an online study with n=>5
participants over 200 image—text queries under two scenarios—Quality-first and Speed-first—using the same router
trained offline. Full online study task analyses appear in Appendix [B.3]

6 DISCUSSION

Point 1: Scenario-aware routing objective to align with user needs. We redefine routing as satisficing against a
Minimal Expectation Score (MES): a response is “good enough” if it meets the user-specified minimum. This aligns
routing with real application needs and maximizes the utility of on-device SVLMs by sending easy queries locally
while escalating only when necessary. The approach is most effective when there is a clear capability gap between the
SVLM and LVLM; when the SVLM is too weak (e.g., < 500M parameters) or the two models are similar in ability,
gains from routing are limited. These findings offer actionable guidance for edge—cloud collaboration: set acceptance
thresholds by user needs to minimize compute while maintaining satisfaction.

Point 2: Router flexibility and deployment practice. ECVL-ROUTER instantiates the above strategy with user-
definable MES and threshold 7. Practitioners can construct training data with LRJ labels at a chosen MES and train
with the composite metric RCS using weights («, 8,7) over APSP/CA/AIL (see Sec. to encode scenario pref-
erences; the optimal 7 is then selected on a validation set. In practice, we recommend curating in-domain data and
tuning (v, 3, ) to the target scenario, as cross-domain generalization is modest. Relative to All-at-Large processing,
our approach substantially increases edge model utilization with only small satisfaction drops, cutting both latency
and cloud cost.

7 CONCLUSION

We introduced ECVL-ROUTER, a scenario-aware routing framework for vision—language models that reframes
routing as meeting a user-defined Minimal Expectation Score (MES). By optimizing the Routing Comprehensive
Score (RCS)—which balances quality (APSP), efficiency (CA), and latency (AIL), our method maximizes on-device
small model usage while preserving response quality. Trained on the RSD dataset (~22k image—text instances),
ECVL-ROUTER consistently outperforms baselines across multiple model pairs, routing over 80% of queries to
the edge with less than 10% drop in APSP and substantial end-to-end latency reductions. The decision threshold T
enables scenario-specific trade-offs; ablations show visual features dominate routing efficacy, and the router’s overhead
(=~0.016,s) is negligible. The approach works best when edge and cloud capabilities differ markedly. Future work will
focus on enhancing cross-domain generalization and extending the framework to other modalities.
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ETHICS STATEMENT

This work develops a scenario-aware routing method for vision—language systems using publicly available datasets
and open-source/base models. No personally identifiable information was collected or released; all data use complies
with original licenses/terms. We label responses via an LLM-as-a-Judge rubric and perform human sanity checks
to assess agreement and common biases (e.g., over-verbosity, modality imbalance), applying mitigation such as a
dimensioned rubric, separation of judge/model, and conservative decision thresholds. Potential risks include unsafe
escalation policies, amplification of dataset bias, and privacy leakage in cloud calls. We recommend deployment
safeguards: scenario-appropriate MES settings, content-safety filters, rate/permission controls for remote inference,
and clear documentation of intended use and known limitations. Code, configs, and evaluation scripts are released to
support auditing and community oversight.

REPRODUCIBILITY STATEMENT

We release an anonymous repository containing code, configs, and scripts for dataset preparation, training, and evalu-
ation, together with a readme that enumerates dependencies and exact commands. We document model pairs, routing
architecture, hyperparameters, random seeds, and the 60/20/20 stratified splits; evaluation follows APSP/CA/AIL with
composite RCS. Threshold selection uses a validation grid over 7; we provide the sweep script and the best setting per
scenario. Hardware/software details (e.g., NVIDIA A800 80 GB; Intel Xeon) and environment files are included. All
reported tables/figures can be reproduced by running the provided pipelines; ablations and latency measurement scripts
are also supplied. For reviewers, we include an anonymized code link and archival artifact with cached intermediate
results to reduce compute and facilitate verification.

LLM USAGE

We used ChatGPT (OpenAl; Aug—Sep 2025 access window) for grammar checking and minor phrasing, and Al-
assisted coding tools (e.g., Cursor) for refactoring boilerplate and editor suggestions during system development.All
LLM outputs were reviewed by authors. We verified factual claims, math, code logic, citations, and figures; any errors
were corrected by humans. We did not upload non-public data or PII to third-party services. Prompts contained only
de-identified text or synthetic/task data.
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A RESPONSE SCORE DATASET

A.1 MODELS AND DATASET COMPOSITION

Models. We evaluate a pool of VLMs that spans both large cloud models M jouq (LVLM) and small edge models
Mogge (SVLM), following the definitions in §3]

Table 5: Model roster by category.

Category Models

Large (LVLM) Gemma 3-27B; InternVL3-38B
Small (SVLM) InternVL2_5-2B; InternVL2_5-1B; SmolVLM-256M;
InternVL3-8B; Phi-4-Multimodal-5.6B; Qwen2.5-VL-7B

Dataset composition. RSD covers diverse tasks and difficulty levels to support MES-based scenario-aware routing.
Table [6] reports Core Task Type, Key Abilities, dataset Volume (k), and Difficulty (three levels: Easy/Medium/Hard).
The total annotated instances are about ~ 22k model—instance pairs, aligned with the discussion in the main text.

Table 6: Task coverage of RSD training/eval data. Volumes (in thousands) sum to ~22k overall. Difficulty uses three
discrete levels (Easy/Medium/Hard) to coarsely stratify instance hardness for MES analysis.

Dataset Core Task Type Key Abilities Volume (k)  Difficulty
WildVision Real-world VQA open-ended reasoning, contextual understanding 0.5 Easy
ChartQA Chart QA Structured extraction, logic/arithmetic 2.5 Easy
GQA Compositional VQA Spatial reasoning, multi-step inference 12.0 Medium
VizWiz Blind-assistance VQA Noise robustness, answerability 4.3 Medium
MM Vet Composite benchmark ~ Recognition/OCR/knowledge/spatial/math 0.22 Medium
MMMU-Pro  Professional hard VQA  Domain knowledge, deep reasoning 1.73 Hard
MMStar Leak-resistant eval Fine-grained/counterfactual, vision reliance 1.5 Hard
Total 22.7 —

A.2 LLM-AS-A-JUDGE PROMPT & BIASES CONTROL

Scoring Prompt. We adopt an LLM-as-a-Judge (LRJ) procedure to assign a unified score € [1,10] per model-
instance pair. The LRJ (GPT-4/40 in our setup) evaluates accuracy, completeness, relevance, and level of detail under
a consistent rubric; the resulting 1-10 scale aligns with the scenario-specific MES threshold 7 used by the router in
§3] Human-LRJ agreement on a stratified sample demonstrates high correlation. We use the following template to
elicit a scalar score followed by a short rationale:

SCORING_TEMPLATE_1_10 = """You are a helpful and precise assistant for checking
the quality of multimodal AI responses.

[Question]
{question}

[Reference Answer]
{reference}

[Model Answer]
{prediction}

[System]
We would like to request your feedback on the performance of the AI assistant
in response to the user question displayed above.

Please rate the helpfulness, relevance, accuracy, level of details of the

response. The assistant receives an overall score on a scale of 1 to 10,
where a higher score indicates better overall performance.

13
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Scoring Guidelines:

1: Completely unable to answer the task, content is completely unrelated
to the question, or refuses to answer

2: Attempts to answer but severely deviates from the topic, contains obvious
understanding errors, completely incorrect information

3: Partially understands the question but answer quality is extremely poor,
contains multiple major errors, illogical

4: Basically understands the question but answer is inaccurate, contains
some important errors, lacks key information

5: Understands the question and provides relevant answer, but insufficient
accuracy, obvious defects

6: Answer is basically correct, can execute the task but with average
effect, passing line, some minor errors

7: Answer 1s accurate and has certain logic, can execute the task well,
good quality

8: Answer 1is accurate, detailed and logically clear, almost no errors,
excellent quality

9: Answer is complete, basically consistent with reference answer, high
accuracy, clear and complete expression

10: Answer not only meets reference answer requirements, but also considers
more aspects, more comprehensive, exceeds expectations

Please first output a single line containing only one value indicating the
score for the model. In the subsequent line, please provide a comprehensive
explanation of your evaluation, focusing on the accuracy, completeness,

logic, and relevance of the response.

Score: "nmn

Bias Control Our scoring design explicitly addresses common biases:

* Self-enhancement bias. Risk: a model favors its own outputs. Mitigation: the evaluator (LRJ) is strictly

disjoint from the evaluated models; we use GPT-4/40 solely as the judge.

* Knowledge limitation bias. Risk: judge hallucination or gaps hurt accuracy. Mitigation: provide a Reference
Answer (ground truth) and a structured rubric focusing on correctness/relevance, reducing reliance on the

judge’s prior.

* Multimodal-specific biases. Risks: (i) over-reliance on salient visual cues; (ii) inconsistency handling when
text and image conflict. Mitigation: use a multimodal-capable judge (GPT-40) and require dimension-wise
assessment (accuracy, completeness, logic, relevance) to encourage cross-modal consistency checks.

A.3 GOLD-STANDARD VALIDATION (HUMAN EXPERT)

We randomly sample 200 items from RSD and collect eight-model responses per item (200 x 8 = 1,600 LRJ-human
pairs). Five anonymized experts (Expertl-5) independently score each item; their mean serves as the gold standard.
LRJ aligns closely with humans: Pearson r = 0.8805, Spearman p = 0.8349 (both p < 10~%). Agreement is high
(79.83% within 1 point; 90.75% within 2 points), and mean inter-rater correlation is 0.8615. A paired ¢-test shows a
small bias (human-LRJ A ~ —0.375; ¢t = —23.93; p < 10~%). Per-evaluator correlations are reported in Table

Table 7: Per-evaluator correlations between LRJ and individual experts on the 200-sample validation (1,600 pairs).

Experts are anonymized as Expert]-5.

Evaluator Pearson r

Expertl 0.883
Expert2 0.930
Expert3 0.894
Expert4 0.866
Expert5 0.903
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A.4 SCORE AND LATENCY DISTRIBUTIONS

A.4.1 SCORE DISTRIBUTION

RSD aggregates ~22k model-instance pairs spanning seven VLMs (SVLM<+LVLM) and eight benchmarks (Ap-
pendix [AT] Table [6). Figure [3] shows an approximately spread 1-10 score distribution with a mean of ~ 5.6 and
median ~ 6.0, consistent with our MES-aligned rubric. Figure [4] further decomposes scores: (a) dataset-level means
reveal a clear difficulty gradient (MMStar hardest; ChartQA easiest), and (b) per-model boxplots indicate overlapping
performance across scales, with several SVLMs competitive with LVLMs. These statistics ground our scenario-aware
routing analysis; latency distributions are reported in the next subsection.

Overall Score Distribution

40000 ---- Mean: 5.58

~=-= Median: 6.00
35000

30000+

25000+

20000+

Frequency

15000

10000

5000

2 4 6 8 10
Score

Figure 3: Overall score histogram across all models and datasets in RSD (~22k pairs). Dashed lines mark the mean
(=~ 5.58) and median (= 6.00).
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(a) Dataset difficulty ranking (mean + SE). Higher mean = eas- (b) Per-model score distributions (boxplots with annotated
ier. means).

Figure 4: Score breakdown in RSD: (a) difficulty by dataset; (b) performance by model across the same instances.

A.4.2 LATENCY DISTRIBUTION

Latency in RSD is markedly right-skewed (Figure [5). The median end-to-end time is ~ 0.60s while the mean is ~
1.31s, indicating a long tail: P75 ~1.17s, P90 ~2.52s, and P99 ~ 5.45s. Such headroom at the tail motivates scenario-
aware routing that prefers M4z Wwhen MES is met. Figure@decomposes latency by dataset and model. Datasets with
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Figure 5: Overall latency histogram (left) and percentile curve (right) across all ~22k model-instance pairs. Dashed
lines mark the mean (=21.31s) and median (x0.60s); tail extends beyond 5s at P99.

heavy OCR or open-world reasoning (WildVision, MM Vet, MMMU-Pro) are slowest, whereas structured QA (GQA,
ChartQA) is fast. Across models, SVLMs achieve sub-second medians (e.g., SmolVLM-256M 0.62s; InternVL2_5-
1B 0.71s; 2B 0.81s), while LVLMs are slower (InternVL3-38B 2.47s; Gemma3-27B 2.56s). These trends, aligned
with Table[6] provide the latency side of our quality—speed trade-off for routing.

Dataset Inference Time Ranking

Model Latency Comparison
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Figure 6: Latency breakdown in RSD: (a) model-level comparisons on the same instances; (b) dataset-level inference
time ranking.

A.4.3 ANALYSIS HEATMAP

To examine the accuracy—speed—stability trade—off on the same RSD instances, we summarize per-(model, dataset)
statistics in a four-panel heatmap (Figure[7). Panel (a) shows mean scores (higher is better); (b) shows median latency
in seconds (lower is better); (c) reports efficiency as score/time (higher is better); and (d) reports score standard
deviation (lower is better). Overall, SVLMs attain strong efficiency on structured sets (ChartQA, GQA), while LVLMs
deliver higher absolute scores on harder sets (MM Vet, MMStar) at a latency cost. WildVision and MMMU-Pro display
both large latency and higher variability, matching the difficulty/latency trends reported above.
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Model-Dataset Performance Heatmaps Analysis
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Figure 7: Model-Dataset Heatmaps. (a) Score performance (mean score). (b) Latency performance (median
seconds). (c) Efficiency (score/time). (d) Score consistency (standard deviation): a “hotter” plasma color (toward
bright/purple) indicates larger fluctuation; the cell value is the exact std. dev., and white numbers highlight cells with
variance above the global average. How to read: scan a row to compare one model’s stability across datasets; scan a
column to compare how challenging a dataset is across models.

B ADDITIONAL EXPERIMENTS

B.1 ADAPTABILITY ACROSS MODELS

We further supplemented our study with additional model-pair experiments to demonstrate the generality of ECVL-
Router. As shown in|Figure 8] when the small model is reasonably strong, ECVL-Router yields a clear improvement
in RCS scores—for example, in the case of the Gemma3-27B / InternVL2.5-1B pair. We also experimented with a
significantly smaller model, SmolVLM-0.2B, and found that when the performance of the small model is too weak,
the model router routes the vast majority of queries to the large model. In such cases, the routing strategy offers little
practical benefit in cost savings. Therefore, the smaller model must have sufficient problem-solving capability for the
model router to be effective when selecting large-small model pairs.

B.2 ROUTER GENERALIZATION

In this work, the value of T is selected via a grid search on the validation set, and the chosen 7 is subsequently used
together with the ECVL-Router for the model routing task. The figure[9)illustrates how the RCS on both the validation
and test sets vary as 7 changes. It can be observed that the trends of RCS variations on the validation and test sets are
largely consistent. The Pearson correlation coefficient between the RCS and the 7 values on the validation and test
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Cross-Model Generalization: Performance Across Different Model Pairs
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Figure 8: Cross-model generalization across four model pairs. Radar plots compare ECVL-ROUTER (green,
solid), All-at-Large (red, dashed), and All-at-Small (purple, dotted) on APSP(T), RCS1/2/3(1T), CA(T, share routed
to Small), and AIL/5({; latency divided by 5 for scale). Larger radii indicate better performance for all axes except
AIL, where larger means slower. When the Small model is reasonably capable (e.g., pairs with InternVL2.5-1B),
ECVL-ROUTER attains higher RCS while keeping latency moderate and CA non-trivial. With a very weak Small
model (e.g., the SmolVLM-0.2B pair), the router intentionally lowers CA (sending most traffic to the large model),
yielding limited cost benefit but preserving quality.

sets is approximately 0.98, indicating a strong correlation. This strongly supports the validity of using the validation
set to determine the optimal 7 value.

Table 8: Results on cross-domain generalization.

Model Router APSP CA AlIL RCS1 RCS2  RCS3

ECVL-ROUTER 0.8982 0.6316 18.02408891 1.123  0.9547 0.9343
GBDT 0.8380 0.9582 6.100296302 1.0953 0.9469 0.9247
MLP 0.8380 0.9758 5.119651497 1.0981 0.9500 0.9279
MF 0.8558 0.7702 7.893076085 1.0961 0.9403 0.9210
All-at-Large 0.9432 0.0000 24.44174668 1.1074 0.9188 0.9065
All-at-Small 0.8332 1.0000 4.235969758 1.0956 0.9490 0.9268

To evaluate cross-domain generalization, we use InternVL-38B/1B as the model pair. ChartQA, WildVision, MMMU,
and MM Vet (about 5k samples) serve as the zest sets, while the rest of RSD is used for training/validation. As summa-
rized in[Table §f ECVL-ROUTER attains higher RCS than either All-at-Large or All-at-Small across all three scenarios,
demonstrating cross-domain transfer. Compared with in-domain results (Section [5.2)), the gains are smaller (roughly
0.5-1.5% vs. 5-6%), suggesting routing effectiveness is domain-sensitive; thus, routing strategies and training data
should align closely with the intended application domain.
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Generalization Capability: Validation vs Test Performance
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Figure 9: Validation—test alignment for selecting the decision threshold 7. RCS1/2/3 vs. 7 on the validation set
(solid blue) and test set (dashed orange). Pearson correlations between the two curves are 0.989 (RCS1), 0.995 (RCS2),
and 0.993 (RCS3); mean absolute differences are 0.012/0.010/0.010. Performance increases with 7 and peaks near
7~0.85-0.90, then drops sharply as 7 approaches 1.0, indicating over-conservative routing and validating grid-search
selection on the validation set.

B.3 ONLINE USER STUDY

To evaluate the adaptability of our method across different real-world application scenarios, we conducted an online
user study involving five participants who interacted with the model router on a dataset of 200 image—text pairs. Two
experimental scenarios were designed:

Scenario 1: Users prioritize response quality, with the MES set to 7, and RCS1 used as the metric in validation stage.
Scenario 2: Users prioritize response speed, with MES set to 5, and RCS3 used as the metric in validation stage.

In each scenario, we trained an ECVL-Router using our routing strategy for online evaluation. For comparison, we
also included three baselines: routing all queries to the large model, routing all queries to the small model, and training
an ECVL-Router using the win-soft(1) routing strategy.

As shown in|[Figure 10] the average APSP and AIL results recorded by the five participants across the two scenarios. In
Scenario 1, where response quality is emphasized, our routing strategy achieves higher APSP than win-soft(1), while
its AIL is slightly higher. In Scenario 2, where response speed is prioritized, our method outperforms win-soft(1) on
both APSP and AIL. This is because our training strategy is designed to maximize user satisfaction rather than to sim-
ply favor the stronger model. When MES is set to 5, a larger proportion of queries can already be satisfactorily handled
by the small model; as a result, our method successfully routes more queries to the small model while maintaining a
high level of user satisfaction.

These online experiments demonstrate that our routing strategy is highly flexible in practice, allowing users to balance
response quality and response speed according to the requirements of different application scenarios.

B.4 UNEXPECTED QUERY ANALYSIS

Our router tends to favor the small model (SVLM) partly due to the dataset labeling rule: when both the large and
small models fail to reach the user’s Minimal Expectation Score (MES), the sample is still labeled as “route to SVLM.”
This yields a subset of inherently unsolvable queries in the SVLM bucket.

As shown in|[Figure TT| Cost Advantage (CA) is displayed as bars on the left y-axis, while the failure rate is the red
line on the right y-axis. In the safe zone (MES = 1-4; green band, < 20% failures), most routed queries are solved
and CA remains high (1.000/1.000/0.998/0.903). Entering the caution zone (MES = 5-6; yellow band), failures rise
sharply (26.5% — 51.1%) and CA drops (0.844 — 0.792). In the high-risk zone (MES > 7; red band), failures
dominate (63.7%, 78.0%, 88.7%), with CA reaching its minimum at MES = 7 (0.744) and then partially recovering
at MES = 8-9 (0.858/0.894).
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Online Testing Results: Real User Scenarios
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Figure 10: Online user study across two scenarios. APSP (left) and latency (s; right) for four routing policies. Our
router adapts to goals: Quality-priority (MES=7/RCS1)—higher APSP than win-soft(1) at moderate latency; Speed-
priority (MES=5/RCS3)—higher APSP with lower latency. All-large is highest quality but slowest; all-small fastest
yet least satisfying.

Risk Analysis: Cost Advantage and Failure Rate vs MES Threshold
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Figure 11: MES risk map. Failure rate (red line, right axis) climbs steeply as MES increases, defining a safe region
(MES 14, < 20% failures), a caution region (MES 5-6), and a high-risk region (MES >7, > 50% failures). Cost Ad-
vantage (bars, left axis) stays near 1.0 at low MES, bottoms out at MES=7 (0.744), and partially recovers at MES=8-9,
illustrating the trade-off between user expectation and routing cost.
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B.5 ADDITIONAL PLOT

Sensitivity Analysis: Impact of Minimal Expectation Score (MES)
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Figure 12: This figure shows the performance trends for all models and routing strategies as the MES value
changes.The (a) plots the three metrics performance across different MES, and the (b) panel plots the performance
gain of each router relative to the second-best method, as the baseline.

C EXAMPLE OF QUERY HARDNESS AND LLM JUDGE SCORE

C.1 EASY QUERY EXAMPLE

Input Query: ( Fig|13|(a)) "What is the spatial relation between the frisbee and the man?”
InternVL3-38B:

VLM Response: “The frisbee is in the air, positioned above and slightly in front of the man. The man is crouched on
the ground, reaching out towards the frisbee, indicating that he has likely thrown it or is preparing to catch it. The dog
is jumping over the man, aiming to catch the frisbee mid-air.”

LRJ Reason: "The model answer accurately describes the spatial relation between the frisbee and the man, stating that
the frisbee is in the air, positioned above and slightly in front of the man.” This aligns well with the reference answer
("above the man (OR)top left”) and provides additional context about the scene, such as the man’s posture and the
involvement of a dog. The extra details about the man’s action and the dog’s movement are relevant to understanding
the scene but are not strictly necessary for answering the original question, which specifically asked about the spatial
relation between the frisbee and the man. The answer is clear, logically structured, and free from errors, but it could
be more concise and focused on the direct spatial relationship. Thus, it earns a score of 8 for being accurate, detailed,
and well-expressed, though slightly more verbose than required.”

LRIJ Score: 8
InternVL3-8B:
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(a) Image of easy query (b) Image of hard query

Figure 13: An example of an easy query figure and a hard query figure.

VLM Response: “"The frisbee is in front of the man and slightly above his head, moving in the air towards the left side
of the image. The man appears to be throwing it or preparing to catch it. The dog is jumping in the air, aiming to catch
the frisbee.”

LRJ Reason: “The model answer is mostly accurate and relevant, correctly identifying that the frisbee is above the
man and slightly in front of him, which aligns with the reference answer (above the man (OR) top left). The model
also adds contextual details about the man possibly throwing or catching the frisbee and mentions a dog jumping to
catch it. While this extra context is not required for the specific spatial relation question, it does not detract from the
main answer. However, the answer could be more concise and focused on the direct spatial relation, as the reference
answer is. The inclusion of ”in front of the man” is a minor deviation, as the primary spatial relation should be “above”
or “top left.” Overall, the response is accurate and logical but could be improved by focusing more precisely on the
spatial relationship asked.”

LRJ Score: 7
InternVL2.5-1B:
VLM Response: “The frisbee is in the air, and the man is jumping to catch it.”

LRJ Reason: “The model answer is relevant and generally correct in describing the scene: it states that the frisbee is
in the air and the man is jumping to catch it. However, it does not directly answer the specific spatial relation question
as clearly as the reference answer ("above the man” or "top left”). The response is descriptive but lacks the precise
spatial terminology requested. While it gives context, it misses the concise spatial relationship, resulting in a passing
but not high score.”

LRIJ Score: 6

C.2 HARD QUERY EXAMPLE

Input Query: ( Fig[13|(b)) ”Should I add sugar when mixing egg and milk?”
InternVL3-38B:

VLM Response: No, according to the image, you should add sugar in the second step when you mix it with cocoa
powder and other dry ingredients.”

LRJ Reason: "The model answer is accurate, relevant, and provides additional helpful context beyond the simple ’no”
in the reference answer. It correctly states that sugar should not be added when mixing egg and milk, and further
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clarifies that sugar is added in the second step with cocoa powder and other dry ingredients, presumably based on the
referenced image. The explanation is logical and clear, enhancing the user’s understanding of the process. However,
since the answer relies on information from an image (not shown here), it assumes the user is following a specific
recipe, which may not universally apply. For this reason, while the answer is excellent and detailed, it is not fully
comprehensive for all contexts, so it does not receive a perfect score.”

LRJ Score: 8
InternVL3-8B:
VLM Response: "No, according to the recipe, you should add the sugar during mixing, as shown in step 2.”

LRJ Reason: ”The model answer is inaccurate and contradicts the reference answer. The user asks whether sugar
should be added when mixing egg and milk, and the reference answer is "no.” However, the model answer incorrectly
states that sugar should be added during mixing, referencing a ”step 2” that is not present in the context. This introduces
confusion and provides incorrect guidance. While the answer is somewhat relevant to the topic, it lacks accuracy and
misleads the user, resulting in a low score. The response does not meet the requirements for correctness or clarity.”

LRJ Score: 4
InternVL2.5-1B:

VLM Response: ”Yes, you should add sugar when mixing egg and milk. It helps to create a smooth and creamy
texture in the chocolate cake.”

LRJ Reason: "The model answer is inaccurate and misleading. The user asked whether sugar should be added when
mixing egg and milk, and the reference answer is ’no.” The model incorrectly asserts that sugar should be added and
justifies this by mentioning the creation of a smooth and creamy texture in chocolate cake, which is irrelevant to the
general question about mixing egg and milk. The response assumes a specific context (chocolate cake) that was not
provided by the user and gives advice contrary to the reference answer. The answer lacks accuracy, is not relevant to
the general question, and contains significant errors in logic and content.”

LRJ Score: 2
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