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ABSTRACT

Outdoor registration methods often employ an dedicated module to detect over-
lapping regions between images and point clouds. While effective, this strategy is
not directly applicable to indoor scenarios and increases computational cost. How-
ever, to further improve indoor registration accuracy, it is crucial to identify and
isolate overlapping regions, minimizing interference from non-overlapping areas.
Furthermore, without targeted design, aligning image and point cloud features
may lead to mismatches during feature interaction. To address these issues, we
propose two modules: the Reinforcement Learning Overlap Detector (RLOD) and
the Hierarchical Domain Adaptation Interaction (HDAI) module. RLOD adap-
tively selects overlapping regions by leveraging intrinsic geometric information,
thus constraining the matching space and improving accuracy. HDAI aligns im-
age and point cloud features at both mean and covariance levels, mitigating cross-
modal discrepancies and stabilizing attention. Experiments on RGB-D Scenes v2
and 7-Scenes benchmarks demonstrate that our method achieves superior perfor-
mance, setting a new state of the art for image-to-point cloud registration.

1 INTRODUCTION

Image-to-point cloud registration (I2P) aims to determine the rigid transformation between the co-
ordinate systems of a point cloud and a camera capturing the same scene. This process underpins
many vision tasks such as 3D reconstruction Mouragnon et al. (2006); Deng et al. (2024), SLAM
Durrant-Whyte & Bailey (2006); He et al. (2023), and localization Bolognini et al. (2005); Wu et al.
(2024). Yet images are dense, structured 2D grids, while point clouds are sparse, unordered 3D
sets, leading to a substantial domain gap in their feature distributions. Additionally, due to the dis-
tinct sensing characteristics of different sensors, the spatial coverage of images and point clouds is
often not perfectly aligned, leading to non-overlapping or missing regions. As a result, effectively
modeling and aligning their representations in the overlapping areas remains a challenging problem.

For the problem of I2P, different strategies have been developed for indoor Feng et al. (2019); Wang
et al. (2021); Ren et al. (2022) and outdoor Kang et al. (2023); Yue et al. (2025) scenarios due to
the distinct sensing modalities and viewpoints involved. In indoor scenarios, 2D3D-MATR Li et al.
(2023) introduced the first coarse-to-fine, detection-free framework. It establishes patch-level corre-
spondences between image and point cloud features, progressively refines them into pixel-to-point
matches, and finally estimates the rigid transformation using PnP-RANSAC Lepetit et al. (2009);
Fischler & Bolles (1981). In contrast, outdoor methods, such as ICL-I2P Li et al. (2025), utilize an
overlap region detection module. This module leverages the similarity between high-dimensional
image and point cloud features to identify overlapping areas and obtain an initial pose. Within these
detected overlap regions, keypoint correspondences are extracted for pose refinement, showing sig-
nificant potential. However, in indoor scenes, where the overlap between images and point clouds is
generally substantial (see Figure 1(a)), relying on global image features for overlap detection often
leads to suboptimal results. The additional detection module also substantially increases computa-
tional complexity. This leads us to explore whether the concept of constructing overlap regions, as
seen in outdoor methods, can be redesigned in a more lightweight manner and adapted for indoor
registration. This adaptation could enable more efficient and accurate performance improvements.

Through the above discussion of registration methods, we summarize two key issues that need to
be improved in order to accurately and reliably accomplish indoor registration. 1. How to design
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Figure 1: (a) Comparison of overlap region ranges in outdoor and indoor registration tasks. (b)
Illustration of the reasoning process for exploring intrinsic geometric information from normal. (c)
t-SNE visualization of image and point cloud features under different conditions.

a lightweight overlap detection module for indoor I2P to enhance accuracy and robustness. For
overlap region detection, we aim to incorporate more 3D information to optimize the judgment.
Depth maps are a common method for obtaining 3D information from images, but their inherent
scale ambiguity makes them challenging to use directly for local feature matching. In contrast, sur-
face normals are invariant to translation and scale, which makes them more suitable as geometric
features for registration tasks. However, since images and point clouds are captured from different
viewpoints (Figure 1(b)), it may be beneficial to extract intrinsically invariant geometric structures
to improve overlap region determination. Moreover, as overlap detection varies across scenes, en-
abling the model to adaptively select potential regions can further enhance accuracy and robustness.
2. How to align image and point cloud features to ensure consistent representation within the
overlapping regions. As shown in Figure 1(c), the substantial differences between 2D and 3D data
lead to inconsistent feature spaces. Since transformer attention relies on query–key similarity, large
distribution gaps between image and point cloud keys cause the same query to yield divergent atten-
tion across modalities, resulting in unstable cross-attention alignment. Through a tailored design,
cross-modal multi-level attention might be maintained on a comparable numerical scale to enhance
stability, while preserving modality-specific information, thereby enabling more accurate and robust
registration of overlapping regions.

To address the above challenges, we propose a novel method, Learning Overlap Detection for
Domain-Adaptive Image-to-Point Cloud Registration, which introduces two innovative modules:
the Reinforcement Learning Overlap Detector (RLOD) and the Hierarchical Domain Adaptation In-
teraction Module (HDAI). In RLOD, we leverage surface normals to enrich images with 3D cues.
Surface normal labels are derived from depth maps Yang et al. (2024) for images and directly com-
puted from 3D data for point clouds. However, as they originate from different coordinate systems,
viewpoint variations cause inherent discrepancies. To address this, we exploit intrinsic geometric
information to strengthen correlations between image and point cloud. In addition, a reinforcement
learning–driven strategy enables the model to adaptively select overlapping regions, achieving more
accurate and efficient detection while reducing false matches. In HDAI, we enhance the transformer
by aligning image and point cloud features at both mean and covariance levels. This statistical align-
ment mitigates cross-modal discrepancies, stabilizes attention computation, and alleviates drift from
scale mismatches, thereby improving the robustness and generalization of cross-modal fusion.

In summary, our contributions are:
• We propose a novel method, Learning Overlap Detection for Domain-Adaptive Image-to-Point

Cloud Registration, achieving excellent accuracy and strong generalization in cross-modal regis-
tration.

• We design a Reinforcement Learning Overlap Detector that leverages intrinsic geometric prop-
erties to enhance correlation and adaptively detect overlapping regions. We further introduce a
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Hierarchical Domain Adaptation Interaction module to align feature distributions via hierarchical
cross-modal interactions, alleviating attention drift and improving representation consistency.

• Extensive experiments and ablations on RGB-D Scenes v2 and 7-Scenes demonstrate the superi-
ority of our network, setting a new state of the art in image-to-point cloud registration.

2 RELATED WORKS

In this section, we briefly review related works on image-to-point cloud registration, covering stereo
image registration, point cloud registration, and inter-modality registration.
Stereo Image Registration. Traditional stereo image registration was dominated by detector-based
methods. Before deep learning, handcrafted techniques such as SIFT Ng & Henikoff (2003) and
ORB Rublee et al. (2011) were widely used to detect keypoints and establish 2D matches from
local descriptors. With the advent of deep learning, neural network–based detectors significantly
advanced this field. A notable milestone is SuperGlue Sarlin et al. (2020), which introduced
Transformer-based Vaswani et al. (2017) feature matching and substantially improved local cor-
respondence quality. However, the difficulty of detecting repeatable keypoints in textureless or non-
salient regions has motivated detector-free approaches. Recent methods such as LoFTR Sun et al.
(2021) and Efficient LoFTR Wang et al. (2024) employ coarse-to-fine pipelines with Transformers,
enabling dense matching with global receptive fields.
Point Cloud Registration. Point cloud registration methods have evolved from handcrafted de-
scriptors, such as PPF Moheimani et al. (2006) and FPFH Rusu et al. (2009), to learning-based
techniques. CoFiNet Yu et al. (2021) was among the first to introduce a detector-free coarse-to-fine
framework for registration. More recently, traditional RANSAC Fischler & Bolles (1981) has been
replaced by deep robust estimators, offering improvements in both speed and accuracy. GeoTrans-
former Qin et al. (2023) further enhances inlier ratios by leveraging global context with Transformers
and proposing a local-to-global registration strategy that eliminates the reliance on RANSAC.
Inter-modality Registration. Cross-modal registration is inherently more challenging than intra-
modal registration due to significant domain gaps. Early approaches typically followed a detect-
then-match paradigm. For instance, 2D3D-MatchNet Feng et al. (2019) detects SIFT Ng & Henikoff
(2003) and ISS Sontag (1998) keypoints and encodes local patches with CNNs and PointNet Qi et al.
(2017), while P2-Net Wang et al. (2021) jointly learns keypoints and descriptors under contrastive
supervision. However, keypoint-based methods are generally inefficient and less accurate, motivat-
ing detector-free strategies. For instance, 2D3D-MATR Li et al. (2023) employs a coarse-to-fine
Transformer framework that establishes patch-level correspondences, refines them to fine-grained
matches, and estimates rigid transformations via PnP+RANSAC Lepetit et al. (2009); Fischler
& Bolles (1981). By eliminating keypoint detection and leveraging Transformers’ global recep-
tive fields, it achieves more consistent descriptors and higher inlier ratios. B2-3Dnet Cheng et al.
(2025a) further enhance cross-modal correspondence learning by leveraging covariance-guided fea-
ture alignment to improve the robustness and consistency of descriptors. Based on this, CA-I2P
Cheng et al. (2025b) introduces channel adaptation and global optimal selection to better align cross-
modal features and reduce redundant matches, achieving improved registration accuracy. Based on
2D3D-MATR, we propose a novel framework that introduces reinforcement learning-driven over-
lap detection and hierarchical distribution alignment to address the limitations of existing indoor
image-to-point cloud registration methods.

3 METHOD

Let I ∈ RH×W×3 and P ∈ RN×3 be an image and a point cloud of the same scene, where H and W
denote the image height and width, and N denotes the number of points. The goal of image-to-point
cloud registration is to estimate a rigid transformation [R|t] in the point cloud space from the image
points, where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector.

Our method adopts a detection-free paradigm, where we first extracts features and potential latent
geometries of images and point clouds in overlapping regions, and the Reinforcement Learning
Overlap Detector adaptively selects them through reinforcement learning strategies. Then, the Hi-
erarchical Domain Adaptation Interaction Module alleviates the distribution shifts caused by scale
inconsistencies in overlapping regions by improving multi-level cross-modal interactions between
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Figure 2: Overall pipeline of our method. It includes the Reinforcement Learning Overlap Detec-
tor (RLOD) and Hierarchical Domain Adaptation Interaction (HDAI) modules. In RLOD, intrin-
sic geometric invariants are extracted from surface normals derived from depth maps and 3D data
to strengthen cross-modal correlations, while a reinforcement learning strategy adaptively selects
overlapping regions for more accurate and efficient registration. In HDAI, image and point cloud
features are aligned at mean and covariance levels, mitigating distribution gaps, stabilizing attention,
and improving the robustness of cross-modal fusion. After achieving coarse-level matching and re-
fining fine-level matches, PnP+RANSAC is used to regress the rigid transformation.

image and point cloud features. By computing residual similarity and top-k selection, coarse corre-
spondences are obtained, and then refined into dense correspondences using high-resolution image
and point cloud features. Finally, a PnP+RANSAC Lepetit et al. (2009); Fischler & Bolles (1981)
solver is applied to robustly recover the rigid transformation.

3.1 REINFORCEMENT LEARNING OVERLAP DETECTOR

We adopt a ResNet He et al. (2016) with FPN Lin et al. (2017) to extract image features fused
with DINOv2 Oquab et al. (2023), and employ KPFCNN Thomas et al. (2019) to extract point
cloud features, followed by positional encoding. The 2D and 3D features are downsampled at the
lowest resolution as fi ∈ Rh×w×c and fp ∈ Rn×c, respectively. We aim to introduce 3D geometric
information by leveraging surface normals, which are invariant to translation and scale, to strengthen
the connection between images and point clouds and better distinguish overlapping regions, thereby
reducing incorrect correspondences.

For the point cloud, since it naturally possesses 3D
structure, we estimate surface normals directly from
local neighborhoods: for each point, its k nearest
neighbors are searched, the covariance matrix of the
neighborhood is computed, and the eigenvector corre-
sponding to the smallest eigenvalue is taken as the nor-
mal of that point, followed by normalization. For the
image, due to the lack of explicit 3D structure, we first
employ Depth Anything v2 to predict a depth map,
and then approximate depth gradients to obtain local
surface orientations, from which the image normals
are constructed. During training, the image branch
predicts normals using a lightweight MLP (predictor),
whose outputs are supervised to align with the pseudo
ground-truth normals computed from the depth map,
thereby ensuring geometric consistency while effec-
tively reducing computational.

Algorithm 1: Normal computation
and constraint for image and point
cloud
Input: Point cloud P, Image I
Output: Np, Ni, Loss LN

Point cloud normals:
for each point pa ∈ P do
Na ← k-NN(pa);
Ca ← 1

k

∑
(pb − p̄a)(pb − p̄a)

⊤;
Np(a)← normalize(eigenvectormin(Ca));

Image normals:
Di ← DepthAnything(I);
for each pixel (u, v) do

∂D/∂u, ∂D/∂v ← finite diff.;
N′

i(u, v)←
normalize((−∂D/∂u,−∂D/∂v, 1));

Ni(u, v)← MLP(fi(u, v));

Normal supervision:
Ln ← 1− 1

hw

∑
(Ni ·N′

i);

However, since the surface normals of images and point clouds are computed in their respective co-
ordinate systems, we aim to capture intrinsic geometric cues that are shared across both modalities.
By characterizing the local geometric structures of image and point cloud patches, these cues provide
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a reliable basis for detecting overlapping regions, thereby enabling more accurate correspondence
estimation and improving the overall registration accuracy.

Feature Sim. For each observation unit o (i.e., a corresponding image–point cloud patch), we apply
average pooling (avg-pooling) over the feature vectors within the patch, obtaining the pooled image
feature fpool

img (o) and the pooled point cloud feature fpool
pcd (o). Based on this, we employ cosine

similarity to measure their consistency in the high-dimensional feature space:

cosf (o) =
fpool
img (o) · f

pool
pcd (o)

∥fpool
img (o)∥ ∥f

pool
pcd (o)∥

. (1)

Here, o denotes an image–point cloud patch pair, and the metric quantifies the feature-level similar-
ity between cross-modal patches. In addition, we directly extract matching scores from the initial
image–point cloud similarity matrix as the prior value for each candidate pair:

Sxy = fx · fy, (2)

and select the scores of the top-k candidate pairs as priors. These priors can be regarded as a weak
supervision signal, indicating the reliability of candidates in the initial feature space. Such priors
help guide the subsequent matching process and alleviate purely random selections to a certain
extent.

Intrinsic Geometric Sim. To characterize the local geometric structures of image and point cloud
patches, we first construct a covariance matrix from the set of normals {nx | nx ∈ Ni, x =
1, . . . , X}, where Ni denotes the previously obtained image normals and x indexes the normals
within a patch:

Cn =
1

X

X∑
x=1

(nx − n̄)(nx − n̄)T . (1)

Then we perform eigen-decomposition to obtain eigenvalues λ1 ≥ λ2 ≥ λ3. These eigenvalues
reflect the shape of the normal distribution: if λ1 ≫ λ2 ≈ λ3, it indicates a linear structure; if λ1 ≈
λ2 ≫ λ3, it corresponds to a planar structure; and if the three values are approximately equal, the
region is spherical or noisy. Thus, each image and point cloud patch is represented by [λ1, λ2, λ3],
together forming a 6-dimensional distribution feature. To further measure the consistency of two
patches in terms of overall geometric type, we normalize the eigenvalue vectors and compute the
cosine similarity:

λ̃ =
λ

∥λ∥
, simodm =

λ̃img · λ̃pcd

∥λ̃img∥∥λ̃pcd∥
. (3)

This metric exhibits rotation invariance, making it suitable for evaluating the consistency of image
and point cloud pairs observed from different viewpoints. In addition, we compute pairwise normal
angles within each patch,

θxy = arccos(nx · ny), (4)
and accumulate them into a histogram H . The distribution similarity between image and point cloud
patches is defined as:

simhist = 1− JS(Himg, Hpcd), (3)
where JS denotes the Jensen–Shannon divergence. This metric captures fine-grained consistency
of normal distributions, complementing simodm. Finally, we obtain 6-dimensional normal features
together with the two similarity measures, which jointly form a cross-modal local geometric de-
scriptor.

Adaptive selection. Because the detection of overlapping regions exhibits strong uncertainty and
variability across different scenes, we formulate the candidate matching between image–point cloud
pairs as a reinforcement learning (RL) process to achieve adaptive query selection. For any candidate
pair (x, y), its state vector is defined as

sxy = [λimg, λpcd, simodm, simhist, cosf , prior], (5)

where λimg and λpcd denote the eigenvalue-based normal distribution features of image and point
cloud patches, simodm and simhist measure rotation-invariant distribution similarity, cosf denotes
the cosine similarity between pooled features, and prior represents the Sxy prior confidence.
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The policy network πθ(a|sxy) takes the state vector as input and outputs a binary decision a ∈
{0, 1}, where a = 1 indicates selecting the query and a = 0 indicates discarding it:

pxy = σ(MLPθ(sxy)), πθ(a|sxy) = Bernoulli(pxy). (6)

In the unsupervised setting, the reward is defined as a weighted combination of all geometric and
appearance similarity components:

R = β1 · simλ + β2 · simodm + β3 · simhist + β4 · cosf , (7)

where simλ denotes the cos similarity between λimg and λpcd, βk are balancing coefficients con-
trolling the contribution of each term. To reduce variance in gradient estimation, we adopt an expo-
nentially moving average baseline:

b← (1− αb)b+ αb E[R], (8)

where αb is the update rate. The final optimization objective is a regularized reinferce loss:

Lr = −Ea∼πθ(s)

[
(R− b) · log πθ(a|s)

]
− γH(πθ), (9)

where γ controls the exploration strength and H(πθ) denotes the entropy of the Bernoulli distribu-
tion:

H(πθ) = −[pxy log pxy + (1− pxy) log(1− pxy)]. (10)

Through this process, the policy network learns to select candidates that are geometrically consistent
across modalities. During inference, the model directly computes selection probabilities and adopts
a top-k Qin et al. (2022c) rule to determine the final set of query correspondences.

3.2 HIERARCHICAL DOMAIN ADAPTATION INTERACTION MODULE

Although RLOD enables adaptive identification of overlapping regions between images and point
clouds, cross-modal registration still faces the challenge that image and point cloud features often
exhibit significant distributional and scale discrepancies, which may hinder robust correspondence
learning. Such discrepancies are amplified by the standard transformer Vaswani et al. (2017) at-
tention, causing attention drift in overlaps and weakening matches. To address this, we propose
the Hierarchical Domain Adaptation Interaction (HDAI) module. After the initial interaction via a
Domain Adaptation Transformer (DAT), scale differences from viewpoint changes and object-size
variations may still bias similarity, leading to incorrect correspondences. To mitigate this, we in-
troduce an Image Feature Pyramid f2

(i,n), extracted by a lightweight CNN Zhang et al. (2022), to
provide multi-scale image features. The point cloud features are then interacted with these scales to
generate multiple cross-modal cosine similarity maps.

Domain Adaptation Transformer. DAT differs from the standard transformer by explicitly in-
troducing a statistical distribution alignment constraint in the cross-attention key space, aiming to
reduce modality discrepancy. At each layer, we compute the mean and covariance of image and
point cloud features, and enforce their alignment with the following loss:

Ld = ∥µ(f1
i )− µ(f1

p )∥22 + ∥Σ(f1
i )− Σ(f1

p )∥2F

+

3∑
e=1

(
∥µ(f2

(i,e))− µ(f2
p )∥22 + ∥Σ(f2

(i,e))− Σ(f2
p )∥2F

)
,

(11)

where µ(·) and Σ(·) denote the mean and covariance of the features, respectively, ∥ · ∥F is the
Frobenius norm, and e = 1, 2, 3 indexes the image feature pyramid scales.

During training, DAT mitigates attention drift caused by inconsistent feature scales across modalities
by aligning the mean and covariance of image and point cloud features, thereby ensuring stable and
reliable cross-modal attention allocation. At inference, the explicit constraint is removed; however,
the learned distributional consistency is embedded in the model parameters, enabling robust and
consistent cross-modal representations. Combined with multi-scale feature fusion, DAT enhances
both the robustness and accuracy of registration. Finally, a top-k selection preserves the most reliable
similarity maps as coarse correspondences, and a PnP+RANSAC Lepetit et al. (2009); Fischler &
Bolles (1981) solver is then applied to robustly recover the rigid transformation.
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3.3 LOSS FUNCTION

Let us examine the loss functions for the coarse and fine-matching networks. Both Lcoarse and Lfine
utilize a general circle loss Sun et al. (2020); Qin et al. (2022a). For a given anchor descriptor di,
the descriptors of its positive and negative pairs are represented as DP

i and DN
i , respectively. The

matching loss function is defined as follows:

Li =
1

γ
log

1 + ∑
dj∈DP

i

eβ
i,j
p (dj

i−∆p) ·
∑

dk∈DN
i

eβ
i,k
n (∆n−dk

i )

 , (12)

where dji is the L2 feature distance, βi,j
p = γλi,j

p (dji − ∆p), and βi,k
n = γλi,k

n (∆n − dki ) are the
individual weights for the positive and negative pairs, with λi,j

p and λi,k
n as scaling factors. Based

on the above discussion, the total loss consists of three key components: the matching loss Li, the
constraint between prdict and estimate normal Ln, the reinferce loss Lr and the domain adaptation
loss Ld, calculated as:

Ltotal = ω1Li + ω2Ln + ω3Lr + ω4Ld, (13)
where ωi are hyperparameters balancing the contribution of different loss terms.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Based on the 2D3D-MATR benchmark, we conducted extensive experiments and ablation studies
on two challenging benchmarks: RGB-D Scenes v2 Lai et al. (2014) and 7-Scenes Glocker et al.
(2013).
Dataset. RGB-D Scenes v2 consists of 14 scenes containing furniture. For each scene, we create
point cloud fragments from every 25 consecutive depth frames and sample one RGB image per 25
frames. We select image-point-cloud pairs with an overlap ratio of at least 30%. Scenes 1-8 are
used for training, 9-10 for validation, and 11-14 for testing, resulting in 1,748 training pairs, 236
validation pairs, and 497 testing pairs.
The 7-Scenes is a collection of tracked RGB-D camera frames. All seven indoor scenes were
recorded from a handheld Kinect RGB-D camera at 640×480 resolution. We select image-to-point-
cloud pairs from each scene with at least 50% overlap, adhering to the official sequence split for
training, validation, and testing. This results in 4,048 training pairs, 1,011 validation pairs, and
2,304 testing pairs.
Implementation Details. We use an NVIDIA Geforce RTX 3090 GPU for training. We implement
our model using PyTorch 1.13.1. For the image branch, we adopt a ResNet-50 with FPN fused with
DINOv2 embeddings, and set the backbone output dimension to 128. For the point cloud branch,
we employ KPFCNN with 4 stages, base voxel size of 0.025, and output dimension 128. We use the
Adam optimizer with an initial learning rate of 1× 10−4 and weight decay 1× 10−5. The learning
rate is decayed by a factor of 0.95 every 5 epochs. The output feature dimension of the decoder in
the feature extractor is set to 512. We set β1 = β2 = β3 = β4 = 1 and ω1 = ω2 = ω3 = 1,
ω4 = 0.01 for balancing the loss components. The number of transformer layers is set to 3.
Metrics. We evaluate the models using three standard metrics: Inlier Ratio (IR) — the percentage
of pixel-to-point matches within 5 cm; Feature Matching Recall (FMR) — the proportion of im-
age–point cloud pairs with IR > 10%; and Registration Recall (RR) — the proportion of pairs with
RMSE below 10 cm.

4.2 EVALUATIONS ON DATASET

We compare our approach with baseline 2D3D-MATR Li et al. (2023) and other methods Choy et al.
(2019); Wang et al. (2021); Huang et al. (2021b); Cheng et al. (2025a;b) on the RGB-D Scenes v2
and 7 Scenes dataset (see Table 1).

For the Inlier Ratio, our method achieves a mean of 46.0% on RGB-D Scenes v2 and 56.0% on
7-Scenes, surpassing the previous best results (35.5% and 51.6% from CA-I2P) by clear mar-
gins. These improvements demonstrate that the proposed Reinforcement Learning Overlap Detector
(RLOD) effectively identifies reliable correspondences and reduces false matches. In terms of Fea-
ture Matching Recall, our method demonstrates consistently high performance on both datasets. It
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Table 1: Evaluation results on RGB-D Scenes v2 and 7-Scenes. Orange and Blue numbers highlight
the best; the second best are boldfaced; the baseline are underlined.

Dataset RGB-D Scenes v2 7-Scenes

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Mdpt(m) 1.74 1.66 1.18 1.39 1.49 1.78 1.55 0.80 2.03 2.25 2.13 1.84 1.49

Inlier Ratio ↑

FCGF-2D3D 6.8 8.5 11.8 5.4 8.1 34.2 32.8 14.8 26 23.3 22.5 6.0 22.8
P2-Net 9.7 12.8 17.0 9.3 12.2 55.2 46.7 13.0 36.2 32.0 32.8 5.8 31.7
Predator-2D3D 17.7 19.4 17.2 8.4 15.7 34.7 33.8 16.6 25.9 23.1 22.2 7.5 23.4
2D3D-MATR 32.8 34.4 39.2 23.3 32.4 72.1 66.0 31.3 60.7 50.2 52.5 18.1 50.1
B2-3Dnet 36.4 32.7 43.8 27.4 35.1 73.8 66.7 33.1 61.7 50.8 52.3 18.1 50.9
CA-I2P 38.6 40.6 38.9 24.0 35.5 73.6 66.4 34.5 62.4 52.1 52.8 19.1 51.6
Ours 51.9 51.7 45.3 35.2 46.0 75.8 67.2 50.8 67.3 53.4 56.2 21.3 56.0

Feature Matching Recall ↑

FCGF-2D3D 11.1 30.4 51.5 15.5 27.1 99.7 98.2 69.9 97.1 83.0 87.7 16.2 78.8
P2-Net 48.6 65.7 82.5 41.6 59.6 100.0 99.3 58.9 99.1 87.2 92.2 16.2 79
Predator-2D3D 86.1 89.2 63.9 24.3 65.9 91.3 95.1 76.6 88.6 79.2 80.6 31.1 77.5
2D3D-MATR 98.6 98.0 88.7 77.9 90.8 100.0 99.6 98.6 100.0 92.4 95.9 58.2 92.1
B2-3Dnet 100.0 99.0 92.8 85.8 94.4 100.0 100.0 98.6 100.0 92.7 95.6 64.9 93.1
CA-I2P 100.0 100.0 91.8 82.7 93.6 100.0 100.0 98.6 100.0 92.0 95.5 60.8 92.4
Ours 100.0 100.0 91.8 87.2 94.7 100.0 100.0 100.0 100.0 90.3 96.3 65.1 93.1

Registration Recall ↑

FCGF-2D3D 26.5 41.2 37.1 16.8 30.4 89.5 79.7 19.2 85.9 69.4 79.0 6.8 61.4
P2-Net 40.3 40.2 41.2 31.9 38.4 96.9 86.5 20.5 91.7 75.3 85.2 4.1 65.7
Predator-2D3D 44.4 41.2 21.6 13.7 30.2 69.6 60.7 17.8 62.9 56.2 62.6 9.5 48.5
2D3D-MATR 63.9 53.9 58.8 49.1 56.4 96.9 90.7 52.1 95.5 80.9 86.1 28.4 75.8
B2-3Dnet 58.3 60.8 74.2 60.2 63.4 98.3 90.5 56.2 96.4 84.0 86.1 32.4 77.7
CA-I2P 68.1 73.5 63.9 47.8 63.3 99.0 90.7 68.5 96.2 83.0 88.1 33.1 79.5
Ours 91.7 90.2 86.6 73.5 85.5 99.7 96.0 94.5 98.7 84.0 92.7 36.5 86.0

achieves perfect recall (100.0%) in most scenes and shows clear improvements in more challeng-
ing cases, such as Scene-14 and Stairs, with gains of 4.5% and 4.3%, respectively. Compared with
prior works, these results demonstrate that the proposed Hierarchical Domain Adaptation Interac-
tion (HDAI) module effectively aligns cross-modal features and stabilizes attention computation,
thereby ensuring robust matching performance. For the final metric of Registration Recall, our
method achieves state-of-the-art performance on both datasets. On RGB-D Scenes v2, it reaches
85.5%, which is a clear improvement over CA-I2P (73.5%) and 2D3D-MATR (72.0%). On 7-
Scenes, our approach further achieves 93.1%, surpassing CA-I2P (92.4%) and B2-3Dnet (77.7%).
These results highlight the effectiveness of our overlap detection and feature alignment strategies
in delivering accurate and reliable indoor registration across diverse scenes. In Appendix A.5, we
present further metrics validation and comparisons with additional methods.

4.3 ABLATION STUDIES

We conduct ablation studies on RGB-D Scenes v2 to evaluate the contribution of each component
(Table 2). Starting from the baseline, the model achieves 32.4% IR, 90.8% FMR, and 56.4% RR.
When introducing the RLOD module (M1), the RR increases dramatically from 56.4% to 83.4%,
while the IR also rises from 32.4% to 45.4%. This demonstrates that reinforcement learning–based
overlap detection is crucial for identifying reliable correspondences and reducing mismatches. In
comparison, removing intrinsic geometric cues (M2) leads to a decrease to 42.6% IR and 80.7%

Table 2: Ablation studies of modules on RGB-D Scenes v2.

Exp. RLOD HDAI Intrinsic Geometric Hierarchical DAT DINO IR↑ FMR↑ RR↑
Base ✗ ✗ ✗ ✗ ✗ 32.4 90.8 56.4
M1 ✓ ✗ ✓ ✗ ✓ 45.4 93.6 83.4
M2 ✓ ✗ ✗ ✗ ✓ 42.6 93.2 80.7
M3 ✗ ✓ ✗ ✓ ✓ 42.5 92.8 78.2
M4 ✗ ✓ ✗ ✗ ✓ 41.9 92.3 76.5
M6 ✗ ✗ ✗ ✗ ✓ 37.8 92.4 73.2
Full ✓ ✓ ✓ ✓ ✓ 46.0 94.7 85.5
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Figure 3: (a) t-SNE visualizations with and without DAT after 20 epochs and at the end of training,
along with corresponding MMD values. (b) Visualization of point cloud projections onto the image.

RR, showing that relying solely on surface normals for implicit modeling provides limited benefits.
Adding the HDAI module (M3) improves the results to 42.5% IR and 78.2% RR, whereas removing
hierarchical domain adaptation (M4) causes performance to drop to 41.9% IR and 76.5% RR due to
scale mismatch. These results confirm that aligning feature distributions at multiple statistical lev-
els effectively stabilizes cross-modal attention. Experiment M6, which keeps only DINO features,
achieves 37.8% IR and 73.2% RR. Finally, the full model that integrates all modules attains the
best performance with 46.0% IR, 94.7% FMR, and 85.5% RR, demonstrating the complementary
benefits of RLOD, geometric cues, and HDAI for robust indoor registration. Appendix A.6 includes
more ablation studies and a detailed comparison of computational complexity.

4.4 QUANTITATIVE ANALYSIS

Although extensive experiments have been con-
ducted, we also perform comprehensive visual-
ization analyses to intuitively demonstrate the
model’s performance. In Figure 3, (a) presents t-
SNE visualizations and corresponding MMD val-
ues (see Appendix A.1) under different condi-
tions. DAT accelerates domain discrepancy reduc-
tion and achieves better alignment between images
and point clouds after training, facilitating accu-
rate registration. In (b), we project the point clouds
onto the images using the estimated poses, showing
no large-scale misalignment across scenes, indicat-
ing satisfactory registration.
In Figure 4, we use a 40-pixel projection distance
threshold to classify matches as correct (green
lines) or incorrect (red lines). The RLOD module
effectively identifies overlapping regions, reducing
misalignments, while the HDAI module alleviates
domain discrepancies, improving registration per-
formance. Appendix A.7 provides additional vi-
sual results, and Appendix A.8 offers further in-
sights into these visualizations.

O
ur
s

B
a
se

li
ne

Figure 4: Qualitative registration results with
projection-based matching visualization.

5 CONCLUSION

In this paper, we presented a novel framework for Learning Overlap Detection in Domain-Adaptive
Image-to-Point Cloud Registration. Our approach introduces two key components: the Reinforce-
ment Learning Overlap Detector (RLOD), which leverages intrinsic geometric cues from surface
normals to enrich image representations and adaptively identify overlapping regions, and the Hier-
archical Domain Adaptation Interaction (HDAI) module, which aligns cross-modal feature distri-
butions at multiple statistical levels to stabilize attention and mitigate scale mismatches. Through
the complementary effects of reliable overlap detection and robust feature alignment, our method
achieves substantial improvements in both accuracy and robustness for indoor registration. Exten-
sive experiments on RGB-D Scenes v2 and 7-Scenes validate the effectiveness of our framework,
establishing new state-of-the-art performance in image-to-point cloud registration.
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A APPENDIX

A.1 T-SNE AND MMD

t-SNE. t-Distributed Stochastic Neighbor Embedding (t-SNE) Van der Maaten & Hinton (2008) is a
nonlinear dimensionality reduction technique used primarily for data visualization. It is particularly
effective for visualizing high-dimensional datasets by embedding them into two or three dimensions.
t-SNE aims to preserve the local structure of data points by modeling similar objects with nearby
points and dissimilar objects with distant points. This method is beneficial for visualizing multi-
modal tasks, allowing for intuitive insights into complex datasets that span various domains such as
images, text, and audio.

MMD. Maximum Mean Discrepancy (MMD) is a statistical method used to compare two probability
distributions. It is a non-parametric technique that measures the difference between distributions by
mapping data into a high-dimensional feature space using a kernel function. MMD is widely used
in various machine learning applications, such as generative adversarial networks (GANs) Salimans
et al. (2016), domain adaptation, and distribution testing. The core idea of MMD is to compute
the distance between the means of two distributions in a reproducing kernel Hilbert space (RKHS)
Berlinet & Thomas-Agnan (2011). Given two distributions I and Q, the MMD is defined as:

MMD(I,Q) = ∥Ex∼I [ϕ(x)]− Ey∼Q[ϕ(y)]∥H , (14)

where ϕ is the feature mapping function induced by a kernel, andH is the RKHS.

MMD is applied in various areas, including generative models for evaluating the similarity between
the distributions of generated and real data, domain adaptation for reducing distribution shifts be-
tween source and target domains, and hypothesis testing for determining if two samples are drawn
from the same distribution.

A.2 POSITIONAL EMBEDDING

We augment the 2D and 3D features with their positional information before the attention layer.

F̂ Ipos = F̂ I + ϕ(Q̂), F̂Ppos = F̂P + ϕ(P̂ ). (15)

The Fourier embedding function ϕ(x) Mildenhall et al. (2021) encodes positional information by
transforming it into a sequence of sine and cosine terms:

ϕ(x) =
[
x, sin(20x), cos(20x), . . . , sin(2L−1x), cos(2L−1x)

]
, (16)
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where L is the length of the embedding. This transformation incorporates spatial positioning into
the features. To facilitate further computations, the first two spatial dimensions of the 2D features
are flattened, making the augmented features F̂ Ipos and F̂Ppos ready for subsequent processing.

A.3 NETWORK ARCHITECTURE

We utilize a 4-stage ResNet He et al. (2016) with a Feature Pyramid Network (FPN) Lin et al.
(2017) as the image backbone. The output channels for each stage are {128, 128, 256, 512}. The
input images have a resolution of 480×640 pixels, which is downsampled to 60×80 in the coarsest
level for efficiency. For the 3D backbone, a 4-stage KPFCNN Thomas et al. (2019) is employed,
with output channels configured as {128, 256, 512, 1024}. Point clouds are voxelized with an initial
voxel size of 2.5 cm, which doubles at each stage.

At the coarse level, 2D features are resized to 24 × 32 pixels before being fed into the transformer
to enhance computational efficiency. Each transformer layer has 256 feature channels, 4 attention
heads, and uses ReLU activation functions. In the patch pyramid setup, the coarsest level begins
with H0 = 6 and W0 = 8, expanding through 3 pyramid levels: {6× 8, 12× 16, 24× 32}. At the
fine level, both 2D and 3D features are projected into a 128-dimensional space for feature matching.

To address significant misalignments caused by structurally similar but non-overlapping regions,
we incorporate ground-truth supervision during training by evaluating the overlap ratio between the
annotated image-point cloud correspondences, using the dataset-provided ground-truth pose. This
overlap measure is computed based on the local neighborhoods of image keypoints and point cloud
nodes, which are projected according to the ground-truth pose. However, relying solely on this
overlap criterion results in sparse and discontinuous reward signals, as only a limited number of
correspondences exhibit valid overlaps, leaving most candidate pairs unlabeled. We incorporate the
overlap signal in combination with the rotation-invariant geometric similarity to form the final re-
ward signal for policy optimization. This addition helps prevent large misalignments by providing
supervisory information when available, without significantly influencing the reinforcement learn-
ing process in regions lacking explicit annotations. As such, it ensures the network benefits from
strong supervision in well-annotated areas, while still receiving dense and consistent feedback in
less annotated regions, thereby supporting stable learning.

We define ground truth using bilateral overlap Huang et al. (2021a). A patch pair is positive if both
the 2D and 3D overlap ratios are at least 30%, and negative if both are below 20%. The 2D and 3D
overlap ratios are used as λp, while λn is set to 1. At the fine level, a pixel-point pair is positive if the
3D distance is below 3.75 cm and the 2D distance is under 8 pixels, and negative if the 3D distance
exceeds 10 cm or the 2D distance is over 12 pixels. Scaling factors are set to 1. Pairs not meeting
these criteria are ignored as the safe region during training. The margins are set to ∆p = 0.1 and
∆n = 1.4.

A.4 METRICS

A.4.1 COMMON METRICS

We evaluate our method using several key metrics: Inlier Ratio (IR), Feature Matching Recall
(FMR), and Registration Recall (RR).

Inlier Ratio (IR) quantifies the proportion of inliers among all putative pixel-point correspondences.
A correspondence is deemed an inlier if its 3D distance is less than a threshold τ1 = 5 cm under the
ground-truth transformation T∗P→I :

IR =
1

|C|
∑

(xi,yi)∈C

[∥∥T∗P→I(xi)−K−1(yi)
∥∥
2
< τ1

]
, (17)

Here, [·] denotes the Iverson bracket, xi ∈ P , and yi ∈ Q ⊆ I are pixel coordinates. The function
K−1 projects a pixel to a 3D point based on its depth value.
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Feature Matching Recall (FMR) represents the fraction of image-point-cloud pairs with an IR
above a threshold τ2 = 0.1. It measures the likelihood of successful registration:

FMR =
1

M

M∑
i=1

[IRi > τ2] , (18)

where M is the total number of image-point-cloud pairs.

Registration Recall (RR) measures the fraction of image-point-cloud pairs that are correctly regis-
tered. A pair is correctly registered if the root mean square error (RMSE) between the ground-truth-
transformed and predicted point clouds TP→I is less than τ3 = 0.1 m:

RMSE =

√
1

|P|
∑
pi∈P

∥TP→I(pi)−T∗P→I(pi)∥
2
2, (19)

RR =
1

M

M∑
i=1

[RMSEi < τ3] , (20)

These metrics provide a comprehensive evaluation of the model’s capability to accurately match fea-
tures and register image-point-cloud pairs, ensuring robust alignment and effective correspondence.

A.4.2 OTHER METRICS

There are also some other metrics that can be used to test the model’s performance, and we con-
ducted tests using those as well.

Patch Inlier Ratio (PIR). we introduced PIR Qin et al. (2022b) as an additional metric, measur-
ing the ratio of patch correspondences with overlap ratios greater than 0.3. This metric assesses
performance at the coarse level. PIR is a crucial metric for assessing the performance of patch cor-
respondence algorithms. It measures the fraction of patch correspondences whose overlap ratios
exceed a certain threshold, typically set at 0.3. Specifically, PIR reflects the quality of the putative
patch correspondences under the ground-truth transformation. A pixel (or point) is considered over-
lapped if its 3D distance is below a specified threshold (e.g., 3.75 cm) and its 2D distance is below
another threshold (e.g., 8 pixels). For each patch, we calculate two overlap ratios—one on the image
side and one on the point cloud side—and take the smaller as the final overlap ratio. In our ablation
study, we utilized these metrics to evaluate the performance.

Relative Rotation Error (RRE) is a metric used to evaluate the accuracy of estimated rotations in
3D space. It calculates the total angular error between the estimated rotation and the ground-truth
rotation by summing the absolute values of the Euler angles representing the rotation difference:

RRE =

3∑
i=1

|r(i)|, (21)

where r is the Euler angle vector obtained from the product of the inverse of the ground-truth rotation
matrix Rgt and the estimated rotation matrix RE .

Relative Translation Error (RTE) measures the discrepancy between the estimated and ground-
truth translation vectors in 3D space. It is defined as the Euclidean distance between the two vectors,
quantifying the translation accuracy:

RTE = ∥tgt − tE∥2, (22)

where tgt is the ground-truth translation vector and tE is the estimated translation vector. The
Euclidean norm ∥ · ∥2 computes the straight-line distance between these vectors.

A.5 ADDITIONAL EXPERIMENTS

As a registration task, prior methods have often overlooked rotation-related metrics. To address this,
we conduct a comprehensive comparison with the baseline and previous state-of-the-art using four
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Table 3: Evaluation results on RGB-D Scenes v2 and 7-Scenes using Relative Rotation Error (RRE)
and Relative Translation Error (RTE). Bold-faced numbers highlight the best and the second best
are underlined.

Dataset RGB-D Scenes v2 7-Scenes

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Mdpt(m) 1.74 1.66 1.18 1.39 1.49 1.78 1.55 0.80 2.03 2.25 2.13 1.84 1.49

Mean RRE(°) ↓

2D3D-MATR 2.294 2.628 3.823 3.358 3.026 2.298 3.144 7.549 2.285 2.439 2.620 2.705 3.291
B2-3Dnet 2.245 2.317 2.604 3.233 2.600 2.205 3.105 7.414 2.294 2.421 2.618 2.564 3.232
CA-I2P 2.008 2.031 3.306 2.890 2.559 2.354 3.093 7.105 2.272 2.297 2.624 2.654 3.200
Ours 1.120 1.639 2.440 2.455 1.913 1.885 2.759 5.526 1.971 2.262 2.399 2.563 2.766

Mean RTE(m) ↓

2D3D-MATR 0.066 0.086 0.067 0.088 0.077 0.054 0.084 0.088 0.069 0.088 0.076 0.090 0.079
B2-3Dnet 0.056 0.061 0.041 0.079 0.059 0.051 0.082 0.093 0.066 0.083 0.074 0.086 0.076
CA-I2P 0.057 0.061 0.054 0.072 0.061 0.054 0.082 0.094 0.069 0.078 0.077 0.085 0.076
Ours 0.043 0.049 0.042 0.067 0.050 0.039 0.072 0.067 0.056 0.078 0.065 0.086 0.066

Median RRE(°) ↓

2D3D-MATR 1.995 2.335 3.074 3.194 2.649 1.972 2.821 6.903 2.025 2.192 2.364 3.129 3.058
B2-3Dnet 2.192 2.227 2.099 3.121 2.410 1.942 2.761 7.163 2.018 2.277 2.350 2.408 2.988
CA-I2P 1.789 1.763 2.826 2.383 2.190 1.977 2.722 5.997 1.985 2.144 2.392 2.560 2.825
Ours 1.315 1.514 1.935 1.842 1.615 1.690 2.321 4.864 1.833 2.135 2.235 2.226 2.472

Median RTE(m) ↓

2D3D-MATR 0.058 0.072 0.055 0.080 0.066 0.047 0.079 0.082 0.065 0.084 0.069 0.105 0.076
B2-3Dnet 0.057 0.058 0.053 0.070 0.055 0.048 0.074 0.095 0.063 0.079 0.069 0.085 0.073
CA-I2P 0.055 0.054 0.048 0.065 0.055 0.048 0.076 0.078 0.062 0.071 0.070 0.079 0.069
Ours 0.036 0.045 0.035 0.056 0.043 0.035 0.063 0.064 0.048 0.073 0.056 0.069 0.060

metrics, including Relative Rotation Error (RRE) and Relative Translation Error (RTE), as shown in
Table 3.

Specifically, for mean rotation error (Mean RRE), our approach reduces the error to 1.913◦ on RGB-
D Scenes v2 and 2.766◦ on 7-Scenes, outperforming the best baseline CA-I2P (2.559◦ / 3.200◦).
Similarly, for mean translation error (Mean RTE), our method obtains 0.050 m and 0.066 m, clearly
surpassing B2-3Dnet (0.059 m / 0.076 m). Consistent improvements are also observed in the me-
dian metrics, where our approach achieves 1.615◦ / 2.472◦ (Median RRE) and 0.043 m / 0.060 m
(Median RTE), outperforming all baselines by a notable margin. We further observe that in more
challenging scenes such as Scene-13, Kitchen, and Stairs, the improvements in the median RRE
and RTE are even more pronounced compared to the mean values, indicating that our method not
only achieves overall performance gains but is also particularly effective in complex scenarios with

Table 4: Evaluation results with FreeReg on RGB-D Scenes v2. Purple numbers highlight the best, the second
best are bold, and the baseline are underlined.

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean

Mean depth (m) 1.74 1.66 1.18 1.39 1.49

Inlier Ratio ↑
2D3D-MATR 32.8 34.4 39.2 23.3 32.4
FreeReg 36.6 34.5 34.2 18.2 30.9
Ours 51.9 51.7 45.3 35.2 46.0

Feature Matching Recall ↑
2D3D-MATR 98.6 98.0 88.7 77.9 90.8
FreeReg 91.9 93.4 93.1 49.6 82.0
Ours 100.0 100.0 91.8 87.2 94.7

Registration Recall ↑
2D3D-MATR 63.9 53.9 58.8 49.1 56.4
FreeReg 74.2 72.5 54.5 27.9 57.3
Ours 91.7 90.2 86.6 73.5 85.5
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repetitive textures or feature extraction limitations. These results demonstrate the superiority of
our overlap detection and feature alignment strategies in reducing both rotational and translational
errors, thereby ensuring more accurate and reliable image-to-point cloud registration.

Some methods are not included in the main text due to space limitations, and we provide their com-
parison here. FreeReg Wang et al. (2023) is a zero-shot image-to-point cloud registration method
that uses pretrained diffusion models to extract “diffusion features” and monocular depth estimators
to compute geometric features, enabling robust pixel-to-point correspondences across modalities
without any task-specific training. Table 4 reports the evaluation results on RGB-D Scenes v2 with
baseline Li et al. (2023) and FreeReg in terms of Inlier Ratio (IR), Feature Matching Recall (FMR),
and Registration Recall (RR). Compared with them, our method achieves significant improvements
across all metrics. Specifically, our approach reaches an average IR of 46.0%, substantially higher
than 32.4% for 2D3D-MATR and 30.9% for FreeReg, demonstrating its effectiveness in producing
more reliable correspondences. For FMR, our method attains 94.7%, outperforming both 2D3D-
MATR (90.8%) and FreeReg (82.0%). Most notably, the RR of our method improves to 85.5%,
a large margin over 56.4% (2D3D-MATR) and 57.3% (FreeReg). These results highlight that by
integrating reinforcement learning–based overlap detection and hierarchical domain adaptation, our
method not only ensures higher-quality matches but also achieves substantially more robust regis-
tration compared to existing approaches.

Diff2I2P Mu et al. (2025) is a new fully differentiable image-to-point cloud registration frame-
work that leverages a depth-conditioned diffusion prior via Control-Side Score Distillation and De-
formable Correspondence Tuning, significantly improving cross-modal alignment performance. Ta-
ble 5 reports the detailed evaluation results on 7-Scenes, comparing our method with baseline and
Diff2I2P across all scenes. For Inlier Ratio (IR), our approach consistently outperforms the base-
lines, achieving the best average of 56.0%, with particularly large gains in challenging scenes such
as Heads (50.8% vs. 39.2%) and Stairs (21.3% vs. 18.1%). In terms of Feature Matching Recall
(FMR), our method reaches 93.1% on average, surpassing both 2D3D-MATR (92.1%) and Diff2I2P
(92.2%), and notably improving the matching robustness in the Stairs scene (65.1% vs. 55.4%).
For the most important metric, Registration Recall (RR), our model achieves an average of 86.0%,
setting a new state of the art. The improvements are particularly significant in Heads (94.5% vs.
74.0%) and Kitchen (92.7% vs. 90.2%), demonstrating the effectiveness of our overlap detection
and feature alignment strategies in handling indoor scenes with repetitive textures and structural
ambiguities.

Table 6 compares the performance of our method with two baseline approaches: 2D3D-MATR and
Diff2I2P. Our method achieves significant improvements across all metrics. Specifically, we achieve
74.8% PIR, 46.2% IR, 94.7% FMR, and 85.5% RR, surpassing both 2D3D-MATR and Diff2I2P

Table 5: Evaluation results with Diff2I2P on 7-Scenes. Purple numbers highlight the best, the
second best are Boldfaced, and the baseline are underlined.

Model Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Mean depth (m) 1.78 1.55 0.80 2.03 2.25 2.13 1.84 1.49

Inlier Ratio ↑
2D3D-MATR 72.1 66.0 31.3 60.7 50.2 52.5 18.1 50.1
Diff2I2P 74.1 68.8 39.2 65.6 52.1 54.2 18.1 53.2
Ours 75.8 67.2 50.8 67.3 53.4 56.2 21.3 56.0

Feature Matching Recall ↑
2D3D-MATR 100.0 99.6 98.6 100.0 92.4 95.9 58.2 92.1
Diff2I2P 100.0 100.0 100.0 100.0 93.4 96.2 55.4 92.2
Ours 100.0 100.0 100.0 100.0 90.3 96.3 65.1 93.1

Registration Recall ↑
2D3D-MATR 96.9 90.7 52.1 95.5 80.9 86.1 28.4 75.8
Diff2I2P 99.0 95.6 74.0 98.9 86.8 90.2 36.5 83.0
Ours 99.7 96.0 94.5 98.7 84.0 92.7 36.5 86.0
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by a notable margin. These results demonstrate the effectiveness of our approach in enhancing the
reliability of correspondences and improving overall registration performance.

Table 6: Evaluation results with Diff2I2P on RGB-D Scenes v2

Method PIR IR FMR RR
2D3D-MATR 57.6 32.4 90.8 56.4
Diff2I2P 60.8 36.9 77.1 60.5
Ours 74.8 46.2 94.7 85.5

A.6 ADDITIONAL ABLATION STUDIES

To make our experimental results more convincing, we further conducted extensive ablation studies
for verification.
Table 6 compares the efficiency of our
method with MATR-2D3D. Our model
requires slightly more memory (7942
MB vs. 6240 MB) due to the addi-
tional modules, and converges within
12 epochs compared to 11 epochs for
MATR-2D3D.

Table 7: Comparison of memory consumption and con-
vergence speed.

Method Baseline Ours

Memory (MB) 6240 7942
Convergence 11 epochs 12 epochs

Table 8: Computation time per iteration of different variants.
Method Baseline w DepthAnything v2 w DAT Full

Computation time per iteration (s) 0.147 0.254 0.173 0.153

To provide a clearer comparison of computational efficiency, we report the computation time per
iteration for different variants in Table 8. The baseline model requires 0.147 s per iteration, while
directly incorporating DepthAnything v2 significantly increases the time to 0.254 s due to the over-
head of dense depth estimation. Retaining the DAT loss during inference results in 0.173 s per
iteration, representing only a moderate increase over the baseline. Our full model runs at 0.153 s
per iteration, showing that the additional modules introduce only a slight overhead through our care-
ful design. Considering the substantial improvements in registration accuracy reported in previous
experiments, this trade-off between efficiency and performance is both reasonable and well justified.

We further conduct a parameter sensitivity analysis on the weight ω4 (Table 9). The results show
that our method is relatively robust to different choices of ω4, with only minor fluctuations across all
metrics. Among the tested values, setting ω4 = 0.01 achieves the best overall balance, yielding the
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Figure 5: More projection visualization on Dataset.
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Table 9: Parameter sensitivity analysis on the weight ω4.

ω4 0.005 0.01 0.02 0.05 0.1

PIR 71.6 74.8 74.1 74.4 73.3
IR 44.6 46.0 46.2 45.3 44.5
FMR 93.9 94.7 92.5 92.1 92.8
RR 82.0 85.5 82.9 81.7 79.8

highest IR (46.0%), FMR (94.7%), and RR (85.5%). These results indicate that while ω4 has some
effect on performance, our method maintains stable accuracy within a reasonable range of parameter
choices, demonstrating its robustness. However, if ω4 is set too large, it excessively emphasizes the
distribution alignment loss, which could dominate the feature interaction process, disrupting the
balance between feature alignment and other model objectives. This may cause over-regularization,
reducing the model’s ability to adaptively refine cross-modal correspondences and impacting the
overall registration accuracy.
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Figure 6: More visualization on Dataset.
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A.7 ADDINOAL VISUALIZATION

To further demonstrate the effectiveness of our approach, Figures 5 and 6 provide qualitative visu-
alizations. Figure 5 shows projection-based visualizations, where point clouds are reprojected back
onto the image plane using the estimated poses. Our approach consistently produces well-aligned
projections with minimal misalignment across various indoor scenarios, including challenging cases
with cluttered layouts, repetitive textures, and occlusions. These results further confirm that our
method achieves more accurate and robust registration performance compared to the baseline.

In Figure 6, we compare our method with the baseline in terms of correspondence visualization.
The green lines indicate correct matches and red lines represent incorrect ones. It can be observed
that our method yields a much denser set of correct correspondences across different scenes, while
the baseline often suffers from noticeable mismatches and large-scale deviations. This highlights
the benefits of our overlap detection and domain alignment modules in improving correspondence
reliability.

A.8 LIMITATION AND POTENTIAL IMPROVEMENTS

While our method significantly advances the state of image-to-point cloud registration, certain chal-
lenges, which have persisted in the field, remain. We have successfully addressed some of these
issues, such as improving domain alignment and reducing mismatches, but there is still room for
enhancement. In this section, we discuss these longstanding challenges and propose potential direc-
tions for future improvements that could further elevate the robustness and accuracy of our approach.

To gain a more comprehensive understanding of
the limitations of our method and possible future
improvement directions, we visualize several chal-
lenging cases. As shown in Figure 7, while our ap-
proach demonstrates clear improvements over pre-
vious baselines in these scenarios, some incorrect
correspondences still persist. We observe that in
regions with rapid depth changes, such as stair-
way gaps, ceiling vents, and hanger bases, the nor-
mals fail to provide reliable information and may
even have adverse effects, leading to incorrect cor-
respondences. We attempt to address this issue by
proposing potential improvement directions. Since
the ultimate goal of feature matching is to provide
more reliable correspondences for the subsequent
PnP-RANSAC algorithm, our efforts should focus
on extracting correct correspondences.

Figure 7: Limitation visualization on Dataset.
The figure illustrates the comparison from the
baseline to our method in challenging regions.
The comparison from left to right represents
the baseline and our method.

As a possible future direction, we plan to incorporate an uncertainty-aware local geometry modeling
strategy. By explicitly modeling depth uncertainty, unreliable regions such as stair gaps or ceiling
vents can be down-weighted, while local geometric fitting (e.g., plane or curvature regularization)
can be used to refine normal estimation. This may alleviate the instability of normals in discontinu-
ous regions and further reduce incorrect correspondences.

A.9 USE OF LARGE MODELS

In this work, large language models are employed solely for language polishing and improving the
readability of the manuscript. They are not involved in problem formulation, algorithm design,
model implementation, or experimental analysis. All technical contributions and experimental re-
sults are independently developed and verified by the authors.
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