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ABSTRACT

Inverse generation problems, such as denoising without ground truth observations,
is a critical challenge in many scientific inquiries and real-world applications.
While recent advances in generative models like diffusion models, conditional flow
matching, and consistency models achieved impressive results by casting gener-
ation as denoising problems, they cannot be directly used for inverse generation
without access to clean data. Here we introduce Inverse Flow (IF), a novel frame-
work that enables using these generative models for inverse generation problems
including denoising without ground truth. Inverse Flow can be flexibly applied to
nearly any continuous noise distribution and allows complex dependencies. We
propose two algorithms for learning Inverse Flows, Inverse Flow Matching (IFM)
and Inverse Consistency Model (ICM). Notably, to derive the computationally
efficient, simulation-free inverse consistency model objective, we generalized con-
sistency training to any forward diffusion processes or conditional flows, which
have applications beyond denoising. We demonstrate the effectiveness of IF on
synthetic and real datasets, outperforming prior approaches while enabling noise
distributions that previous methods cannot support. Finally, we showcase appli-
cations of our techniques to fluorescence microscopy and single-cell genomics
data, highlighting IF’s utility in scientific problems. This work opens up the use of
powerful generative models for inversion generation problems.

1 INTRODUCTION

Recent advances in generative modeling such as diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song & Ermon, 2020; Song et al., 2021; 2022), conditional flow matching models
(Lipman et al., 2023; Tong et al., 2024), and consistency models (Song et al., 2023; Song & Dhariwal,
2023) have achieved great success by learning a mapping from a simple prior distribution to the data
distribution through an Ordinary Differential Equation (ODE) or Stochastic Differential Equation
(SDE). We refer to them models as continuous-time generative models. These models typically
involve defining a forward process, which transforms the data distribution to the prior distribution
over time, and generation is achieved through learning a reverse process that can gradually transform
the prior distribution to the data distribution (Figure 1).

Despite that those generative models are powerful tools for modeling the data distribution, they
are not suitable for the inverse generation problems when the data distribution is not observed and
only data transformed by a forward process is given, which is typically true for noisy real-world
data measurements. Mapping from noisy data to the latent ground truth is especially important in
various scientific applications when pushing the limit of measurement capabilities. This limitation
necessitates the exploration of novel methodologies that can bridge the gap between generative
modeling and effective denoising in the absence of clean data.

Here we propose a new approach called Inverse Flow (IF), that learns a mapping from the observed
noisy data distribution to the unobserved, ground truth data distribution (Figure 1), inverting the data
requirement of generative models. An ODE or SDE is specified to reflect knowledge about the noise
distribution. We further devised a pair of algorithms, Inverse Flow Matching (IFM) and Inverse
Consistency Model (ICM) for learning inverse flows. Specifically, ICM involves a computationally
efficient simulation-free objective that does not involve any ODE solver.

A main contribution of our approach is generalizing continuous-time generative models to inverse
generation problems such as denoising without ground truth. In addition, in order to develop ICM,
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Figure 1: Inverse flow enables adapting the family continuous-time generative models for solving
inverse generation problems. Inverse flow algorithms (inverse flow matching and inverse consistency
model) are built upon conditional flow matching and consistency models respectively.

we generalized the consistency training objective for consistency models to any forward diffusion
process or conditional flow. This broadens the scope of consistency model applications and has
implications beyond denoising.

Compared to prior approaches for denoising without ground truth, IF offers the most flexibility in
noise distribution, allowing almost any continuous noise distributions including those with complex
dependency and transformations. IF can be seamlessly integrated with generative modeling to
generate samples from the ground truth rather than the observed noisy distribution. More generally,
IF models the past states of a (stochastic) dynamical system before the observed time points using
the knowledge of its dynamics, which can have applications beyond denoising.

2 BACKGROUND

2.1 CONTINUOUS-TIME GENERATIVE MODELS

Our proposed inverse flow framework is built upon continuous-time generative models such as
diffusion models, conditional flow matching, and consistency models. Here we present a unified view
of these methods that will help connect inverse flow with this entire family of models (Section 3).

These generative modeling methods are connected by their equivalence to continuous normalizing
flow or neural ODE (Chen et al., 2019). They can all be considered as explicitly or implicitly learning
the ODE that transforms between the prior distribution p(x1) and the data distribution p(x0)

dx = ut(x)dt. (1)

in which ut(x) represents the vector field of the ODE. We use the convention that t = 0 corresponds
to the data distribution and t = 1 corresponds to the prior distribution. Generation is realized by
reversing this ODE, which makes this family of methods a natural candidate for extension toward
denoising problems.

Continuous-time generative models typically involve defining a conditional ODE or SDE that
determines the p(xt|x0) that transforms the data distribution to the prior distribution. Training these
models involves learning the unconditional ODE (Eq. 1) based on x0 and the conditional ODE or
SDE (Lipman et al., 2023; Tong et al., 2024; Song et al., 2021) (Figure 1). The unconditional ODE
can be used for generation from noise to data.

2.1.1 CONDITIONAL FLOW MATCHING

Conditional flow matching defines the transformation from data to prior distribution via a conditional
ODE vector field ut(x | x0). The unconditional ODE vector field vθ

t (x) is learned by minimizing
the objective (Lipman et al., 2023; Tong et al., 2024; Albergo & Vanden-Eijnden, 2023):

∥∥vθ
t (xt)− ut (xt | x0)

∥∥ . (2)

where x0 is sampled from the data distribution, and xt is sampled from the conditional distribution
p(xt | x0) given by the conditional ODE.
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The conditional ODE vector field ut(x | x0) can also be stochastically approximated through
sampling from both prior distribution and data distribution and using the conditional vector field
ut(x | x0,x1) as the training target (Lipman et al., 2023; Tong et al., 2024):

∥∥vθ
t (xt)− ut (xt | x0,x1)

∥∥ . (3)

This formulation has the benefit that ut(x | x0,x1) can be easily chosen as any interpolation between
x0 and x1, because this interpolation does not affect the probability density at time 0 or 1 (Lipman
et al., 2023; Tong et al., 2024; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023). For example,
a linear interpolation corresponds to xt = x0 + t(x1 − x0) (Lipman et al., 2023; Tong et al., 2024;
Liu et al., 2022). Sampling is realized by simulating the unconditional ODE with learned vector field
vθ
t (x) in the reverse direction.

2.1.2 CONSISTENCY MODELS

In contrast, consistency models (Song et al., 2023; Song & Dhariwal, 2023) learn consistency
functions that can directly map a sample from the prior distribution to data distribution, equivalent to
simulating the unconditional ODE in the reverse direction:

c(xt, t) = ODEu
t→0(xt)

where xt denotes x at time t, and we use ODEu
t→0(xt) to denote simulating the ODE with vector

field ut(x) from time t to time 0 starting from xt. The consistency function is trained by minimizing
the consistency loss (Song et al., 2023), which measures the difference between consistency function
evaluations at two adjacent time points

LCM(θ) = Ei,xti
,xti+1

[∥∥cθ(xti+1
, ti+1)− stopgrad (cθ(xti , ti))

∥∥] (4)

with the boundary condition c(x, 0) = x. Stopgrad indicates that the term within the operator does
not get optimized.

There are two approaches to training consistency models: one is distillation, and the other is training
from scratch. In the consistency distillation objective, a pretrained diffusion model is used to obtain
the unconditional ODE vector field ut, and xti+1

and xti differs by one ODE step

xti+1 ∼ p(xti+1 | x0), xti+1 − xti = uti+1(xti+1)(ti+1 − ti) (5)

If the consistency model is trained from scratch, the consistency training objective samples xti+1
and

xti in a coupled manner from the forward diffusion process (Karras et al., 2022)

xti+1
= x0 + zti+1, xti = x0 + zti, z ∼ N (0, σ2I) (6)

where σ controls the maximum noise level at t = 1. Consistency models have the advantage of fast
generation speed as they can generate samples without solving any ODE or SDE.

2.1.3 DIFFUSION MODELS

In diffusion models, the transformation from data to prior distribution is defined by a forward diffusion
process (conditional SDE). The diffusion model training learns the score function which determines
the unconditional ODE, also known as the probability flow ODE (Song et al., 2021).

Denoising applications of diffusion models Diffusion models are inherently connected to de-
noising problems as the generation process is essentially a denoising process. However, existing
denoising methods using diffusion models require training on ground truth data (Yue et al., 2023; Xie
et al., 2023b), which is not available in inverse generation problems.

Ambient diffusion and GSURE-diffusion Ambient Diffusion (Daras et al., 2023) and GSURE-
diffusion (Kawar et al., 2024) address a related problem of learning the distribution of clean data
by training on only linearly corrupted (linear transformation followed by additive Gaussian noise)
data. Although those methods are designed for generation, they can be applied to denoising. Ambient
Diffusion Posterior Sampling (Aali et al., 2024), further allowed using models trained with ambient

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

diffusion on corrupted data to perform posterior sampling-based denoising for a different forward
process (e.g., blurring). Consistent Diffusion Meets Tweedie (Daras et al., 2024) improves Ambient
Diffusion by allowing exact sampling from clean data distribution using consistency loss with a
double application of Tweedie’s formula. Rozet et al. (2024) explored the potential of expectation
maximization in training diffusion models on corrupted data. However, all these methods are restricted
to training on linearly corrupted data, which still limit their applications when the available data is
affected by other types of noises.

2.2 DENOISING WITHOUT GROUND TRUTH

Denoising without access to ground truth data requires assumptions about the noise or the signal.
Most contemporary approaches are based on assumptions about the noise, as the noise distribution is
generally much simpler and better understood. Because prior methods have been comprehensively
reviewed (Kim & Ye, 2021; Batson & Royer, 2019; Lehtinen et al., 2018; Xie et al., 2020; Soltanayev
& Chun, 2018; Metzler et al., 2020), and our approach is not directly built upon these approaches, we
only present a brief overview and refer the readers to Appendix A.3 referenced literature for more
detailed discussion. None of these approaches are generally applicable to any noise types.

3 INVERSE FLOW AND CONSISTENCY MODELS

In continuous-time generative models, usually the data x0 from the distribution of interest is given. In
contrast, in inverse generation problems, only the transformed data x1 and the conditional distribution
p(x1|x0) are given, whereas x0 are unobserved. For example, x1 are the noisy observations and
p(x1|x0) is the conditional noise distribution. We define the Inverse Flow (IF) problem as finding a
mapping from x1 to x0 which allows not only recovering the unobserved data distribution p(x0) but
also providing an estimate of x0 from x1 (Figure 1).

For denoising without ground truth applications, the inverse flow framework requires only the noisy
data x1 and the ability to sample from the noise distribution p(x1|x0). This is thus applicable to any
continuous noise and allows complex dependencies on the noise distribution, including noise that can
only be sampled through a diffusion process.

3.1 INVERSE FLOW MATCHING

To solve the inverse flow problem, we first consider learning a mapping from x1 to x0 through an
ODE with vector field vθ

t (x). We propose to learn vθ
t (x) with the inverse flow matching (IFM)

objective

LIFM(θ) = E
t,p(x1),p

(
xt|x0=ODEvθ

1→0(x1)
) ∥∥∥vθ

t (xt)− ut

(
xt | ODEvθ

1→0(x1)
)∥∥∥ (7)

This objective differs from conditional flow matching (Eq. 2) in two key aspects: using only
transformed data x1 rather than unobserved data x0, and choosing the conditional ODE based on the
conditional distribution p(x1|x0). Specifically,

1. Sampling from the data distribution p(x0) is replaced with sampling from p(x1) and sim-
ulating the unconditional ODE backward in time based on the vector field v, denoted as
ODEvθ

t→0(x1). We refer to this distribution as the recovered data distribution q(x0).

2. The conditional ODE vector field ut (x | x0) is chosen to match the given conditional
distribution p(x1|x0) at time 1.

For easier and more flexible application of IFM, similar to conditional flow matching (Eq. 3), an
alternative form of the conditional ODE ut (x | x0,x

′
1) can be used instead of ut (x | x0). Since x′

1
is sampled from the noise distribution p(x1|x0), the above condition is automatically satisfied. The
conditional ODE vector field can be easily chosen as any smooth interpolation between x0 and x′

1,
such as ut (x | x0,x

′
1) = x′

1 − x0. We detailed the inverse flow matching training in Algorithm 1
with the alternative form in Appendix A.1.
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Algorithm 1 IFM Training
1: Input: datasetD, initial model parameter

θ, and learning rate η
2: repeat
3: Sample x1 ∼ D and t ∼ U [0, 1]
4: x0 ← stopgrad

(
ODEvθ

1→0(x1)
)

5: Sample xt ∼ p(xt | x0)
6: L(θ)←

∥∥vθ
t (xt)− ut (xt | x0)

∥∥
7: θ ← θ − η∇θL(θ)
8: until convergence

Algorithm 2 ICM Training
1: Input: dataset D, initial model parameter θ,

learning rate η, and sequence of time points
0 = t1 < t2 < · · · < tN = 1

2: repeat
3: Sample x1 ∼ D and i ∼ U [1, N − 1]
4: x0 ← stopgrad (cθ(x1, 1))
5: Sample xti+1

∼ p(xti+1
| x0)

6: xti ← xti+1 − uti+1(xti+1 | x0)(ti+1 − ti)

7:
L(θ)←∥∥cθ(xti+1

, ti+1)− stopgrad (cθ(xti , ti))
∥∥

8: θ ← θ − η∇θL(θ)
9: until convergence

Next, we discuss the theoretical justifications of the IFM objective and the interpretation of the
learned model. We show below that when the loss converges, the recovered data distribution q (x0)
matches the ground truth distribution p(x0). The proof is provided in Appendix A.2.1.

Theorem 1 Assume that the noise distribution p(x1 | x0) satisfies the condition that, for any
noisy data distribution p(x1) there exists only one probability distribution p(x0) that satisfies
p(x1) =

∫
p(x1 | x0)p(x0)dx0 , then under the condition that LIFM is minimized, we have the

recovered data distribution q(x0) = p(x0).

Moreover, we show that with IFM the learned ODE trajectory from x1 to x0 can be intuitively
interpreted as always pointing toward the direction of the estimated x0. More formally, the learned
unconditional ODE vector field can be interpreted as an expectation of the conditional ODE vector
field.

Lemma 1 Given a conditional ODE vector field ut(x | x0,x1) that generates a conditional prob-
ability path p(xt | x0,x1), the unconditional probability path p(xt) can be generated by the
unconditional ODE vector field ut(x), which is defined as

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] (8)

The proof is provided in Appendix A.2.1. Specifically, with the choice of ut (x | x0,x1) = x1 − x0,
Eq. 8 has an intuitively interpretable form

ut(x) = Ep(x0|x)

[
x− x0

t

]
(9)

which means that the unconditional ODE vector field at any time t points straight toward the expected
ground truth x0.

3.2 SIMULATION-FREE INVERSE FLOW WITH INVERSE CONSISTENCY MODEL

IFM can be computationally expensive during training and inference because it requires solving ODE
in each update. We address this limitation by introducing inverse consistency model (ICM), which
learns a consistency function to directly solve the inverse flow without involving an ODE solver.

However, the original consistency training formulation is specific to one type of diffusion process
(Karras et al., 2022), which is only applicable to independent Gaussian noise distribution for
inverse generation application. Thus, to derive inverse consistency model that is applicable to
any transformation, we first generalize consistency training so that it can be applied to arbitrary
transformations and thus flexible to model almost any noise distribution.

3.2.1 GENERALIZED CONSISTENCY TRAINING

To recall from Section 2.1.2, consistency distillation is only applicable to distilling a pretrained
diffusion or conditional flow matching model. The consistency training objective allows training
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consistency models from scratch but only for a specific forward diffusion process, which limits its
flexibility in applying to any inverse generation problem.

Generalized Consistency Training Consistency Distillation

Conditional Flow Matching Flow Matching

Here we introduce generalized consistency training (GCT), which extends consistency training to
any conditional ODE or forward diffusion process (through the corresponding conditional ODE).
Intuitively, generalized consistency training modified consistency distillation in the same manner as
how conditional flow matching modified the flow matching objective. It differs from consistency
distillation (Eq. 4 and Eq. 5) in that it only requires the conditional ODE vector field ut(x | x0)
which is user-specified rather than the unconditional ODE vector field ut(x) which has to be learned
via a pretrained diffusion or conditional flow matching model.

LGCT(θ) = Ei,p(x0),p(xti+1
|x0)

∥∥(cθ(xti+1
, ti+1)− stopgrad (cθ(xti , ti))

)∥∥ ,
xti+1 − xti = uti+1(xti+1 | x0)(ti+1 − ti)

(10)

Or we can use the alternative formulation where the conditional flow is defined by uti+1
(x | x0,x1)

with details in Appendix A.1.

We proved that the generalized consistency training (GCT) objective is equivalent to the consistency
distillation (CD) objective (Eq. 4, Eq. 5). The proof is provided in Appendix A.2.2.

Theorem 2 Assuming the consistency function cθ is twice differentiable, up to a constant independent
of θ, LGCT and LCD are equal.

3.2.2 INVERSE CONSISTENCY MODELS

With generalized consistency training, we can now provide the inverse consistency model (ICM)
(Figure 1, Algorithm 2):

LICM(θ) = Ei,p(x1),p(xti+1
|x0=cθ(x1,1))

∥∥(cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))
)∥∥ ,

xti+1
− xti = uti+1

(xti+1
| x0)(ti+1 − ti)

(11)

which is the consistency model counterpart of IFM (Eq. 7). Similar to IFM, a convenient alternative
form is provided in Appendix A.1.

Since learning a consistency model is equivalent to learning a conditional flow matching model, ICM
is equivalent to IFM following directly from our Theorem 2 and Theorem 1 from Song et al. (2023),
but it is much more computationally efficient as it is a simulation-free objective.

4 EXPERIMENTS

We first demonstrated the performance and properties of IFM and ICM on synthetic inverse generation
datasets, which include a deterministic problem of inverting Naiver-Stokes simulation and a stochastic
problem of denoising a synthetic noise dataset 8-gaussians. Next, we demonstrated that our method
outperforms prior methods (Mäkinen et al., 2020; Krull et al., 2019; Batson & Royer, 2019) with the
same neural network architecture on a semi-synthetic dataset of natural images with three synthetic
noise types, and a real-world dataset of fluorescence microscopy images. Finally, we demonstrated
that our method can be applied to denoise single-cell genomics data.

4.1 SYNTHETIC DATASETS

To test the capability of inverse flow in inverting complex transformations, we first attempted the
deterministic inverse generation problem of inverting the transformation by Navier-Stokes fluid

6
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Figure 2: Demonstration of inverse flow algorithms on synthetic datasets. Top panel shows an
application to inverting Navier-Stokes fluid dynamics simulation color indicating horizontal velocity.
Bottom panel shows a denoising application on 8-gaussians dataset with input (black) and denoised
data (blue) connected with lines.

Table 1: Quantitative benchmark of denoising performances in multiple datasets for various noise
distributions measured by Peak signal-to-noise ratio (PSNR) in dB

Noise type Input Supervised BM3D Noise2Void Noise2Self Ours (ICM)

Gaussian
BSDS500 20.17 28.00 27.49 26.54 27.79 28.16

Kodak 20.18 28.91 28.54 27.55 28.72 29.08
Set12 20.16 28.99 28.95 27.79 28.78 29.19

Correlated
BSDS500 20.17 27.10 24.48 26.32 21.03 27.64

Kodak 20.17 27.97 25.03 27.39 21.56 28.53
Set12 20.18 27.88 25.21 27.43 21.58 28.46

SDE (Jacobi process)
BSDS500 14.90 24.34 20.32 23.56 22.60 24.28

Kodak 14.76 25.34 20.42 23.99 23.70 25.07
Set12 14.80 25.01 20.51 24.43 23.26 24.74

dynamics simulation1. We aim to recover the earlier state of the system without providing them
for training (Figure 2). Navier-Stokes equations describe the motion of fluids by modeling the
relationship between fluid velocity, pressure, viscosity, and external forces. These equations are
fundamental in fluid dynamics and remain mathematically challenging, particularly in understanding
turbulent flows. The details of the simulation are described in Appendix A.4.2.

To test inverse flow algorithms on a denoising inverse generation problem, we generated a synthetic
8-gaussians dataset (Appendix A.4.2 for details). Both IFM and ICM are capable of noise removal
(Figure 2). ICM achieved a similar denoising performance as IFM, even though it is much more
computationally efficient due to the iterative evaluation of ODE (NFE=10) by IFM.

4.2 SEMI-SYNTHETIC DATASETS

We evaluated the proposed method on images in the benchmark dataset BSDS500 (Arbeláez et al.,
2011), Kodak, and Set12 (Zhang et al., 2017). To test the model’s capability to deal with various types
of conditional noise distribution, we generated synthetic noisy images for three different types of
noise, including correlated noise and adding noise through a diffusion process without a closed-form
transition density function (Appendix A.4.3 for details). All models were trained using the BSDS500
training set and evaluated on the BSDS500 test set, Kodak, and Set12. We show additional qualitative
results in Appendix A.6.

1. Gaussian noise: we added independent Gaussian noise with fixed variance.

1Inverse flow algorithms can be applied to deterministic transformations from x0 to x1 by using a matching
conditional ODE, even though the general forms consider stochastic transforms described by p(x1 | x0).

7
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2. Correlated noise: we employed convolution kernels to generate correlated Gaussian noise
following the method in Mäkinen et al. (2020)

η = ν ⊛ g (12)

where ν ∼ N (0, σ2I) and g is a convolution kernel.

3. Jacobi process: we transformed the data with Jacobi process (Wright-Fisher diffusion), as
an example of SDE-based transform without closed-form conditional distribution

dx =
s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw. (13)

We generated corresponding noise data by simulating the Jacobi process with s = 1 and
a = b = 1. Notably, the conditional noise distribution generated by the Jacobi process does
not generally has an expectation that equals the ground truth (i.e. non-centered noise), which
violates the assumptions of Noise2X methods.

Our approach outperformed alternative unsupervised methods in all three noise types, especially in
correlated noise and Jacobi process (Appendix A.6, Table 4.2). This can be attributed to the fact that
both Noise2X methods assumes independence of noise across different feature dimensions as well as
centered-noise which were violated in corrleated noise and Jacobi process respectively.

Moreover, Our approach outperformed the supervised method on both Gaussian noise and correlated
noise. Further analysis revealed that the supervised method encountered overfitting during the training
process, which led to suboptimal performance. In contrast, our method did not exhibit such issues,
highlighting the superiority of our approach.

In addition, in Appendix A.5, we conducted a series of experiments that demonstrate the reliability
of our method under different intensities and types of noise. Furthermore, our method yielded
satisfactory results even when there is a bias in the estimation of noise intensity. It also achieved
excellent performance on RGB images and small sample-size datasets.

Input Ground Truth Ours (ICM) Noise2Self Noise2Void
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Figure 3: Denoising results for fluorescence microscopy images with PSNR labelled.
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4.3 REAL-WORLD DATASETS

4.3.1 FLUORESCENCE MICROSCOPY DATA (FMD)

Fluorescence microscopy is an important scientific application of denoising without ground truth.
Experimental constraints such as phototoxicity and frame rates often limit the capability to obtain
clean data. We denoised confocal microscopy images from Fluorescence Microscopy Denoising
(FMD) dataset (Zhang et al., 2019). We first fitted a signal-dependent Poisson-Gaussian noise model
adopted from Liu et al. (2013) for separate channels of each noisy microscopic images (Appendix
A.4.4 for details). Then denoising flow models were trained with the conditional ODE specified to be
consistent with fitted noise model. Our method outperforms Noise2Self and Noise2Void, achieving
superior denoising performance for mitochondria, F-actin, and nuclei in the microscopic images of
BPAE cells.

4.3.2 APPLICATION TO DENOISE SINGLE-CELL GENOMICS DATA

In recent years, the development of single-cell sequencing technologies has enabled researchers to
obtain more fine-grained information on tissues and organs at the resolution of single cells. However,

Astrocytes Cerebellumn Dentate gyrus granule Inter/midbrain excitatory neurons
Inter/midbrain inhibitory neurons

Enteric glia Microglia
Non-glutamatergic neuroblasts Olfactory ensheathing cells Olfactory inhibitory neurons

Oligodendrocytes Peptidergic neurons Pericytes Perivascular macrophages Cerebrum inhibitory interneurons
Cerebrum projecting excitatory neurons Cerebrum projecting inhibitory neurons Vascular endothelial cells

Input Denoised
Mature-Astro

CA3-Pyr
Cajal-Retzius

Mature-GABA Mature-GC
Immature-Astro

Immature-GABA Immature-GC Immature-Pyr
MOL NFOL

Neuroblast
OPCRGL Young-RGL nIPC Per-nIPC

Oligodendrocytes

Astrocytes

Radial glial cells (Stem cells)

Intermediate progenitor cells (cycling)

GABAergic neurons

CA3 neurons
Granule cells

Input Denoised

Figure 4: Denoising single-cell RNA-seq data with ICM improves resolution for cell types and
developmental trajectories. The top two principal components are visualized. Top panel: results for
Zeisel et al. (2018). Bottom panel: results for Hochgerner et al. (2018b), Astro: astrocytes, RGL:
radial glial cells, IPC: intermediate progenitor cells, OPC: oligodendrocyte precursor cells, MOL:
mature oligodendrocytes; NFOL: newly formed oligodendrocytes, GABA: GABAergic neurons, GC:
granule cells, Pyr: pyramidal neurons.
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the low amount of sample materials per-cell introduces considerable noise in single-cell genomics
data. These noises may obscure real biological signals, thereby affecting subsequent analyses.

Applying ICM to an adult mouse brain single-cell RNA-seq dataset (Zeisel et al., 2018) and a mouse
brain development single-cell RNA-seq dataset (Hochgerner et al., 2018b) (Figure 4, Appendix
A.4.5 for details), we observed that the denoised data better reflects the cell types and developmental
trajectories. We compared the original and denoised data by the accuracy of predicting the cell type
identity of each cell based on its nearest neighbor in the top two principal components. Our methods
improved the accuracy of the adult mouse brain dataset from 0.513± 0.003 to 0.571± 0.003, and
the mouse brain development dataset from 0.647± 0.006 to 0.736± 0.006.

5 LIMITATION AND CONCLUSION

We introduce Inverse Flow (IF), a generative modeling framework for inverse generation problems
such as denoising without ground truth, and two methods Inverse Flow Match (IFM) and Inverse
Consistency Model (ICM) to solve the inverse flow problem. Our framework connects the family
of continuous-time generative models to inverse generation problems. Practically, we extended the
applicability of denoising without ground truth to almost any continuous noise distributions. We
demonstrated strong empirical results applying inverse flow. A limitation of inverse flow is assuming
prior knowledge of the noise distribution, and future work is needed to relax this assumption. We
expect inverse flow to open up possibilities to explore additional connections to the expanding family
of continuous-time generative model methods, and the generalized consistency training objective will
expand the application of consistency models.
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A APPENDIX

A.1 ALTERNATIVE FORMS OF IFM AND ICM

Here we provide the details of alternative objectives and corresponding algorithms of IFM and ICM
which are easier and flexible to use.

A.1.1 ALTERNATIVE OBJECTIVES OF IFM AND ICM

We define the alternative objective of IFM similar to conditional flow matching (Eq. 3):

LIFM(θ) = E
t,p(x1),p

(
x′
1|x0=ODEvθ

1→0(x1)
)
,p(xt|x0,x′

1)

[∥∥∥vθ
t (xt)− ut

(
xt | ODEvθ

1→0(x1),x
′
1

)∥∥∥]
(14)

where x′
1 is sampled from the conditional noise distribution. As described in Section 2.1.1

ut (x | x0,x
′
1) can be easily chosen as any smooth interpolation between x0 and x′

1, such as
ut (x | x0,x

′
1) = x′

1 − x0.

Since ICM is based on generalized consistency training, we first provide the alternative objective of
generalized consistency training

LGCT(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

[∥∥cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))
∥∥] ,

xti+1
− xti = uti+1

(xti+1
| x0,x1)(ti+1 − ti)

(15)

where the conditional flow is defined jointly by p(x1 | x0) and uti+1(x | x0,x1).

Then the alterntive form of ICM can be defined as

LICM(θ) =

Ei,p(x1),p(x′
1|x0=cθ(x1,1)),p(xti+1

|x0=cθ(x1,1),x′
1)
[∥∥cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))

∥∥] ,
xti+1 − xti = uti+1(xti+1 | x0,x

′
1)(ti+1 − ti)

(16)

where ut(x | x0,x
′
1) can be freely defined based on any interpolation between x0 and x′

1, which is
more easily applicable to any conditional noise distribution:.

A.1.2 ALTERNATIVE ALGORITHMS OF IFM AND ICM

Here we show the algorithms of alternative objectives of IFM (Eq. 14) and ICM (Eq. 16).

Algorithm 3 IFM Training v2.
1: Input: datasetD, initial model parameter

θ, and learning rate η
2: repeat
3: Sample x1 ∼ D and t ∼ U [0, 1]
4: x0 ← stopgrad

(
ODEvθ

1→0(x1)
)

5: Sample x′
1 ∼ p(x′

1 | x0)
6: Sample xt ∼ p(xt | x0,x

′
1)

7:
L(θ)←∥∥vθ

t (xt)− ut (xt | x0,x
′
1)
∥∥2

8: θ ← θ − η∇θL(θ)
9: until convergence

Algorithm 4 ICM Training v2.
1: Input: dataset D, initial model parameter θ,

learning rate η, and sequence of time points
0 = t1 < t2 < · · · < tN = 1

2: repeat
3: Sample x1 ∼ D and i ∼ U [1, N − 1]
4: x0 ← stopgrad (cθ(x1, 1))
5: Sample x′

1 ∼ p(x′
1 | x0)

6: Sample xti+1
∼ p(xti+1

| x0,x
′
1)

7:
xti ←
xti+1

− uti+1
(xti+1

| x0,x
′
1)(ti+1 − ti)

8:
L(θ)←

d
[
cθ(xti+1

, ti+1), stopgrad (cθ(xti , ti))
]

9: θ ← θ − η∇θL(θ)
10: until convergence
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A.2 PROOFS

A.2.1 INVERSE FLOW MATCHING

Theorem 1: Assume that the conditional noise distribution p(x1 | x0) satisfies the condition
that, for any noisy data distribution p(x1) there exists only one probability distribution p(x0) that
satisfies p(x1) =

∫
p(x1 | x0)p(x0)dx0 , then under the condition that LIFM is minimized, we have

q(x0) = p(x0).

Proof:

The inferred data distribution is given by the push-forward operator (Lipman et al., 2023):

q(x0) =
[
ODEvθ

1→0

]
∗ p(x1) (17)

which is defined for any continuous normalizing flow ϕ from x1 to x0 in the form of

[ϕ] ∗ p(x1) = p
(
ϕ−1(x0)

)
det

[
∂ϕ−1

∂x
(x0)

]
(18)

where x1 = ϕ−1(x0). The inferred noisy data distribution q(x1) is given by

q(x1) =

∫
p(x1 | x0)q(x0)dx0 (19)

When the model is converged based on the condition LIFM is minimized, we have

q(x0) =
[
ODEvθ

1→0

]
∗ q(x1) (20)

Then we find that [
ODEvθ

1→0

]
∗ p(x1) =

[
ODEvθ

1→0

]
∗ q(x1) (21)

By the definition of the push-forward operator, we have

p

((
ODEvθ

1→0

)−1

(x0)

)
det

∂
(

ODEvθ

1→0

)−1

∂x
(x0)


= q

((
ODEvθ

1→0

)−1

(x0)

)
det

∂
(

ODEvθ

1→0

)−1

∂x
(x0)


(22)

Since the solution of ODE is unique, ODEvθ

1→0 is a bijective function with(
ODEvθ

1→0

)−1

= ODEvθ

0→1

and
x1 = ODEvθ

0→1(x0) =
(

ODEvθ

1→0

)−1

(x0)

Also, the nontrivial solution ensures that the determinant is non-zero. By substitution, we get

p(x1) = q(x1) (23)

and combine with Eq. 19, we find that

p(x1) =

∫
p(x1 | x0)q(x0)dx0 (24)

We close the proof by directly applying the uniqueness of p(x0) and find that

q(x0) = p(x0) (25)

Remark 1: Readers may notice that if q(x0) is a point mass, which means the model maps all inputs
to a constant, the training objective LIFM will also be minimized, causing the ODE to converge
to a trivial solution. However, we find that this trivial solution can be avoided by our design.
Specifically, this is because Our approach can be regarded as an optimization process based on
expectation-maximization (EM):
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1. Expectation: We generate a denoised dataset given noisy inputs, x0 ∼ q(x0|x1).
2. Maximization: We optimize our IFM/ICM models based on the generated dataset x0 and

the conditional noise distribution p(x1|x0).

The choice of the initial prior, which is the initial denoised dataset in our case, is crucial for the
EM algorithm. While any initial prior may lead to a local optimum (Wu, 1983; Balakrishnan et al.,
2014; McLachlan & Krishnan, 2008), an informed initial prior can prevent convergence to a trivial
solution. Our model architecture incorporates the residual connection from consistency models,
ensuring that the initial outputs of the model closely resemble the inputs. This design effectively
avoids convergence to the trivial solution. In additional experiments (Appendix A.5.1), we further
demonstrate that our method is able to converge even under high noise levels (σ = 50), corroborating
the reliability of our method.

Therefore, when the training objective converges, our proof remains valid since the one-to-one
mapping property of the ODE holds.

Our method shares similarities with EM-based diffusion (Rozet et al., 2024). However, our method
exhibits greater versatility by being applicable to removing various types of noise. Moreover, the
design of ICM, inspired by consistency models, eliminates the need for multi-step ODE sampling
during training and inference, resulting in a significantly faster process.

Lemma 1: Given a conditional ODE vector field ut(x | x0,x1) that generates a conditional
probability path p(xt | x0,x1), the unconditional probability path p(xt) can be generated by the
unconditional ODE vector field ut(x), which is defined as

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] (26)

Proof:

To verify this, we check that p(xt) and ut(x) satisfy the continuity equation:
d

dt
p(xt) + div (ut(x)p(xt)) = 0. (27)

By definition,
d

dt
p(xt) =

d

dt

∫
p(xt|x0,x1)p(x0,x1)dx0dx1. (28)

With Leibniz Rule we have
d

dt
p(xt) =

∫
d

dt
p(xt|x0,x1)p(x0,x1)dx0dx1. (29)

Since ut(x|x0,x1) generates p(xt|x0,x1), by the continuity equation we have
d

dt
p(xt|x0,x1) + div (ut(x|x0,x1)p(xt|x0,x1)) = 0. (30)

Substitution in Eq. 29 gives
d

dt
p(xt) = −

∫
div (ut(x|x0,x1)p(xt|x0,x1)) p(x0,x1)dx0dx1. (31)

Exchanging the derivative and integral,
d

dt
p(xt) = −div

∫
(ut(x|x0,x1)p(xt|x0,x1)p(x0,x1)dx0dx1) . (32)

The definition of ut(x) is

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] =

∫
ut(x | x0,x1)

p(xt|x0,x1)p(x0,x1)

p(xt)
. (33)

Combining Eq. 32 and Eq. 33 gives the continuity equation:
d

dt
p(xt) + div (ut(x)p(xt)) = 0. (34)
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A.2.2 GENERALIZED CONSISTENCY TRAINING

Without loss of generality, we provide the proof for the form of LGCT in Eq. 15, and the proof for the
form Eq. 10 follows by assuming that the forward conditional probability path is independent of x1.

Theorem 2: Assuming the consistency function cθ is twice differentiable, up to a constant indepen-
dent of θ, LGCT and LCD are equal.

Proof:

The proof is inspired by Song et al. (2023). We use the shorthand cθ− to denote the stopgrad version
of the consistency function c. Given a multi-variate function h(x,y), the operator ∂1h(x,y) and
∂2h(x,y) denote the partial derivative with respect to x and y. Let ∆t := maxi {| ti+1 − ti |} and
we use o(∆t) to denote infinitesimal with respect to ∆t.

Based on Eq. 5 and Eq. 4, the consistency distillation objective is

LCD(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti , ti)
]}

(35)

where xti = xti+1
− (ti+1 − ti)uti+1

(xti+1
) and d is a general distance function.

We assume d and cθ− are twice continuously differentiable with bounded derivatives. With Taylor
expansion, we have

LCD(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti , ti)
]}

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
− (ti+1 − ti)uti+1

(xti+1
), ti)

]}
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

− ∂1cθ−(xti+1 , ti+1)(ti+1 − ti)uti+1(xti+1)

−∂2cθ−(xti+1
, ti+1)(ti+1 − ti) + o(∆t)

]}
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂1cθ−(xti+1 , ti+1)(ti+1 − ti)uti+1(xti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂2cθ−(xti+1

, ti+1)(ti+1 − ti)
]}

+ E [o(∆t)]
(36)

Then, we apply Lemma 1 and use Taylor expansion in the reverse direction,

LCD(θ)

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂1cθ−(xti+1 , ti+1)(ti+1 − ti)Ep(x0,x1|xti+1

)

[
uti+1(xti+1 | x0,x1)

]]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂2cθ−(xti+1 , ti+1)(ti+1 − ti)

]}
+ E [o(∆t)]

(i)
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂1cθ−(xti+1 , ti+1)(ti+1 − ti)uti+1(xti+1 | x0,x1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂2cθ−(xti+1 , ti+1)(ti+1 − ti)

]}
+ E [o(∆t)]

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)
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− ∂1cθ−(xti+1
, ti+1)(ti+1 − ti)uti+1

(xti+1
| x0,x1)

−∂2cθ−(xti+1 , ti+1)(ti+1 − ti) + o(∆t)
]}

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ

(
xti+1

, ti+1), cθ−(xti+1
− (ti+1 − ti)uti+1

(xti+1
| x0,x1), ti

)]}
+ o(∆t)

= LGCT(θ) + o(∆t) (37)

where (i) is due to the law of total expectation.

A.3 INTRODUCTION TO DENOISING WITHOUT GROUND TRUTH

The most comparable approaches to our method are those that explicitly consider a noise distribution,
including Stein’s Unbiased Risk Estimate (SURE)-based denoising methods (Soltanayev & Chun,
2018; Metzler et al., 2020) and Noise2Score (Kim & Ye, 2021). SURE-based denoising is applicable
to independent Gaussian noise and Noise2Score is more generally applicable to exponential family
noise. SURE-based denoising directly optimizes a loss motivated by SURE which provides an
unbiased estimate of the true risk, which is a mean-squared error to the ground truth. Noise2Score
uses Tweedie’s formula for estimating the posterior mean of an exponential family distribution with
the score of the noisy distribution. The score is estimated by an approximate score estimator using a
denoising autoencoder.

Another family of approaches often referred to as Noise2X is based on the assumptions of centered
(zero-mean) and independent noise. Noise2Noise (Lehtinen et al., 2018) requires independent noisy
observations of the same ground truth data. Noise2Self (Batson & Royer, 2019) is based on the
statistical independence across different dimensions of the measurement, such as the independence
between different pixels. Noise2Void (Krull et al., 2019) leverages the concept of blind-spot networks,
which predict the value of a pixel based solely on its surrounding context. Similarly, Noise2Same
(Xie et al., 2020) employs self-supervised learning using selectively masked or perturbed regions to
train the model to predict unobserved values. Both of them assume independence of noise across
dimensions.

A.4 EXPERIMENTAL DETAILS

All experiments were conducted on a server with 36 cores, 400 GB memory, and NVIDIA Tesla V100
GPUs. All models were implemented with PyTorch 2.1 (Paszke et al., 2019) and trained with the
AdamW (Loshchilov & Hutter, 2019) optimizer. Model architectures and training hyperparameters
are listed in Table A.4.

Table 2: Model architectures and hyperparameters
dataset architecture channels embed_dim embed_scale epochs lr lr schedule

Navier-Stokes
MLP [256,256,

256,256] 256 1.0
2000 5× 10−4

None8-gaussians 2000 5× 10−4

Single-cell 1000 1× 10−4

Gaussian noise

UNet [128,128,
256,256,512] 512 1.0

3000 1× 10−4 StepLR
Correlated noise 1000 1× 10−4 None
Jacobi process 1000 1× 10−4 None

FMD 3000 1× 10−4 StepLR

A.4.1 TRAINING DETAILS

To train IFM or ICM, we first consider a discretized time sequence ϵ = t1 < t2 < · · · < tN = 1,
where ϵ is a small positive value close to 0. We follow Karras et al. (2022) to determine the time

sequence with the formula ti =
(
ϵ1/ρ + i−1

N−1 (T
1/ρ − ϵ1/ρ)

)ρ

, where ρ = 7, T = 1, and N = 11.
We choose the conditional ODE vector field as

uti(xti | x0,x1) = x1 − x0. (38)
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Further, the gradient of the inferred noise-free data x0 is stopped to stabilize the training process,
which is

x0 = stopgrad
(

ODEvθ

1→0(x1)
)

(39)

for IFM and
x0 = stopgrad (cθ(x1, 1)) (40)

for ICM. For ICM, the loss is weighted by

λ(i) = ti+1 − ti (41)

in the same way as Song & Dhariwal (2023).

A.4.2 SYNTHETIC DATASETS

We adopted a simple form of Navier-Stokes equations which only includes the viscosity term in the
fluid mechanics

ρ(
∂v

∂t
+ v · ∇v) = −∇p+ µ∇2v

∇ · v = 0
(42)

where ρ is the density of the fluid, v is the velocity, p is the pressure and µ is the viscosity coefficient.
For inverting the Navier-Stokes simulations, we simulated the fluid data within a 2D boundary of
[0, 1]× [0, 1] domain from t = 0 to t = 0.1 with the spectral method (Spalart et al., 1991)

The 8-gaussians is generated by adding independent gaussian noise (σ = 0.15) to 8 points whose co-
ordinates are (0, 1), (0.− 1), (1, 0), (−1, 0), (

√
2
2 ,

√
2
2 ), (

√
2
2 ,−

√
2
2 ), (−

√
2
2 ,

√
2
2 ), (−

√
2
2 ,−

√
2
2 ). The

dataset is composed of 8000 points for training and 1600 points for testing.

We used a simple MLP-based model architecture with Gaussian Fourier time embedding in Table
A.4. All methods were trained with a learning rate of 5× 10−4 for 2000 epochs. The model training
took about 10 minutes.

A.4.3 REAL-WORLD DATASETS

All models were trained using the BSDS500 training set with 200 images randomly cropped to the
size of 256× 256 and evaluated on the BSDS500 test set, Kodak, and Set12 with images cropped
to the same size at the center. We used the same UNet-based model architecture as Lehtinen et al.
(2018) with additional Gaussian Fourier time embedding listed in Table A.4.

The URL for each dataset is given:

BSDS500 (Arbeláez et al., 2011): https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/

Kodak: https://r0k.us/graphics/kodak/

Set12 (Zhang et al., 2017): https://github.com/cszn/DnCNN/tree/master/
testsets/Set12

Gaussian noise is applied with
x1 = x0 + η (43)

where x0 is the noise-free data, x1 is a noisy observation, and η ∼ N (0, σ2I). We chose σ = 25 in
the experiments. All models were trained with the following setting. The total epoch was set to 3000.
The learning rate was initialized to 1× 10−4 for the first 1500 epochs and was decayed to 5× 10−5

for the last 1500 epochs. The model training took about 1.5 hours.

Correlated noise is applied similarly to independent Gaussian noise. We adopt the method from
Mäkinen et al. (2020) with

η = ν ⊛ g (44)

where ν ∼ N (0, σ2I) and g is a convolution kernel. We consider g in the form of

g =
1

2πa2
cos |r| exp (− r2

2a2
) (45)
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in polar coordinates and a determines the level of correlation. We generated the correlated noisy
observation with σ = 25 and a = 2. All models were trained with a learning rate of 1× 10−4 for
1000 epochs. The model training took about 30 minutes.

Jacobi process takes the following form

dx =
s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw, (46)

where 0 ≤ x ≤ 1, s > 0 is the speed factor, and a > 0, b > 0 determines the stationary distribution
Beta(a, b). Note that when x approaches 0 or 1, the diffusion coefficient converges to 0 and the drift
coefficient converges to a or −b, keeping the diffusion within [0, 1]. We used s = 1 and a = b = 1
and generated the noisy observation x1 with an Euler-Maruyama sampler to simulate the SDE from
the initial value x0. All models were trained with a learning rate of 1× 10−4 for 1000 epochs. The
model training took about 1.5 hours.

A.4.4 DENOISING MICROSCOPIC DATA

The Fluorescence Microscopy Denoising (FMD) dataset published by Zhang et al. (2019) was down-
loaded from https://github.com/yinhaoz/denoising-fluorescence. We adopted
the signal dependent noise model from Liu et al. (2013)

g = f + fγ · u+ w (47)

to estimate the condition noise distribution where g is the noisy pixel value, f is the noise-free pixel
value, γ is the exponential parameter, and u and w are zero-mean random variables with variance σ2

u
and σ2

w, respectively. The variance of the noise model is

σ2 = f2γ · σ2
u + σ2

w. (48)

To estimate the parameters in the noise model, we split an image into 4× 4 patches. We assume the
variance within a patch is constant and approximate the noise-free pixel values of the patches by the
mean values. The parameters in the noise model are estimated by the Maximum-Likelihood method.

We used the same UNet-based model architecture as Lehtinen et al. (2018) with additional Gaussian
Fourier time embedding listed in Table A.4. The learning rate was initialized to 1× 10−4 for the first
1500 epochs and was decayed to 5× 10−5 for the last 1500 epochs.

A.4.5 DENOISING SINGLE-CELL GENOMICS DATA

The adult mouse brain dataset published by Zeisel et al. (2018) was downloaded from https:
//www.ncbi.nlm.nih.gov/sra/SRP135960. The dentate gyrus neurogenesis dataset pub-
lished by Hochgerner et al. (2018a) was downloaded from https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE104323 and the neuron- and glia-related cells were kept
for denoising. We preprocessed the datasets by the standard pipeline (Wolf et al., 2018) and then
performed principal component analysis. We further normalized the datasets by scaling the standard
deviation of the first principal component to 1. After that, we denoised the datasets using the top 6
principal components with σ = 0.4. We used a simple MLP-based model architecture with Gaussian
Fourier time embedding in Table A.4. The model was trained with a learning rate of 1× 10−4 for
1000 epochs. The model training took about 5 minutes.

A.5 ADDITIONAL EXPERIMENTS

We provide extensive experiments to measure how different levels of Gaussian noise, different noise
level assumptions, and different combinations of noises affect performance. We adopted the same
model architecture and training strategy as for FMD in Table A.4. .

A.5.1 DIFFERENT LEVELS OF GAUSSIAN NOISE

We conducted experiments to evaluate the performance of our method under different intensities of
Gaussian noise. We performed experiments from σ = 5 to σ = 50 and found that our method is
robust over all noise levels we applied (Table A.5.1).
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Table 3: Denoising performance for different levels of Gaussian noise measured by PSNR in dB
σ = 5 σ = 12.5 σ = 25 σ = 50 σ = 75

Input Pred Input Pred Input Pred Input Pred Input Pred
BSDS500 34.15 37.56 26.19 31.85 20.17 28.16 14.15 24.98 10.63 23.33

Kodak 34.15 37.92 26.19 32.56 20.18 29.08 14.15 25.96 10.63 24.33
Set12 34.15 37.87 26.20 32.78 20.16 29.19 14.13 25.78 10.63 23.86

Table 4: Denoising performance for different noise distributions measured by PSNR in dB
Noise type Input Noise2Void Noise2Self Noise2Score Ours (ICM)

Poisson
ζ = 0.01

BSDS500 23.78 28.29 28.52 30.53 29.91
Kodak 23.60 28.76 29.36 31.10 30.58
Set12 23.08 30.01 29.23 30.94 30.68

Gamma
k = 100

BSDS500 26.75 29.17 27.43 31.14 32.48
Kodak 26.67 30.26 28.26 31.67 32.97
Set12 25.53 30.44 28.54 31.21 33.08

Rayleigh
σ = 0.3

BSDS500 14.03 28.57 14.86 30.37 30.55
Kodak 13.95 29.73 14.83 30.96 31.16
Set12 12.81 29.98 13.74 30.89 31.17

Poisson+Gaussian
BSDS500 22.40 26.45 27.76 28.54 29.26

Kodak 22.25 27.67 28.86 29.02 30.02
Set12 21.88 27.81 29.23 29.10 30.03

Gamma+Gaussian
BSDS500 24.29 27.98 26.10 29.34 30.53

Kodak 24.24 28.99 27.08 29.90 31.22
Set12 23.62 29.53 26.84 29.69 31.27

Rayleigh+Gaussian
BSDS500 13.85 28.01 14.72 29.36 29.79

Kodak 13.77 29.12 14.69 30.12 30.49
Set12 12.78 26.81 13.59 29.82 30.50

GaussianRGB
σ = 25

BSDS500 20.17 29.72 27.33 28.28 29.99
Kodak 20.17 30.65 28.21 28.66 30.73

A.5.2 DIFFERENT COMBINATIONS OF NOISES

We considered additive Gaussian noise and multiplicative noise such as Gamma noise, Poisson noise,
and Rayleigh noise, as well as their combinations and on a channel-correlated RGB dataset. We
followed the noise distributions introduced in Noise2Score (Kim & Ye, 2021; Xie et al., 2023a). For
combinations of multiplicative noise and Gaussian noise, we added Gaussian noises with σ = 10 to
the individual multiplicative noise models. As shown in Table A.5.2, our method is robust over all
noise type combinations we applied and superior to compared methods in most noise types.

A.5.3 DIFFERENT NOISE LEVEL ASSUMPTIONS

We conducted experiments on data with σ = 25 Gaussian noise, but training and denoising with
different noise level assumptions from σ = 12.5 to σ = 50. Shown in Table A.5.3, our method
demonstrates stable performance within the range of σ = 25 to σ = 35, indicating that overestimating
the noise level has minimal impact on the model’s effectiveness.

Table 5: Performance for different noise level assumptions
σ = 12.5 σ = 15 σ = 20 σ = 25 σ = 30 σ = 35 σ = 50

BSDS500 21.59 22.43 24.78 28.16 28.09 27.55 25.71
Kodak 21.62 22.49 25.03 29.08 28.99 28.43 26.66
Set12 21.67 22.56 25.14 29.19 29.20 28.65 26.86
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A.5.4 DENOISING SMALL DATASETS

In scientific discovery, the amount of data available is often very limited. To evaluate the performance
of our method on small datasets, we conducted experiments on the electron microscopy denoising
dataset (Mohan et al., 2021). Since the original authors did not release the real experimental data, we
used the simulated dataset they provided and added Poisson noise, which is the noise distribution in
the real data according to their analysis. The dataset consists of 46 samples. The results indicate that
our method is applicable to small datasets and outperforms other approaches in this scenario (Table
A.5.4). While diffusion model is known as being data hungry, our method is efficient on sample size
because it does not involve training a full generative model.

Table 6: Performance on the electron microscopy denoising dataset
Input Noise2Void Noise2Self Ours (ICM)

PSNR 23.70 38.67 41.42 43.78

A.6 ADDITIONAL QUALITATIVE RESULTS

We provide additional denoising results of the real-world datasets. Since there is not an explicit noise
magnitude σ in the Jacobi process, we did not apply the SURE-based method (Metzler et al., 2020)
to this task.

G
au

ss
ia

n
C

or
re

la
te

d
Ja

co
bi

 p
ro

ce
ss

Input BM3D SURE Noise2SelfGround Truth Ours (ICM)

NA

Figure 5: Denoising results of BSDS500 for natural images corrupted with three types of noise
distributions. Methods compared are BM3D, SURE loss, Noise2Self, and ICM.
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Figure 6: Denoising results of BSDS500 for natural images corrupted with three types of noise
distributions. Methods compared are BM3D, SURE loss, Noise2Self, and ICM.
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Figure 7: Denoising results of Kodak for natural images corrupted with three types of noise distribu-
tions. Methods compared are BM3D, SURE loss, Noise2Self, and ICM.
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Figure 8: Denoising results of Set12 for natural images corrupted with three types of noise distribu-
tions. Methods compared are BM3D, SURE loss, Noise2Self, and ICM.
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