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Abstract

We derive a controlled generation objective within
the framework of Variational Flow Matching
(VFM), which casts flow matching as a variational
inference problem. We demonstrate that con-
trolled generation can be implemented two ways:
(1) by way of end-to-end training of conditional
generative models, or (2) as a Bayesian inference
problem, enabling post hoc control of uncondi-
tional models without retraining. Furthermore,
we establish the conditions required for equiv-
ariant generation and provide an equivariant for-
mulation of VFM tailored for molecular genera-
tion, ensuring invariance to rotations, translations,
and permutations. We evaluate our approach on
both uncontrolled and controlled molecular gen-
eration, achieving state-of-the-art performance on
uncontrolled generation and outperforming state-
of-the-art models in controlled generation, both
with end-to-end training and in the Bayesian in-
ference setting. This work strengthens the con-
nection between flow-based generative modeling
and Bayesian inference, offering a scalable and
principled framework for constraint-driven and
symmetry-aware generation.

1. Introduction
Generative modeling has seen remarkable advances in recent
years, particularly in image generation (Ramesh et al., 2022;
Rombach et al., 2022), where diffusion-based approaches
based on score matching (Vincent, 2011) have proven highly
effective (Ho et al., 2020a; Song et al., 2020b). However,
these methods rely on stochastic dynamics that require iter-
ative denoising steps during sampling, leading to significant
computational overhead (Song et al., 2020a; Zhang & Chen,
2022). An alternative approach, continuous normalizing
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flows (CNFs) (Chen et al., 2018), models a continuous-time
transformation between distributions (Song et al., 2021),
enabling direct sampling without Markov chain steps. Yet,
CNFs have historically been hindered by their reliance on
solving high-dimensional ordinary differential equations
(ODEs), making both training and sampling computation-
ally expensive (Ben-Hamu et al., 2022; Rozen et al., 2021;
Grathwohl et al., 2019).

To address these challenges, Lipman et al. (2023) introduced
Flow Matching (FM), a simulation-free method for training
CNFs by regressing onto vector fields that define proba-
bility paths between noise and data distributions. Unlike
traditional CNF training, which requires maximum likeli-
hood estimation through ODE solvers, FM directly learns
vector fields through a per-sample objective, enabling scal-
able training without numerical integration. FM general-
izes beyond diffusion methods by accommodating arbitrary
probability paths, including those based on optimal trans-
port (Chen & Lipman, 2024; Klein et al., 2023), enabling
faster training while maintaining expressiveness. Empiri-
cally, FM has outperformed diffusion models in likelihood
estimation and sample quality on datasets such as ImageNet
(Wildberger et al., 2024; Dao et al., 2023; Kohler et al.,
2023).

Variational Flow Matching (VFM) (Eijkelboom et al., 2024)
frames flow matching as posterior inference in the distri-
bution over trajectories induced by the used interpolation.
The key idea is to approximate the posterior probability
path, i.e. the probability distributions (for different points
in time) over endpoints given the current point in space,
using a sequence of variational distributions. For generation,
VFM approximates the true vector field with the expected
vector field based on the learned variational approximation.
This approach achieves state-of-the-art results in categor-
ical data generation while maintaining the computational
efficiency that makes FM practical. While VFM has demon-
strated considerable success in categorical data generation
and shows initial promising results on general geometries
(Zaghen et al., 2025), its broader potential, both methodolog-
ically and in terms of real-world applications, has not been
explored. In particular, a key distinguishing feature of VFM
is its ability to directly reason about (approximate) posterior
probability paths, which makes it well suited to address two
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fundamental challenges in flow-matching-based generative
modeling: controlled generation and the incorporation of
inductive biases such as symmetries.

Controlled generation is a fundamental challenge in gener-
ative modeling, requiring models to produce outputs that
satisfy specific constraints while maintaining natural vari-
ation in unconstrained aspects. This is particularly crucial
for applications like molecular design, where the interplay
between discrete (atom types, bonds) and continuous (spa-
tial positions) properties typically necessitates combining
multiple generative approaches. VFM’s unified treatment of
mixed modalities could potentially address this challenge,
though developing effective control mechanisms remains
an open problem. Additionally, many real-world applica-
tions exhibit inherent symmetries – for instance, molecular
structures should remain valid under rotations, translations,
and permutations. Incorporating such domain-specific con-
straints into VFM would be essential for producing outputs
with consistent structure and improved generalization. Thus,
extending VFM to handle both controlled generation and
symmetry constraints represents a key direction for devel-
oping more practical and reliable generative models.

In this work, we address both of the aforementioned chal-
lenges. We extend VFM to controlled generation, deriving a
principled formulation that enables generative models to sat-
isfy explicit constraints. We show that this formulation nat-
urally emerges from the connection between flow matching
and variational inference (Eijkelboom et al., 2024), allow-
ing conditional generation to be understood as a Bayesian
inference problem. Additionally, this perspective enables
post-hoc control of pretrained generative models without
requiring conditional training, providing cheap and flexible
alternative to standard end-to-end approaches.

Furthermore, we show how we can design variational ap-
proximations that are group-equivariant with respect to its
expectation, which ensures that the generative dynamics
respect key invariances. We demonstrate the utility of these
advancements on problems in molecular generation, a field
that, as of late, has received great attention and as a result
many advances of the state-of-the-art.

Our key contributions are:

• Controlled Generation as Variational Inference: We
derive a controlled generation objective within VFM
and show that it can be used in two ways: 1) for end-
to-end training of conditional generative models, or 2)
as a Bayesian inference problem, enabling post hoc
control of unconditional models without retraining.

• Equivariant Formulation: We establish the condi-
tions required for equivariant generation and provide an
equivariant formulation of VFM, ensuring that the gen-

erative process respects symmetries such as rotations,
translations, and permutations – critical for molecular
modeling.

• Results for Molecular Generation: We validate our
method on both unconditional and controlled molec-
ular generation, achieving state-of-the-art results on
unconditional tasks and significantly outperforming ex-
isting models in conditional generation – both with and
without end-to-end training. Notably, Bayesian infer-
encematches or surpasses explicitly trained conditional
models, demonstrating its flexibility and scalability.

These advances establish VFM as a robust and efficient
framework for constraint-driven generative modeling, with
broad applications in molecule generation, e.g. material
design, drug discovery, and beyond.

2. Background
2.1. Transport Dynamics for Generative Modeling

Generative modeling through transport dynamics is a flex-
ible framework for approximating complex distributions,
such distributions over valid molecular structures, by trans-
forming a simple distribution p0 (e.g., a standard Gaussian)
into a target distribution p1. This transformation is typi-
cally described by a time-dependent process, governed by
an ordinary differential equation (ODE):

d

dt
φt(x) = ut(φt(x)), with φ0(x) = x, (1)

where ut : [0, 1]×RD → RD is a velocity field that guides
the evolution over time. The task is to approximate ut us-
ing a parameterized model vθt (x), such as a neural network.
While ODEs are invertible (under Lipschitz continuity of ut)
– defining a likelihood through a change-of-variables com-
putation – solving ODEs during training is computationally
expensive.

Flow Matching addresses this limitation by directly learning
the time-dependent vector field ut on [0, 1] through:

LFM(θ) := Et,x

[∣∣∣∣ut(x)− vθt (x)
∣∣∣∣2] . (2)

While ut is intractable, we can make an assumption on the
velocity field ut(x | x1) for a generative process that is con-
ditioned on a specific endpoint x1 (e.g., a target molecule).
The marginal field ut(x) can then be expressed as an ex-
pected value with respect to the posterior probability path
pt(x1 | x), which defines the distribution over possible end
points for interpolations intersect x at time t,

ut(x) = Ept(x1|x) [ut(x | x1)] , (3)

enabling efficient estimation through conditional samples.
A key insight is that minimizing the loss for the conditional
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velocity field yields the same gradient as minimizing it for
the marginal field, leading to the conditional flow matching
loss:

LCFM(θ) := Et,x1,x

[∣∣∣∣ut(x | x1)− vθt (x)
∣∣∣∣2] . (4)

2.2. Variational Flow Matching

Variational Flow Matching (VFM) extends Flow Matching
by introducing a variational perspective. Instead of directly
regressing to the true vector field, VFM parameterizes it
through a variational distribution qθt (x1 | x):

vθt (x) := Eqθt (x1|x) [ut(x | x1)] . (5)

This reformulation transforms the problem into one of vari-
ational inference, minimizing the Kullback-Leibler diver-
gence between the true posterior pt(x1 | x) and its varia-
tional approximation qt(x1 | x):

LVFM(θ) := Et

[
KL
(
pt(x1, x) || qθt (x1, x)

)]
(6)

= −Et,x1,x

[
log qθt (x1 | x)

]
+ const. (7)

When the conditional velocity field is linear in x1 (e.g.
straight-line interpolation, diffusion), this objective sim-
plifies to matching only the posterior mean, as then

Ept(x1|x)[ut(x | x1)] = ut(x | Ept(x1|x)[x1]). (8)

Moreover, the latter expectation only depends element-wise
on the marginal expectation, implying we can use a fully
factorized variational form without loss of generality, which
results in the simplified mean-field objective:

LMF-VFM(θ) = −Et,x1,x

[
log

(
D∏

d=1

qθt (x
d
1 | x)

)]
(9)

= −Et,x1,x

[
D∑

d=1

log qθt (x
d
1 | x)

]
. (10)

Notice that this reduces learning a single high-dimensional
distribution into learning D univariate distributions, a much
simpler task.

VFM’s flexibility in terms of the choice of variational distri-
bution qt makes it particularly well-suited for molecular gen-
eration tasks. For instance, using categorical factors enables
modeling of discrete molecular features like atom types and
bond orders, which can be combined with Gaussian factors
to represent continuous atomic coordinates. This unified
treatment of discrete and continuous variables, combined
with the efficiency inherited from Flow Matching, makes
VFM attractive for mixed-modality tasks.

3. Controlled and Equivariant VFM
Controlled generation is crucial for practical applications in
generative modeling. In this section, we 1) extend VFM to
controlled generation by deriving a unified objective for both
end-to-end training and control using post-hoc Bayesian
inference and 2) develop a fully equivariant framework that
ensures invariance to key symmetries.

3.1. Controlled Variational Flow Matching

Controlled generation extends generative modeling by guid-
ing the generative process to satisfy constraints imposed by
conditioning on additional information y. In Flow Match-
ing, the primary goal is to learn a sequence of distributions
(pt)0<t<1 that evolve from a source distribution p0 to a tar-
get distribution p1. In the context of controlled generation,
we introduce a controlled velocity field ut(· | y) and a corre-
sponding controlled probability density path pt(· | y), which
dictates how the distribution evolves in response to y. To
distinguish this from standard conditional modeling, we ex-
plicitly use the terms controlled velocity field and controlled
probability (density) path to emphasize the dependence on
the control variable y.

The main observation we make is that, given a datapoint x1,
the intermediate latent variables (xt)0<t<1 are conditionally
independent of y,

pt(x | x1, y) = pt(x | x1). (11)

This makes intuitive sense: once the final sample x1 is
known, it encapsulates all the information about the control
variable y, rendering the intermediate states xt unneces-
sary for inferring y. Or, equivalently, given x1, the control
variable y does not inform our noising process. We can
therefore express the probability path conditioned on y as
the marginal,

pt(x | y) =
∫
x1

pt(x, x1 | y) dx1

=

∫
x1

pt(x | x1)p1(x1 | y) dx1.

To arrive at a formulation similar to standard VFM we have
to find the velocity field that generates this probability path.
We establish the corresponding controlled velocity field in
Proposition 3.1.

Proposition 3.1. The controlled (marginal) velocity field

ut(x | y) := Ept(x1|x,y)[ut(x | x1)],

generates the controlled probability path pt(x | y).

Proof. See Appendix A.1.
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Algorithm 1 Sampling Conditional VFM
Require: p(y | x1), µθ

t

x0 ∼ p0
for k = 0, · · · ,K do ▷ K integration steps

t← k/K
x̂1,0 = µθ

t (xk) ▷ Mean of pt(x1 | x)
for s = 0, · · · , S do

x1,s+1 ← x1,1 +Σt∇x1
log p(y | x1,s)

end for
vt = (x1,S − xt)/(1− t)
xk+1 ← xk + (1/T )vt

end for
Return xT

In short, we can generate samples from pt(x | y) by in-
tegrating the ODE defined by the controlled velocity field
ut(x | y). If we can approximate pt(x1 | x, y), then this
allows us to compute ut(x | y) in terms of Ept(x1|x,y)[x1]
in a manner that analogous to the uncontrolled case in (8),
as long as ut(x | x1) is linear in x1. Note that a similar
result was found in Zheng et al. (2023).

A straightforward way to approximate pt(x1 | x, y) model it
directly by means of a variational distribution qθt (x1 | x, y)
that additionally conditions on the contol y. This leads to
the Controlled Variational Flow Matching objective:

L(θ) = −Et,x1,x,y

[
log qθt (x1 | x, y)

]
+ const. (12)

As before, when ut(x | x1) is linear in x1, it suffices to
employ a mean-field variational distribution. In practice,
this allows for an efficient and scalable implementation
of controlled generation, where the model only needs to
learn how the expectation of x1 influences the velocity field,
rather than explicitly modeling the full posterior. This sim-
plification makes Controlled VFM computationally feasible,
preserving its ability to handle complex constraints while
maintaining the efficiency advantages of Flow Matching.

3.2. Controlled Generation as Inference

Rather than directly training a conditional model
pt(x1 | x, y) from scratch, we can leverage the structure
of VFM and formulate controlled generation as a Bayesian
inference problem. Specifically, we observe that the target
posterior distribution can be written as

pt(x1 | x, y) ∝ pt(x1 | x)︸ ︷︷ ︸
VFM

· p(y | x1)︸ ︷︷ ︸
Classifier

. (13)

This decomposition highlights two key components: (1) the
base generative model pt(x1 | x), which is learned using
VFM, and (2) the task-specific likelihood p(y | x1), which
enforces the desired constraints. That is, the unnormalised
density p̃(x1) ∝ pt(x1 | x)p(y | x1) can be interpreted as

a reweighted version of pt(x1 | x), where p(y | x1) acts
as a task-specific weight. Approximating the influence of
p(y | x1) near the mean of pt(x1 | x), we treat the prior as
the dominant component.

We can view the (approximate) solution to the task-specific
generation problem as a fixed-point equation. The mode
of the unnormalized density p̃(x1) satisfies the fixed-point
equation:

∇x1 log pt(x1 | x) +∇x1 log p(y | x1) = 0. (14)

Using this formulation we propose an iterative method to
approximate the mean of p̃(x1) using fixed-point iteration.
Assuming pt(x1 | x) is Gaussian with mean µt(x) and co-
variance Σt, the mean can iteratively be refined as follows:

x
(k+1)
1 = µt(x) + Σt∇x1

log p(y | x(k)
1 ), (15)

where the initialization is x
(0)
1 = µt(x). See provided

pseudo code for details.

This iterative process serves as a practical method to approx-
imate the mean of p̃(x1) without directly normalizing the
density. The step size in each iteration is governed by the
covariance Σt, and convergence depends on properties such
as the smoothness and log-concavity of log p(y | x1). This
underscores the modularity: the pretrained generative model
pt(x1 | x) serves as a reusable prior, while task-specific con-
straints are incorporated through p(y | x1). By iteratively
refining the samples, we enable controlled generation tai-
lored to specific tasks without requiring retraining of the
generative backbone. The fixed-point approach provides
an efficient and adaptable solution for incorporating task-
specific constraints into generative modeling. Note that our
aim is not a full Bayesian treatment, but to show that min-
imal inference-time updates – without retraining and with
negligible overhead – enable effective post-hoc control. It
hence serves as a proof of concept for integrating traditional
inference techniques with SOTA generative models without
the need of extra training. Note that work by e.g. Park et al.
(2024) achieves a similar slightly goal through the Tweedie
approximation, though said approximation provides a ar-
guably noisier estimate of the gradient and would be more
difficult to learn.

By explicitly separating the generative model from the task-
specific component, this formulation introduces a modular
and flexible approach to controlled generation. Pretrained
VFM models can be reused across multiple tasks by sim-
ply adapting or replacing the classifier p(y | x1), avoiding
the need to retrain the generative model entirely. This is
particularly well-suited for scenarios where tasks or control
variables y frequently change. Moreover, unlike standard
classifier-guidance methods in diffusion (e.g. Chung et al.
(2022)), which require a time-dependent classifier pt(y | x),
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classification in VFM is performed on data pairs (x1, y).
This allows direct usage of off-the-shelf classifiers or re-
ward functions, which are typically trained on x1 rather
than intermediate states x, enabling controlled generation
without approximations or modifications to the underlying
flow matching framework.

This modularity is particularly valuable in applications like
molecular generation, where a pretrained model pt(x1 | x)
can remain fixed while p(y | x1) is tailored to predict spe-
cific molecular properties. Specifically, it opens up the door
to using recent complex graph models that are e.g. based on
geometry (Zhdanov et al., 2024), topology (Bodnar et al.,
2021a;b), or both (Eijkelboom et al., 2023; Kovač et al.,
2024; Battiloro et al., 2024; Liu et al., 2024). Similarly,
in image generation, the same generative backbone can
be paired with new classifiers to enforce style or content-
specific constraints, facilitating efficient domain adaptation.
From a practical standpoint, this framework also opens the
door to a variety of inference tools for controlled generation.
For instance, energy-based approaches such as Langevin
dynamics can be applied iteratively to guide the genera-
tion process by exploiting the gradient of the unnormalized
posterior.

3.3. Group Equivariant Variational Flow Matching

Equivariance describes the property that a model’s output
transforms in the same way as the input under a symme-
try, such as a rotation or translation, leading to consistent
preservation of the underlying structure. In (Variational)
Flow Matching, we aim for all pt to be invariant, ensuring
the generative process respects the symmetries of the target
distribution. This is crucial for modeling real-world data
with inherent symmetries, improving both efficiency and
alignment with the data’s structure.

Informally, since we only access the mean of the posterior
distribution during generation, this can be achieved by de-
signing the model qθt (x1 | x) to be group-equivariant with
respect to the expectation of the distribution. Specifically,
for all g ∈ G in a given group G, we require that:

Eqθt (x1|g·x) [x1] = g · Eqθt (x1|x) [x1] . (16)

In addition, we must ensure that the prior distribution ad-
heres to the same symmetry constraints; otherwise, the sym-
metry cannot be preserved. Moreover, the conditional ve-
locity field used to compute the marginal field must satisfy
bi-equivariance, expressed as:

ut(g · x | g · x1) = g · ut(x | x1). (17)

This leads to the following proposition:

Proposition 3.2. Let G be an arbitrary group, and suppose
that 1) the prior distribution is invariant under G, 2) the

conditional velocity field is bi-equivariant under G, and
3) the variational posterior is equivariant under G with
respect to its expected value. Then the marginal path pt(x)
is invariant under G.

Proof. See Appendix A.2.

When G acts linearly, the optimal transport conditional ve-
locity naturally satisfies the bi-equivariance property, as:

g · x1 − g · x
1− t

= g ·
(
x1 − x

1− t

)
. (18)

This is particularly relevant for groups such as Sn (the sym-
metric group) and SO(n) (the special orthogonal group),
both of which act linearly on Rn. Consequently, under
appropriate choices of prior distribution and model archi-
tecture, G-VFM ensures that the generative dynamics are
invariant under Sn and SO(n) when employing the optimal
transport conditional velocity field, arguably the two most
relevant groups in real-life applications.

4. VFM for Molecular Generation
A Unified Perspective on Molecular Generation Tasks.
Molecular generation can be divided into three distinct tasks,
each addressing different aspects of molecular generation1:

• Discrete-Molecular Generation focuses on molecular
graphs (A,E), i.e. only considers atom types and
bond types. Both are treated as categorical variables,
with models capturing relationships between atoms and
bonds without considering spatial positions.

• Continuous-Molecular Generation focuses on
atomic positions R to define the molecular geometry.
Features like atom and bond types are inferred later
using external tools, making this approach ideal for
applications where spatial configuration is key, such
as molecular docking. Sometimes, the atom type is
included as a continuous variable in this formulation
as well.

• Joint-Molecular Generation is the most comprehen-
sive setting, which considers both discrete and con-
tinuous features, typically of the form (R,A,C,E),
representing positions (continuous), atom types, for-
mal charges, and edge types (discrete), capturing the
full complexity of molecular data.

Variational Flow Matching (VFM) provides a unified ap-
proach that can be applied to any combination of discrete

1Here, we ignore string representations such as SMILES, as
these are primarily studied in the context of auto-regressive model-
ing.
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Table 1. Results discrete molecular generation QM9 and Zinc250k. Architecture used for VFM is the one used in Digress.

QM9 ZINC250k

Valid ↑ Unique ↑ FCD ↓ Valid ↑ Unique ↑ FCD ↓
MoFlow 91.36 98.65 4.467 63.11 99.99 20.931
EDP-GNN 47.52 99.25 2.680 82.97 99.79 16.737
GraphEBM 8.22 97.90 6.143 5.29 98.79 35.471
GDSS 95.72 98.46 2.900 97.01 99.64 14.656
Digress 99.00 96.20 - - - -
Dirichlet FM 99.10 98.15 0.888 97.52 99.20 14.222

Discrete FM 98.01 99.90 0.991 96.21 100.00 14.252
VFM 99.84 99.92 0.471 98.80 99.99 13.805

and continuous molecular features. This makes it applicable
to all three molecular generation tasks, unlike approaches
that require separate techniques for different modalities.

The variational distribution in VFM is defined using a net-
work that outputs variational parameters for each feature
in the model. For continuous features such as atomic posi-
tions R, the network can define a Gaussian variational form,
whereas for discrete features, like atomic and bond types
(A,E), it can output a categorical form. This data-driven
posterior formulation results in a flow-matching objective
that matches the specific structure of the data, eliminating
the need for separate sampling strategies, auxiliary networks,
or discrete-continuous hybridization techniques. As a result,
VFM provides a fully general and efficient framework for
molecular generation, allowing any combination of discrete
and continuous molecular features to be modeled without
modifying the underlying generative process.

Experiments. We evaluate VFM through two sets of ex-
periments designed to assess both its general generative
performance and its controlled generation capabilities.

First, we investigate how the transition from Flow Matching
to Variational Flow Matching impacts geometric-informed
generative performance. To this end, we take state-of-the-art
FM models and retrain them using VFM rather than FM,
allowing for a direct comparison. We evaluate this across
discrete, continuous, and joint molecular generation tasks
to determine whether VFM maintains or improves perfor-
mance while preserving the benefits of the FM framework.

Second, we assess the effectiveness of our controlled gen-
eration formulations by comparing against state-of-the-art
conditional generative models. We evaluate VFM in two
settings: (1) end-to-end training with property constraints
and (2) post-hoc conditioning via variational inference on
a pretrained unconditional model. This allows us to test
whether our approach can match or exceed dedicated con-
ditional models while benefiting from the flexibility and
efficiency of inference-based control.

Our focus is not on introducing new architectures but on
demonstrating how VFM enables a unified generative frame-
work across discrete and continuous data types while also
providing a scalable approach to controlled generation.
Through these experiments, we assess both VFM’s suitabil-
ity as a general-purpose approach to flow-based modeling
and its advantages for property-targeted generation.

4.1. Unconditional Generation

Discrete-Molecular Generation. As part of this work,
we have reproduced the discrete molecular generation re-
sults presented in Eijkelboom et al. (2024) and compared
them against discrete flow matching (which was published
after VFM) as that is the strongest existing discrete flow
model at this moment. Our results in Table 1 confirm strong
performance across both QM9 and ZINC250k datasets, and
we observe that VFM outperforms discrete flow matching,
though we do not claim this as a contribution of this work.

Continuous-Molecular Generation. We evaluate G-
VFM on the QM9 dataset using established metrics in-
cluding negative log-likelihood (NLL), atom stability, and
molecule stability. Our model achieves competitive results (-
120.7 NLL, 98.7% atom stability, 82.0% molecule stability),
matching or exceeding its flow-based approach. These re-
sults suggest that our variational treatment of flow matching
enhances model performance.

While recent work like PONITA (Bekkers et al., 2024),
which leverages molecular symmetries through weight-
sharing and a specialized Sphere2Vec architecture, has
pushed the state-of-the-art further (-137.4 NLL, 98.9% atom
stability, 87.8% molecule stability), our focus was not on
achieving absolute best performance but rather on explor-
ing the potential of variational approaches within the flow
matching framework. We deliberately built upon existing
flow-matching architectures to isolate the impact of our
methodological contributions. The strong performance of
G-VFM, despite using a simpler architecture, suggests that
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Table 2. Results continuous molecular generation on QM9.
Architecture used is the one in Klein et al. (2023).

Models NLL ↓ Atom stability ↑ Mol stability ↑
E-NF -59.7 85.0 4.9
G-Schnet N.A. 95.7 68.1
GDM -94.7 97.0 63.2
GDM-aug -92.5 97.6 71.6
EDM -110.7 98.7 82.0

EFM -115.7 98.7 82.0
G-VFM -120.7 98.7 82.0

our variational approach provides a promising direction for
improving flow-matching methods while maintaining their
computational advantages. Incorporating PONITA’s archi-
tectural innovations into the VFM framework represents an
exciting direction for future work.

Joint-Molecular Generation. We evaluate G-VFM’s ca-
pabilities for joint molecular generation on the QM9 and
GEOM-Drugs datasets, focusing on key metrics includ-
ing atom stability, molecular stability, validity, uniqueness,
and the Jensen-Shannon divergence of energy distributions
(JS(E)). On QM9, G-VFM achieves strong results (99.6%
atom stability, 99.5% molecular stability, 98.9% validity)
that are comparable to SemlaFlow, while maintaining the
same computational efficiency advantage of requiring only
100 function evaluations (NFE) compared to diffusion-based
approaches that need 500-1000 NFEs. On GEOM-Drugs,
G-VFM achieves competitive performance (99.8% atom
stability, 96.5% molecular stability, 95.3% validity) closely
matching SemlaFlow (99.8%, 97.7%, and 95.2% respec-
tively), though with a slightly higher JS(E) (0.18 vs 0.14).
Note that only MiDi, SemlaFlow, and EQGAT-diff generate
everything jointly, whereas the other methods use external
tools to infer e.g. bond information, which could affect the
relatively strong performance of these models.

Using the same underlying architecture as SemlaFlow but
replacing its discrete flow matching approach with VFM
allows us to handle both discrete and continuous variables
in a unified framework. This unified treatment not only
simplifies implementation by eliminating separate sampling
procedures for different variable types but also maintains
strong performance across datasets of varying complexity.
The ability of G-VFM to match SemlaFlow’s results while
reducing architectural complexity demonstrates the poten-
tial of variational approaches in flow matching, particularly
for challenging mixed-modality tasks like molecular gener-
ation.

Though not explicitly provided in the table, we want to
emphasize that the performance of G-VFM drops when
equivariance is not enforced, e.g. atomic and molecular

stability drop for tasks below 80%.

4.2. Conditional Generation

In the conditional generation experiments, we compare both
end-to-end VFM and variational inference VFM (VI-VFM)
with state-of-the-art conditional models on QM9 dataset.
For end-to-end VFM, we train the model with property
supervision, while for VI-VFM we use a pre-trained uncon-
ditional model and frame the property control as Bayesian
inference using a property classifier p(y | x1). We target
key molecular properties including polarizability (α), or-
bital energies (εHOMO, εLUMO) and their gap (∆ε), dipole
moment (µ), and heat capacity (Cv). Property classifiers are
trained following (Hoogeboom et al., 2022a).

For evaluation, we measure the Mean Absolute Error (MAE)
between target and predicted property values from the clas-
sifier on generated molecules, as well as standard molecular
quality metrics: atom stability (percentage of atoms with
valid valency), molecule stability (percentage of molecules
with all atoms stable), and validity (ability to be parsed by
RDKit (Landrum, 2016)).

Results and Discussion. Our end-to-end VFM achieves
2.05 MAE on polarizability prediction, outperforming pre-
vious methods like EDM (2.76), EQUIFM (2.41), and GE-
OLDM (2.37). The VI-VFM approach achieves competitive
results with 2.25 MAE using only an unconditional model.
By combining both approaches - training end-to-end and
then applying variational inference steering - we achieve
our best results of 1.98 MAE.

These results demonstrate the effectiveness of our varia-
tional inference framework for controlled generation. The
strong performance of VI-VFM (2.25 MAE) compared to
specialized conditional models like EDM (2.76 MAE) sug-
gests a promising new direction for post-hoc conditional
generation. While D-Flow achieves better performance
(1.39 MAE), it requires significantly more computational
resources during inference. D-Flow searches over many can-
didate initializations (high NFE), where our sampler needs
one forward pass plus a short fixed-point calibration (low
NFE, no gradients), i.e. where D-Flow needs O(k × N)
NFEs, we need only O(N), where k denotes the number
of ‘starting points’ considered by D-Flow and N denotes
the number of integration steps. That is, our approach of-
fers an effective compromise, with the flexibility to choose
between pure VI for simplicity or the combined approach
for enhanced performance. Most importantly, the success of
VI-VFM demonstrates that pre-trained unconditional mod-
els can be effectively repurposed for controlled generation
through variational inference, opening new possibilities for
adapting existing models to conditional generation tasks.
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Table 3. Results joint molecular generation on QM9 and GEOM-Drugs. Architecture used for G-VFM is the one in SemlaFlow.

Dataset Model Atom Stab ↑ Mol Stab ↑ Valid ↑ Unique ↑ JS(E) ↓ NFE ↓

QM9

EDM 98.7 82.0 91.9 98.9 0.12 1000
GCDM 98.7 85.7 94.8 98.4 0.10 1000
MUDiff 98.8 89.9 95.3 99.1 0.09 1000
GFMDiff 98.9 87.7 96.3 98.8 0.09 500
EquiFM 98.9 88.3 94.7 98.7 0.08 210
SemlaFlow 99.9 99.6 99.4 97.9 0.08 100

G-VFM 99.6 99.5 98.9 97.5 0.09 100

GEOM
MiDi 99.8 91.6 77.8 100.0 0.23 500
EQGAT-diff 99.8 93.4 94.6 100.0 0.11 500
SemlaFlow 99.8 97.7 95.2 100.0 0.14 100

G-VFM 99.8 96.5 95.3 100.0 0.18 100

Table 4. Quantitative evaluation of conditional molecule generation. Values reported in the table are MAE (over 10K samples) for
molecule property predictions (lower is better).

Property α ∆ε εHOMO εLUMO µ Cv

Units Bohr3 meV meV meV D cal
mol K

QM9∗ 0.10 64 39 36 0.043 0.040
EDM 2.76 655 356 584 1.111 1.101
EQUIFM 2.41 591 337 530 1.106 1.033
GEOLDM 2.37 587 340 522 1.108 1.025
D-Flow 1.39 344 182 330 0.300 0.784

G-VFM (End-to-End) 2.05 512 298 445 0.923 0.901
G-VFM (Bayesian Inference) 2.25 534 312 468 0.978 0.956
G-VFM (Both) 1.98 498 289 432 0.901 0.889

5. Related Work
Diffusion and Flow-based Methods for Discrete Data.
Recent advances in diffusion models have enabled vari-
ous approaches for discrete data generation. (Luo et al.,
2021) introduced GraphDF, using discrete latent variables
for molecular graphs, while GDSS (Jo et al., 2022) devel-
oped a score-based approach using stochastic differential
equations. DiGress (Vignac et al., 2023a) employed a graph
transformer architecture for progressive molecular modifica-
tion through edge and node operations. Recent flow-based
methods include Discrete Flow Matching (Campbell et al.,
2024), which uses continuous-time Markov Chains for flex-
ible sampling of both discrete and continuous data, and the
Dirichlet Flow framework (Stark et al., 2024), which models
conditional probability paths via Dirichlet distributions.

Group-Equivariant Diffusion for Continuous Data. In-
corporating data symmetries into generative models has
proven crucial for improving performance (Hoogeboom
et al., 2022b; Gebauer et al., 2020; Bekkers et al., 2024).
EDMs (Hoogeboom et al., 2022b) combined score-based
diffusion (Ho et al., 2020b) with group-equivariant graph

neural networks for molecular generation. Recent work
(Bekkers et al., 2024; Vadgama et al., 2025) leverages pre-
conditioned diffusion (Karras et al., 2022) for faster sam-
pling. These approaches maintain E(3)/SE(3) symmetries
through equivariant graph neural networks (Satorras et al.,
2021; Gasteiger et al., 2022; Bekkers et al., 2024), handling
continuous atomic positions while encoding discrete proper-
ties like atom types as one-hot vectors. Finally, Cornet et al.
(2024) aims similarly at improved conditional generation but
achieves this through making the noising process learnable
and is not compared against as the conducted experiments
different from the setup considered in this work.

Joint Modeling of Discrete and Continuous Data. Sev-
eral recent approaches tackle unified representation of dis-
crete and continuous features. MiDi (Vignac et al., 2023b)
generates both molecular graphs and 3D atomic arrange-
ments, while JODO (Huang et al., 2023) produces com-
plete molecules with atom types, charges, bonds, and 3D
coordinates. EQGAT-Diff (Le et al., 2023) extends joint
modeling to include hybridization states, improving sample
validity. FlowMol (Dunn & Koes, 2024) represents categor-
ical variables in continuous space using scaled conditional
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flow matching. Theoretical advances include discrete state
space flows via Continuous Time Markov Chains (Camp-
bell et al., 2024; Gat et al., 2024) and Fisher Flow Matching
(Davis et al., 2024), which develops Riemannian flows on
probability simplexes for joint modeling.

6. Conclusion
This paper builds on the Variational Flow Matching frame-
work to developed methods for controlled generation. To do
so, we define controlled velocity fields in terms of their cor-
responding controlled probability density paths, along with
variational methods for approximating these paths, offer-
ing a principled approach to generating data under specific
constraints. We demonstrate how conditional generation
can be formulated as a Bayesian inverse problem, bridging
generative modeling with classical probabilistic reasoning.
Furthermore, we propose a fully equivariant formulation
that ensures generative processes respect key symmetries
such as rotations, translations, and permutations, which
are particularly relevant for molecular and material design.
These advances achieve state-of-the-art results on bench-
mark datasets and provide a unified and efficient framework
for discrete, continuous, and joint molecular generation
tasks.

Future directions. The connection between VFM and
variational inference opens up significant opportunities for
hybrid generative modeling. By leveraging pretrained,
unconditional generative models as priors and applying
inference-based techniques like MCMC or energy-based ap-
proaches for task-specific fine-tuning, we can create adapt-
able frameworks for diverse applications. These hybrid
strategies combine the efficiency of pretrained models with
the ability to incorporate detailed task-specific constraints,
enabling precise control over generated outputs in complex,
high-dimensional settings.

While our focus has been on molecular design, these prin-
ciples extend naturally to periodic materials like crystal
structures, which can be represented by atomic species, frac-
tional coordinates, and lattice vectors. Material properties
exhibit key symmetries – invariance to permutations, transla-
tions, rotations, and periodic cell choices – while forces and
stress tensors respect these symmetries through invariance
or equivariance. By leveraging equivariant formulations,
VFM enables generative models to capture intricate symme-
tries and heterogeneities, offering a robust foundation for
materials design and discovery.

Looking forward, extending VFM to new structured do-
mains and integrating it with efficient MCMC-like methods
could drive breakthroughs across scientific and engineering
fields requiring both precision and flexibility. This expan-
sion could be particularly impactful in domains like pro-

tein design, where complex structural constraints must be
satisfied while maintaining biological feasibility. These
advances could solidify VFM’s role as a cornerstone of
generative modeling for complex physical systems.
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J., and Forré, P. Clifford-steerable convolutional neural
networks. arXiv preprint arXiv:2402.14730, 2024.

11

https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://api.semanticscholar.org/CorpusID:263310387
https://api.semanticscholar.org/CorpusID:263310387
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://proceedings.mlr.press/v139/luo21a.html
https://proceedings.mlr.press/v139/luo21a.html
https://arxiv.org/abs/2402.05841
https://arxiv.org/abs/2501.01999
https://arxiv.org/abs/2209.14734
https://arxiv.org/abs/2209.14734
https://arxiv.org/abs/2302.09048
https://arxiv.org/abs/2302.09048


Controlled Generation with Equivariant Variational Flow Matching

Zheng, Q., Le, M., Shaul, N., Lipman, Y., Grover, A., and
Chen, R. T. Guided flows for generative modeling and
decision making. arXiv preprint arXiv:2311.13443, 2023.

12



Controlled Generation with Equivariant Variational Flow Matching

A. Proofs
A.1. Controlled Variational Flow Matching

Proposition A.1. The controlled (marginal) velocity field

ut(x | y) := Ept(x1|x,y)[ut(x | x1)],

generates the controlled probability path pt(x | y).

Proof. By the continuity equation, we know that ut(x | y) = Ept(x1|x,y) [ut(x | x1)] generates pt(x | y) if

d

dt
pt(x | y) = −div

(
pt(x | y) · Ept(x1|x,y) [ut(x | x1)]

)
. (19)

First, we realized the time derivative of the controlled probability path indeed can be written as

d

dt
pt(x | y) =

∫ (
d

dt
pt(x | x1)

)
q(x1 | y) dx1 =

∫ (
d

dt
pt(x | x1)

)
q(x1 | y) (20)

= −
∫

div (ut(x | x1)pt(x | x1)) q(x1 | y) dx1. (21)

Then, by Fubini’s thoerem and direct manipulation, we observe that indeed

−
∫

div (ut(x | x1)pt(x | x1)) q(x1 | y) dx1 = −div
(∫

ut(x | x1)pt(x | x1)q(x1 | y) dx1

)
= −div

(
pt(x | y)

∫
ut(x | x1)

pt(x | x1)q(x1 | y)
pt(x | y)

dx1

)
= −div

(
pt(x | y)Ept(x1|x,y)[ut(x | x1)]

)
,

and thus, that ut(x | y) = Ept(x1|x,y) [ut(x | x1)] generates pt(x | y), which is what we wanted to show.

A.2. Equivariance

Proposition A.2. Let G be an arbitrary group, and suppose that 1) the prior distribution is invariant under G, 2) the
conditional velocity field is bi-equivariant under G, and 3) the variational posterior is equivariant under G with respect to
its expected value. Then the marginal path pt(x) is invariant under G.

Proof. Clearly, if our parameter model θ is equivariant and ut(x | x1) is bi-equivariant, we have that

vθt (g · x) = ut(g · x | µθ
t (g · x)) = ut(g · x | g · µθ

t (x)) = g · ut(x | µθ
t (x)) = g · vθt (x). (22)

Per definition, a point x from our generated distribution qθt′(x) is obtain through solving an ODE, i.e.

x = x0 +

∫ t=t′

t=0

Eqθt (x1|xt) [ut(xt | x1)] dt, (23)

for some x0 in p0. Hence, we can define a bijection (under Lipschitz continuity of vθt ) ξt′ : x0 7→ x, such that

x = ξt′(x0) := x0 +

∫ t=t′

t=0

Eqθt (x1|xt) [ut(xt | x1)] dt. (24)

Note that if vθt is equivariant, we have that ξt′(g · x0) = g · ξt′(x0) directly. Since p0(x0) = p0(g · x0) per assumption, we
have that qθt′(x) = qθt′(g · x), which is what we wanted to show.
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