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Abstract

This paper investigates a fundamental yet overlooked design principle of artificial
neural networks (ANN): We do not need to build ANNs layer-by-layer sequentially
to guarantee the Directed Acyclic Graph (DAG) property. Inspired by biological in-
telligence, where neurons form a complex, graph-structured network, we introduce
the transformative Cyclic Neural Networks (Cyclic NN). It emulates biological
neural systems’ flexible and dynamic graph nature, allowing neuron connections in
any graph-like structure, including cycles. This offers greater flexibility compared
to the DAG structure of current ANNs. We further develop the Graph Over Multi-
layer Perceptron, the first detailed model based on this new design paradigm. We
experimentally validate the advantages of Cyclic NN on widely tested datasets in
most generalized cases, demonstrating its superiority over current layer-by-layer
DAG neural networks. With the support of Cyclic NN, the Forward-Forward train-
ing algorithm also firstly outperforms the current Back-Propagation algorithm. This
research illustrates a transformative ANN design paradigm, a significant departure
from current ANN designs, potentially leading to more biologically similar ANNs.

1 Introduction

Artificial intelligence (AI) has reshaped our daily lives and is expected to have a much greater impact
in the foreseeable future. Lying behind the most profound AI applications [18, 14, 15, 8], artificial
neural networks (ANN) such as multi-layer perception (MLP) [16], convolution neural network
(CNN) [11] and Transformer [20] are designed specifically for different domains to fit the training
data. Regardless of the network structure, neural networks are stacked layer-by-layer to form deep
ANNs for greater learning capacity. It has been a de facto practice until now that data is first fed into
the input layer and then propagated through all the stacked layers to obtain the final representations at
the output layer. This paper seeks to answer a fundamental question in ANNs: “Do we really need to
stack neural networks layer-by-layer sequentially?”.

To answer this question, let’s first examine the evidence from biological intelligence (BI). Neurosci-
entists have studied the biological neurons for decades. The connectome of C. elegans is the most
thoroughly studied biological neural system, and biologists depicted the most detailed connection
between 302 biological neurons [22, 4] as shown in Figure 1(a). Rather than being stacked layer-
by-layer, all the neurons form a complicated connection graph, where each can connect to several
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other neurons within the system. We cannot even determine which neuron serves as the input/output
within the neural system to process information. The same findings have also been observed in
the latter more complicated neural systems, such as the biology neural connectome of drosophila
larva [23], zebrafish [3], mouse [19] and the human brain [17]. Observed biological intelligence
exhibits graph-structured, flexible, and dynamic neural systems, which are apparently different from
the current layer-by-layer ANNs we build nowadays, as depicted in Figure 1(b).

(a) Connectome of BI (C. elegans)

Computation Block

Input

Computation Block

Output

Computation Block

(b) Computation structure of AI

Figure 1: Neuron connection between Biology
Neural Network and Artificial Neural Network

The learning rules actually cause the difference
in the neural system structure between BI and
AI. The Hebb’s Rule [6], depicted as “Neurons
that fire together wire together”, is recognized as
the fundamental learning way of biological neu-
rons. The Spike-Timing-Dependent Plasticity
(STDP) learning is then proposed to further con-
sider the relative spiking time of pre-synapse and
post-synapse neurons. Both learning rules of BI
are localized, i.e., the learning occurs on each
neuron within its local influence scope. The
localized learning rules grant the flexibility of
each neuron on its connections to other neurons,
which leads to the complicated graph-structured
BI system. Conversely, for AI systems, the backward propagation (BP) algorithm [16] has dominated
the training of ANNs. Data is fed into the ANNs from the input layer, forward propagates layer
by layer to the last layer, calculates a global loss for the whole ANN based on the ground-truth
labels, and then reversely backward propagates the error signals layer by layer to the input layer.
In this procedure, ANNs are trained by a global loss function, and the ANNs must guarantee the
error from global loss can be back-propagated layer by layer. This requirement prevents current
ANNs from forming cycles to ease gradient back-propagation. Current ANNs are nearly all DAG
structured. To mitigate the biological implausible nature of the BP algorithm, the forward-forward
(FF) algorithm [7] is recently proposed to train ANNs. FF algorithm constructs good/bad samples
and computes a loss function on each layer to differentiate between these samples. Similar to Hebb’s
Rule and STDP learning, the FF algorithm is a localized learning method. These advancements have
allowed the training of ANNs to no longer rely solely on layer-by-layer back-propagation to design
non-DAG-structured Cyclic Neural Networks.

Cyclic NN distinguishes itself from the current layer-by-layer ANNs in several aspects. 1) More
flexible neuron connections. Cyclic NN greatly increases the design space of ANNs beyond the DAG
structure. In Cyclic NN, the information flow is not as unidirectional as in DAG. Former neurons
can also adjust based on the information encoded by the latter neurons, which largely enhances
information communication within the network. The flexible connection design also makes Cyclic
NN more like the biological neural system. 2) Localized training. Instead of current dominating
global loss-guided BP-based training, Cyclic NN is based on localized training, i.e., each neuron
is optimized with its own local loss function. There is no gradient propagating between neurons.
Localized training has its unique advantages. It frees the need to build DAG dependency between
neurons, which is the bedrock of supporting cycles within the network. Also, each neuron is optimized
independently without waiting gradients from the latter layers. 3) Computational neuron. Different
from current ANNs that a neuron is considered as a d dimension to 1 dimension vector mapping; the
neuron within Cyclic NN is considered the computational neuron with greater computation capacity
because it is the optimization unit to fit the local task, which requires more parameters. This paper
uses a linear layer to parameterize each computational neuron to fit the local classification task. It is
also evident by the study of biological neuron [2], which empirically proves the learning capacity of
a biological neuron is much larger than a d dimension to 1 dimension vector mapping function as
the neuron defined within current ANNs. We take this observation and propose the computational
neuron in Cyclic NN with more capable computation to fit the local optimization task. In summary,
our contributions can be summarized as follows:

• Conceptually, we compare BI and AI to investigate a fundamental yet overlooked design principle:
We do not need to satisfy the DAG constraint when designing ANNs.

• Methodologically, we propose the transformative Cyclic NN, a novel ANN design paradigm that
supports a much more flexible connection between neurons beyond directed acyclic graph.
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Figure 2: Comparison between different types of MLP structure.

• We test the novel design paradigm on the most generalized case and propose Graph Over Multi-layer
Perceptron, the first detailed model based on Cyclic NN.

• Experimentally, we demonstrate the advantage of the proposed Cyclic NN on widely tested datasets.
At the same time, we are the first to beat the current dominating BP training using the FF training
algorithm by the supported flexible network design proposed in this paper.

2 Cyclic NN: Graph Over Multi-layer Perceptron

We propose the first Cyclic NN under the most generalized case, Graph Over Multi-Layer Perceptron
(GOMLP), to show the design principle of Cyclic NN. As shown in Figure 2(c) and (d), GOMLP is
designed by building a graph structure over the multi-layer perception to solve the classification task.

2.1 Input Construction

For the classification task, each sample is symbolized as the feature-label pair (hi, yi), where hi is
the representation of sample i and yi is the corresponding label. To enable the local optimization
illustrated in Section 2.3, a fusion function is used to construct the input as:

hpos = ffusion(h,ytrue) = h||ytrue,

hneg = ffusion(h,yfalse) = h||yfalse, (1)
hneu = ffusion(h,yneutral) = h||yneu,

hpos, hneg, and hneu are the constructed input for local optimization of different parts. ffusion is a
function to fuse information between feature and label, which is defined as a concat function (||). ytrue
is the one-hot vector of ground-true label, yfalse is the one-hot vector of a randomly sampled false
label. For yneu, we place an 1

Class Number on all the dimensions of one-hot vector to indicate hneutral is
neutral to all classes. ffusion can be designed as any proper function to fuse information of the input
feature and the label. In our study, we design it as a simple concat function same as [7].

2.2 Computation Graph

The computation graph G contains the computational neurons V and the synapses E . Each computa-
tional neuron N ∈ V is a local module for calculation and optimization, while synapse S defines how
the information propagates between computational neurons. G can be defined as a graph generator:

G = Generator(|V|, |E|). (2)
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The above-generated graph G denotes a general graph structure. Meanwhile, to justify the effective-
ness of the proposed Cyclic NN, we test multiple graph generators in this paper, including the Chain
graph (Figure 2(b)), Cycle graph (Figure 2(c)), Complete graph (Figure 2(d)), Watts-Strogatz (WS)
graph [21] and Barabási–Albert (BA) graph [1].
Neuron Update. In GOMLP, each neuron is parameterized by a linear layer. At each propagation,
neuron N is updated by hout = σ(Wh̃in) (we omit the notation of N in equation for simplicity)
where σ is the Relu activation function [13], W ∈ RdN

out×dN
in

is N ’s parameter. dNout is N ’s output
dimension, which is a pre-defined dimension size, and dNin is N ’s input dimension, which is defined
by the output of N ’s pre-synapse neurons. h̃in is the normalized input as h̃in = hin

∥hin∥2
, where hin is

computational neuron N ’s input.
Synapse Propagation. Each synapse S = (Ni → Nj) is a directional edge from computational
neuron Ni to Nj , which indicates Ni is the pre-synapse neuron of Nj and hNi

out (the output of
Ni) will be propagated to Nj . Assume for neuron N , we obtain a set of pre-synapse neurons
(N1, N2, ..., Nn) based on the topology of G. Then, in each propagation, N receives the output
of all its pre-synapse neurons along the synapses and fuse the information to form its input by
a concatenation function as hin = h||hN1

out ||hN2
out ||, ..., ||hNn

out , where || is the concat function, h is
the input representation constructed in Section 2.1. Then we can obtain hin,pos, hin,neg, hin,neu by
providing hpos, hneg, hneu separately. As we relax the layer-by-layer restriction, the differentiation
between the input/hidden/output layers is also relaxed. We directly put the input h to all computational
neurons. Thus, the input dimension size of N , dNin = dh + dN1

out + dN2
out + ...+ dNn

out .
Readout Layer. Readout layer collects information from all computational neurons and decides on
the classification. The input of the readout layer is the concat function of all computational neurons
as hreadout

in = freadout(h
N∗
out ) = |||V|

i=1(h
Ni
out), where || is the concat function. Then, the readout layer

casts the representation to output dimension as ŷ = Softmax(Wreadouth
readout
in ). where Wreadout ∈

RClass Number×d(hreadout
in ) is the parameter of the readout layer and ŷ is the prediction vector on classes.

2.3 Local Optimization

Computational Neuron Optimization. Computational neurons are optimized to differentiate the
positive examples from negative ones. For computational neuron N , its optimization involves hin,pos
and hin,neg. After the computational neuron update, we can get hout,pos and hout,neg, respectively.
Then, following [7], a goodness score is calculated as p(h) = σ(

∑
i h

2
i − θ ∗ d(h)), where p(h) is

the goodness score of h, d(h) is the dimension size of h, σ is the Relu activation function and θ
is the threshold. The binary cross-entropy loss is used to optimize each computational neuron as
LN = − 1

|D|
∑

D(log(p(hout,pos)) − log(p(hout,neg))), where D is the dataset. The optimization of
computational neurons aims to increase the neuron’s output for positive samples while decreasing
the neurons’ output for negative samples. It enables each computational neuron its own ability to
differentiate positive examples from negative ones.

Readout Layer Optimization. To relieve the label leakage issue, the readout layer is only opti-
mized with hneutral, and we use a multi-class cross-entropy loss to optimize the readout layer as
LReadout(y, ŷ) = − 1

|D|
∑

|D|
∑C

c=1 yc log(ŷc), where C is the number of classes, y is the one-hot
vector of ground-truth label and ŷ is the prediction.

During the inference time, we pair each test sample with the neutral label to construct hneu. It then
propagates through the GOMLP to obtain its representation on each computational neuron. Finally,
we predict its class with the largest logit from the output of the readout layer.

3 Experiments

Datasets. We conduct experiments on three widely studied datasets from computer vision and natural
language processing domains. For each dataset, the training and test split follows the original setting.
We further extract 20% samples from the training data as validation sets to tune hyper-parameters.
For MNIST 2 [10], we directly use its flattened pixel values as the input of all methods and replace
the first 10 pixels with labels as the fusion function, which is the same as [7] and leads to an input

2http://yann.lecun.com/exdb/mnist/

4



dimension of 28 ∗ 28 = 784. For NLP datasets (NewsGroup 3 [9], IMDB 4 [12]), we use BERT [5]
to encode the sentences into a fixed-length tensor (768) as the input. The fusion function is the concat
function, which leads to an input dimension of 768 + 20 = 788 for NewsGroup and 768 + 2 = 770
for IMDB dataset.

Baselines. In this paper, we aim to reveal the advantages of graph-structured multi-layer perceptron.
We compared GOMLP with a variant of different methods, which can be differentiated by two
attributes (Training and Graph). Training indicates the training method, where BP indicates Backward
Propagation [16] and FF indicates the Forward-forward algorithm [7]. The graph indicates the graph
structure of computational neurons. We keep 4 computation neurons for all methods during the
experiments. The special cases are further illustrated as:

• BP-Chain*: Layer-by-layer neural networks trained with BP as depicted in Figure 2(a). It is the
current default way of building and training ANNs.

• FF-Chain: Layer-by-layer neural networks trained with FF as depicted in Figure 2(b) same as [7].

• BP-Chain: A modified version of BP-Chain*, where we use the structure of Figure 2(b) and trained
with BP. It adds direct local supervision on each layer.

Table 1: Error rate (%) ↓ on different datasets.

Train Graph MNIST NewsGroup IMDB

BP Chain* 1.77±0.16 42.11±0.92 17.16±0.19

FF Chain 1.83±0.2 43.88±0.28 18.75±0.92

BP Chain 1.74±0.11 38.85±0.42 17.27±0.13

FF Cycle 1.80±0.14 43.54±0.41 18.97±0.49

FF WSGraph 1.70±0.17 38.28±0.13 17.93±0.28

FF BAGraph 1.64±0.08 38.41±0.14 18.20±0.67

FF Complete 1.54±0.05 38.266±0.06 17.58±0.20

We conduct experiments on
MNIST [10], NewsGroup [9]
and IMDB [12] dataset, and the
setup is illustrated in the supple-
mentary material. FF-Cycle, FF-
WSGraph, FF-BAGraph, and FF-
Complete are different versions
of GOMLP, where the training is
FF and only the graph generator
defined in Eq. 2 differs.

3.1 Overall Comparison

The overall experiment result is shown in Table 1. We show the error rate of different methods on
different datasets (the lower, the better). Best performance is marked bold. From the table, we can
have several interesting and exciting findings:

• FF-Complete achieves the best performance on MNIST and NewsGroup datasets and comparable
results to the best one on the IMDB dataset. It is the first FF-trained model that outcompetes the
BP-trained model. It is an exciting observation of the effectiveness of the FF algorithm compared
with the BP algorithm.

• FF-Chain performs worse than BP-Chain* on all datasets. This observation is on par with [7], where
the FF lags behind the BP training algorithm when they both follow layer-by-layer organization as
a chain graph. However, we can surpass BP-Chain* when organizing the computational neurons
as a graph structure. This finding inevitably reveals the advantages of GOMLP by organizing
multi-layer perceptron as a flexible graph structure.

• FF-Cycle achieves similar performance with FF-Chain on three datasets. It is reasonable because
these two methods have only one edge difference. When we build more complex graphs (WSGraph,
BAGraph, Complete Graph), we can observe much better performance immediately. It shows the
benefits of enriching the communication between computational neurons by the GOMLP.

• BP-Chain is better than BP-Chain* in most cases. Compared with BP-Chain*, BP-Chain further
adds layer-wise optimization directly from the final loss. It indicates the advantageous layer-wise
optimization, which provides new guidelines when designing layer-by-layer neural networks.

In summary, the experiment results answer that we do not need to stack neural networks layer-by-layer
sequentially, and we can organize the neural networks as a flexible, complex graph structure like the
brain. More excitingly, we can outperform the current de facto layer-by-layer neural network design
paradigm with the Cyclic NN, and provide a totally new way of building ANNs.

3http://qwone.com/ jason/20Newsgroups/
4https://ai.stanford.edu/ amaas/data/sentiment/
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Figure 3: Parameter sensitivity of T and θ

3.2 Hyper-parameter Sensitivity

Experiment results of hyper-parameter (T and θ) sensitivity is shown in Figure 3. T controls
the number of propagation between computational neurons. Larger T indicates more times the
information is propagated. We can observe an error rate trend that first decreases and then increases
on all three datasets. When T is small, computational neurons can not draw sufficient lessons
from each other. When T is large, computational neurons are over-propagated, which leads to the
over-smoothing problem. θ controls the goodness threshold of each computational neuron. We can
observe a sharp error rate decrease when θ increases from 0 to 1, and then it gets stable with larger
θ. It indicates the existence of the goodness threshold matters more than the threshold value. When
θ = 0, there is little room to optimize the computational neuron towards the negative sample, which
can lead to the training collapse as the computational neuron can not differentiate the negative sample.

3.3 Ablation Study.

Table 2: Error rate (%) ↓ of Ablation study.

Model MNIST NewsGroup IMDB

FF-Complete 1.54 38.26 18.20
-LN 2.24 47.61 22.94
-LReadout 95.58 95.55 44.26

This section studies the impact of differ-
ent optimization modules within GOMLP,
including the computational neuron opti-
mization LN and readout layer optimiza-
tion LReadout. We conduct experiments on
the FF-Complete structure, and the results
are summarized in Table 2. We can have
the following observations: 1) The error
rate increases when removing any optimization module, indicating the usefulness of each component.
2) GOMLP falls to a very large error rate (nearly random guess) when removing LReadout. It is reason-
able as we depend on the readout layer to complete the final classification task. Without optimization
on the readout layer, GOMLP falls into random guess even with optimized computational neuron’s
input. 3) The error rate increases by removing LN . It shows the computational neuron’s optimization
can provide a more informative goodness score for the readout layer to complete the classification
task. LN and LReadout complement each other within GOMLP, and they collectively make the best
performance.

4 Conclusion

In summary, this research introduces Cyclic NN, a novel ANN architecture inspired by the complex,
graph-like neural networks in biological intelligence. This transformative design diverges from
traditional directed acyclic ANN structures. Our findings, demonstrated through the Graph Over
Multi-layer Perceptron model and validated on various datasets, showed enhanced performance over
conventional DAG networks. This significant development paves the way for more flexible and
biologically realistic AI systems, representing a major shift in ANN design.
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