
Under review as submission to TMLR

Ensemble Value Functions for Efficient Exploration in Multi-
Agent Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Existing value-based algorithms for cooperative multi-agent reinforcement learning (MARL)
commonly rely on random exploration, such as ϵ-greedy, to explore the environment. However,
such exploration is inefficient at finding effective joint actions in states that require cooperation
of multiple agents. In this work, we propose ensemble value functions for multi-agent explo-
ration (EMAX), a general framework to seamlessly extend value-based MARL algorithms with
ensembles of value functions. EMAX leverages the ensemble of value functions to guide the ex-
ploration of agents, stabilises their optimisation, and makes their policies more robust to misco-
ordination. These benefits are achieved by using a combination of three techniques. (1) EMAX
uses the uncertainty of value estimates across the ensemble in a UCB policy to guide the explo-
ration. This exploration policy focuses on parts of the environment which require cooperation
across agents and, thus, enables agents to more efficiently learn how to cooperate. (2) During
the optimisation, EMAX computes target values as average value estimates across the en-
semble. These targets exhibit lower variance compared to commonly applied target networks,
leading to significant benefits in MARL which commonly suffers from high variance caused
by the exploration and non-stationary policies of other agents. (3) During evaluation, EMAX
selects actions following a majority vote across the ensemble, which reduces the likelihood of se-
lecting sub-optimal actions. We instantiate three value-based MARL algorithms with EMAX,
independent DQN, VDN and QMIX, and evaluate them in 21 tasks across four environments.
Using ensembles of five value functions, EMAX improves sample efficiency and final evaluation
returns of these algorithms by 60%, 47%, and 539%, respectively, averaged across 21 tasks.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) (Albrecht et al., 2024) jointly trains a team of agents
to maximises shared cumulative rewards and has real-world applications in autonomous driving (Shalev-
Shwartz et al., 2016; Zhou et al., 2021), warehouse logistics (Li et al., 2019; Krnjaic et al., 2022), and complex
physics problems (Mojgani et al., 2023; Koumoutsakos & Litvinov, 2024). Existing MARL algorithms have
shown good performance in a variety of cooperation tasks (Papoudakis et al., 2021), but commonly used
value-based MARL algorithms still rely on random exploration processes, such as ϵ-greedy (e.g. Sunehag et al.
(2018); Rashid et al. (2020)). Such random exploration is inefficient in exploring the joint action space of all
agents to discover cooperation in MARL. To illustrate this inefficiency, consider the following example in which
two agents have to navigate a gridworld to jointly pick-up a heavy object, visualised in Figure 1. To learn
to pick-up the goal object, agents need to cooperate and both select the pick-up action in a state where both
agents are next to the object. However, such cooperation is highly unlikely by following random exploration.

To address this inefficiency in learning to cooperate, it is essential for agents to focus their exploration on parts
of the environment which require cooperation. To guide exploration towards states and actions that require
cooperation, we follow the simple intuition that such states and actions result in varying rewards depending
on the actions of other agents. In our example , each agent may receive varying rewards when selecting the
pick-up action in a state where both agents are next to the goal object (Figure 1 right) since their reward
depends on whether the other agent also selects the pick-up action. Only if both agents select the pick-up
action do they succeed and receive a positive reward, whereas if any agent does not select the pick-up action

1

Under review as submission to TMLR

Figure 1: Motivational example: Two agents (triangles) can independently explore their movement (left),
but rely on joint cooperation to pick-up the heavy circular goal object (right). To overcome the inefficiency
of random exploration in discovering such cooperation, we leverage uncertainty across ensembles of value
functions to guide the multi-agent exploration towards state-action pairs that require cooperation.

they do not receive such a reward. In contrast, each agent receives the same reward of zero whenever selecting
an action to move independently of the actions of the other agent (Figure 1 left) because there is no potential
for rewards if any one agent does not attempt to pick-up the object. Therefore, variability in rewards following
a particular action of an agent in a particular state can indicate a potential for cooperation in that state.

Following this intuition, we propose ensemble value functions for multi-agent exploration (EMAX), a general
framework to seamlessly extend any value-based MARL algorithms by training ensembles of value functions for
each agent. To incentivise agents to focus their exploration on state-action pairs that require cooperation across
multiple agents, EMAX captures the variability of received rewards via the disagreement of value estimates
across the ensemble of value functions. Using an upper-confidence bound (UCB) policy (Auer, 2002), EMAX
follows actions with high value estimates and disagreement, corresponding to actions that are considered
promising (as measured by the value estimates) and are likely to require cooperation (as measured by the dis-
agreement in value estimates). The EMAX exploration policy can be thought of as an inductive bias for MARL
towards exploring state-action pairs that require cooperation. For state-action pairs where little or no coopera-
tion is needed, such as the navigation of the agents in our example, disagreement quickly diminishes. However,
for state-action pairs where cooperation is needed, such as picking-up the heavy object, agents will receive
variable rewards depending on the actions of other agents. Therefore, the disagreement of value estimates will
remain high for such state-action pairs until agents converge towards always succeeding or failing at the task.

Additionally, EMAX leverages the ensemble to compute target values as the average value estimate across
the ensemble instead of using target networks. These target values eliminate the need for additional target
networks, and have been shown to exhibit lower variance, thereby stabilising the optimisation of agents (Liang
et al., 2022). Lastly, actions are selected using a majority vote across the greedy actions of all value functions
in the ensemble during evaluation. This evaluation policy reduces the likelihood of suboptimal decision
making and, thus, improves the robustness of evaluation performance (Osband et al., 2016a).

We instantiate three value-based MARL algorithms, independent DQN (Mnih et al., 2015), VDN (Sunehag
et al., 2018), and QMIX (Rashid et al., 2020), with EMAX and compare them against the corresponding
vanilla algorithms in 21 tasks across four diverse multi-agent environments. EMAX improves sample efficiency
and final achieved returns across all tasks over all three vanilla algorithms by 60%, 47%, and 538%, respectively
(Section 5.2). Additionally, we show that EMAX reduces the variance of gradients throughout optimisation,
leading to more stable training, and that the EMAX exploration policy increases the probability of agents to
select cooperative actions (Section 5.3). Lastly, we show that comparably small ensembles with five value
functions are sufficient to benefit from the advantages of EMAX, discuss the computational cost of ensemble
models, and provide ablations to understand the impact of the key ideas of EMAX (Section 5.3).

2

Under review as submission to TMLR

2 Related Work

Uncertainty for exploration in RL: Using uncertainty to guide exploration is a well-established idea
in RL. One family of algorithms that leverages this idea are randomised value functions (Osband et al.,
2019) which are built on the idea of Thompson sampling (Thompson, 1933) from the multi-armed bandits
literature (Scott, 2010; Chapelle & Li, 2011). Posterior sampling reinforcement learning extends Thompson
sampling by maintaining a distribution of plausible tasks, computes optimal policies for sampled tasks, and
continually updates its distribution of tasks from the collected experience (Osband et al., 2013). This approach
has extensive theoretical guarantees (Osband & Van Roy, 2017) but does not scale to complex tasks (Osband
et al., 2016b). This difficulty has been addressed in subsequent works (Osband et al., 2016b;a; Janz et al.,
2019). In particular Bootstrapped DQN (Osband et al., 2016a) approximates randomised value functions
by training an ensemble of value functions and explores by randomly sampling a single value function to
greedily follow at the beginning of each episode. SUNRISE (Lee et al., 2021) and MeanQ (Liang et al., 2022)
also train an ensemble of value functions but instead of sampling value functions to follow for each episode,
they follow a UCB policy using the average and standard deviation of value estimates across the ensemble
to explore. Moreover, SUNRISE uses the ensemble to weight the value loss based on the variance of target
values across the ensemble, and MeanQ stabilises the optimisation by computing lower variance target values
as the average value estimate across the ensemble (Anschel et al., 2017). Separately, Fu et al. (2022) extend
posterior sampling to model-based RL by learning a probabilistic model of the environment, and Dearden
et al. (1998) applied these ideas to tabular Q-learning to learn distributions over Q-values to approximate
the value of information for each action. Related to all these ideas, optimistic value estimates in the face
of uncertainty can be used to promote exploration for actor-critic (Ciosek et al., 2019) and model-based
RL (Sessa et al., 2022). All these approaches make use of uncertainty to guide their exploration, similar to
EMAX, but in contrast our work focuses on how to leverage uncertainty to explore and discover cooperation
in environments with multiple concurrently learning agents.

Multi-agent exploration: For the multi-agent setting, Wang et al. (2020) incentivise agents to interact
with each other by intrinsically rewarding them for mutually influencing their transition dynamics or value
estimates. Similar intrinsic rewards can be assigned for reaching goal states to train separate exploration
policies (Liu et al., 2021). However, intrinsic rewards for exploration have to be carefully balanced for each
task due to the modified optimisation objective (Schäfer et al., 2022; Chen et al., 2022). To address this
challenge, LIGS (Mguni et al., 2022) formulate the assignment of intrinsic rewards as a MARL problem
and train an agent to determine when and which intrinsic reward should be given to each agents. Experience
and parameter sharing have been leveraged to greatly improve sample efficiency for MARL by synchronising
agents’ learning and make use of more data (Christianos et al., 2020; 2021). REMAX (Ryu et al., 2022)
identifies valuable initial states for episodes to guide exploration based on a latent representation of
states learned using the interactions of agents in the environment. However, there is little research using
distributional and ensemble-based techniques for MARL exploration. Zhou et al. (2020) extend posterior
sampling (Osband et al., 2013) for MARL, but are limited to two-player zero-sum extensive games. We aim
to close this gap by proposing EMAX, an ensemble-based technique for efficient exploration in cooperative
MARL. We further highlight that EMAX is a plug-and-play algorithm that can enhance any value-based
MARL algorithm, including most existing MARL exploration techniques described in this paragraph.

3 Background

3.1 Decentralised Partially Observable Markov Decision Process

We formalise cooperative multi-agent environments as decentralised partially observable Markov decision
processes (Dec-POMDP) (Pynadath & Tambe, 2002) defined by (I,S, {Ai}i∈I , {Oi}i∈I ,P,R, Ω). Each
agent is indexed by i ∈ I = {1, . . . , N}. S denotes the state space of the environment. Agents receive local
observations which are drawn from their observation space Oi and take actions from their action space
Ai.1 We denote the space of joint observations and actions across all agents by O = O1 × . . . × ON and

1Since our work focuses on value-based MARL algorithms which extend DQN (Mnih et al., 2015), we assume discrete action
spaces for all agents.

3

Under review as submission to TMLR

A = A1 × . . .×AN , respectively. The observation function Ω : S ×A×O 7→ [0, 1] determines a distribution
over joint observations given the current state and taken joint action. Given the current state and the joint
action, the transition function P : S ×A×S 7→ [0, 1] and reward function R : S ×A 7→ R define a distribution
over the successor state of the environment and a scalar reward shared across all agents, respectively. Each
agent i only receives its local observation ot

i ∼ Ω(st, at)i at timestep t and learns a policy πi : Hi×Ai 7→ [0, 1]
defining its action probabilities given the observation history hi = (ot

i)t≥1 ∈ Hi. The observation history of
agent i up to timestep t is defined as ht

i = (oτ
i)t

τ=0. We furthermore denote the joint observation history
across all agents by h = (hi)i∈I , and the joint observation history up to timestep t by ht = (ht

i)i∈I . Each
agent aims to optimise its policy with the objective of learning a joint policy π = (π1, . . . , πN) such that
π ∈ arg maxπ′ E

[∑∞
t=1 γt−1R(st, at)

]
with discount factor γ ∈ [0, 1).

3.2 Value-Based Multi-Agent Reinforcement Learning

Independent Q-learning: Independent deep Q-network (IDQN) extends DQN (Mnih et al., 2015) for
MARL and independently learns a value function Qi, parameterised by θi, for each agent i. Agents store
tuples (st, ht, at, rt, st+1, ht+1) of experience consisting of state st, joint observation history ht, applied joint
action at, received reward rt, next state st+1, and next joint observation history ht+1, respectively, in a replay
buffer. The value function of agent i is then optimised by minimising the average loss across sampled batches
of experience:

L(θi) =
[
Qi(ht

i, at
i; θi)− rt − γ max

ai∈Ai

Q̄i(ht+1
i , ai; θ̄i)

]2
(1)

with θ̄i denoting the parameters of the target network Q̄ which are periodically copied from θi.

Value decomposition: Independent learning serves as an effective baseline in many cooperative MARL
tasks (Papoudakis et al., 2021) but suffers from several multi-agent challenges such as the multi-agent credit
assignment problem, i.e. agents need to identify their individual contribution to received rewards (Du et al.,
2019; Rashid et al., 2020), non-stationarity of the optimisation (Papoudakis et al., 2019) and poor sample
efficiency in cooperative tasks. Value decomposition algorithms extend IDQN by learning a decomposed
centralised state-action value function Qtot, conditioned on the state and joint action of all agents.2 Directly
learning such a value function is often computationally infeasible due to the exponential growth of the joint
action space with the number of agents, so the centralised value function is approximated with an aggregation
of individual utility functions of all agents conditioned on the local observation history. In this way, value
decomposition methods address the multi-agent credit assignment problem since each agent estimates its
contribution to the centralised state-action value function with its utility function. The parameterised utility
functions and aggregation are optimised by minimising the joint value function loss with target values ytot:

L(θ) =
[
Qtot(st, at; θ)− ytot

]2 (2)

Two common value decomposition algorithms are VDN (Sunehag et al., 2018) and QMIX (Rashid et al.,
2020). VDN assumes a linear aggregation of the centralised value function and targets:

Qtot(st, at; θ) =
∑
i∈I

Qi(ht
i, at

i; θi) and ytot = rt + γ max
a∈A

∑
i∈I

Q̄i(ht+1
i , ai; θ̄i) (3)

and QMIX assumes a less restrictive monotonic mixing function of individual values:

Qtot(st, at; θ) = fmix
(
Q1(ht

1, at
1; θ1), . . . , QN (ht

N , at
N ; θN); θmix

)
(4)

ytot = rt + γ max
a∈A

f̄mix
(
Q̄1(ht+1

1 , a1; θ̄1), . . . , Q̄N (ht+1
N , aN ; θ̄N); θ̄mix

)
(5)

with θmix and θ̄mix denoting the parameters of the monotonic mixing function fmix and a delayed target
mixing function f̄mix, respectively.

4

Under review as submission to TMLR

Agent 1

...

Agent N

...

...

Value Aggregation

...

Agent 1

...

Agent N

...

...

Value Aggregation

Agent i

...

Figure 2: Illustration of EMAX with (left) the UCB exploration strategy for agent i, (middle) the computation
of value estimates, and (right) the target computation. Computation of individual agent value functions are
highlighted in green, exploration in red, value aggregation for value decomposition algorithms in blue, and
target aggregation in orange.

4 The EMAX Framework: Ensemble Value Functions for Multi-Agent Exploration

In this section, we present ensemble value functions for multi-agent exploration (EMAX), a general framework
which trains an ensemble of value functions for each agent in value-based MARL. Formally, each agent i
trains an ensemble of K value functions {Qk

i }K
k=1 with Qk

i being parameterised by θk
i . Each value function

is conditioned on agent i’s local observation-action history. EMAX leverages these ensembles of value
functions to guide the exploration of agents and stabilise their optimisation, and directly integrates into
value decomposition methods such as VDN and QMIX. Figure 2 illustrates the exploration policy and value
computation of EMAX, and pseudocode for EMAX is provided in Appendix C.

Exploration policy: In multi-agent problems which require agents to cooperate to achieve high returns,
agents should focus their exploration on states and actions that require cooperation. To guide agents to
explore such states and actions, EMAX agents follow a UCB policy akin to prior work (Lee et al., 2021; Liang
et al., 2022) using the average and standard deviation of value estimates across the ensemble:

πexpl
i (ht

i; θi) ∈ arg max
ai∈Ai

Qmean
i (ht

i, ai; θi) + βQstd
i (ht

i, ai; θi) (6)

with the average and standard deviation across the ensemble of value functions of agent i defined as:

Qmean
i (ht

i, at
i; θi) = 1

K

K∑
k=1

Qk
i (ht

i, at
i; θk

i) and Qstd
i (ht

i, at
i; θi) =

√∑K
k=1

(
Qk

i (ht
i, at

i; θk
i)−Qmean

i (ht
i, at

i; θi)
)2

K

(7)
with θi = {θk

i }K
k=1 denoting the parameters of the ensemble of value functions of agent i, and β > 0 denoting

an uncertainty weighting hyperparameter chosen in consideration of the scale of rewards and the amount of
exploration required for a task. This policy guides agents to explore actions that are promising (as measured
by the mean value estimate) and are likely to require cooperation (as measured by the standard deviation of
value estimates). To see why the disagreement of value estimates across the ensemble can indicate whether
state-action pairs require cooperation, consider states in which multiple agents have to cooperate, i.e. select
specific actions, to receive a large reward. If any agent deviates from the required action, the agents receive
no reward. In such states, received rewards for a given action of agent i will vary significantly, since the
reward depends on the actions of other agents. In contrast, in states where agent i receives identical rewards
independent of the action selection of the other agents, no such variability of rewards is experienced. Due to
this variability of rewards (or lack thereof), value estimates across the ensemble will quickly converge in states

2In environments, where the state is not available during training, we use the joint observation as a proxy for the state.

5

Under review as submission to TMLR

that require no or limited cooperation, and will exhibit high disagreement in states that require cooperation.
Therefore, the EMAX exploration policy focuses the exploration of agents on state-action pairs that require
cooperation in contrast to common random exploration for value-based MARL such as ϵ-greedy policies. We
empirically demonstrate these benefits in Section 5.3.

Optimisation: To extend IDQN with EMAX, we optimise the k-th value function of agent i by minimising
the following loss:

L(θk
i) =

[
Qk

i (ht
i, at

i; θk
i)− rt − γ max

ai∈Ai

Qmean
i (ht+1

i , ai; θi)
]2

(8)

Computing target values as the average across all value estimates of the ensemble (Liang et al., 2022) reduces
the computational and memory cost of training ensemble networks by eliminating the need for target networks
and, as we empirically show in Section 5.3, reduces the variability of gradients. Such reduced variability of
gradients improves the stability of training. Furthermore, we argue that such improved stability of gradients
during the optimisation is particularly valuable in MARL where the exploration and non-stationarity of the
policies of other agents can otherwise result in unstable training.

Value decomposition: As defined above, the EMAX exploration policy guides agents towards states and
actions in which cooperation is required, but it does not distinguish which agents need to cooperate in a
particular state. For example, some of the agents might need to cooperate in a state to receive a large
reward but other agents do not contribute to this reward. To overcome this limitation such that the EMAX
exploration policy guides each agent towards states and actions in which that agent’s cooperation rather
than any agents’ cooperation is required, it is important that the value estimates of that agent correspond to
its individual contribution to the common rewards.

Value decomposition techniques such as VDN (Sunehag et al., 2018) and QMIX (Rashid et al., 2020) are
designed to learn individual value functions for each agent that identify their contribution to received common
rewards. By integrating these techniques into EMAX, the exploration policy can benefit from the multi-agent
credit assignment achieved by the value decomposition, and the optimisation of the value functions can be
stabilised by computing target estimates across the ensemble as proposed in EMAX. To integrate value
decomposition methods into EMAX, each agent trains an ensemble of independent value functions as proposed
above. The total loss for the k-th value functions of all agents with parameters θk = {θk

i }i∈I is given by
Equation (2) with centralised value function and targets for VDN (Equation (9)):

Qk
tot(st, at; θk) =

∑
i∈I

Qk
i (ht

i, at
i; θk

i) and ytot = rt + γ max
a∈A

∑
i∈I

Qmean
i (ht+1

i , ai; θi) (9)

and QMIX (Equations (10) and (11)):

Qk
tot(st, at; θk) = fmix

(
Qk

1(ht
1, at

1; θk
1), . . . , Qk

N (ht
N , at

N ; θk
N); θmix

)
(10)

ytot = rt + γ max
a∈A

f̄mix
(
Qmean

1 (ht+1
1 , a1; θ1), . . . , Qmean

N (ht+1
N , aN ; θN); θ̄mix

)
(11)

For QMIX, we use a single mixing network and target mixing network with parameters θmix and θ̄mix,
respectively, to aggregate the value estimates for all value functions in the ensemble. The aggregation of
QMIX is able to represent a wider set of centralised value functions, but VDN has been shown to be more
sample efficient in tasks which do not seem to require a non-linear aggregation (Papoudakis et al., 2021).
Therefore, we consider both the extension of VDN and QMIX with EMAX.

Evaluation policy: When evaluating agents, value-based MARL algorithms typically follow the greedy
policy with respect to their value function. With EMAX, agent i selects its action during evaluation using a
majority vote across the greedy actions of all models in its ensemble:

πeval
i (ht

i; θi) ∈ arg max
ai∈Ai

K∑
k=1

[1]Ak
opt,i

(ai) and Ak
opt,i = {ai ∈ Ai | ai ∈ arg max

a′
i

Qk
i (ht

i, a′
i; θk

i)} (12)

with indicator function [1]Ak
opt,i

(a) = 1 for the greedy action(s) of the k-th value function of agent i, ai ∈ Ak
opt,i,

and 0 otherwise. Such a policy decreases the likelihood of taking poor actions because any individual value

6

Under review as submission to TMLR

function preferring a poor action due to errors in value estimates does not impact the action selection as long
as the majority of models agree on the optimal action.

Ensemble value functions Motivated by previous work in cooperative MARL that shares networks across
agents to improve sample efficiency and scalability (e.g. (Papoudakis et al., 2021; Christianos et al., 2021;
Albrecht et al., 2024)), and the computational cost of training K value functions for each agent, we share a
single ensemble of value functions across all agents. All aforementioned techniques rely on value functions
within the ensemble to be sufficiently diverse, in particular early in training. To ensure such diversity, we
implement the K value functions within the ensemble as entirely separate networks with no sharing of
parameters across the value functions in the ensemble. To efficiently compute the value estimates of all value
functions and all agents in a single forward pass, we vectorise the computation across agents and networks
within the ensemble. Beyond separate networks within the ensemble, we employ three techniques from prior
work (Osband et al., 2016a; Liang et al., 2022) to incentivise diversity of value functions within the ensemble:
(1) Ensemble models are separately and randomly initialised. (2) We sample separate batches of experience
from the replay buffer to train each model in the ensemble.(3) Each model is trained on bootstrapped samples
of the entire experience collected. For more details on the bootstrapped sampling process, see Appendix C.1.

5 Experiments

5.1 Evaluation Details

We evaluate a total of eleven deep MARL algorithms: Independent DQN (IDQN), VDN, and QMIX as
well as their extensions with EMAX, which we will denote IDQN-EMAX, VDN-EMAX, and QMIX-EMAX,
respectively, three value-based exploration algorithms in MAVEN (Mahajan et al., 2019), CDS (Li et al., 2021),
and EMC (Zheng et al., 2021), and independent and multi-agent PPO (IPPO and MAPPO) which have been
shown to exhibit strong MARL performance (Papoudakis et al., 2021; Yu et al., 2022). Following Agarwal et al.
(2021), we report performance profiles and use the interquartile mean (IQM) and 95% confidence intervals
computed over five runs in all tasks. Learning curves indicate the sample efficiency of agents which is largely
determined by their ability to effectively explore the environment, and performance profiles allow to compare
algorithms with respect to the robustness of their final policies. For every algorithm and task, agents share
network parameters with networks receiving the agent identity in the form of a onehot vector as additional
input. Unless stated otherwise EMAX uses ensembles with K = 5 value functions. Details on computational
resorces and hyperparameters are provided in Appendices A and D, respectively. We evaluate in 21 tasks
across four multi-agent environments, visualised in Figure 3: eight level-based foraging (LBF) tasks (Albrecht
& Ramamoorthy, 2013; Papoudakis et al., 2021), four boulder-push (BPUSH) tasks (Christianos et al., 2022),
six multi-robot warehouse (RWARE) tasks (Christianos et al., 2020; Papoudakis et al., 2021), and three
multi-agent particle environment (MPE) tasks (Mordatch & Abbeel, 2018; Lowe et al., 2017). These tasks
were selected since they represent a diverse set of cooperative MARL tasks which require agents to cooperate
to achieve high rewards. Many of these tasks are further considered challenging since rewards are sparse such
that effective exploration is essential to enable efficient learning. We briefly describe each environment below.
More details on each environment can be found in Appendix B.

Level-based foraging: The level-based foraging (LBF) environment (Albrecht & Ramamoorthy, 2013;
Papoudakis et al., 2021) contains diverse tasks in which agents and food are randomly scattered in a gridworld.
Agents and food items are assigned levels, and agents can only pick-up food if the collective level of all agents
that are standing next to the food and chose the pick-up action is greater or equal to the level of the food. There-
fore, agents need to cooperate to pick-up food with high level, while agents can pick-up food items with low lev-
els individually. Tasks vary in the size of the gridworld, the number of agents and food, and the level assignment.

Boulder-push: In the boulder-push environment (BPUSH) (Christianos et al., 2022), agents need to navigate
a gridworld to move a boulder to a target location. To successfully move the boulder towards its target
location, all agents need to stand next to the boulder and move against it in the same direction at the same
timestep. Agents are rewarded for pushing the boulder forward but receive a small negative reward for any
miscoordination, i.e. any but not all agents move against the boulder. We consider BPUSH tasks with varying
sizes of the gridworld and the number of agents varying between two and four.

7

Under review as submission to TMLR

(a) Level-based foraging (b) Boulder-push (c) Multi-robot warehouse
(d) Multi-agent particle envi-
ronment

Figure 3: Visualisations of four multi-agent environments.

Multi-robot warehouse: The multi-robot warehouse environment (RWARE) (Christianos et al., 2020;
Papoudakis et al., 2021) represents gridworld warehouses with blocks of shelves. Agents need to navigate the
warehouse and collect currently requested items. Agents only observe nearby agents and shelves immediately
next to their location, and are only rewarded for successfully delivering requested shelves, which requires
a long sequence of specific actions. This results in very sparse rewards which makes RWARE tasks hard
exploration problems. It is worth highlighting that no value-based algorithm achieved non-zero rewards
in this environment within four million timesteps of training in prior evaluations (Papoudakis et al., 2021).

Multi-agent particle environment: In the multi-agent particle environment (MPE) (Mordatch & Abbeel,
2018; Lowe et al., 2017), agents navigate continuous two-dimensional, fully-observable environments. We
evaluate agents in three diverse tasks which all require cooperation between agents with dense rewards. (1)
Predator-prey in which three agents control predators in an environment with three landmarks, representing
obstacles, and a faster, pre-trained prey. (2) Spread in which three agents need to cover three landmarks
while avoiding collisions with each other. (3) Adversary in which two agents are in an environment with
an pre-trained adversary and two landmarks. At the beginning of each episode, one of the two landmarks
is randomly determined as the goal landmark for the agents (agents observe this goal landmark but the
adversary has no information about it). Both agents are rewarded for one of them being close to the goal
landmark but they are negatively rewarded for the adversary agent moving close to the goal location.

5.2 Evaluation Results

Figure 4 visualises the learning curve and performance profile of evaluation returns of all algorithms across
all 21 tasks. Across all tasks, EMAX improves final evaluation returns of IDQN, VDN, and QMIX, shown in
Figure 4a, by 60%, 47%, and 538%, leading to higher final returns compared to their vanilla baselines in 18,
16, and 20 out of 21 tasks, respectively. These results arise from EMAX improving the sample efficiency and
learning stability of the vanilla algorithms, as we will show in Section 5.3. Additionally, QMIX-EMAX is able
to learn effective policies in several hard exploration tasks where QMIX fails to achieve any reward. The
performance profile in Figure 4b visualises the the distribution of evaluation returns at the end of training
across all algorithms and tasks. These profiles indicate that EMAX significantly improves the robustness
of all algorithms, consistently achieving higher returns. We provide normalised evaluation returns for each
environment, as well as learning curves in all individual tasks in Appendices E and F, respectively.

In LBF, EMAX significantly improves the performance of QMIX whereas minor improvements can be seen for
IDQN and VDN. Inspecting learning curves in individual tasks (Appendix F.1) shows that QMIX, MAVEN,
CDS and EMC fail to achieve any rewards in several LBF tasks with particularly sparse rewards. We
hypothesise that these algorithms suffer from the large dimensionality of the joint observation as input
to the mixing network which is inefficient to train with the sparse learning signal of these tasks. The
uncertainty-guided exploration of EMAX seems to alleviate these inefficiencies.

In BPUSH, a similar trend can be observed. Most notably, VDN-EMAX and QMIX-EMAX learn to solve a
BPUSH task with four agents in which no baseline demonstrates any positive rewards (see Figure 11d). This

8

Under review as submission to TMLR

Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.00

0.25

0.50

0.75

1.00

No
rm

al
ise

d
re

tu
rn

s

IDQN VDN QMIX

Timesteps

(a) Learning curve of normalised evaluation returns

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

P(
re

tu
rn

s)
>
τ

IDQN

0.0 0.5 1.0

VDN

0.0 0.5 1.0

QMIX

Normalised evaluation returns (τ)

(b) Performance profile of final evaluation returns

Figure 4: (a) Evaluation returns throughout training and (b) performance profile (Agarwal et al., 2021)
visualising the distribution of evaluation returns at the end of training of all algorithms, both aggregated
across all 21 tasks. EMAX (orange) significantly improves the sample efficiency and final achieved returns of
all algorithms. Lines and shading represent the interquartile mean and 95% confidence intervals of evaluation
returns, respectively, aggregated over five runs for every task, for a total of 105 runs per algorithm. For each
task, evaluation returns are normalised between the minimum (0) and maximum (1) achieved returns.

task requires complex cooperation because four agents need to move in unison to successfully complete this
task and any miscoordination leads to negative rewards.

In RWARE, consistent with prior work (Papoudakis et al., 2021), independent learning value-based algorithms
outperform centralised value decomposition methods due to highly sparse rewards. IDQN-EMAX outperforms
all baselines across four RWARE tasks with larger warehouses, and IDQN-EMAX and VDN-EMAX both
significantly improve upon their vanilla baselines in all RWARE tasks, achieving 330% and 252% higher
final evaluation returns, respectively, whereas QMIX with and without EMAX fail to learn. Lastly, IPPO
and MAPPO perform well in RWARE with MAPPO reaching highest evaluation returns in two smaller
RWARE tasks. However, in tasks with larger warehouses and, thus, more required exploration, IDQN-EMAX
outperforms all other algorithms. To the best of our knowledge, this is the first time that any value-based
algorithm outperforms actor-critic methods like IPPO and MAPPO in RWARE tasks.

In contrast to other environments, MPE has continuous observations and dense rewards. In all three MPE
tasks, we see improvements in sample efficiency and final performance for algorithms with EMAX compared
to vanilla algorithms. In particular in the MPE spread task, EMAX significantly improves the performance
of all extended algorithms by significant margins.

5.3 Analysis and Ablations

In this section, we further investigate the efficacy of all components of EMAX to study our hypotheses from
Section 4 and answer the following questions: (1) Do EMAX target values improve the stability of training?
(2) Does the EMAX exploration policy lead to more exploration of states and actions with potential for
cooperation? (3) Does the EMAX evaluation policy reduce the likelihood of selecting sub-optimal actions?
After answering these questions, we provide further ablations of these techniques and show that comparably
small ensembles of value functions are sufficient to achieve the benefits of EMAX.

Training stability: In Section 4, we stated that the computation of EMAX target values reduces the
variability of gradients during training, and, thus, improves stability of the optimisation (as previously
observed in single-agent RL (Liang et al., 2022)). To demonstrate this stabilising effect, we visualise the
stability of gradients measured by the conditional value at risk (CVaR) of gradient norms, detrended over
consecutive values, during the optimisation of IDQN, VDN, QMIX with and without EMAX

CVaR(g′) = E [g′ | g′ ≥ VaR95%(g′)] and g′
t = |∇t+1| − |∇t| (13)

9

Under review as submission to TMLR

IDQN VDN QMIX
0.00

0.25

0.50

0.75

1.00

1.25

CV
aR

(g
ra

di
en

t n
or

m
)

1e−1

Standard
+ EMAX (ours)

(a) Average and standard error of CVaR values
across all tasks with and without EMAX.

Standard + EMAX (ours) + EMAX (single model)

0.0 2.5 5.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
Timesteps 1e6

VDN

0.0 2.5 5.0
Timesteps 1e6

QMIX

(b) Evaluation policy ablation in LBF 10x10-4p-4f-coop.

Figure 5: (a) Average and standard error of the conditional value at risk (CVaR) of detrended consecutive
gradient norms of all algorithms across all tasks. This metric corresponds to the short-term risk across time
suggested by Chan et al. (2020). (b) Evaluation returns for the vanilla and EMAX algorithms in the LBF
10x10-4p-4f-coop task, and an ablation of the evaluation policy. For the single model ablation, the agents
follow the greedy policy with respect to a single value function within their model instead of computing a
majority vote across greedy policies.

where the value at risk (VaR) corresponds to the value at the 95% quantile of all detrended gradient norm
values. This metric indicates the stability of gradients throughout training. For example, a larger CVaR
value indicates more variability in gradients which can indicate unstable training, while a smaller CVaR value
indicates less variability in gradients and more stable training. Figure 5a shows the average and standard
error of these CVaR values across all 21 tasks. We observe that the target computation of EMAX significantly
reduces the CVaR of gradient norms for IDQN, VDN, and QMIX indicating more stable optimisation, thus,
confirming our hypothesis. The difference for QMIX is less pronounced since the base algorithm fails to learn
in several tasks, leading to little training with low gradient variability independent of the target values.

Exploration policy: To validate our hypothesis that the EMAX exploration policy leads to more exploration
of states and actions with the potential for cooperation (Section 4), we train IDQN, VDN, and QMIX with
and without EMAX in the LBF 10x10-3p-5f task with a large quantity of food, some of which require
cooperation and some of which can picked-up by individual agents. Figure 6 shows the evaluation returns
throughout training, the average distances of agents to the closest food, and the percentage of agents selecting
the pick-up action in states where multiple agents need to cooperate to pick-up food.3 We emphasise that a
lower average distance of agents to the closest food and a higher percentage of selecting the pick-up action in
cooperative states indicates that agents seek out states with the potential for cooperation and prefer to apply
actions with the chance for cooperation, respectively. Figure 6 shows that our hypotheses about the EMAX
exploration policy hold in the tested task. (1) EMAX leads to agents effectively seeking out food as states
with chance for cooperation, as indicated by the lower average distance of EMAX compared to the baseline
in Figure 6b, and (2) EMAX agents select the pick-up action in such cooperative states more often, as shown
in Figure 6c, resulting in significantly higher evaluation returns. To separate the effect of the efficacy of the
EMAX training and the exploration policy, we also compare to the percentage of choosing to pick-up in
cooperative states by greedily following any of the value functions in the ensemble instead of following the
UCB policy across the ensemble. While this ablation leads to a significant improvement over the vanilla
algorithms, it still exhibits a lower rate of choosing to cooperate compared to the EMAX exploration policy.
Lastly, Figure 6d visualises the mean and standard deviation of action-value estimates across the ensemble
for the no-op action, movement actions, and the pick-up action in states with the potential for cooperation
between agents. As we can see, the mean and standard deviation of the action-values for the pick-up action

3To obtain the average distances to nearby food and cooperation percentages, we rollout the exploration policy of the baseline
algorithm and the EMAX UCB exploration policy in the LBF task for 50 episodes every 200,000 timesteps of training, and
compute the respective values across rollouts.

10

Under review as submission to TMLR

Standard + EMAX (ours)

0.0 2.5 5.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(a) Evaluation returns

0.0 2.5 5.0
Timesteps 1e6

2.0

2.5

3.0

3.5

Av
er

ag
e

ag
en

t-f
oo

d
di

st
an

ce IDQN

0.0 2.5 5.0
Timesteps 1e6

VDN

0.0 2.5 5.0
Timesteps 1e6

QMIX

(b) Food distances

Baseline + EMAX (single greedy) + EMAX (UCB greedy; ours)

0.0 2.5 5.0
Timesteps 1e6

0

20

40

60

80

100

Co
op

er
at

iv
e

pi
ck

-u
p

ra
te IDQN

0.0 2.5 5.0
Timesteps 1e6

VDN

0.0 2.5 5.0
Timesteps 1e6

QMIX

(c) Cooperation percentage

No-op Movement Pick-up

0.0 2.5 5.0
Timesteps 1e6

0

2

4

6

En
se

m
bl

e
Q-

va
lu

es

IDQN

0.0 2.5 5.0
Timesteps 1e6

VDN

0.0 2.5 5.0
Timesteps 1e6

QMIX

(d) Ensemble Q-values

Figure 6: (a) Mean and 95% bootstrapped confidence intervals of evaluation returns, (b) mean and standard
deviation of average food distances across rollouts, (c) mean and standard deviation of percentages of agents
selecting the pick-up action and in states with a chance for cooperation, and (d) mean and standard deviation
of action-value estimates for no-op, movement, and pick-up actions in states with a chance for cooperation in
the LBF 10x10-3p-5f task.

are larger compared to other actions, indicating that the EMAX value estimates correlate with the potential
for cooperation of this action.

Evaluation policy: The evaluation policy of EMAX selects actions by a majority vote across all policies
in the ensemble (Equation (12)). We hypothesised that such a policy is more robust to sub-optimal action
selection since any individual policy taking sub-optimal actions does not impact the executed policy as long as
the majority of policies agree on the optimal action. Figure 5b shows the evaluation returns of IDQN, VDN,
and QMIX with and without EMAX in the LBF 10x10-4p-4f-coop task. For EMAX, we show the evaluation
policy using majority voting (ours) as well as an ablation following the greedy policy with respect to any of
the individual value functions within the ensemble (single model). We highlight that no further agents were
trained, but we directly extract the individual value functions within the ensemble and evaluate them, so the
only difference in the EMAX single policy ablation and ours is the followed policy. This experiment indicates
the improved robustness of our majority voting to select actions leading to higher evaluation returns in a task
which frequently requires agents to cooperate.

Ensemble size: The computational cost of training an ensemble of models scales with the ensemble size
K. To illustrate the additional cost, we investigate the training speed of EMAX for varying K and pose the
question of how many models are needed in the ensemble to benefit from the improved training stability and
exploration. To answer this question, we evaluate all algorithms with varying K in the RWARE 11x10 task
with four agents (Figure 7), in which EMAX led to substantial improvements for IDQN and VDN. It appears
that the benefits of larger ensemble models saturate at K = 5. EMAX with K = 8 performs identical or
worse for all algorithms, and the smaller ensemble K = 2 reaches lower returns for IDQN and VDN. These
results suggest that a comparably small ensemble with K = 5 can significantly improve sample efficiency
with EMAX. Additionally, we hypothesise that larger ensemble value functions may require more data to

11

Under review as submission to TMLR

Algorithm Baseline K = 2 K = 5 K = 8
IDQN 16.80 21.29 (+27%) 33.04 (+97%) 48.06 (+186%)
VDN 16.92 21.56 (+27%) 33.25 (+97%) 48.16 (+185%)
QMIX 17.70 22.53 (+27%) 33.71 (+90%) 48.66 (+175%)

Table 1: Average training time (in seconds) for vanilla
and EMAX algorithms with varying ensemble sizes K
to complete 10,000 timesteps of training in the LBF
10x10-3p-3f task. Relative increase to the training
time of the baseline algorithm (K = 1) is given in
parenthesis. Times are averaged across ten runs.

0 5
Timesteps 1e6

0.0

2.5

5.0

7.5

10.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 5
Timesteps 1e6

VDN

0 5
Timesteps 1e6

QMIX
Baseline
+ EMAX (K= 2)
+ EMAX (K= 5)
+ EMAX (K= 8)

Figure 7: Evaluation returns for varying ensemble
sizes K ∈ {2, 5, 8} in the RWARE 11× 10 4ag task.

Standard + EMAX + EMAX (ε-greedy) + EMAX (target networks)

0 2 4
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 2 4
Timesteps 1e6

VDN

0 2 4
Timesteps 1e6

QMIX

(a) Ablations in LBF 10x10-4p-3f-coop.

0 1 2
Timesteps 1e6

−300

−250

−200

−150

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 1 2
Timesteps 1e6

VDN

0 1 2
Timesteps 1e6

QMIX

(b) Ablations in MPE spread.

Figure 8: Mean and 95% confidence intervals of evaluation returns for all vanilla and EMAX algorithms and
two ablations in (a) LBF 10x10-4p-3f-coop, and (b) MPE spread. For the ablations, we replace the UCB
exploration policy with ϵ-greedy exploration (green) and the EMAX target computation with standard target
networks (purple), respectively.

train, thus leading to diminishing benefits for ensembles of many value functions. Table 1 shows the average
time to train IDQN, VDN, QMIX, and their corresponding EMAX extensions with K ∈ {2, 5, 8} for 10,000
timesteps in the LBF 10x10-3p-3f task. These times were averaged across ten runs. We can see that training
an ensemble of K = 5 value functions, as applied in our evaluation, increases the training time by less than
100%. While this cost is significant, the increase in computational cost is notably less than a linear increase
due to parallelisation on modern hardware, and we believe that it is justified in cases where the significant
improvements of EMAX in both sample efficiency and stability are of importance. In Appendix G, we also
show that EMAX still outperforms the vanilla algorithms when roughly matching or even exceeding the
number of parameters of the ensemble models of EMAX.

Ablations: We already demonstated that the EMAX target computation and exploration policy lead to
more robust gradients during optimisation and focus exploration on cooperative actions. To discriminate the
importance of both of these components to the performance of EMAX algorithms, we conduct an ablation
study in two tasks: LBF 10x10-4p-3f-coop, and MPE spread. We compare the performance of the full EMAX
algorithm to two ablations which (1) substitute the UCB exploration policy with an ϵ-greedy exploration
policy, and (2) use target networks to compute target values with each network in the ensemble having its
own target network. The results of this ablation study (Figure 8) demonstrate the importance of both of
these components, leading to notably better or similar performance for all algorithms in both tasks. In
particular the EMAX target computation significantly improves performance across all algorithms and tasks.
The UCB exploration policy leads to significant improvements in LBF, but only marginal gains in MPE. We
hypothesise that agents need to explore less in the MPE spread task due to the dense rewards, and that there
are only few states in which agents have to apply a particular action to coordinate.

12

Under review as submission to TMLR

6 Conclusion

In this paper, we proposed EMAX, a general framework to extend any value-based MARL algorithms using
ensembles of value functions. EMAX leverages the disagreement of value estimates across the ensemble with
a UCB policy to guide exploration towards parts of the environment which require coordination. Additionally,
gradients during training are stabilised by computing target values as the average value estimate across
the ensemble. Empirical results in 21 tasks across four environments demonstrated that EMAX significantly
improves sample efficiency, final performance, and training stability for all three extended algorithms. Lastly,
we discussed the computational cost introduced by EMAX and showed that comparably small ensemble
models are sufficient to achieve the demonstrated improvements.

EMAX is currently limited to value-based cooperative MARL algorithms. Firstly, future work should consider
the extension of EMAX to multi-agent actor-critic algorithms such as MAPPO and IPPO, which have shown
to be effective in cooperative MARL (Yu et al., 2022). Ensembles of critics and policies could be trained
for each agent, with similar target computation and UCB policies across actors being used to leverage the
techniques proposed in this work. Secondly, future work could aim to reduce the computational cost of
training ensembles of value functions. Prior work has explored the application of hypernetworks (Dwaracherla
et al., 2020) and latent-conditioned models (Shen & How, 2023) to approximate ensembles using a single
network. Similar techniques could help to significantly reduce the computational cost of EMAX, thereby
making it more widely accessible. Lastly, ensembles of value functions can be used to efficiently explore in
two-player zero-sum games (Perolat et al., 2022; McAleer et al., 2023; Sokota et al., 2022).

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep

reinforcement learning at the edge of the statistical precipice. In Advances in Neural Information Processing
Systems, 2021.

Stefano V. Albrecht and Subramanian Ramamoorthy. A Game-Theoretic Model and Best-Response Learning
Method for Ad Hoc Coordination in Multiagent Systems. In International Conference on Autonomous
Agents and Multi-Agent Systems, 2013.

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Reinforcement Learning: Founda-
tions and Modern Approaches. MIT Press, 2024. URL https://www.marl-book.com.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization for deep
reinforcement learning. In International Conference on Machine Learning, 2017.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning
Research, 3, 2002.

Stephanie C.Y. Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama. Measuring
the reliability of reinforcement learning algorithms. In International Conference on Learning Representations,
2020.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in Neural
Information Processing Systems, 2011.

Eric Chen, Zhang-Wei Hong, Joni Pajarinen, and Pulkit Agrawal. Redeeming intrinsic rewards via constrained
optimization. Advances in Neural Information Processing Systems, 35:4996–5008, 2022.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Shared experience actor-critic for multi-agent
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

13

https://www.marl-book.com

Under review as submission to TMLR

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V. Albrecht. Scaling multi-
agent reinforcement learning with selective parameter sharing. In International Conference on Machine
Learning, 2021.

Filippos Christianos, Georgios Papoudakis, and Stefano V. Albrecht. Pareto actor-critic for equilibrium
selection in multi-agent reinforcement learning. arXiv preprint arXiv:2209.14344, 2022.

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic actor
critic. In Advances in Neural Information Processing Systems, 2019.

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. AAAI, 1998.

Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. Liir: Learning individual intrinsic
reward in multi-agent reinforcement learning. In Advances in Neural Information Processing Systems, 2019.

Vikranth Dwaracherla, Xiuyuan Lu, Morteza Ibrahimi, Ian Osband, Zheng Wen, and Benjamin Van Roy.
Hypermodels for exploration. In International Conference on Learning Representations, 2020.

Haotian Fu, Shangqun Yu, Michael Littman, and George Konidaris. Model-based lifelong reinforcement
learning with bayesian exploration. In Advances in Neural Information Processing Systems, 2022.

David Janz, Jiri Hron, Przemysław Mazur, Katja Hofmann, José Miguel Hernández-Lobato, and Sebastian
Tschiatschek. Successor uncertainties: exploration and uncertainty in temporal difference learning. In
Advances in Neural Information Processing Systems, 2019.

Petros Koumoutsakos and Sergey Litvinov. Scientific multi-agent reinforcement learning for turbulence
closures and flow control. Bulletin of the American Physical Society, 2024.

Aleksandar Krnjaic, Raul D Steleac, Jonathan D Thomas, Georgios Papoudakis, Lukas Schäfer, Andrew
Wing Keung To, Kuan-Ho Lao, Murat Cubuktepe, Matthew Haley, Peter Börsting, and Stefano V. Albrecht.
Scalable multi-agent reinforcement learning for warehouse logistics with robotic and human co-workers.
arXiv preprint arXiv:2212.11498, 2022.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified framework for
ensemble learning in deep reinforcement learning. In International Conference on Machine Learning, 2021.

Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang. Celebrating
diversity in shared multi-agent reinforcement learning. In Advances in Neural Information Processing
Systems, 2021.

Xihan Li, Jia Zhang, Jiang Bian, Yunhai Tong, and Tie-Yan Liu. A cooperative multi-agent reinforcement
learning framework for resource balancing in complex logistics network. In International Conference on
Autonomous Agents and Multi-Agent Systems, 2019.

Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander Ihler, Pieter Abbeel, and Roy Fox.
Reducing variance in temporal-difference value estimation via ensemble of deep networks. In International
Conference on Machine Learning, 2022.

I.-J. Liu, U. Jain, R. A. Yeh, and A. G. Schwing. Cooperative Exploration for Multi-Agent Deep Reinforcement
Learning. In International Conference on Machine Learning, 2021.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. Advances in Neural Information Processing Systems, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent variational
exploration. Advances in Neural Information Processing Systems, 2019.

Stephen McAleer, Gabriele Farina, Marc Lanctot, and Tuomas Sandholm. Escher: Eschewing importance
sampling in games by computing a history value function to estimate regret. International Conference on
Learning Representations, 2023.

14

Under review as submission to TMLR

David Henry Mguni, Taher Jafferjee, Jianhong Wang, Nicolas Perez-Nieves, Oliver Slumbers, Feifei Tong,
Yang Li, Jiangcheng Zhu, Yaodong Yang, and Jun Wang. Ligs: Learnable intrinsic-reward generation
selection for multi-agent learning. In International Conference on Learning Representations, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540), 2015.

Rambod Mojgani, Daniel Waelchli, Yifei Guan, Petros Koumoutsakos, and Pedram Hassanzadeh. Extreme
event prediction with multi-agent reinforcement learning-based parametrization of atmospheric and oceanic
turbulence. arXiv preprint arXiv:2312.00907, 2023.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent populations.
In AAAI Conference on Artificial Intelligence, 2018.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In International Conference on Machine Learning, 2017.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior
sampling. In Advances in Neural Information Processing Systems, 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped
dqn. In Advances in Neural Information Processing Systems, 2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value
functions. In International Conference on Machine Learning, 2016b.

Ian Osband, Benjamin Van Roy, Daniel J Russo, Zheng Wen, et al. Deep exploration via randomized value
functions. Journal of Machine Learning Research, 20(124), 2019.

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V. Albrecht. Dealing with non-
stationarity in multi-agent deep reinforcement learning. arXiv preprint arXiv:1906.04737, 2019.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking multi-
agent deep reinforcement learning algorithms in cooperative tasks. In Advances in Neural Information
Processing Systems, Track on Datasets and Benchmarks, 2021.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul Muller,
Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of stratego with model-free
multiagent reinforcement learning. Science, 378(6623), 2022.

David V. Pynadath and Milind Tambe. The communicative multiagent team decision problem: Analyzing
teamwork theories and models. Journal of Artificial Intelligence Research, 16, 2002.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning.
Journal of Machine Learning Research, 21(1), 2020.

Heechang Ryu, Hayong Shin, and Jinkyoo Park. Remax: Relational representation for multi-agent exploration.
In International Conference on Autonomous Agents and Multiagent Systems, 2022.

Lukas Schäfer, Filippos Christianos, Josiah P Hanna, and Stefano V. Albrecht. Decoupled reinforcement
learning to stabilise intrinsically-motivated exploration. In International Conference on Autonomous Agents
and Multiagent Systems, 2022.

Steven L Scott. A modern bayesian look at the multi-armed bandit. Applied Stochastic Models in Business
and Industry, 26(6), 2010.

Pier Giuseppe Sessa, Maryam Kamgarpour, and Andreas Krause. Efficient model-based multi-agent reinforce-
ment learning via optimistic equilibrium computation. In International Conference on Machine Learning,
2022.

15

Under review as submission to TMLR

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement learning for
autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Macheng Shen and Jonathan P. How. Implicit ensemble training for efficient and robust multiagent reinforce-
ment learning. Transactions on Machine Learning Research, 2023.

Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot, Ioannis Mitliagkas, Noam
Brown, and Christian Kroer. A unified approach to reinforcement learning, quantal response equilibria,
and two-player zero-sum games. arXiv preprint arXiv:2206.05825, 2022.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg,
Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, et al. Value-decomposition networks for
cooperative multi-agent learning. In International Conference on Autonomous Agents and Multi-Agent
Systems, 2018.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4), 1933.

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent exploration. In
International Conference on Learning Representations, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness
of ppo in cooperative, multi-agent games. In Advances in Neural Information Processing Systems, Track
on Datasets and Benchmarks, 2022.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang Gao, and
Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven exploration. Advances
in Neural Information Processing Systems, 34:3757–3769, 2021.

Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang, Montgomery
Alban, IMAN FADAKAR, Zheng Chen, et al. Smarts: An open-source scalable multi-agent rl training
school for autonomous driving. In Conference on Robot Learning, 2021.

Yichi Zhou, Jialian Li, and Jun Zhu. Posterior sampling for multi-agent reinforcement learning: solving
extensive games with imperfect information. In International Conference on Learning Representations,
2020.

16

Under review as submission to TMLR

A Computational Resources

All gridsearches and evaluations for deep experiments were conducted on (1) desktop computers with two
Nvidia RTX 2080 Ti GPUs, Intel i9-9900X @ 3.50GHz CPU, 62GB RAM, running Ubuntu 20.04, and (2)
two server machines with four Nvidia V100 GPUs, Intel Xeon Platinum 8160 @ 2.10GHz CPU, 503GB RAM,
running CentOS Linux 7 OS. The speedtest for varying ensemble sizes reported in Table 1 has been conducted
on the desktop computer. For experiments, we use Python 3.9.13 with PyTorch 1.12.1, and NumPy 1.23.3.

B Environments

Level-Based Foraging: The level-based foraging (LBF) environment (Albrecht & Ramamoorthy, 2013;
Papoudakis et al., 2021) contains diverse tasks in which agents and food are randomly scattered in a gridworld.
Agents observe the location of themselves as well as all other agents and food in the gridworld, and are able
to choose between discrete actions A = {do nothing, move up, move down, move left, move right, pick-up}.
Agents and food are assigned levels and agents can only pick-up food if the level of all agents standing next
to the food and choosing the pick-up action together is greater or equal to the level of the food. Agents
only receive rewards for successful collection of food. Episodes terminate after all food has been collected
or after at most 50 timesteps. Each episode randomises the level and starting locations of agents and food.
Tasks vary in the size of the gridworld, the number of agents and food, and the level assignment.

Boulder-Push: In the boulder-push environment (BPUSH) (Christianos et al., 2022), agents need to
navigate a gridworld to move a boulder to a target location. Agents observe the location of the boulder, all
other agents, and the direction the boulder needs to be pushed in. The action space of all agents consists of
the same discrete actions A = {move up, move down, move left, move right}. Agents only receive rewards of
0.1 per agent for successfully pushing the boulder forward in its target direction, which requires cooperation
of all agents, and a reward of 1 per agent for the boulder reaching its target location. Unsuccessful pushing
of the boulder by some but not all agents leads to a penalty reward of −0.01. Episodes terminate after the
boulder reached its target location or after at most 50 timesteps. BPUSH tasks considered in this work vary
in the size of the gridworld and the number of agents varying between two and four.

Multi-Robot Warehouse: The multi-robot warehouse environment (RWARE) (Christianos et al., 2020; Pa-
poudakis et al., 2021) represents gridworld warehouses with blocks of shelves. Agents need to navigate the ware-
house and collect currently requested items. Agents only observe nearby agents and shelves immediately next
to their location, and choose discrete actions A = {turn left, turn right, move forward, load/ unload shelf}.
Agents are only rewarded for successful deliveries of requested shelves, which require long sequences of
actions, with a reward of 1, thus rewards are very sparse making RWARE tasks hard exploration problems.
At each timestep, the total number of requested shelves is equal to the number of agents and once requested
shelves, a currently unrequested shelf is uniformly at random sampled and added to the list of requested
shelves. Episodes terminate after 500 timesteps. While agents are capable of delivering shelves without
interaction with other agents, agents need to cooperate to avoid blocking each others path in narrow parts
of the warehouse and trying to move to and load identical requested shelves. To maximise episodic returns,
agents need to learn to avoid such conflicts with other agents which requires them to learn conventions
and cooperate. It is worth highlighting that no value-based algorithm achieved non-zero rewards in this
environment within four million timesteps of training in prior evaluations (Papoudakis et al., 2021).

Multi-Agent Particle Environment: In the multi-agent particle environment (MPE) (Mordatch &
Abbeel, 2018; Lowe et al., 2017), agents navigate continuous two-dimensional, fully-observable environments.
In all tasks, agents observe the relative position and velocity of all agents, as well as the relative positions
of landmarks in the environment. Agents choose between five discrete actions consisting of doing nothing
and movement in all four cardinal directions. We evaluate agents in three diverse tasks within MPE which
all require cooperation between all agents with densely rewarded objectives. (1) Predator-prey in which
three agents control predators in an environment with three landmarks, representing obstacles, and a faster,
pre-trained4 prey. (2) Spread in which three agents need to cover three landmarks while avoiding collisions

4Pre-trained agents are obtained from the EPyMARL codebase (Papoudakis et al., 2021). They were obtained by training all
agents (including adversaries) with the MADDPG algorithm for 25,000 episodes.

17

Under review as submission to TMLR

with each other. (3) Adversary in which two agents are in an environment with an pre-trained adversary
and two landmarks. At the beginning of each episode, one of the two landmarks is randomly determined
as the goal landmark for the agents (agents observe this goal landmark but the adversary has no information
about it). Both agents are rewarded for one of them being close to the goal landmark but they are negatively
rewarded for the adversary agent moving close to the goal location. Therefore, agents are incentivised to cover
both landmarks in order to maximise their rewards since then they are receiving rewards for covering the
goal landmark but also preventing the adversary agent from identifying which landmark is the goal landmark.

C Algorithmic Details

In this section, we provide pseudocode for training IDQN with the EMAX extension (Algorithm 1), for
training QMIX with the EMAX extension (Algorithm 3), and for evaluating any algorithm with EMAX
(Algorithm 2). The pseudocode for VDN with EMAX is analogous to the pseudocode for QMIX with EMAX
without the mixing network and computing total value estimates and targets in the loss computation by
following Equation (9). Furthermore, we provide additional details on the bootstrapped sampling process in
Appendix C.1.

Algorithm 1 Training IDQN with EMAX
Initialise parameters {θk

i }K
k=1 of value functions {Qk

i }K
k=1 for each agent i ∈ I

Initialise empty episodic replay buffer D
for each episode do

Obtain initial state s0 and joint observation o0

for each step t = 0, · · · , T do
for each agent i ∈ I do

Select action at
i ∼ πexpl

i (ht
i; θi) (Equation (6))

end for
Apply joint action at = (at

1, . . . , at
|I|)

Receive next state st+1 ∼ P(st, at), reward rt = R(st, at), and joint observation ot+1 ∼ Ω(st, at)
end for
Sample bootstrap masks {mk}K

k=1 from Bernoulli(p)
Store episode (s0:T , h0:T , a0:T , r0:T , {mk}K

k=1) in D
for each agent i ∈ I do

for each model in the ensemble k = 1, . . . , K do
Sample batch of episodes B from D with mk = 1
Compute the average loss L(θk

i) (Equation (8)) for each timestep t in B
Update θk

i by minimising L(θk
i)

end for
end for

end for

Algorithm 2 Evaluating with EMAX
Require: Trained ensemble of value functions {Qk

i }K
k=1 for each agent i ∈ I

Obtain initial state s0 and joint observation o0

for each step t = 0, · · · , T do
for each agent i ∈ I do

Select action at
i ∼ πeval

i (ht
i; θi) (Equation (12))

end for
Apply joint action at = (at

1, . . . , at
|I|)

Receive next state st+1 ∼ P(st, at), reward rt = R(st, at), and joint observation ot+1 ∼ Ω(st, at)
end for

18

Under review as submission to TMLR

Algorithm 3 Training QMIX with EMAX
Initialise parameters {θk

i }K
k=1 of value functions {Qk

i }K
k=1 for each agent i ∈ I

Initialise parameters θmix and θ̄mix of the main and target mixing networks
Initialise empty episodic replay buffer D
for each episode do

Obtain initial state s0 and joint observation o0

for each step t = 0, · · · , T do
for each agent i ∈ I do

Select action at
i ∼ πexpl

i (ht
i; θi) (Equation (6))

end for
Apply joint action at = (at

1, . . . , at
|I|)

Receive next state st+1 ∼ P(st, at), reward rt = R(st, at), and joint observation ot+1 ∼ Ω(st, at)
end for
Sample bootstrap masks {mk}K

k=1 from Bernoulli(p)
Store episode (s0:T , h0:T , a0:T , r0:T , {mk}K

k=1) in D
for each model in the ensemble k = 1, . . . , K do

Sample batch of episodes B from D with mk = 1
Compute the average loss L(θk) (Equation (2)) for each timestep t in B using the QMIX value

decomposition (Equation (10)) and targets (Equation (11))
Update θk and θmix by minimising L(θk)

end for
In a set interval, update target mixing network θ̄mix ← θmix

end for

C.1 Bootstrapped Sampling

As stated in Section 4, to obtain benefits from an ensemble of models, it is important for the models within
the ensemble to remain sufficiently different from each other. To maintain diversity across models within the
ensemble for EMAX, we train each model on different subsets of the entire experiences collected by using a
bootstrapped sampling process. To select bootstrapped samples to train each model in the ensemble, we
follow Osband et al. (2016a) and draw a Bernoulli mask {mk}K

k=1 for each model in the ensemble whenever
an episode is added to the episodic replay buffer. This mask determines whether the k-th model within
the ensemble is trained on this episode (mk = 1) or not (mk = 0). Each mask is drawn from a Bernoulli
distribution with probability p of being 1 and 1 − p of being 0, i.e. mk ∼ Bernoulli(p). For p = 1, each
episode would be used to train each model in the ensemble so all models in the ensemble would receive the
same training data. In contrast for a small p, the training data is likely to be diverse across models in the
ensemble but each model would also only be trained on a small subset of the episodes which might sacrifice
learning efficiency. In our experiments, we adopt to use p = 0.9 but similar to prior work (Osband et al.,
2016a) we have not found the choice of p to significantly affect the performance of our algorithm.

D Hyperparameters

For IDQN, VDN, QMIX and extensions with EMAX, we conduct a gridsearch to identify best hyperparameters
in one selected task within each environment by evaluating each algorithm configuration for three runs
and selecting the hyperparameter configuration which led to highest average evaluation returns throughout
training. We largely based our configurations on the reported hyperparameters from Papoudakis et al. (2021)
with minimal hyperparameter tuning. Our implementation of IDQN, VDN, QMIX, and EMAX are based on
the EPyMARL codebase5. For the baseline of MAVEN, CDS, and EMC, we migrated the provided codebase
from the authors6 into EPyMARL to support all environments. For MAVEN, CDS, and EMC, we use the

5Available at https://github.com/uoe-agents/epymarl.
6Available at https://github.com/AnujMahajanOxf/MAVEN, https://github.com/lich14/CDS and https://github.com/

kikojay/EMC.

19

https://github.com/uoe-agents/epymarl
https://github.com/AnujMahajanOxf/MAVEN
https://github.com/lich14/CDS
https://github.com/kikojay/EMC
https://github.com/kikojay/EMC

Under review as submission to TMLR

hyperparameters identified for QMIX for each environment with the algorithm-specific hyperparameters
provided by the authors. For IPPO and MAPPO, we use the best identified hyperparameters reported in
Papoudakis et al. (2021).

Table 2: Hyperparameters for IDQN, VDN, QMIX and extensions with EMAX in LBF. The gridsearch was
conducted in Foraging-10x10-4p-3f-coop for 4M time steps, and the bold entries corresponding to the best
identified configuration.

Algorithm Hyperparameter Value

Shared

γ 0.99
Activation function ReLU
Parameter sharing True
Optimiser Adam
Maximum gradient norm 5
Minimum ϵ 0.05
Evaluation ϵ 0.05
Learning rate e−4

Target update frequency 200
Replay buffer capacity (episodes) 5,000
Batch size (episodes) 32

QMIX Mixing embedding size 32
Hypernetwork embedding size 64

IDQN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

VDN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

QMIX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

IDQN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

VDN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

QMIX-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

20

Under review as submission to TMLR

Table 3: Hyperparameters for IDQN, VDN, QMIX and extensions with EMAX in BPUSH. The gridsearch
was conducted in BPUSH 12× 12 2ag for 7.5M time steps, and the bold entries corresponding to the best
identified configuration.

Algorithm Hyperparameter Value

Shared

γ 0.99
Activation function ReLU
Parameter sharing True
Optimiser Adam
Maximum gradient norm 5
Minimum ϵ 0.05
Evaluation ϵ 0.05
Learning rate e−4

Target update frequency 200
Replay buffer capacity (episodes) 5,000
Batch size (episodes) 32

QMIX Mixing embedding size 32
Hypernetwork embedding size 64

IDQN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

VDN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

QMIX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

IDQN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

VDN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

QMIX-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

21

Under review as submission to TMLR

Table 4: Hyperparameters for IDQN, VDN, QMIX and extensions with EMAX in RWARE. The gridsearch
was conducted in RWARE 11× 10 4ag for 5M time steps, and the bold entries corresponding to the best
identified configuration.

Algorithm Hyperparameter Value

Shared

γ 0.99
Activation function ReLU
Parameter sharing True
Optimiser Adam
Maximum gradient norm 5
Minimum ϵ 0.05
Evaluation ϵ 0.05
Learning rate e−4

Target update frequency 200
Replay buffer capacity (episodes) 5,000
Batch size (episodes) 32

QMIX Mixing embedding size 32
Hypernetwork embedding size 64

IDQN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

VDN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

QMIX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

IDQN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

VDN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

QMIX-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

22

Under review as submission to TMLR

Table 5: Hyperparameters for IDQN, VDN, QMIX and extensions with EMAX in MPE. The gridsearch was
conducted in Spread for 1M time steps, and the bold entries corresponding to the best identified configuration.

Algorithm Hyperparameter Value

Shared

γ 0.99
Activation function ReLU
Parameter sharing True
Optimiser Adam
Maximum gradient norm 5
Minimum ϵ 0.05
Evaluation ϵ 0.05
Learning rate e−4

Target update frequency 200
Replay buffer capacity (episodes) 5,000
Batch size (episodes) 32

QMIX Mixing embedding size 32
Hypernetwork embedding size 64

IDQN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

VDN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

QMIX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

IDQN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

VDN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

QMIX-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

23

Under review as submission to TMLR

E Normalised Evaluation Returns

Below, we visualise the normalised evaluation returns across all tasks within each of the four environments.
Evaluation returns are normalised between 0 and 1 for each task within the environment with the minimum
and maximum achieved evaluation return of any algorithm before computing the interquartile mean and
confidence intervals over all tasks and runs.

Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

No
rm

al
ise

d
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(a) LBF

0.0 0.5 1.0
1e7

0.00

0.25

0.50

0.75

1.00

No
rm

al
ise

d
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(b) BPUSH

0.0 0.5 1.0
1e7

0.00

0.25

0.50

0.75

1.00

No
rm

al
ise

d
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(c) RWARE

0 1 2
1e6

0.6

0.8

1.0
No

rm
al

ise
d

re
tu

rn
s

IDQN

0 1 2
1e6

VDN

0 1 2
1e6

QMIX

Timesteps

(d) MPE

Figure 9: Interquartile mean and 95% confidence intervals of normalised evaluation returns for all algorithms
in each environment.

24

Under review as submission to TMLR

F Individual Task Evaluation Returns

F.1 Level-Based Foraging

Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(a) LBF 10x10-4p-1f-coop

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(b) LBF 10x10-4p-2f-coop

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(c) LBF 10x10-4p-3f-coop

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(d) LBF 10x10-4p-4f-coop

0 2 4
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 2 4
1e6

VDN

0 2 4
1e6

QMIX

Timesteps

(e) LBF 10x10-3p-5f

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(f) LBF 15x15-8p-1f-coop

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(g) LBF 5x5-2p-1f-coop-pen

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(h) LBF 5x5-2p-2f-coop-pen

Figure 10: Mean and 95% confidence intervals of evaluation returns for all algorithms in LBF tasks.

25

Under review as submission to TMLR

F.2 Boulder-Push

Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.0 0.5 1.0
1e7

0

1

2

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(a) BPUSH 8x8 2ag

0.0 0.5 1.0
1e7

0

1

2

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(b) BPUSH 12x12 2ag

0.0 0.5 1.0
1e7

0.0

0.5

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(c) BPUSH 20x20 2ag

0.0 0.5 1.0
1e7

0

1

2

3

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(d) BPUSH 5x5 4ag

Figure 11: Mean and 95% confidence intervals of evaluation returns for all algorithms in BPUSH tasks.

26

Under review as submission to TMLR

F.3 Multi-Robot Warehouse

Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.0 0.5 1.0
1e7

0

5

10

15

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(a) RWARE 11x10 2ag

0.0 0.5 1.0
1e7

0

10

20

30

40

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(b) RWARE 11x10 4ag

0.0 0.5 1.0
1e7

0.0

0.5

1.0

1.5

2.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(c) RWARE 20x10 2ag

0.0 0.5 1.0
1e7

0

5

10

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(d) RWARE 20x10 4ag

0.0 0.5 1.0
1e7

0

1

2

3

4

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(e) RWARE 20x16 4ag

0.0 0.5 1.0
1e7

0

1

2

3

4

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(f) RWARE 29x16 4ag

Figure 12: Mean and 95% confidence intervals of evaluation returns for all algorithms in RWARE tasks.

27

Under review as submission to TMLR

F.4 Multi-Agent Particle Environment

Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0 1 2
1e6

−300

−250

−200

−150

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 1 2
1e6

VDN

0 1 2
1e6

QMIX

Timesteps

(a) MPE spread

0 1 2
1e6

0

10

20

30

40

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 1 2
1e6

VDN

0 1 2
1e6

QMIX

Timesteps

(b) MPE predator-prey

0 1 2
1e6

0

5

10

15

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 1 2
1e6

VDN

0 1 2
1e6

QMIX

Timesteps

(c) MPE adversary

Figure 13: Mean and 95% confidence intervals of evaluation returns for all algorithms in MPE tasks.

28

Under review as submission to TMLR

G Comparison with Larger Baseline Networks

As seen in Table 1, the computational cost of using ensembles of value functions with EMAX are considerable.
To investigate whether the performance of the vanilla algorithms can reach the performance of EMAX at
comparable computational cost, we evaluate all vanilla algorithms for larger network sizes. We keep the
overall architecture of networks identical, so all value function networks consist of one hidden layer projecting
the input observations to a hidden size of dh, followed by a gated recurrent unit (GRU) (Cho et al., 2014)
with identical hidden dimensionality, and a final linear layer projecting the hidden output state of the GRU
to action-values for each action with the dimensionality of the action space of an individual agent i, i.e. |Ai|.
We evaluate the vanilla algorithms with hidden sizes of dh ∈ {128, 256, 512} and compare their performance
to EMAX with K = 5 models in the ensemble and hidden size of 128. The number of total parameters
resulting from these models for one LBF and one RWARE task are shown in Table 6. As we can see, EMAX
with K = 5 (and hidden size of 128) has exactly five times more parameters in the model compared to the
baseline with one model with hidden size of 128. The baseline model with hidden size of 256 is comparable to
the model size of EMAX while the baseline model with hidden size of 512 is roughly three times larger than
the ensemble of EMAX.

Figure 14 shows the evaluation returns of all vanilla baseline algorithms for varying model sizes compared
to EMAX with K = 5 models in the ensemble. As we can see, the vanilla algorithms are unable to make
effective use of larger networks and reach similar evaluation returns to the original baseline with hidden sizes
of 128 despite four times and fifteen times more parameters in the model. Despite these larger networks, the
vanilla algorithms are unable to reach the performance of EMAX with K = 5 models in the ensemble. This
suggests that the ensemble in EMAX is important to make effective use of the increase in parameters and
EMAX does not outperform the baselines due to its larger computational budget.

Task |o| |Ai| Base (128) Base (256) Base (512) EMAX (K = 5)
LBF 10x10-4p-3f-coop 25 6 103,174 402,950 1,592,326 515,870
RWARE 11× 20 4ag 95 5 112,005 420,613 1,627,653 560,025

Table 6: Observation dimensionality and the resulting number of parameters within the main value function
networks for baseline algorithms with hidden sizes of 128, 256, and 512, as well as for EMAX with K = 5
models in the ensemble and hidden size of 128 for one LBF and RWARE task.

Baseline (128 hidden) Baseline (256 hidden) Baseline (512 hidden) + EMAX

0 2 4
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 2 4
Timesteps 1e6

VDN

0 2 4
Timesteps 1e6

QMIX

(a) LBF 10x10-4p-3f-coop

0 5
Timesteps 1e6

0.0

2.5

5.0

7.5

10.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 5
Timesteps 1e6

VDN

0 5
Timesteps 1e6

QMIX

(b) RWARE 11 × 20 4ag

Figure 14: Mean and 95% confidence intervals of evaluation returns for all vanilla algorithms with default
and larger network sizes, and EMAX extensions.

29

	Introduction
	Related Work
	Background
	Decentralised Partially Observable Markov Decision Process
	Value-Based Multi-Agent Reinforcement Learning

	The EMAX Framework: Ensemble Value Functions for Multi-Agent Exploration
	Experiments
	Evaluation Details
	Evaluation Results
	Analysis and Ablations

	Conclusion
	Computational Resources
	Environments
	Algorithmic Details
	Bootstrapped Sampling

	Hyperparameters
	Normalised Evaluation Returns
	Individual Task Evaluation Returns
	Level-Based Foraging
	Boulder-Push
	Multi-Robot Warehouse
	Multi-Agent Particle Environment

	Comparison with Larger Baseline Networks

