
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

INVERSE FLOW AND CONSISTENCY MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inverse generation problems, such as denoising without ground truth observations,
is a critical challenge in many scientific inquiries and real-world applications.
While recent advances in generative models like diffusion models, conditional flow
matching, and consistency models achieved impressive results by casting gener-
ation as denoising problems, they cannot be directly used for inverse generation
without access to clean data. Here we introduce Inverse Flow (IF), a novel frame-
work that enables using these generative models for inverse generation problems
including denoising without ground truth. Inverse Flow can be flexibly applied to
nearly any continuous noise distribution and allows complex dependencies. We
propose two algorithms for learning Inverse Flows, Inverse Flow Matching (IFM)
and Inverse Consistency Model (ICM). Notably, to derive the computationally
efficient, simulation-free inverse consistency model objective, we generalized con-
sistency training to any forward diffusion processes or conditional flows, which
have applications beyond denoising. We demonstrate the effectiveness of IF on
synthetic and real datasets, outperforming prior approaches while enabling noise
distributions that previous methods cannot support. Finally, we showcase appli-
cations of our techniques to fluorescence microscopy and single-cell genomics
data, highlighting IF’s utility in scientific problems. This work opens up the use of
powerful generative models for inversion generation problems.

1 INTRODUCTION

Recent advances in generative modeling such as diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song & Ermon, 2020; Song et al., 2021; 2022), conditional flow matching models
(Lipman et al., 2023; Tong et al., 2024), and consistency models (Song et al., 2023; Song & Dhariwal,
2023) have achieved great success by learning a mapping from a simple prior distribution to the data
distribution through an Ordinary Differential Equation (ODE) or Stochastic Differential Equation
(SDE). We refer to them models as continuous-time generative models. These models typically
involve defining a forward process, which transforms the data distribution to the prior distribution
over time, and generation is achieved through learning a reverse process that can gradually transform
the prior distribution to the data distribution (Figure 1).

Despite that those generative models are powerful tools for modeling the data distribution, they
are not suitable for the inverse generation problems when the data distribution is not observed and
only data transformed by a forward process is given, which is typically true for noisy real-world
data measurements. Mapping from noisy data to the latent ground truth is especially important in
various scientific applications when pushing the limit of measurement capabilities. This limitation
necessitates the exploration of novel methodologies that can bridge the gap between generative
modeling and effective denoising in the absence of clean data.

Here we propose a new approach called Inverse Flow (IF), that learns a mapping from the observed
noisy data distribution to the unobserved, ground truth data distribution (Figure 1), inverting the data
requirement of generative models. An ODE or SDE is specified to reflect knowledge about the noise
distribution. We further devised a pair of algorithms, Inverse Flow Matching (IFM) and Inverse
Consistency Model (ICM) for learning inverse flows. Specifically, ICM involves a computationally
efficient simulation-free objective that does not involve any ODE solver.

A main contribution of our approach is generalizing continuous-time generative models to inverse
generation problems such as denoising without ground truth. In addition, in order to develop ICM,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Conditional (forward) ODE

Consistency function

Consistency Model Inverse Consistency Model (ICM)

Conditional (forward) ODE

Consistency function

Inverse Flow Matching (IFM)

Conditional (forward) ODE

Unconditional (reverse) ODE

Conditional (forward) ODE

Unconditional (reverse) ODE
Observed / given
Unobserved / inferred

Conditional Flow Matching

Figure 1: Inverse flow enables adapting the family continuous-time generative models for solving
inverse generation problems. Inverse flow algorithms (inverse flow matching and inverse consistency
model) are built upon conditional flow matching and consistency models respectively.

we generalized the consistency training objective for consistency models to any forward diffusion
process or conditional flow. This broadens the scope of consistency model applications and has
implications beyond denoising.

Compared to prior approaches for denoising without ground truth, IF offers the most flexibility in
noise distribution, allowing almost any continuous noise distributions including those with complex
dependency and transformations. IF can be seamlessly integrated with generative modeling to
generate samples from the ground truth rather than the observed noisy distribution. More generally,
IF models the past states of a (stochastic) dynamical system before the observed time points using
the knowledge of its dynamics, which can have applications beyond denoising.

2 BACKGROUND

2.1 CONTINUOUS-TIME GENERATIVE MODELS

Our proposed inverse flow framework is built upon continuous-time generative models such as
diffusion models, conditional flow matching, and consistency models. Here we present a unified view
of these methods that will help connect inverse flow with this entire family of models (Section 3).

These generative modeling methods are connected by their equivalence to continuous normalizing
flow or neural ODE (Chen et al., 2019). They can all be considered as explicitly or implicitly learning
the ODE that transforms between the prior distribution p(x1) and the data distribution p(x0)

dx = ut(x)dt. (1)

in which ut(x) represents the vector field of the ODE. We use the convention that t = 0 corresponds
to the data distribution and t = 1 corresponds to the prior distribution. Generation is realized by
reversing this ODE, which makes this family of methods a natural candidate for extension toward
denoising problems.

Continuous-time generative models typically involve defining a conditional ODE or SDE that
determines the p(xt|x0) that transforms the data distribution to the prior distribution. Training these
models involves learning the unconditional ODE (Eq. 1) based on x0 and the conditional ODE or
SDE (Lipman et al., 2023; Tong et al., 2024; Song et al., 2021) (Figure 1). The unconditional ODE
can be used for generation from noise to data.

2.1.1 CONDITIONAL FLOW MATCHING

Conditional flow matching defines the transformation from data to prior distribution via a conditional
ODE vector field ut(x | x0). The unconditional ODE vector field vθ

t (x) is learned by minimizing
the objective (Lipman et al., 2023; Tong et al., 2024; Albergo & Vanden-Eijnden, 2023):

∥∥vθ
t (xt)− ut (xt | x0)

∥∥ . (2)

where x0 is sampled from the data distribution, and xt is sampled from the conditional distribution
p(xt | x0) given by the conditional ODE.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

The conditional ODE vector field ut(x | x0) can also be stochastically approximated through
sampling from both prior distribution and data distribution and using the conditional vector field
ut(x | x0,x1) as the training target (Lipman et al., 2023; Tong et al., 2024):

∥∥vθ
t (xt)− ut (xt | x0,x1)

∥∥ . (3)

This formulation has the benefit that ut(x | x0,x1) can be easily chosen as any interpolation between
x0 and x1, because this interpolation does not affect the probability density at time 0 or 1 (Lipman
et al., 2023; Tong et al., 2024; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023). For example,
a linear interpolation corresponds to xt = x0 + t(x1 − x0) (Lipman et al., 2023; Tong et al., 2024;
Liu et al., 2022). Sampling is realized by simulating the unconditional ODE with learned vector field
vθ
t (x) in the reverse direction.

2.1.2 CONSISTENCY MODELS

In contrast, consistency models (Song et al., 2023; Song & Dhariwal, 2023) learn consistency
functions that can directly map a sample from the prior distribution to data distribution, equivalent to
simulating the unconditional ODE in the reverse direction:

c(xt, t) = ODEu
t→0(xt)

where xt denotes x at time t, and we use ODEu
t→0(xt) to denote simulating the ODE with vector

field ut(x) from time t to time 0 starting from xt. The consistency function is trained by minimizing
the consistency loss (Song et al., 2023), which measures the difference between consistency function
evaluations at two adjacent time points

LCM(θ) = Ei,xti
,xti+1

[∥∥cθ(xti+1
, ti+1)− stopgrad (cθ(xti , ti))

∥∥] (4)

with the boundary condition c(x, 0) = x. Stopgrad indicates that the term within the operator does
not get optimized.

There are two approaches to training consistency models: one is distillation, and the other is training
from scratch. In the consistency distillation objective, a pretrained diffusion model is used to obtain
the unconditional ODE vector field ut, and xti+1

and xti differs by one ODE step

xti+1 ∼ p(xti+1 | x0), xti+1 − xti = uti+1(xti+1)(ti+1 − ti) (5)

If the consistency model is trained from scratch, the consistency training objective samples xti+1
and

xti in a coupled manner from the forward diffusion process (Karras et al., 2022)

xti+1
= x0 + zti+1, xti = x0 + zti, z ∼ N (0, σ2I) (6)

where σ controls the maximum noise level at t = 1. Consistency models have the advantage of fast
generation speed as they can generate samples without solving any ODE or SDE.

2.1.3 DIFFUSION MODELS

In diffusion models, the transformation from data to prior distribution is defined by a forward diffusion
process (conditional SDE). The diffusion model training learns the score function which determines
the unconditional ODE, also known as the probability flow ODE (Song et al., 2021).

Denoising applications of diffusion models Diffusion models are inherently connected to de-
noising problems as the generation process is essentially a denoising process. However, existing
denoising methods using diffusion models require training on ground truth data (Yue et al., 2023; Xie
et al., 2023b), which is not available in inverse generation problems.

Ambient diffusion and GSURE-diffusion Ambient Diffusion (Daras et al., 2023) and GSURE-
diffusion (Kawar et al., 2024) address a related problem of learning the distribution of clean data
by training on only linearly corrupted (linear transformation followed by additive Gaussian noise)
data. Although those methods are designed for generation, they can be applied to denoising. Ambient
Diffusion Posterior Sampling (Aali et al., 2024), further allowed using models trained with ambient

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

diffusion on corrupted data to perform posterior sampling-based denoising for a different forward
process (e.g., blurring). Consistent Diffusion Meets Tweedie (Daras et al., 2024) improves Ambient
Diffusion by allowing exact sampling from clean data distribution using consistency loss with a
double application of Tweedie’s formula. Rozet et al. (2024) explored the potential of expectation
maximization in training diffusion models on corrupted data. However, all these methods are restricted
to training on linearly corrupted data, which still limit their applications when the available data is
affected by other types of noises.

2.2 DENOISING WITHOUT GROUND TRUTH

Denoising without access to ground truth data requires assumptions about the noise or the signal.
Most contemporary approaches are based on assumptions about the noise, as the noise distribution is
generally much simpler and better understood. Because prior methods have been comprehensively
reviewed (Kim & Ye, 2021; Batson & Royer, 2019; Lehtinen et al., 2018; Xie et al., 2020; Soltanayev
& Chun, 2018; Metzler et al., 2020), and our approach is not directly built upon these approaches, we
only present a brief overview and refer the readers to Appendix A.3 referenced literature for more
detailed discussion. None of these approaches are generally applicable to any noise types.

3 INVERSE FLOW AND CONSISTENCY MODELS

In continuous-time generative models, usually the data x0 from the distribution of interest is given. In
contrast, in inverse generation problems, only the transformed data x1 and the conditional distribution
p(x1|x0) are given, whereas x0 are unobserved. For example, x1 are the noisy observations and
p(x1|x0) is the conditional noise distribution. We define the Inverse Flow (IF) problem as finding a
mapping from x1 to x0 which allows not only recovering the unobserved data distribution p(x0) but
also providing an estimate of x0 from x1 (Figure 1).

For denoising without ground truth applications, the inverse flow framework requires only the noisy
data x1 and the ability to sample from the noise distribution p(x1|x0). This is thus applicable to any
continuous noise and allows complex dependencies on the noise distribution, including noise that can
only be sampled through a diffusion process.

3.1 INVERSE FLOW MATCHING

To solve the inverse flow problem, we first consider learning a mapping from x1 to x0 through an
ODE with vector field vθ

t (x). We propose to learn vθ
t (x) with the inverse flow matching (IFM)

objective

LIFM(θ) = E
t,p(x1),p

(
xt|x0=ODEvθ

1→0(x1)
) ∥∥∥vθ

t (xt)− ut

(
xt | ODEvθ

1→0(x1)
)∥∥∥ (7)

This objective differs from conditional flow matching (Eq. 2) in two key aspects: using only
transformed data x1 rather than unobserved data x0, and choosing the conditional ODE based on the
conditional distribution p(x1|x0). Specifically,

1. Sampling from the data distribution p(x0) is replaced with sampling from p(x1) and sim-
ulating the unconditional ODE backward in time based on the vector field v, denoted as
ODEvθ

t→0(x1). We refer to this distribution as the recovered data distribution q(x0).

2. The conditional ODE vector field ut (x | x0) is chosen to match the given conditional
distribution p(x1|x0) at time 1.

For easier and more flexible application of IFM, similar to conditional flow matching (Eq. 3), an
alternative form of the conditional ODE ut (x | x0,x

′
1) can be used instead of ut (x | x0). Since x′

1
is sampled from the noise distribution p(x1|x0), the above condition is automatically satisfied. The
conditional ODE vector field can be easily chosen as any smooth interpolation between x0 and x′

1,
such as ut (x | x0,x

′
1) = x′

1 − x0. We detailed the inverse flow matching training in Algorithm 1
with the alternative form in Appendix A.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 IFM Training
1: Input: datasetD, initial model parameter

θ, and learning rate η
2: repeat
3: Sample x1 ∼ D and t ∼ U [0, 1]
4: x0 ← stopgrad

(
ODEvθ

1→0(x1)
)

5: Sample xt ∼ p(xt | x0)
6: L(θ)←

∥∥vθ
t (xt)− ut (xt | x0)

∥∥
7: θ ← θ − η∇θL(θ)
8: until convergence

Algorithm 2 ICM Training
1: Input: dataset D, initial model parameter θ,

learning rate η, and sequence of time points
0 = t1 < t2 < · · · < tN = 1

2: repeat
3: Sample x1 ∼ D and i ∼ U [1, N − 1]
4: x0 ← stopgrad (cθ(x1, 1))
5: Sample xti+1

∼ p(xti+1
| x0)

6: xti ← xti+1 − uti+1(xti+1 | x0)(ti+1 − ti)

7:
L(θ)←∥∥cθ(xti+1

, ti+1)− stopgrad (cθ(xti , ti))
∥∥

8: θ ← θ − η∇θL(θ)
9: until convergence

Next, we discuss the theoretical justifications of the IFM objective and the interpretation of the
learned model. We show below that when the loss converges, the recovered data distribution q (x0)
matches the ground truth distribution p(x0). The proof is provided in Appendix A.2.1.

Theorem 1 Assume that the noise distribution p(x1 | x0) satisfies the condition that, for any
noisy data distribution p(x1) there exists only one probability distribution p(x0) that satisfies
p(x1) =

∫
p(x1 | x0)p(x0)dx0 , then under the condition that LIFM is minimized, we have the

recovered data distribution q(x0) = p(x0).

Moreover, we show that with IFM the learned ODE trajectory from x1 to x0 can be intuitively
interpreted as always pointing toward the direction of the estimated x0. More formally, the learned
unconditional ODE vector field can be interpreted as an expectation of the conditional ODE vector
field.

Lemma 1 Given a conditional ODE vector field ut(x | x0,x1) that generates a conditional prob-
ability path p(xt | x0,x1), the unconditional probability path p(xt) can be generated by the
unconditional ODE vector field ut(x), which is defined as

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] (8)

The proof is provided in Appendix A.2.1. Specifically, with the choice of ut (x | x0,x1) = x1 − x0,
Eq. 8 has an intuitively interpretable form

ut(x) = Ep(x0|x)

[
x− x0

t

]
(9)

which means that the unconditional ODE vector field at any time t points straight toward the expected
ground truth x0.

3.2 SIMULATION-FREE INVERSE FLOW WITH INVERSE CONSISTENCY MODEL

IFM can be computationally expensive during training and inference because it requires solving ODE
in each update. We address this limitation by introducing inverse consistency model (ICM), which
learns a consistency function to directly solve the inverse flow without involving an ODE solver.

However, the original consistency training formulation is specific to one type of diffusion process
(Karras et al., 2022), which is only applicable to independent Gaussian noise distribution for
inverse generation application. Thus, to derive inverse consistency model that is applicable to
any transformation, we first generalize consistency training so that it can be applied to arbitrary
transformations and thus flexible to model almost any noise distribution.

3.2.1 GENERALIZED CONSISTENCY TRAINING

To recall from Section 2.1.2, consistency distillation is only applicable to distilling a pretrained
diffusion or conditional flow matching model. The consistency training objective allows training

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

consistency models from scratch but only for a specific forward diffusion process, which limits its
flexibility in applying to any inverse generation problem.

Generalized Consistency Training Consistency Distillation

Conditional Flow Matching Flow Matching

Here we introduce generalized consistency training (GCT), which extends consistency training to
any conditional ODE or forward diffusion process (through the corresponding conditional ODE).
Intuitively, generalized consistency training modified consistency distillation in the same manner as
how conditional flow matching modified the flow matching objective. It differs from consistency
distillation (Eq. 4 and Eq. 5) in that it only requires the conditional ODE vector field ut(x | x0)
which is user-specified rather than the unconditional ODE vector field ut(x) which has to be learned
via a pretrained diffusion or conditional flow matching model.

LGCT(θ) = Ei,p(x0),p(xti+1
|x0)

∥∥(cθ(xti+1
, ti+1)− stopgrad (cθ(xti , ti))

)∥∥ ,
xti+1 − xti = uti+1(xti+1 | x0)(ti+1 − ti)

(10)

Or we can use the alternative formulation where the conditional flow is defined by uti+1
(x | x0,x1)

with details in Appendix A.1.

We proved that the generalized consistency training (GCT) objective is equivalent to the consistency
distillation (CD) objective (Eq. 4, Eq. 5). The proof is provided in Appendix A.2.2.

Theorem 2 Assuming the consistency function cθ is twice differentiable, up to a constant independent
of θ, LGCT and LCD are equal.

3.2.2 INVERSE CONSISTENCY MODELS

With generalized consistency training, we can now provide the inverse consistency model (ICM)
(Figure 1, Algorithm 2):

LICM(θ) = Ei,p(x1),p(xti+1
|x0=cθ(x1,1))

∥∥(cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))
)∥∥ ,

xti+1
− xti = uti+1

(xti+1
| x0)(ti+1 − ti)

(11)

which is the consistency model counterpart of IFM (Eq. 7). Similar to IFM, a convenient alternative
form is provided in Appendix A.1.

Since learning a consistency model is equivalent to learning a conditional flow matching model, ICM
is equivalent to IFM following directly from our Theorem 2 and Theorem 1 from Song et al. (2023),
but it is much more computationally efficient as it is a simulation-free objective.

4 EXPERIMENTS

We first demonstrated the performance and properties of IFM and ICM on synthetic inverse generation
datasets, which include a deterministic problem of inverting Naiver-Stokes simulation and a stochastic
problem of denoising a synthetic noise dataset 8-gaussians. Next, we demonstrated that our method
outperforms prior methods (Mäkinen et al., 2020; Krull et al., 2019; Batson & Royer, 2019) with the
same neural network architecture on a semi-synthetic dataset of natural images with three synthetic
noise types, and a real-world dataset of fluorescence microscopy images. Finally, we demonstrated
that our method can be applied to denoise single-cell genomics data.

4.1 SYNTHETIC DATASETS

To test the capability of inverse flow in inverting complex transformations, we first attempted the
deterministic inverse generation problem of inverting the transformation by Navier-Stokes fluid

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Input Ground Truth IFM ICM
1.0

0.5

0.0

-0.5

-1.0

Inverse Flow Matching Inverse Consistency Model

Figure 2: Demonstration of inverse flow algorithms on synthetic datasets. Top panel shows an
application to inverting Navier-Stokes fluid dynamics simulation color indicating horizontal velocity.
Bottom panel shows a denoising application on 8-gaussians dataset with input (black) and denoised
data (blue) connected with lines.

Table 1: Quantitative benchmark of denoising performances in multiple datasets for various noise
distributions measured by Peak signal-to-noise ratio (PSNR) in dB

Noise type Input Supervised BM3D Noise2Void Noise2Self Ours (ICM)

Gaussian
BSDS500 20.17 28.00 27.49 26.54 27.79 28.16

Kodak 20.18 28.91 28.54 27.55 28.72 29.08
Set12 20.16 28.99 28.95 27.79 28.78 29.19

Correlated
BSDS500 20.17 27.10 24.48 26.32 21.03 27.64

Kodak 20.17 27.97 25.03 27.39 21.56 28.53
Set12 20.18 27.88 25.21 27.43 21.58 28.46

SDE (Jacobi process)
BSDS500 14.90 24.34 20.32 23.56 22.60 24.28

Kodak 14.76 25.34 20.42 23.99 23.70 25.07
Set12 14.80 25.01 20.51 24.43 23.26 24.74

dynamics simulation1. We aim to recover the earlier state of the system without providing them
for training (Figure 2). Navier-Stokes equations describe the motion of fluids by modeling the
relationship between fluid velocity, pressure, viscosity, and external forces. These equations are
fundamental in fluid dynamics and remain mathematically challenging, particularly in understanding
turbulent flows. The details of the simulation are described in Appendix A.4.2.

To test inverse flow algorithms on a denoising inverse generation problem, we generated a synthetic
8-gaussians dataset (Appendix A.4.2 for details). Both IFM and ICM are capable of noise removal
(Figure 2). ICM achieved a similar denoising performance as IFM, even though it is much more
computationally efficient due to the iterative evaluation of ODE (NFE=10) by IFM.

4.2 SEMI-SYNTHETIC DATASETS

We evaluated the proposed method on images in the benchmark dataset BSDS500 (Arbeláez et al.,
2011), Kodak, and Set12 (Zhang et al., 2017). To test the model’s capability to deal with various types
of conditional noise distribution, we generated synthetic noisy images for three different types of
noise, including correlated noise and adding noise through a diffusion process without a closed-form
transition density function (Appendix A.4.3 for details). All models were trained using the BSDS500
training set and evaluated on the BSDS500 test set, Kodak, and Set12. We show additional qualitative
results in Appendix A.6.

1. Gaussian noise: we added independent Gaussian noise with fixed variance.

1Inverse flow algorithms can be applied to deterministic transformations from x0 to x1 by using a matching
conditional ODE, even though the general forms consider stochastic transforms described by p(x1 | x0).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

2. Correlated noise: we employed convolution kernels to generate correlated Gaussian noise
following the method in Mäkinen et al. (2020)

η = ν ⊛ g (12)

where ν ∼ N (0, σ2I) and g is a convolution kernel.

3. Jacobi process: we transformed the data with Jacobi process (Wright-Fisher diffusion), as
an example of SDE-based transform without closed-form conditional distribution

dx =
s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw. (13)

We generated corresponding noise data by simulating the Jacobi process with s = 1 and
a = b = 1. Notably, the conditional noise distribution generated by the Jacobi process does
not generally has an expectation that equals the ground truth (i.e. non-centered noise), which
violates the assumptions of Noise2X methods.

Our approach outperformed alternative unsupervised methods in all three noise types, especially in
correlated noise and Jacobi process (Appendix A.6, Table 4.2). This can be attributed to the fact that
both Noise2X methods assumes independence of noise across different feature dimensions as well as
centered-noise which were violated in corrleated noise and Jacobi process respectively.

Moreover, Our approach outperformed the supervised method on both Gaussian noise and correlated
noise. Further analysis revealed that the supervised method encountered overfitting during the training
process, which led to suboptimal performance. In contrast, our method did not exhibit such issues,
highlighting the superiority of our approach.

In addition, in Appendix A.5, we conducted a series of experiments that demonstrate the reliability
of our method under different intensities and types of noise. Furthermore, our method yielded
satisfactory results even when there is a bias in the estimation of noise intensity. It also achieved
excellent performance on RGB images and small sample-size datasets.

Input Ground Truth Ours (ICM) Noise2Self Noise2Void

M
ito

ch
on

dr
ia

F-
ac

tin
N

uc
le

i
M

er
ge

d

34.02

30.25

34.05

32.38

41.21

38.90

44.87

41.02

38.93

37.26

42.85

39.12

39.41

37.44

43.18

39.42

Figure 3: Denoising results for fluorescence microscopy images with PSNR labelled.
8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

4.3 REAL-WORLD DATASETS

4.3.1 FLUORESCENCE MICROSCOPY DATA (FMD)

Fluorescence microscopy is an important scientific application of denoising without ground truth.
Experimental constraints such as phototoxicity and frame rates often limit the capability to obtain
clean data. We denoised confocal microscopy images from Fluorescence Microscopy Denoising
(FMD) dataset (Zhang et al., 2019). We first fitted a signal-dependent Poisson-Gaussian noise model
adopted from Liu et al. (2013) for separate channels of each noisy microscopic images (Appendix
A.4.4 for details). Then denoising flow models were trained with the conditional ODE specified to be
consistent with fitted noise model. Our method outperforms Noise2Self and Noise2Void, achieving
superior denoising performance for mitochondria, F-actin, and nuclei in the microscopic images of
BPAE cells.

4.3.2 APPLICATION TO DENOISE SINGLE-CELL GENOMICS DATA

In recent years, the development of single-cell sequencing technologies has enabled researchers to
obtain more fine-grained information on tissues and organs at the resolution of single cells. However,

Astrocytes Cerebellumn Dentate gyrus granule Inter/midbrain excitatory neurons
Inter/midbrain inhibitory neurons

Enteric glia Microglia
Non-glutamatergic neuroblasts Olfactory ensheathing cells Olfactory inhibitory neurons

Oligodendrocytes Peptidergic neurons Pericytes Perivascular macrophages Cerebrum inhibitory interneurons
Cerebrum projecting excitatory neurons Cerebrum projecting inhibitory neurons Vascular endothelial cells

Input Denoised
Mature-Astro

CA3-Pyr
Cajal-Retzius

Mature-GABA Mature-GC
Immature-Astro

Immature-GABA Immature-GC Immature-Pyr
MOL NFOL

Neuroblast
OPCRGL Young-RGL nIPC Per-nIPC

Oligodendrocytes

Astrocytes

Radial glial cells (Stem cells)

Intermediate progenitor cells (cycling)

GABAergic neurons

CA3 neurons
Granule cells

Input Denoised

Figure 4: Denoising single-cell RNA-seq data with ICM improves resolution for cell types and
developmental trajectories. The top two principal components are visualized. Top panel: results for
Zeisel et al. (2018). Bottom panel: results for Hochgerner et al. (2018b), Astro: astrocytes, RGL:
radial glial cells, IPC: intermediate progenitor cells, OPC: oligodendrocyte precursor cells, MOL:
mature oligodendrocytes; NFOL: newly formed oligodendrocytes, GABA: GABAergic neurons, GC:
granule cells, Pyr: pyramidal neurons.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

the low amount of sample materials per-cell introduces considerable noise in single-cell genomics
data. These noises may obscure real biological signals, thereby affecting subsequent analyses.

Applying ICM to an adult mouse brain single-cell RNA-seq dataset (Zeisel et al., 2018) and a mouse
brain development single-cell RNA-seq dataset (Hochgerner et al., 2018b) (Figure 4, Appendix
A.4.5 for details), we observed that the denoised data better reflects the cell types and developmental
trajectories. We compared the original and denoised data by the accuracy of predicting the cell type
identity of each cell based on its nearest neighbor in the top two principal components. Our methods
improved the accuracy of the adult mouse brain dataset from 0.513± 0.003 to 0.571± 0.003, and
the mouse brain development dataset from 0.647± 0.006 to 0.736± 0.006.

5 LIMITATION AND CONCLUSION

We introduce Inverse Flow (IF), a generative modeling framework for inverse generation problems
such as denoising without ground truth, and two methods Inverse Flow Match (IFM) and Inverse
Consistency Model (ICM) to solve the inverse flow problem. Our framework connects the family
of continuous-time generative models to inverse generation problems. Practically, we extended the
applicability of denoising without ground truth to almost any continuous noise distributions. We
demonstrated strong empirical results applying inverse flow. A limitation of inverse flow is assuming
prior knowledge of the noise distribution, and future work is needed to relax this assumption. We
expect inverse flow to open up possibilities to explore additional connections to the expanding family
of continuous-time generative model methods, and the generalized consistency training objective will
expand the application of consistency models.

REFERENCES

Asad Aali, Giannis Daras, Brett Levac, Sidharth Kumar, Alexandros G. Dimakis, and Jonathan I.
Tamir. Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models
trained on Corrupted Data, March 2024. URL http://arxiv.org/abs/2403.08728.
arXiv:2403.08728.

Michael S. Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic Inter-
polants, March 2023.

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic Interpolants: A Unifying
Framework for Flows and Diffusions, November 2023.

Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour Detection and Hier-
archical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(5):898–916, May 2011. ISSN 1939-3539. doi: 10.1109/TPAMI.2010.161.

Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for the EM
algorithm: From population to sample-based analysis, August 2014. URL http://arxiv.
org/abs/1408.2156. arXiv:1408.2156.

Joshua Batson and Loic Royer. Noise2Self: Blind Denoising by Self-Supervision, June 2019.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary
Differential Equations, December 2019.

Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alexandros G. Dimakis, and Adam
Klivans. Ambient Diffusion: Learning Clean Distributions from Corrupted Data, May 2023. URL
http://arxiv.org/abs/2305.19256. arXiv:2305.19256 [cs, math].

Giannis Daras, Alexandros G. Dimakis, and Constantinos Daskalakis. Consistent Diffusion Meets
Tweedie: Training Exact Ambient Diffusion Models with Noisy Data, July 2024. URL http:
//arxiv.org/abs/2404.10177. arXiv:2404.10177.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December
2020.

10

http://arxiv.org/abs/2403.08728
http://arxiv.org/abs/1408.2156
http://arxiv.org/abs/1408.2156
http://arxiv.org/abs/2305.19256
http://arxiv.org/abs/2404.10177
http://arxiv.org/abs/2404.10177

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Hannah Hochgerner, Amit Zeisel, Peter Lönnerberg, and Sten Linnarsson. Conserved proper-
ties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA
sequencing. Nature Neuroscience, 21(2):290–299, February 2018a. ISSN 1546-1726. doi:
10.1038/s41593-017-0056-2.

Hannah Hochgerner, Amit Zeisel, Peter Lönnerberg, and Sten Linnarsson. Conserved prop-
erties of dentate gyrus neurogenesis across postnatal development revealed by single-cell
RNA sequencing. Nature Neuroscience, 21(2):290–299, February 2018b. ISSN 1546-
1726. doi: 10.1038/s41593-017-0056-2. URL https://www.nature.com/articles/
s41593-017-0056-2. Publisher: Nature Publishing Group.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-
Based Generative Models, October 2022.

Bahjat Kawar, Noam Elata, Tomer Michaeli, and Michael Elad. GSURE-Based Diffusion Model
Training with Corrupted Data, June 2024. URL http://arxiv.org/abs/2305.13128.
arXiv:2305.13128 [cs, eess].

Kwanyoung Kim and Jong Chul Ye. Noise2Score: Tweedie’s Approach to Self-Supervised Image
Denoising without Clean Images, October 2021.

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. Noise2Void - Learning Denoising
from Single Noisy Images, April 2019. URL http://arxiv.org/abs/1811.10980.
arXiv:1811.10980 [cs].

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and
Timo Aila. Noise2Noise: Learning Image Restoration without Clean Data, October 2018.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
for Generative Modeling, February 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow Straight and Fast: Learning to Generate and
Transfer Data with Rectified Flow, September 2022.

Xinhao Liu, Masayuki Tanaka, and Masatoshi Okutomi. Estimation of signal dependent noise
parameters from a single image. In 2013 IEEE International Conference on Image Processing,
pp. 79–82, September 2013. doi: 10.1109/ICIP.2013.6738017. URL https://ieeexplore.
ieee.org/document/6738017. ISSN: 2381-8549.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019.

Ymir Mäkinen, Lucio Azzari, and Alessandro Foi. Collaborative Filtering of Correlated Noise: Exact
Transform-Domain Variance for Improved Shrinkage and Patch Matching. IEEE Transactions on
Image Processing, 29:8339–8354, 2020. ISSN 1941-0042. doi: 10.1109/TIP.2020.3014721.

Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and Extensions. John Wiley
& Sons, March 2008. ISBN 978-0-470-19160-6. Google-Books-ID: NBawzaWoWa8C.

Christopher A. Metzler, Ali Mousavi, Reinhard Heckel, and Richard G. Baraniuk. Unsupervised
Learning with Stein’s Unbiased Risk Estimator, July 2020.

Sreyas Mohan, Ramon Manzorro, Joshua L. Vincent, Binh Tang, Dev Yashpal Sheth, Eero P.
Simoncelli, David S. Matteson, Peter A. Crozier, and Carlos Fernandez-Granda. Deep Denoising
For Scientific Discovery: A Case Study In Electron Microscopy, July 2021. URL http://
arxiv.org/abs/2010.12970. arXiv:2010.12970.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
Library, December 2019.

11

https://www.nature.com/articles/s41593-017-0056-2
https://www.nature.com/articles/s41593-017-0056-2
http://arxiv.org/abs/2305.13128
http://arxiv.org/abs/1811.10980
https://ieeexplore.ieee.org/document/6738017
https://ieeexplore.ieee.org/document/6738017
http://arxiv.org/abs/2010.12970
http://arxiv.org/abs/2010.12970

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

François Rozet, Gérôme Andry, François Lanusse, and Gilles Louppe. Learning Diffusion Priors
from Observations by Expectation Maximization, November 2024. URL http://arxiv.org/
abs/2405.13712. arXiv:2405.13712.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In Proceedings of the 32nd International
Conference on Machine Learning, pp. 2256–2265. PMLR, June 2015.

Shakarim Soltanayev and Se Young Chun. Training deep learning based denoisers without ground
truth data. In Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models, October
2022.

Yang Song and Prafulla Dhariwal. Improved Techniques for Training Consistency Models, October
2023.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution,
October 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations, February
2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency Models, May 2023.

Philippe R Spalart, Robert D Moser, and Michael M Rogers. Spectral methods for the Navier-Stokes
equations with one infinite and two periodic directions. Journal of Computational Physics, 96(2):
297–324, October 1991. ISSN 0021-9991. doi: 10.1016/0021-9991(91)90238-G. URL https:
//www.sciencedirect.com/science/article/pii/002199919190238G.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport, March 2024.

F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. SCANPY: Large-scale single-cell gene
expression data analysis. Genome Biology, 19(1):15, February 2018. ISSN 1474-760X. doi:
10.1186/s13059-017-1382-0.

C. F. Jeff Wu. On the Convergence Properties of the EM Algorithm. The Annals of Statistics, 11(1):
95–103, March 1983. ISSN 0090-5364, 2168-8966. doi: 10.1214/aos/1176346060. URL https:
//projecteuclid.org/journals/annals-of-statistics/volume-11/
issue-1/On-the-Convergence-Properties-of-the-EM-Algorithm/10.
1214/aos/1176346060.full. Publisher: Institute of Mathematical Statistics.

Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. Noise2Same: Optimizing A Self-Supervised
Bound for Image Denoising, October 2020.

Yutong Xie, Mingze Yuan, Bin Dong, and Quanzheng Li. Unsupervised Image Denoising with Score
Function, April 2023a. URL http://arxiv.org/abs/2304.08384. arXiv:2304.08384.

Yutong Xie, Minne Yuan, Bin Dong, and Quanzheng Li. Diffusion Model for Generative Image De-
noising, February 2023b. URL http://arxiv.org/abs/2302.02398. arXiv:2302.02398
[cs].

Zongsheng Yue, Jianyi Wang, and Chen Change Loy. ResShift: Efficient Diffusion Model for Image
Super-resolution by Residual Shifting, October 2023. URL http://arxiv.org/abs/2307.
12348. arXiv:2307.12348 [cs].

12

http://arxiv.org/abs/2405.13712
http://arxiv.org/abs/2405.13712
https://www.sciencedirect.com/science/article/pii/002199919190238G
https://www.sciencedirect.com/science/article/pii/002199919190238G
https://projecteuclid.org/journals/annals-of-statistics/volume-11/issue-1/On-the-Convergence-Properties-of-the-EM-Algorithm/10.1214/aos/1176346060.full
https://projecteuclid.org/journals/annals-of-statistics/volume-11/issue-1/On-the-Convergence-Properties-of-the-EM-Algorithm/10.1214/aos/1176346060.full
https://projecteuclid.org/journals/annals-of-statistics/volume-11/issue-1/On-the-Convergence-Properties-of-the-EM-Algorithm/10.1214/aos/1176346060.full
https://projecteuclid.org/journals/annals-of-statistics/volume-11/issue-1/On-the-Convergence-Properties-of-the-EM-Algorithm/10.1214/aos/1176346060.full
http://arxiv.org/abs/2304.08384
http://arxiv.org/abs/2302.02398
http://arxiv.org/abs/2307.12348
http://arxiv.org/abs/2307.12348

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Amit Zeisel, Hannah Hochgerner, Peter Lönnerberg, Anna Johnsson, Fatima Memic, Job van der
Zwan, Martin Häring, Emelie Braun, Lars E. Borm, Gioele La Manno, Simone Codeluppi,
Alessandro Furlan, Kawai Lee, Nathan Skene, Kenneth D. Harris, Jens Hjerling-Leffler, Ernest
Arenas, Patrik Ernfors, Ulrika Marklund, and Sten Linnarsson. Molecular Architecture of
the Mouse Nervous System. Cell, 174(4):999–1014.e22, August 2018. ISSN 0092-8674.
doi: 10.1016/j.cell.2018.06.021. URL https://www.sciencedirect.com/science/
article/pii/S009286741830789X.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian Denoiser:
Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing,
26(7):3142–3155, July 2017. ISSN 1941-0042. doi: 10.1109/TIP.2017.2662206.

Yide Zhang, Yinhao Zhu, Evan Nichols, Qingfei Wang, Siyuan Zhang, Cody Smith, and Scott
Howard. A Poisson-Gaussian Denoising Dataset with Real Fluorescence Microscopy Images,
April 2019. URL http://arxiv.org/abs/1812.10366. arXiv:1812.10366 [cs, eess,
stat].

13

https://www.sciencedirect.com/science/article/pii/S009286741830789X
https://www.sciencedirect.com/science/article/pii/S009286741830789X
http://arxiv.org/abs/1812.10366

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX

A.1 ALTERNATIVE FORMS OF IFM AND ICM

Here we provide the details of alternative objectives and corresponding algorithms of IFM and ICM
which are easier and flexible to use.

A.1.1 ALTERNATIVE OBJECTIVES OF IFM AND ICM

We define the alternative objective of IFM similar to conditional flow matching (Eq. 3):

LIFM(θ) = E
t,p(x1),p

(
x′
1|x0=ODEvθ

1→0(x1)
)
,p(xt|x0,x′

1)

[∥∥∥vθ
t (xt)− ut

(
xt | ODEvθ

1→0(x1),x
′
1

)∥∥∥]
(14)

where x′
1 is sampled from the conditional noise distribution. As described in Section 2.1.1

ut (x | x0,x
′
1) can be easily chosen as any smooth interpolation between x0 and x′

1, such as
ut (x | x0,x

′
1) = x′

1 − x0.

Since ICM is based on generalized consistency training, we first provide the alternative objective of
generalized consistency training

LGCT(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

[∥∥cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))
∥∥] ,

xti+1
− xti = uti+1

(xti+1
| x0,x1)(ti+1 − ti)

(15)

where the conditional flow is defined jointly by p(x1 | x0) and uti+1(x | x0,x1).

Then the alterntive form of ICM can be defined as

LICM(θ) =

Ei,p(x1),p(x′
1|x0=cθ(x1,1)),p(xti+1

|x0=cθ(x1,1),x′
1)
[∥∥cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))

∥∥] ,
xti+1 − xti = uti+1(xti+1 | x0,x

′
1)(ti+1 − ti)

(16)

where ut(x | x0,x
′
1) can be freely defined based on any interpolation between x0 and x′

1, which is
more easily applicable to any conditional noise distribution:.

A.1.2 ALTERNATIVE ALGORITHMS OF IFM AND ICM

Here we show the algorithms of alternative objectives of IFM (Eq. 14) and ICM (Eq. 16).

Algorithm 3 IFM Training v2.
1: Input: datasetD, initial model parameter

θ, and learning rate η
2: repeat
3: Sample x1 ∼ D and t ∼ U [0, 1]
4: x0 ← stopgrad

(
ODEvθ

1→0(x1)
)

5: Sample x′
1 ∼ p(x′

1 | x0)
6: Sample xt ∼ p(xt | x0,x

′
1)

7:
L(θ)←∥∥vθ

t (xt)− ut (xt | x0,x
′
1)
∥∥2

8: θ ← θ − η∇θL(θ)
9: until convergence

Algorithm 4 ICM Training v2.
1: Input: dataset D, initial model parameter θ,

learning rate η, and sequence of time points
0 = t1 < t2 < · · · < tN = 1

2: repeat
3: Sample x1 ∼ D and i ∼ U [1, N − 1]
4: x0 ← stopgrad (cθ(x1, 1))
5: Sample x′

1 ∼ p(x′
1 | x0)

6: Sample xti+1
∼ p(xti+1

| x0,x
′
1)

7:
xti ←
xti+1

− uti+1
(xti+1

| x0,x
′
1)(ti+1 − ti)

8:
L(θ)←

d
[
cθ(xti+1

, ti+1), stopgrad (cθ(xti , ti))
]

9: θ ← θ − η∇θL(θ)
10: until convergence

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.2 PROOFS

A.2.1 INVERSE FLOW MATCHING

Theorem 1: Assume that the conditional noise distribution p(x1 | x0) satisfies the condition
that, for any noisy data distribution p(x1) there exists only one probability distribution p(x0) that
satisfies p(x1) =

∫
p(x1 | x0)p(x0)dx0 , then under the condition that LIFM is minimized, we have

q(x0) = p(x0).

Proof:

The inferred data distribution is given by the push-forward operator (Lipman et al., 2023):

q(x0) =
[
ODEvθ

1→0

]
∗ p(x1) (17)

which is defined for any continuous normalizing flow ϕ from x1 to x0 in the form of

[ϕ] ∗ p(x1) = p
(
ϕ−1(x0)

)
det

[
∂ϕ−1

∂x
(x0)

]
(18)

where x1 = ϕ−1(x0). The inferred noisy data distribution q(x1) is given by

q(x1) =

∫
p(x1 | x0)q(x0)dx0 (19)

When the model is converged based on the condition LIFM is minimized, we have

q(x0) =
[
ODEvθ

1→0

]
∗ q(x1) (20)

Then we find that [
ODEvθ

1→0

]
∗ p(x1) =

[
ODEvθ

1→0

]
∗ q(x1) (21)

By the definition of the push-forward operator, we have

p

((
ODEvθ

1→0

)−1

(x0)

)
det

∂
(

ODEvθ

1→0

)−1

∂x
(x0)


= q

((
ODEvθ

1→0

)−1

(x0)

)
det

∂
(

ODEvθ

1→0

)−1

∂x
(x0)


(22)

Since the solution of ODE is unique, ODEvθ

1→0 is a bijective function with(
ODEvθ

1→0

)−1

= ODEvθ

0→1

and
x1 = ODEvθ

0→1(x0) =
(

ODEvθ

1→0

)−1

(x0)

Also, the nontrivial solution ensures that the determinant is non-zero. By substitution, we get

p(x1) = q(x1) (23)

and combine with Eq. 19, we find that

p(x1) =

∫
p(x1 | x0)q(x0)dx0 (24)

We close the proof by directly applying the uniqueness of p(x0) and find that

q(x0) = p(x0) (25)

Remark 1: Readers may notice that if q(x0) is a point mass, which means the model maps all inputs
to a constant, the training objective LIFM will also be minimized, causing the ODE to converge
to a trivial solution. However, we find that this trivial solution can be avoided by our design.
Specifically, this is because Our approach can be regarded as an optimization process based on
expectation-maximization (EM):

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

1. Expectation: We generate a denoised dataset given noisy inputs, x0 ∼ q(x0|x1).
2. Maximization: We optimize our IFM/ICM models based on the generated dataset x0 and

the conditional noise distribution p(x1|x0).

The choice of the initial prior, which is the initial denoised dataset in our case, is crucial for the
EM algorithm. While any initial prior may lead to a local optimum (Wu, 1983; Balakrishnan et al.,
2014; McLachlan & Krishnan, 2008), an informed initial prior can prevent convergence to a trivial
solution. Our model architecture incorporates the residual connection from consistency models,
ensuring that the initial outputs of the model closely resemble the inputs. This design effectively
avoids convergence to the trivial solution. In additional experiments (Appendix A.5.1), we further
demonstrate that our method is able to converge even under high noise levels (σ = 50), corroborating
the reliability of our method.

Therefore, when the training objective converges, our proof remains valid since the one-to-one
mapping property of the ODE holds.

Our method shares similarities with EM-based diffusion (Rozet et al., 2024). However, our method
exhibits greater versatility by being applicable to removing various types of noise. Moreover, the
design of ICM, inspired by consistency models, eliminates the need for multi-step ODE sampling
during training and inference, resulting in a significantly faster process.

Lemma 1: Given a conditional ODE vector field ut(x | x0,x1) that generates a conditional
probability path p(xt | x0,x1), the unconditional probability path p(xt) can be generated by the
unconditional ODE vector field ut(x), which is defined as

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] (26)

Proof:

To verify this, we check that p(xt) and ut(x) satisfy the continuity equation:
d

dt
p(xt) + div (ut(x)p(xt)) = 0. (27)

By definition,
d

dt
p(xt) =

d

dt

∫
p(xt|x0,x1)p(x0,x1)dx0dx1. (28)

With Leibniz Rule we have
d

dt
p(xt) =

∫
d

dt
p(xt|x0,x1)p(x0,x1)dx0dx1. (29)

Since ut(x|x0,x1) generates p(xt|x0,x1), by the continuity equation we have
d

dt
p(xt|x0,x1) + div (ut(x|x0,x1)p(xt|x0,x1)) = 0. (30)

Substitution in Eq. 29 gives
d

dt
p(xt) = −

∫
div (ut(x|x0,x1)p(xt|x0,x1)) p(x0,x1)dx0dx1. (31)

Exchanging the derivative and integral,
d

dt
p(xt) = −div

∫
(ut(x|x0,x1)p(xt|x0,x1)p(x0,x1)dx0dx1) . (32)

The definition of ut(x) is

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] =

∫
ut(x | x0,x1)

p(xt|x0,x1)p(x0,x1)

p(xt)
. (33)

Combining Eq. 32 and Eq. 33 gives the continuity equation:
d

dt
p(xt) + div (ut(x)p(xt)) = 0. (34)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.2.2 GENERALIZED CONSISTENCY TRAINING

Without loss of generality, we provide the proof for the form of LGCT in Eq. 15, and the proof for the
form Eq. 10 follows by assuming that the forward conditional probability path is independent of x1.

Theorem 2: Assuming the consistency function cθ is twice differentiable, up to a constant indepen-
dent of θ, LGCT and LCD are equal.

Proof:

The proof is inspired by Song et al. (2023). We use the shorthand cθ− to denote the stopgrad version
of the consistency function c. Given a multi-variate function h(x,y), the operator ∂1h(x,y) and
∂2h(x,y) denote the partial derivative with respect to x and y. Let ∆t := maxi {| ti+1 − ti |} and
we use o(∆t) to denote infinitesimal with respect to ∆t.

Based on Eq. 5 and Eq. 4, the consistency distillation objective is

LCD(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti , ti)
]}

(35)

where xti = xti+1
− (ti+1 − ti)uti+1

(xti+1
) and d is a general distance function.

We assume d and cθ− are twice continuously differentiable with bounded derivatives. With Taylor
expansion, we have

LCD(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti , ti)
]}

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
− (ti+1 − ti)uti+1

(xti+1
), ti)

]}
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

− ∂1cθ−(xti+1 , ti+1)(ti+1 − ti)uti+1(xti+1)

−∂2cθ−(xti+1
, ti+1)(ti+1 − ti) + o(∆t)

]}
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂1cθ−(xti+1 , ti+1)(ti+1 − ti)uti+1(xti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂2cθ−(xti+1

, ti+1)(ti+1 − ti)
]}

+ E [o(∆t)]
(36)

Then, we apply Lemma 1 and use Taylor expansion in the reverse direction,

LCD(θ)

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂1cθ−(xti+1 , ti+1)(ti+1 − ti)Ep(x0,x1|xti+1

)

[
uti+1(xti+1 | x0,x1)

]]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂2cθ−(xti+1 , ti+1)(ti+1 − ti)

]}
+ E [o(∆t)]

(i)
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂1cθ−(xti+1 , ti+1)(ti+1 − ti)uti+1(xti+1 | x0,x1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂2cθ−(xti+1 , ti+1)(ti+1 − ti)

]}
+ E [o(∆t)]

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

− ∂1cθ−(xti+1
, ti+1)(ti+1 − ti)uti+1

(xti+1
| x0,x1)

−∂2cθ−(xti+1 , ti+1)(ti+1 − ti) + o(∆t)
]}

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ

(
xti+1

, ti+1), cθ−(xti+1
− (ti+1 − ti)uti+1

(xti+1
| x0,x1), ti

)]}
+ o(∆t)

= LGCT(θ) + o(∆t) (37)

where (i) is due to the law of total expectation.

A.3 INTRODUCTION TO DENOISING WITHOUT GROUND TRUTH

The most comparable approaches to our method are those that explicitly consider a noise distribution,
including Stein’s Unbiased Risk Estimate (SURE)-based denoising methods (Soltanayev & Chun,
2018; Metzler et al., 2020) and Noise2Score (Kim & Ye, 2021). SURE-based denoising is applicable
to independent Gaussian noise and Noise2Score is more generally applicable to exponential family
noise. SURE-based denoising directly optimizes a loss motivated by SURE which provides an
unbiased estimate of the true risk, which is a mean-squared error to the ground truth. Noise2Score
uses Tweedie’s formula for estimating the posterior mean of an exponential family distribution with
the score of the noisy distribution. The score is estimated by an approximate score estimator using a
denoising autoencoder.

Another family of approaches often referred to as Noise2X is based on the assumptions of centered
(zero-mean) and independent noise. Noise2Noise (Lehtinen et al., 2018) requires independent noisy
observations of the same ground truth data. Noise2Self (Batson & Royer, 2019) is based on the
statistical independence across different dimensions of the measurement, such as the independence
between different pixels. Noise2Void (Krull et al., 2019) leverages the concept of blind-spot networks,
which predict the value of a pixel based solely on its surrounding context. Similarly, Noise2Same
(Xie et al., 2020) employs self-supervised learning using selectively masked or perturbed regions to
train the model to predict unobserved values. Both of them assume independence of noise across
dimensions.

A.4 EXPERIMENTAL DETAILS

All experiments were conducted on a server with 36 cores, 400 GB memory, and NVIDIA Tesla V100
GPUs. All models were implemented with PyTorch 2.1 (Paszke et al., 2019) and trained with the
AdamW (Loshchilov & Hutter, 2019) optimizer. Model architectures and training hyperparameters
are listed in Table A.4.

Table 2: Model architectures and hyperparameters
dataset architecture channels embed_dim embed_scale epochs lr lr schedule

Navier-Stokes
MLP [256,256,

256,256] 256 1.0
2000 5× 10−4

None8-gaussians 2000 5× 10−4

Single-cell 1000 1× 10−4

Gaussian noise

UNet [128,128,
256,256,512] 512 1.0

3000 1× 10−4 StepLR
Correlated noise 1000 1× 10−4 None
Jacobi process 1000 1× 10−4 None

FMD 3000 1× 10−4 StepLR

A.4.1 TRAINING DETAILS

To train IFM or ICM, we first consider a discretized time sequence ϵ = t1 < t2 < · · · < tN = 1,
where ϵ is a small positive value close to 0. We follow Karras et al. (2022) to determine the time

sequence with the formula ti =
(
ϵ1/ρ + i−1

N−1 (T
1/ρ − ϵ1/ρ)

)ρ

, where ρ = 7, T = 1, and N = 11.
We choose the conditional ODE vector field as

uti(xti | x0,x1) = x1 − x0. (38)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Further, the gradient of the inferred noise-free data x0 is stopped to stabilize the training process,
which is

x0 = stopgrad
(

ODEvθ

1→0(x1)
)

(39)

for IFM and
x0 = stopgrad (cθ(x1, 1)) (40)

for ICM. For ICM, the loss is weighted by

λ(i) = ti+1 − ti (41)

in the same way as Song & Dhariwal (2023).

A.4.2 SYNTHETIC DATASETS

We adopted a simple form of Navier-Stokes equations which only includes the viscosity term in the
fluid mechanics

ρ(
∂v

∂t
+ v · ∇v) = −∇p+ µ∇2v

∇ · v = 0
(42)

where ρ is the density of the fluid, v is the velocity, p is the pressure and µ is the viscosity coefficient.
For inverting the Navier-Stokes simulations, we simulated the fluid data within a 2D boundary of
[0, 1]× [0, 1] domain from t = 0 to t = 0.1 with the spectral method (Spalart et al., 1991)

The 8-gaussians is generated by adding independent gaussian noise (σ = 0.15) to 8 points whose co-
ordinates are (0, 1), (0.− 1), (1, 0), (−1, 0), (

√
2
2 ,

√
2
2), (

√
2
2 ,−

√
2
2), (−

√
2
2 ,

√
2
2), (−

√
2
2 ,−

√
2
2). The

dataset is composed of 8000 points for training and 1600 points for testing.

We used a simple MLP-based model architecture with Gaussian Fourier time embedding in Table
A.4. All methods were trained with a learning rate of 5× 10−4 for 2000 epochs. The model training
took about 10 minutes.

A.4.3 REAL-WORLD DATASETS

All models were trained using the BSDS500 training set with 200 images randomly cropped to the
size of 256× 256 and evaluated on the BSDS500 test set, Kodak, and Set12 with images cropped
to the same size at the center. We used the same UNet-based model architecture as Lehtinen et al.
(2018) with additional Gaussian Fourier time embedding listed in Table A.4.

The URL for each dataset is given:

BSDS500 (Arbeláez et al., 2011): https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/

Kodak: https://r0k.us/graphics/kodak/

Set12 (Zhang et al., 2017): https://github.com/cszn/DnCNN/tree/master/
testsets/Set12

Gaussian noise is applied with
x1 = x0 + η (43)

where x0 is the noise-free data, x1 is a noisy observation, and η ∼ N (0, σ2I). We chose σ = 25 in
the experiments. All models were trained with the following setting. The total epoch was set to 3000.
The learning rate was initialized to 1× 10−4 for the first 1500 epochs and was decayed to 5× 10−5

for the last 1500 epochs. The model training took about 1.5 hours.

Correlated noise is applied similarly to independent Gaussian noise. We adopt the method from
Mäkinen et al. (2020) with

η = ν ⊛ g (44)

where ν ∼ N (0, σ2I) and g is a convolution kernel. We consider g in the form of

g =
1

2πa2
cos |r| exp (− r2

2a2
) (45)

19

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://r0k.us/graphics/kodak/
https://github.com/cszn/DnCNN/tree/master/testsets/Set12
https://github.com/cszn/DnCNN/tree/master/testsets/Set12

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

in polar coordinates and a determines the level of correlation. We generated the correlated noisy
observation with σ = 25 and a = 2. All models were trained with a learning rate of 1× 10−4 for
1000 epochs. The model training took about 30 minutes.

Jacobi process takes the following form

dx =
s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw, (46)

where 0 ≤ x ≤ 1, s > 0 is the speed factor, and a > 0, b > 0 determines the stationary distribution
Beta(a, b). Note that when x approaches 0 or 1, the diffusion coefficient converges to 0 and the drift
coefficient converges to a or −b, keeping the diffusion within [0, 1]. We used s = 1 and a = b = 1
and generated the noisy observation x1 with an Euler-Maruyama sampler to simulate the SDE from
the initial value x0. All models were trained with a learning rate of 1× 10−4 for 1000 epochs. The
model training took about 1.5 hours.

A.4.4 DENOISING MICROSCOPIC DATA

The Fluorescence Microscopy Denoising (FMD) dataset published by Zhang et al. (2019) was down-
loaded from https://github.com/yinhaoz/denoising-fluorescence. We adopted
the signal dependent noise model from Liu et al. (2013)

g = f + fγ · u+ w (47)

to estimate the condition noise distribution where g is the noisy pixel value, f is the noise-free pixel
value, γ is the exponential parameter, and u and w are zero-mean random variables with variance σ2

u
and σ2

w, respectively. The variance of the noise model is

σ2 = f2γ · σ2
u + σ2

w. (48)

To estimate the parameters in the noise model, we split an image into 4× 4 patches. We assume the
variance within a patch is constant and approximate the noise-free pixel values of the patches by the
mean values. The parameters in the noise model are estimated by the Maximum-Likelihood method.

We used the same UNet-based model architecture as Lehtinen et al. (2018) with additional Gaussian
Fourier time embedding listed in Table A.4. The learning rate was initialized to 1× 10−4 for the first
1500 epochs and was decayed to 5× 10−5 for the last 1500 epochs.

A.4.5 DENOISING SINGLE-CELL GENOMICS DATA

The adult mouse brain dataset published by Zeisel et al. (2018) was downloaded from https:
//www.ncbi.nlm.nih.gov/sra/SRP135960. The dentate gyrus neurogenesis dataset pub-
lished by Hochgerner et al. (2018a) was downloaded from https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE104323 and the neuron- and glia-related cells were kept
for denoising. We preprocessed the datasets by the standard pipeline (Wolf et al., 2018) and then
performed principal component analysis. We further normalized the datasets by scaling the standard
deviation of the first principal component to 1. After that, we denoised the datasets using the top 6
principal components with σ = 0.4. We used a simple MLP-based model architecture with Gaussian
Fourier time embedding in Table A.4. The model was trained with a learning rate of 1× 10−4 for
1000 epochs. The model training took about 5 minutes.

A.5 ADDITIONAL EXPERIMENTS

We provide extensive experiments to measure how different levels of Gaussian noise, different noise
level assumptions, and different combinations of noises affect performance. We adopted the same
model architecture and training strategy as for FMD in Table A.4. .

A.5.1 DIFFERENT LEVELS OF GAUSSIAN NOISE

We conducted experiments to evaluate the performance of our method under different intensities of
Gaussian noise. We performed experiments from σ = 5 to σ = 50 and found that our method is
robust over all noise levels we applied (Table A.5.1).

20

https://github.com/yinhaoz/denoising-fluorescence
https://www.ncbi.nlm.nih.gov/sra/SRP135960
https://www.ncbi.nlm.nih.gov/sra/SRP135960
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104323
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104323

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 3: Denoising performance for different levels of Gaussian noise measured by PSNR in dB
σ = 5 σ = 12.5 σ = 25 σ = 50 σ = 75

Input Pred Input Pred Input Pred Input Pred Input Pred
BSDS500 34.15 37.56 26.19 31.85 20.17 28.16 14.15 24.98 10.63 23.33

Kodak 34.15 37.92 26.19 32.56 20.18 29.08 14.15 25.96 10.63 24.33
Set12 34.15 37.87 26.20 32.78 20.16 29.19 14.13 25.78 10.63 23.86

Table 4: Denoising performance for different noise distributions measured by PSNR in dB
Noise type Input Noise2Void Noise2Self Noise2Score Ours (ICM)

Poisson
ζ = 0.01

BSDS500 23.78 28.29 28.52 30.53 29.91
Kodak 23.60 28.76 29.36 31.10 30.58
Set12 23.08 30.01 29.23 30.94 30.68

Gamma
k = 100

BSDS500 26.75 29.17 27.43 31.14 32.48
Kodak 26.67 30.26 28.26 31.67 32.97
Set12 25.53 30.44 28.54 31.21 33.08

Rayleigh
σ = 0.3

BSDS500 14.03 28.57 14.86 30.37 30.55
Kodak 13.95 29.73 14.83 30.96 31.16
Set12 12.81 29.98 13.74 30.89 31.17

Poisson+Gaussian
BSDS500 22.40 26.45 27.76 28.54 29.26

Kodak 22.25 27.67 28.86 29.02 30.02
Set12 21.88 27.81 29.23 29.10 30.03

Gamma+Gaussian
BSDS500 24.29 27.98 26.10 29.34 30.53

Kodak 24.24 28.99 27.08 29.90 31.22
Set12 23.62 29.53 26.84 29.69 31.27

Rayleigh+Gaussian
BSDS500 13.85 28.01 14.72 29.36 29.79

Kodak 13.77 29.12 14.69 30.12 30.49
Set12 12.78 26.81 13.59 29.82 30.50

GaussianRGB
σ = 25

BSDS500 20.17 29.72 27.33 28.28 29.99
Kodak 20.17 30.65 28.21 28.66 30.73

A.5.2 DIFFERENT COMBINATIONS OF NOISES

We considered additive Gaussian noise and multiplicative noise such as Gamma noise, Poisson noise,
and Rayleigh noise, as well as their combinations and on a channel-correlated RGB dataset. We
followed the noise distributions introduced in Noise2Score (Kim & Ye, 2021; Xie et al., 2023a). For
combinations of multiplicative noise and Gaussian noise, we added Gaussian noises with σ = 10 to
the individual multiplicative noise models. As shown in Table A.5.2, our method is robust over all
noise type combinations we applied and superior to compared methods in most noise types.

A.5.3 DIFFERENT NOISE LEVEL ASSUMPTIONS

We conducted experiments on data with σ = 25 Gaussian noise, but training and denoising with
different noise level assumptions from σ = 12.5 to σ = 50. Shown in Table A.5.3, our method
demonstrates stable performance within the range of σ = 25 to σ = 35, indicating that overestimating
the noise level has minimal impact on the model’s effectiveness.

Table 5: Performance for different noise level assumptions
σ = 12.5 σ = 15 σ = 20 σ = 25 σ = 30 σ = 35 σ = 50

BSDS500 21.59 22.43 24.78 28.16 28.09 27.55 25.71
Kodak 21.62 22.49 25.03 29.08 28.99 28.43 26.66
Set12 21.67 22.56 25.14 29.19 29.20 28.65 26.86

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

A.5.4 DENOISING SMALL DATASETS

In scientific discovery, the amount of data available is often very limited. To evaluate the performance
of our method on small datasets, we conducted experiments on the electron microscopy denoising
dataset (Mohan et al., 2021). Since the original authors did not release the real experimental data, we
used the simulated dataset they provided and added Poisson noise, which is the noise distribution in
the real data according to their analysis. The dataset consists of 46 samples. The results indicate that
our method is applicable to small datasets and outperforms other approaches in this scenario (Table
A.5.4). While diffusion model is known as being data hungry, our method is efficient on sample size
because it does not involve training a full generative model.

Table 6: Performance on the electron microscopy denoising dataset
Input Noise2Void Noise2Self Ours (ICM)

PSNR 23.70 38.67 41.42 43.78

A.6 ADDITIONAL QUALITATIVE RESULTS

We provide additional denoising results of the real-world datasets. Since there is not an explicit noise
magnitude σ in the Jacobi process, we did not apply the SURE-based method (Metzler et al., 2020)
to this task.

G
au

ss
ia

n
C

or
re

la
te

d
Ja

co
bi

 p
ro

ce
ss

Input BM3D SURE Noise2SelfGround Truth Ours (ICM)

NA

Figure 5: Denoising results of BSDS500 for natural images corrupted with three types of noise
distributions. Methods compared are BM3D, SURE loss, Noise2Self, and ICM.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

G
au

ss
ia

n
C

or
re

la
te

d
Ja

co
bi

 p
ro

ce
ss

Ground TruthInput BM3D SURE Noise2SelfOurs (ICM)

NA

Figure 6: Denoising results of BSDS500 for natural images corrupted with three types of noise
distributions. Methods compared are BM3D, SURE loss, Noise2Self, and ICM.

Ground TruthInput BM3D SURE Noise2SelfOurs (ICM)

G
au

ss
ia

n
C

or
re

la
te

d
Ja

co
bi

 p
ro

ce
ss

NA

Figure 7: Denoising results of Kodak for natural images corrupted with three types of noise distribu-
tions. Methods compared are BM3D, SURE loss, Noise2Self, and ICM.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Ground TruthInput BM3D SURE Noise2SelfOurs (ICM)

G
au

ss
ia

n
C

or
re

la
te

d
Ja

co
bi

 p
ro

ce
ss

NA

Figure 8: Denoising results of Set12 for natural images corrupted with three types of noise distribu-
tions. Methods compared are BM3D, SURE loss, Noise2Self, and ICM.

24

	Introduction
	Background
	Continuous-time generative models
	Conditional flow matching
	Consistency models
	Diffusion models

	Denoising without ground truth

	Inverse Flow and Consistency Models
	Inverse Flow Matching
	Simulation-free Inverse Flow with Inverse Consistency Model
	Generalized Consistency Training
	Inverse Consistency Models

	Experiments
	Synthetic datasets
	Semi-synthetic datasets
	Real-world datasets
	Fluorescence Microscopy data (FMD)
	Application to denoise single-cell genomics data

	Limitation and Conclusion
	Appendix
	Alternative forms of IFM and ICM
	Alternative objectives of IFM and ICM
	Alternative algorithms of IFM and ICM

	Proofs
	inverse flow Matching
	Generalized Consistency Training

	Introduction to denoising without ground truth
	Experimental details
	Training details
	Synthetic datasets
	Real-world datasets
	Denoising microscopic data
	Denoising Single-cell genomics data

	Additional experiments
	Different levels of Gaussian noise
	Different combinations of noises
	Different noise level assumptions
	Denoising small datasets

	Additional qualitative results

