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ABSTRACT

Contrastive learning has shown outstanding performances in both supervised and
unsupervised learning. However, little is known about when and how weakly su-
pervised information helps improve contrastive learning, especially from the the-
oretical perspective. The major challenge is that the existing theory of contrastive
learning based on supervised learning frameworks failed to distinguish between
supervised and unsupervised contrastive learning. Therefore, we turn to the un-
supervised learning frameworks, and based on the posterior probability of labels,
we translate the weakly supervised information into a similarity graph under the
framework of spectral clustering. In this paper, we investigate two typical weakly
supervised learning problems, noisy label learning, and semi-supervised learning,
and analyze their influence on contrastive learning within a unified framework.
Specifically, we analyze the effect of weakly supervised information on the aug-
mentation graph of unsupervised contrastive learning, and consequently on its
corresponding error bound. Numerical experiments are carried out to verify the
theoretical findings.

1 INTRODUCTION

Contrastive learning has shown state-of-the-art empirical performances in both supervised and unsu-
pervised learning. In unsupervised learning, contrastive learning algorithms (Chen et al., 2020; He
et al., 2020; Chen et al., 2021; Chen and He, 2021) learn good representations of high-dimensional
observations from a large amount of unlabeled data, by pulling together an anchor and its aug-
mented views in the embedding space. On the other hand, supervised contrastive learning (Khosla
et al., 2020) uses same-class examples and their corresponding augmentations as positive labels, and
achieves significantly better performance than the state-of-the-art cross entropy loss, especially on
large-scale datasets.

Recently, contrastive learning has been introduced to solve weakly supervised learning problems
such as noisy label learning (Tan et al., 2021; Wang et al., 2022) and semi-supervised learning.
For noisy label learning, most methodological studies use contrastive learning as a tool to select
confident samples based on the learned representations (Yao et al., 2021; Ortego et al., 2021; Li et al.,
2022), whereas the theoretical studies focus on proving the robustness of downstream classifiers with
features learned by self-supervised contrastive learning (Cheng et al., 2021; Xue et al., 2022). For
semi-supervised learning, contrastive loss is often used as a regularization to improve the precision
of pseudo labeling (Lee et al., 2022; Yang et al., 2022).

However, none of the existing studies use weakly supervised information to improve contrastive
learning. Perhaps the closest attempt is Yan et al. (2022), which leverages the negative correlations
from the noisy data to avoid same-class negatives for contrastive learning. Nonetheless, there are
purely empirical results presented, without showing when and how the weakly supervised infor-
mation helps improve contrastive learning. Moreover, a proper theoretical framework of weakly
supervised contrastive learning is especially lacking.

The major challenge lies in the fact that the existing theoretical frameworks compatible with both
supervised and unsupervised contrastive learning (Arora et al., 2019; Nozawa and Sato, 2021; Ash
et al., 2022; Bao et al., 2022) fail to distinguish between the two settings. To be specific, in order to
build a relationship with supervised learning losses, such studies assume that the positive pairs for
unsupervised contrastive learning are generated from the same latent class, and this is exactly how
positive samples for supervised contrastive learning are selected. Consequently, such mathemati-
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cal modeling cannot tell the difference between supervised and unsupervised contrastive learning.
Therefore, in this paper, we in turn base our theoretical analysis on an unsupervised learning frame-
work. Based on the posterior probability of labeled samples, we translate the weakly supervised
information into a similarity graph under the framework of spectral clustering. This enables us to
analyze the effect of the label information on the augmentation graph of the unsupervised spectral
clustering (HaoChen et al., 2021), and consequently on its corresponding error bound.

The contributions of this paper are summarized as follows.

• We for the first time establish a theoretical framework for weakly supervised learning con-
trastive learning, which is compatible with both noisy label and semi-supervised learning.

• By formulating the label information into a similarity graph based on the posterior prob-
ability of labels, we derive the downstream error bound of contrastive learning from both
weakly supervised labels and feature information. We show that both noisy labels and semi-
supervised labels can improve the error bound of unsupervised contrastive learning under
certain constraints on the noise rate and labeled sample size.

• We empirically verify our theoretical results.

2 RELATED WORKS

Theoretical Frameworks of Contrastive Learning. The theoretical frameworks of unsupervised
contrastive learning can be divided into two major categories. The first category is devoted to build-
ing the relationship between unsupervised contrastive learning and supervised downstream classifi-
cation. Arora et al. (2019) first introduces the concept of latent classes, hypothesize that semantically
similar points are sampled from the same latent class, and proves that the unsupervised contrastive
loss serves an upper bound of downstream supervised learning loss. Nozawa and Sato (2021); Ash
et al. (2022); Bao et al. (2022) further investigate the effect of negative samples, and establish sur-
rogate bounds for the downstream classification loss that better match the empirical observations on
the negative sample size. However, studies in this category have to assume the existence of super-
vised latent classes, and that the positive pairs are conditionally independently drawn from the same
latent class. This assumption fails to distinguish between supervised and unsupervised contrastive
learning, and cannot be used to analyze the weakly supervised setting.

Another major approach is to analyze contrastive learning by modeling the feature similarity.
HaoChen et al. (2021) first introduces the concept of the augmentation graph to represent the fea-
ture similarity of the augmented samples, and analyzes contrastive learning from the perspective
of spectral clustering. Shen et al. (2022) uses a stochastic block model to analyze spectral con-
trastive learning for the problem of unsupervised domain adaption. Similarly, Wang et al. (2021)
proposes the concept of augmentation overlap to formulate how the positive samples are aligned.
Moreover, contrastive learning is also understood through other existing theoretical frameworks
of unsupervised learning, such as nonlinear independent component analysis (ICA) (Zimmermann
et al., 2021), neighborhood component analysis (NCA) (Ko et al., 2022), variational autoencoder
(VAE) (Aitchison, 2021), etc.

In this paper, we follow the second category of contrastive learning approaches, and formulate the
weakly supervised information into a similarity graph based on both label and feature information.

Contrastive Learning for Noisy Label Learning. Ghosh and Lan (2021) first finds that pretrain-
ing with contrastive learning improves robustness to label noise through empirical evidences. Many
methodological studies are carried out for noisy label learning with the help of contrastive learning.
Yao et al. (2021); Ortego et al. (2021); Li et al. (2022) use representations learned from unsupervised
contrastive learning to filter out confident samples from all noisy ones, and in turn use the confident
samples to conduct supervised contrastive learning to generate better representations. By contrast,
Yan et al. (2022) follows the idea of negative learning (Kim et al., 2019; 2021), and leverage the
negative correlations from the noisy data to avoid same-class negatives in contrastive learning. For
theoretical studies, Cheng et al. (2021) analyzes the robustness of cross-entropy with SSL features,
and Xue et al. (2022) proves the robustness of downstream classifier in contrastive learning.

Contrastive Learning for Semi-supervised Learning. Lee et al. (2022); Yang et al. (2022) use
contrastive regularization to enhance the reliability of pseudo-labeling in semi-supervised learning.
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Kim et al. (2021) introduces a semi-supervised learning method that combines self-supervised con-
trastive pre-training and semi-supervised fine-tuning based on augmentation consistency regular-
ization. Zhang et al. (2022) uses contrastive loss to model pairwise similarities among samples,
generates pseudo labels from the cross entropy loss, and in turn calibrates the prediction distribution
of the two branches.

For both noisy label learning and semi-supervised learning tasks, the existing studies all focus on
using contrastive learning as a tool to improve the weakly supervised learning performance, whereas
to the best of our knowledge, none of the previous works show the effect of weak supervision to
contrastive learning itself. To fill in the blank, in this paper, we establish a theoretical framework
for weakly supervised contrastive learning, which is compatible with both noisy label and semi-
supervised learning tasks.

3 PRELIMINARIES

Notations. Suppose that random variables X̄ ∈ X̄ := Rd, and Y ∈ [r] := {1, . . . , r}. Let the input
natural data {(x̄i, yi)}i∈[N ] be i.i.d. sampled from the joint distribution P(X̄, Y ). Given a natural
data x̄ ∈ X̄ , we use A(·|x̄) to denote the distribution of its augmentations and use X to denote the
set of all augmented data, which is assumed to be finite but exponentially large. Denote n = |X |.

3.1 SPECTRAL CONTRASTIVE LEARNING

In HaoChen et al. (2021), an augmentation graph G is used to describe the distribution of augmented
samples, where the edge weight wxx′ := Ex̄∼P̄ [A(x|x̄)A(x′|x̄)] denotes the marginal probability
of generating augmented views x and x′ from the same natural data. Due to the total probability
mass,

∑
x,x′∈X wxx′ = 1. The adjacent matrix of the augmentation graph is denoted as A :=

(wxx′)x,x′∈X ∈ Rn×n, and the normalized adjacent matrix is denoted as Ā := D−1/2AD−1/2,
where D := diag(wx)x∈X , and wx :=

∑
x′∈X wxx′ .

In this paper, we consider the spectral contrastive loss proposed by HaoChen et al. (2021), that is,
for an embedding function f : X → Rk,

L(f) := −2 · Ex,x+ [f(x)⊤f(x+)] + Ex,x′

[(
f(x)⊤f(x′)

)2]
. (1)

Spectral contrastive loss is proved to be equivalent to the matrix factorization loss, i.e. for F ∈
Rn×k := (ux)x∈X , ux := w

1/2
x f(x),

Lmf(F ) := ∥Ā− FF⊤∥2F = L(f) + const. (2)

3.2 NOISY LABEL LEARNING

Recall that we denote the true label of an given instance x ∈ X is y. One common assumption
of the generation procedure of label noise is as follows. Given the true labels, the noisy label is
randomly flipped to another label ỹ with some probability. In this paper, we take the widely adopted
symmetric label noise assumption as an example.

For notational simplicity, we write the the symmetric label noise assumption in matrix form. Denote
Y := (ηj(xi))i∈[n],j∈[r], ηj(x) = P(Y = j|x), as the posterior probability matrix of the clean
label distribution, and denote Ỹ := (η̃j(xi))i∈[n],j∈[r], η̃j(x) = P(Ỹ = j|x), as the noisy label
distribution. In Assumption 1, we assume that the flipping probability is conditional independent of
the input data, and that the flipping probability to all other classes are uniformly at random.
Assumption 1. For symmetric label noise with noise rate γ ∈ (0, 1), we denote the transition matrix
T = (ti,j)i∈[r],j∈[r], where

ti,i = 1− γ, and ti,j =
γ

r − 1
, for j ̸= i. (3)

Then the noisy label posterior distribution is assumed to be
Ỹ = Y T . (4)

Under Assumption 1, T is symmetric. Specifically, when γ = 0, T degenerates to the identity
matrix Ir×r. Moreover, to guarantee the PAC-learnability, we usually assume the true label is the
dominating class, i.e. γ < r−1

r .
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3.3 SEMI-SUPERVISED LEARNING

For j ∈ [r], let nj be the number of labeled samples of Class j. Let nL =
∑

j∈[r] nL,j be the
number of all labeled samples, and nU be the number of unlabeled samples. Obviously, we have
nL + nU = n. Usually, the number of labeled samples is much smaller than that of the unlabeled
because human annotation is costly and labor-intensive. That is, we can naturally assume nL ≪ nU .

In the following parts of the paper, we analyze the settings of noisy label learning and semi-
supervised learning in a unified framework. Without loss of generality, we assume (x1, . . . , xnL

) is
labeled with noise rate γ ∈ [0, r−1

r ), and denote the corresponding clean and noisy posterior prob-
ability matrices as YL and ỸL, respectively. Then we have ỸL = YLT . Specifically, when γ = 0,
our analyzing framework degenerates to the standard setting of semi-supervised learning, and when
nL = n, our analyzing framework reduces to the standard noisy label learning.

4 MATHEMATICAL FORMULATIONS

We mention that our formulation of "similarity graph" is not a distributional assumption on the un-
derlying similarity among data, but to formulate a possible probability of drawing positive samples
in contrastive learning that takes both label and feature information into consideration. Specifically,
in Sections 4.1 and 4.2, we only discuss the similarity graph describing the weakly supervised labels
and neglected feature similarity. Then in Section 4.3, we take both label and feature similarity into
consideration through convex combination.

4.1 SIMILARITY GRAPH DESCRIBING NOISY LABEL INFORMATION

To leverage the labeled information in the form of similarity graph, we first consider a simple ex-
ample where noise rate γ = 0 and the label distribution is deterministic, i.e. for a sample x with
true label y, the posterior probability ηy(x) = 1 and ηj(x) = 0 for j ̸= y. In this case, we can
naturally assume that in the similarity graph describing label information, the intra-class vertices are
fully connected and the inter-class vertices are disconnected. That is, wxx′ = 1 if x and x′ has the
same label and otherwise wxx′ = 0.

Then we consider the more general stochastic label scenario. Recall that for unsupervised spec-
tral contrastive learning, the edge weight wxx′ in an augmentation graph G describes the marginal
probability of generating x and x′ from the same natural data. That is, wxx′ describes the joint
probability of a pair of positive samples. Similarly, since the positive samples for supervised con-
trastive learning (Khosla et al., 2020) are selected as all same-class samples, we can naturally define
the edge weight wxx′ as the probability of two views x and x′ generating from the same class, i.e.
wxx′ =

∑
j∈[K] ηj(x)ηj(x

′), and therefore AL := YLY
⊤
L . Moreover, we denote Ā as the nor-

malized adjacent matrix. For the simplicity of notations, we consider the case where the data is
class-balanced, i.e. n1 = . . . = nr = nL/r. Then we have Ā = r

nL
A.

Next, we add label noise to the our mathematical formulations. To be specific, when performing
supervised contrastive learning based on noisy labeled data, we naturally select positive samples as
the samples with the same noisy labeled data. According to Assumption 1, we have ỸL = YLT ,
where T is symmetric. Then the adjacent matrix of the similarity graph induced by noisy labels is
formulated as

ÃL := ỸLỸ
⊤
L = YLT (YLT )⊤ = YLTT⊤Y ⊤

L = YLT
2Y ⊤

L . (5)

Similarly, when data is class balanced, we have the normalized adjacent matrix ¯̃AL = nL

r ÃL.

4.2 SIMILARITY GRAPH DESCRIBING SEMI-SUPERVISED NOISY LABEL INFORMATION

Under the setting of semi-supervised learning, we have no prior knowledge about the label infor-
mation of the unlabeled samples. From the perspective of unsupervised contrastive learning, the
unlabeled samples can be viewed as having unique class labels. Therefore, to construct the similar-
ity graph, we attach sample-specific labels to the unlabeled samples. Thus, the posterior probability
matrix of unlabeled samples YU is an identity matrix InU×nU

. Note that here we only discuss the
similarity graph describing supervised information, so the feature similarity between samples is not
included in the similarity graph.
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Combining both labeled and unlabeled samples, the posterior probability matrix of all semi-
supervised samples can be denoted as

Ỹ =

[
ỸL 0
0 ỸU

]
=

[
YLT 0
0 InU×nU

]
. (6)

Therefore, the similarity graph of samples with nL noisy labels can be denoted as

Ã = Ỹ Ỹ ⊤ =

[
YLT

2Y ⊤
L 0

0 InU×nU
.

]
(7)

In Lemma 1 we present the influence of symmetric label noise with noise rate γ on the similarity
graph Ã.
Lemma 1. Under Assumption 1, if the data is class balanced, i.e. n1 = . . . = nr = nL

r , then there
holds

¯̃A =

[
α(γ)ĀL + β(γ) r

nL
1⃗nL

1⃗⊤nL
0

0 InU×nU

]
, (8)

where α(γ) :=
(
1− r

r−1γ
)2

and β(γ) := γ
r−1

(
2− r

r−1γ
)
.

Note that without label noise, i.e. γ = 0, we have α(γ) = 1 and β(γ) = 0. For the sake of simplicity,
in the following we write α and β instead of α(γ) and β(γ) when no ambiguity aroused.

In Lemma 1, we show that the effect of symmetric label noise is to add a uniform weight to the
edges between all labeled samples. This uniform weight increase the confusion between intra- and
inter-class similarities. For example, under the deterministic label scenario, we have AL = InL×nL

.
The original intra-class similarity is uniformly shrinked from 1 to α and the inter-class similarity
increases from 0 to β. Moreover, as the noise rate γ increases, α decreases and β increases, which
results in severer confusion between the intra- and inter-class similarities.

4.3 SIMILARITY GRAPH DESCRIBING BOTH LABEL AND FEATURE INFORMATION

In this part, we take both label and feature information into consideration. For the feature informa-
tion, we denote A0 as the augmentation graph of arbitrary unlabeled samples. For label information,
we take the similarity graph describing the semi-supervised noisy labeled (augmented) samples Ã as
denoted in equation 7. When leveraging the use of both label and feature information in contrastive
learning, we mix the two similarity graphs by convex combination, i.e. for θ ∈ (0, 1), the mixed
similarity graph of all augmented samples Aθ,γ,nL

is denoted as

Aθ,γ,nL
:= (1− θ)Ā0 + θ ¯̃A, (9)

where Ā0 and ¯̃A denote the (by row) normalization of A0 and Ã, respectively. Recall that edge
weights of the similarity graphs represent the probability of two augmented views being drawn as a
pair of positive samples. The similarity graph in equation 9 can be understood as selecting positive
pairs based on both weakly supervised labels and feature information.

5 THEORETICAL RESULTS

In this section, we first compute eigenvalues of the similarity graph describing both label and feature
information, which plays a key role in deriving the error bound of contrastive learning. Then in
Section 5.3, we show that the weakly supervised information helps reduce the error of the best
possible linear classifier on the representations learned by weakly supervised contrastive learning.

5.1 EIGENVALUES OF SIMILARITY GRAPH DESCRIBING WEAKLY SUPERVISED LABEL
INFORMATION

We first compute the eigenvalues of the similarity graph describing the semi-supervised noisy labels.
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Proposition 1. For arbitrary Y , assume that the labeled data is class-balanced, i.e.∑
i∈[nL] ηj(xi) = nL/r for j ∈ [r]. Assume that the eigenvalues of ĀL are µ1, . . . , µn (in de-

scending order). Then under Assumption 1, the eigenvalues of ¯̃A are

µ̃1 = . . . = µ̃nU+1 = 1, (10)

µ̃j = µjα = µj

(
1− r

r − 1
γ
)2

, for j = nU + 2, . . . , n. (11)

In Proposition 1, we show that the eigenvalues of ¯̃A rely on the eigenvalues of Ā and consequently
rely on the posterior probabilities of clean labels. Specifically, if the true label has higher posterior
probability, i.e. maxj∈[r] P(Y = j|x) is larger, then the eigenvalues of ĀL are larger. On the other

hand, the existence of label noise uniformly shrink the eigenvalues of ¯̃A except for the largest ones,
and larger noise rate γ results in smaller α and thus leads to smaller eigenvalues of ¯̃A. Moreover,
the number of largest eigenvalues is decided by the number of unlabeled samples.

Note that rank(Ã) ≤ rank(YL) + nU ≤ nU + r, and therefore we have µ̃nU+r+1 = . . . = µ̃n = 0.
Specifically, under the deterministic label scenario, we have µnU+2 = . . . = µnU+r = 1. Then the
eigenvalues of ¯̃A become

µ̃1 = . . . = µ̃nU+1 = 1, (12)

µ̃nU+2 = . . . = µ̃nU+r = α =
(
1− r

r − 1
γ
)2

, (13)

µ̃nU+r+1 = . . . = µ̃n = 0. (14)

5.2 EIGENVALUES OF SIMILARITY GRAPH DESCRIBING BOTH LABEL AND FEATURE
INFORMATION

In the following proposition, we discuss the eigenvalues of the mixed similarity graph Aθ,γ,nL

describing both weak labels and feature information.
Proposition 2. Denote λ1, . . . , λn as the eigenvalues of Aθ,γ,nL

. Then given the eigenvalues of Ā0,
i.e. ν1, . . . , νn and the eigenvalues of ĀL, i.e. µ1, . . . , µnL

(in descending order), when k ≤ nU ,
there holds

λk+1 ≥ max
{
θ + (1− θ)νnL+k, max

i=nL+k−r+1,...,nL+k−1
{θαµn+k+1−i + (1− θ)νi}, (1− θ)νk+1

}
,

(15)

when nU < k < nU + r, there holds

λk+1 ≥ max
{

max
i=nL+k−r+1,...,nL+k−1

{θαµn+k+1−i + (1− θ)νi}, (1− θ)νk+1

}
, (16)

and when k ≥ nU + r, there holds

λk+1 ≥ (1− θ)νk+1. (17)

According to Proposition 2, the lower bound of Specifically, under the deterministic scenario, we
have for k ≤ nU ,

λk+1 ≥ max
{
θ + (1− θ)νnL+k, θα+ (1− θ)νnL+k+1−r, (1− θ)νk+1

}
, (18)

for nU < k < nU + r,

λk+1 ≥ max
{
θα+ (1− θ)νnL+k+1−r, (1− θ)νk+1

}
, (19)

and for k ≥ nU + r,

λk+1 ≥ (1− θ)νk+1. (20)

We see that under the deterministic scenario, the lower bound of the k + 1-th largest eigenvalue
λk+1 of Aθ,γ,nL

depends on the eigenvalues νnL+k, νnL+k+1−r, and νk+1 of the unsupervised
augmentation graph A0. The value of λk+1 is also affected by the weighting parameter θ and the
noise rate γ. A perhaps anti-intuitive conclusion is that when k is larger than nU + r, the lower
bound of λk+1 is unaffected by the noise rate. That is, when k is large enough, the weak labels will
not affect the k + 1-largest eigenvalue of the mixed similarity graph.
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5.3 WEAK SUPERVISION HELPS REDUCE ERROR BOUND

Recall that the goal of contrastive representation learning is to learn a embedding function f :
X → Rk. The quality of the learned embedding is often evaluated through linear evaluation.
To be specific, denote B ∈ Rk×r as the weights of the downstream linear classifier, and the lin-
ear predictor is denoted as ḡf,B(x̄) = argmaxi∈[r] Px∼A(·|x̄)(gf,B(x) = i), where gf,B(x) =

argmaxi∈[r](f(x)
⊤B)i. In this paper, we focus on analyzing the error bound of the best possible

downstream linear classifier gf∗
pop,B

∗ , where f∗
pop ∈ argminf :X→Rk L(f) is the minimizer of the

population spectral contrastive loss L(f) as defined in equation 1, and B∗ is the optimal weight for
the downstream linear classifier.

Following HaoChen et al. (2021), we assume that the labels are recoverable from augmentations,
i.e. we assume there exists a classifier g that can predict label y(x) given input x with error at most
δ ∈ (0, 1) with function ŷ : X → [r].
Assumption 2. Let PX̄ be the probability distribution of original input data x̄. Denote x as an
augmented sample and y is its label. Assume that for some δ > 0, there holds

Ex̄∼PX̄ ,x∼A(·|x̄)1[ŷ(x) ̸= y] ≤ δ, (21)

and

Ex∼Unif(X )1[ŷ(x) ̸= y] ≤ δ. (22)

Compared with Assumption 3.5 in HaoChen et al. (2021), Assumption 2 additionally assume the
recoverable of labels taking expectation under the uniform probability distribution. We mention that
Assumption 2 is a minor revision of the original assumption. The additional assumption equation 22
does not change the nature of the original idea of label recovery, and will be used to bound the error
term of learning from weakly supervised labels.

Then in the following theorem we can derive the error bound of downstream linear evaluation learned
by weakly supervised contrastive learning.
Theorem 1. For arbitrary Y , assume that the labeled data is class-balanced, i.e.

∑
i∈[nL] ηj(xi) =

nL/r for j ∈ [r]. Denote ν1, . . . , νn as the eigenvalues of Ā0 (in descending order). Denote
E := Px̄∼PX̄ ,x∼A(·|x̄)

(
ḡf∗

pop,B
∗(x) ̸= y(x̄)

)
as the linear evaluation error, where B∗ ∈ Rr×k with

norm ∥B∗∥F ≤ 1/λk. Then under the deterministic scenario and Assumptions 1 and 2, for k ≤ nU ,
there holds

E ≤
2[2δ + θ(1− α) r−1

r ]

min{(1− θ)(1− νnL+k), (1− θ)(1− νnL+k+1−r) + θ(1− α), (1− θ)(1− νk+1) + θ}
+ 8δ,

(23)

for nU + 1 ≤ k ≤ nU + r − 1, there holds

E ≤
2[2δ + θ(1− α) r−1

r ]

min{(1− θ)(1− νnL+k+1−r) + θ(1− α), (1− θ)(1− νk+1) + θ}
+ 8δ, (24)

and for k ≥ nU + r, there holds

E ≤
2[2δ + θ(1− α) r−1

r ]

(1− θ)(1− νk+1) + θ
+ 8δ, (25)

where α :=
(
1− r

r−1γ
)2

.

By Theorem 1, we show that the form of the linear evaluation error bound depends on the dimension
of embedding k, whereas the error bound is larger when the noise rate γ and the label recovery
error δ gets larger, regardless of the dimension k. Recall that in HaoChen et al. (2021), the error
bound of purely unsupervised contrastive learning is 4δ

1−νk+1
+ 8δ. under the setting of standard

semi-supervised classification, i.e. when γ = 0, and usually k ≤ nU , we have

E ≤ 4δ

1− νnL+k
+ 8δ, (26)

which improves the error bound of purely unsupervised contrastive learning since νk+1 ≥ νnL+k.

Next, we discuss the situation when noisy label exists, i.e. γ > 0.
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• For k ≥ nU + r,
– if 1− α > 2rδ

r−1
νk+1

1−νk+1
, then when θ = 0, there holds

E ≤ 2δ

1− νk+1
+ 8δ; (27)

– if 1− α ≤ 2rδ
r−1

νk+1

1−νk+1
, then when θ = 1, there holds

E ≤ r − 1

r
(1− α) + 10δ. (28)

• For nU + 1 ≤ k ≤ nU + r − 1, or k ≤ nU and δ ≤ r−1
2r (1− νnL+k+1−r), there holds

– if 1− α > 2rδ
r−1

νk+1

1−νk+1
, then when θ = 0,

E ≤ 2δ

1− νk+1
+ 8δ; (29)

– if 1− α ≤ 2rδ
r−1

νk+1

1−νk+1
, then when θ =

νk+1−νnL+k+1−r

νk+1−νnL+k+1−r+α ,

E ≤
2δ + r−1

r (1− α)
νk+1−νnL+k+1−r

νk+1−νnL+k+1−r+α

1− α
νk+1−νnL+k+1−r+ανk+1

+ 8δ. (30)

We show that when k < nU + r, when 1 − α ≤ 2rδ
r−1

νk+1

1−νk+1
, which is equivalent to the noise rate

γ smaller than a certain threshold, the weakly supervised information can improve the downstream
error bound by leveraging both label and feature information and by selecting a proper weighting
parameter θ. However, when the noise rate γ is large enough, the introduction of noisy labels
cannot directly improve the linear evaluation error, regardless of the dimension of the embedding
k. Fortunately, for contrastive learning under severe label noise, we can use multiple empirical
techniques such as using spatial relationship to select confident samples and reduce noise rate, use
the pre-filtered weakly supervised data to help improve contrastive learning, and in turn use the
improved feature embedding to further reduce label noise. This philosophy has been empirically
proved to be effective in many methodology studies (Yao et al., 2021; Ortego et al., 2021; Li et al.,
2022).

6 EXPERIMENTS

In this section, we aim to empirically verify the our theoretical results that mixing noisy labels and
feature information can improve the performance of contrastive learning.

Loss function. Recall that in the theoretical analysis, we investigate the mixed similarity graph
Aθ,γ,nL

:= (1− θ)Ā0 + θ ¯̃A. By triangle inequality, we have the matrix factorization loss

Lmf(F ) = ∥Aθ,γ,nL
− FF⊤∥2F = ∥(1− θ)Ā0 + θ ¯̃A− FF⊤∥2F

≤ (1− θ)∥Ā0 − FF⊤∥2F + θ∥ ¯̃A− FF⊤∥2F . (31)

According to equation 2, the spectral contrastive loss is equivalent to the matrix factorization loss.
Therefore, in experiments, we use the convex combination of supervised and unsupervised con-
trastive losses to leverage the noisy label and feature information, i.e. for θ ∈ (0, 1), we use

Lmix := (1− θ)Lunsup + θLsup. (32)

Setup. We conduct numerical comparisons on the CIFAR-10 and TinyImagenet-200 benchmark
image dataset (the results on TinyImagenet-200 can be found in Appendix A.2) and follow the
setting of SimCLR (Chen et al., 2020) and SupCon (Khosla et al., 2020). We use the SGD optimizer
and use ResNet-50 as the encoder and a 2-layer MLP as the projection head. We run experiments
on 4 NVIDIA Tesla v100 32GB GPUs. The data augmentations we use are random crop and resize
(with random flip), color distortion and color dropping. The models are trained with batch size 1024
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and 1000 epochs for each model. We evaluate the self-supervised learned representation by linear
evaluation protocol, where a linear classifier is trained on the top of the encoder, and regard its test
accuracy as the performance of the encoder. The symmetric noisy labels are generated by flipping
the labels of a given proportion of training samples uniformly to one of the other class labels.

In Table 1, we compare the performance of unsupervised contrastive learning (SimCLR), supervised
contrastive learning (SupCon), and weakly supervised contrastive learning (Mix) under noise rate
γ = 5% and γ = 20%. In SimCLR, we neglect all labels in the training procedure, and in SupCon,
we select positive samples as those with the same noisy annotations. The parameter grid of θ for
Mix is {0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95}. The performance comparisons with more noise rates can
be found in Appendix A.2. The best results are marked in bold. The standard deviation is also
reported.

Table 1: Performance comparisons on CIFAR-10 dataset.

γ = 0% γ = 5% γ = 20%

SimCLR 92.30 91.99± 0.06 91.59± 0.06
SupCon 95.48 93.86± 0.05 90.56± 0.05
Mix 95.48 94.39± 0.03 92.84± 0.09

We show in Table 1 that if the noise rate is small (γ = 5%), SupCon results in better performance
than SimCLR, whereas when the noise rate raises to γ = 20%, the noisy labels actually harm
the performance of contrastive learning. Nonetheless, under γ = 5% and γ = 20%, the weakly
supervised Mix outperforms both unsupervised SimCLR and supervised SupCon. This verifies the
result in Theorem 1 that when the noise rate is smaller than a certain threshold, leveraging both
weakly supervised and feature information helps improve the performance of contrastive learning.
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(a) Noise rate γ = 5%.
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(b) Noise rate γ = 20%.

Figure 1: Parameter analysis of θ.

In Figure 1 we conduct parameter analysis of θ for the weakly supervised contrastive learning (Mix).
We show that as θ increases from 0 to 1, the performance of Mix first increases and then decreases.
Moreover, larger noise rate requires smaller optimal θ.The optimal value of θ for γ = 5% is larger
than that for γ = 20%. That is, under severer label noise, less supervised information should be
considered in weakly supervised contrastive learning.

7 CONCLUSION

In this paper, we establish a theoretical framework for weakly supervised contrastive learning, which
is compatible with the settings of both noisy label learning and semi-supervised learning. By for-
mulating a mixed similarity graph describing both weakly supervised label information and unsu-
pervised feature information, we analyze the weakly supervised spectral contrastive learning based
on the framework of spectral clustering, and derive the downstream linear evaluation error bound.
Our theoretical results show that semi-supervised noisy labels improves the downstream error bound
when the noise rate is smaller than a certain threshold. Our theoretical framework reveals the effect
of weak supervision to contrastive learning, and has the potential to explain the existing weakly su-
pervised learning algorithms based on contrastive learning approaches and to inspire new algorithms.
For future works, we will investigate the effect of more complex weak supervision, such as active
learning and label-dependent label noise, on contrastive learning.
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A APPENDIX

A.1 PROOFS

Proof of Lemma 1. Under Assumption 1, we have

(T 2)i,j =

{
(1− γ)2 + γ2/(r − 1), i = j

2γ(1− γ)/(r − 1) + (r − 2)γ2/(r − 1)2, i ̸= j

=

(1− γ)2 + γ2/(r − 1), i = j
γ

r − 1

(
2− r

r − 1
γ
)
, i ̸= j.

(33)

That is, we have

T 2 =
[
(1− γ)2 + γ2/(r − 1)− γ

r − 1

(
2− r

r − 1
γ
)]

Ir×r

+
γ

r − 1

(
2− r

r − 1
γ
)
1⃗r1⃗

⊤
r

=
(
1− r

r − 1
γ
)2

Ir×r +
γ

r − 1

(
2− r

r − 1
γ
)
1⃗r1⃗

⊤
r

:= αIr×r + β1⃗r1⃗
⊤
r . (34)

Given γ ∈ [0, 1), we have

ÃL = YLT
2Y ⊤

L = YL

(
αIr×r + β1⃗r1⃗

⊤
r

)
Y ⊤
L

= αYLY
⊤
L + βYL1⃗r1⃗

⊤
r Y

⊤
L

= αAL + β1⃗nL
1⃗⊤nL

, (35)

where the last equality holds because
∑

j ηj(xi) = 1 for i ∈ [n].

and the normalized augmentation graph is

¯̃A = D̃−1/2ÃD̃−1/2, (36)

where

D̃ =

[
D̃L 0
0 InU×nU

]
, (37)

D̃L = diag(di), (38)

and

di =
∑

j∈[nL]

Ãi,j = α
∑

j∈[nL]

∑
ℓ∈[r]

ηℓ(xi)ηℓ(xj) + nLβ

= α
∑
ℓ∈[r]

ηℓ(xi)
∑

j∈[nL]

ηℓ(xj) + nLβ = α
∑
ℓ∈[r]

ηℓ(xi)nℓ + nLβ (39)

Specifically, when the labeled data is class-balanced, i.e. n1 = . . . = nr = nL/r. Then we have

di =
nL

r
α
∑
ℓ∈[r]

ηℓ(xi) + nLβ =
nL

r
α+ nβ =

nL

r
, (40)

and thus

¯̃A =

[
α r

nL
AL + β r

nL
1⃗nL

1⃗⊤nL
0

0 InU×nU

]
. (41)
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Proof of Proposition 1. We first prove that v1 = 1√
nL

1⃗nL
is an eigenvector of ĀL := r

nL
AL with

eigenvalue µ1 = 1. To be specific,

ĀL · 1
√
nL

1⃗nL
=

1
√
nL

· r

nL
AL · 1⃗nL

=
1

√
nL

· r

nL
YLY

⊤
L 1⃗nL

=
1

√
nL

· r

nL
YL

nL

r
1⃗r

=
1

√
nL

1⃗nL
, (42)

where the second last equality is due to class balance, i.e.
∑

i∈[nL] ηj(xi) = nL/r for j ∈ [r], and
the last equality holds because

∑
j∈[r] ηj(xi) = 1 for i ∈ [nL].

Therefore, we can rewrite ĀL as

ĀL =
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
1 0 . . . 0
0 µ2 . . . 0
...

...
...

0 0 . . . µnL




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL

 . (43)

Note that 1
nL

1⃗nL
1⃗⊤nL

can be decomposed as

1

nL
1⃗nL

1⃗⊤nL
=

( 1
√
nL

1⃗nL

)( 1
√
nL

1⃗nL

)⊤

=
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL

 . (44)

Then we have

¯̃AL := α
r

nL
AL + rβ

1

nL
1⃗nL

1⃗⊤nL

=
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
α 0 . . . 0
0 αµ2 . . . 0
...

...
...

0 0 . . . αµnL




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL



·
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
rβ 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL



=
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
α+ rβ 0 . . . 0

0 αµ2 . . . 0
...

...
...

0 0 . . . αµnL




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL

 . (45)

Since α+ rβ = 1, the eigenvalues of ¯̃AL are 1, αµ2, . . . , αµnL
. Thus the eigenvalues of

¯̃A =

[
¯̃AL 0
0 InU×nU

]
(46)
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are

µ̃1 = . . . = µ̃nU+1 = 1, (47)
µ̃j = αµj , for j = nU + 2, . . . , n. (48)

Proof of Proposition 2. By equation 13 in Fulton (2000), for two real symmetric n by n matrix
(1 − θ)Ā0 and θ ¯̃A, the k + 1-th largest eigenvalue of Aθ,λ,nL

:= (1 − θ)Ā0 + θ ¯̃A can take any
value in the interval

max
i+j=n+k+1

(1− θ)νi + θµ̃j ≤ λk ≤ min
i+j=k+2

(1− θ)νi + θµ̃j . (49)

By Proposition 1, we have

µ̃j =


1, j = 1, . . . , nU + 1;

αµj , j = nU + 2, . . . , nU + r;

0, j = nU + r + 1, . . . , n.

(50)

Therefore, we have

max
i+j=n+k+1

(1− θ)νi + θµ̃j

= max
1≤i≤n+k+1

(1− θ)νi + θµ̃n+k+1−i

= max


θ + (1− θ)νi, i = nL + k, . . . , n;

θαµn+k+1−i + (1− θ)νi, i = nL + k − r + 1, . . . , nL + k − 1;

(1− θ)νi, i = k + 1, . . . , nL + k − r

= max


θ + (1− θ)νnL+k

θαµn+k+1−i + (1− θ)νi, i = nL + k − r + 1, . . . , nL + k − 1;

(1− θ)νk+1,

(51)

where the last equality holds because {νi}i∈[n] is ranked in descending order. Then when k ≤ nU ,

λk+1 ≥ max
{
θ + (1− θ)νnL+k, max

i=nL+k−r+1,...,nL+k−1
{θαµn+k+1−i + (1− θ)νi}, (1− θ)νk+1

}
,

(52)

when nU < k < nU + r,

λk+1 ≥ max
{
(1− θ)νk+1, max

i=nL+k−r+1,...,nL+k−1
{θαµn+k+1−i + (1− θ)νi}

}
, (53)

and when k ≥ nU + r,

λk+1 ≥ (1− θ)νk+1. (54)

Proof of Theorem 1. By Lemma B.3 of HaoChen et al. (2021), for any labeling function y⃗ : X →
[r], there exists a linear probe B∗ ∈ Rr×k with norm ∥B∗∥F ≤ 1/λk such that

Px̄∼PX̄ ,x∼A(·|x̄)

(
gf∗

pop,B
∗(x) ̸= y(x̄)

)
≤ 2ϕŷ

1− λk+1
+ 8δ, (55)

where according to the definition of Aθ,λ,nL
,

ϕŷ = (1− θ)
∑

i,j∈[n]

(A0)i,j1[ŷ(xi) ̸= ŷ(xj)] + θ
1

nL

∑
i,j∈[n]

¯̃Ai,j1[ŷ(xi) ̸= ŷ(xj)]. (56)

We investigate the RHS of equation 56 respectively. The first term is∑
i,j∈[n]

(A0)i,j1[ŷ(xi) ̸= ŷ(xj)]
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=
∑

i,j∈[n]

Ex̄∼PX̄A(xi|x̄)A(xj |x̄)1[ŷ(xi) ̸= ŷ(xj)]

≤
∑

i,j∈[n]

Ex̄∼PX̄A(xi|x̄)A(xj |x̄)
(
1[ŷ(xi) ̸= ŷ(x̄)] + 1[ŷ(xj) ̸= ŷ(x̄)]

)
= 2

∑
i,j∈[n]

Ex̄∼PX̄A(xi|x̄)1[ŷ(xi) ̸= ŷ(x̄)]

= 2δ. (57)

The second term is
1

nL

∑
i,j∈[n]

¯̃Ai,j1[ŷ(xi) ̸= ŷ(xj)]

=
1

nL

∑
i,j∈[nL]

( ¯̃AL)i,j1[ŷ(xi) ̸= ŷ(xj)] +
1

nL

∑
i>nL

1[ŷ(xi) ̸= ŷ(xi)]

+ 2
1

nL

∑
i≤nL,j>nL

¯̃Ai,j1[ŷ(xi) ̸= ŷ(xi)]. (58)

According to the definition of ¯̃A, the last two terms are equal to 0. Then by Lemma 1, the second
term on the RHS of equation 56 becomes

1

nL

∑
i,j∈[n]

¯̃Ai,j1[ŷ(xi) ̸= ŷ(xj)]

=
1

nL

∑
i,j∈[nL]

(
αĀi,j + β

r

nL
1⃗nL

1⃗⊤nL

)
1[ŷ(xi) ̸= ŷ(xj)]

≤ α
r

n2
L

∑
i,j∈[nL]

∑
ℓ∈[r]

ηℓ(xi)ηℓ(xj)
(
1[ŷ(xi) ̸= ℓ] + 1[ŷ(xj) ̸= ℓ]

)
+ β

r

n2
L

∑
i,j∈[nL]

(
1[ŷ(xi) ̸= yi] + 1[ŷ(xj) ̸= yj ] + 1[yi ̸= yj ]

)
= α

r

n2
L

∑
ℓ∈[r]

2
nL

r

∑
i∈[nL]

ηℓ(xi)1[ŷ(xi) ̸= ℓ]

+ β
r

n2
L

(
2nL

∑
i∈[nL]

1[ŷ(xi) ̸= yi] +
∑

i,j∈[nL]

1[yi ̸= yj ]
)

≤ 2α
1

nL

∑
i∈[nL]

∑
ℓ∈[r]

ηℓ(xi)1[ŷ(xi) ̸= ℓ] + 2β
r

nL

∑
i∈[nL]

1[y⃗(xi) ̸= yi] + β(r − 1). (59)

Under the deterministic scenario, we have
1

nL

∑
i,j∈[n]

¯̃Ai,j1[ŷ(xi) ̸= ŷ(xj)]

= 2α
1

nL

∑
i∈[nL]

1[ŷ(xi) ̸= ℓ] + 2βr
1

nL

∑
i∈[nL]

1[y⃗(xi) ̸= yi] + β(r − 1)

= 2αδ + 2βrδ + β(r − 1)

= 2αδ + 2(1− α)δ + (1− α)
r − 1

r

= 2δ + (1− α)
r − 1

r
, (60)

where the second last equation holds due to α + rβ = 1. Combining equation 56, equation 57 and
equation 60, we have

ϕŷ ≤ (1− θ)2δ + θ
(
2δ + (1− α)

r − 1

r

)
= 2δ + θ(1− α)

r − 1

r
. (61)
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Therefore, by equation 55, we have

E := Px̄∼PX̄ ,x∼A(·|x̄)

(
gf∗

pop,B
∗(x) ̸= y(x̄)

)
≤

2[2δ + θ(1− α) r−1
r ]

1− λk+1
+ 8δ, (62)

Combined with Proposition 2, we have for k ≤ nU , there holds

E ≤
2[2δ + θ(1− α) r−1

r ]

min{(1− θ)(1− νnL+k), (1− θ)(1− νnL+k+1−r) + θ(1− α), (1− θ)(1− νk+1) + θ}
+ 8δ,

(63)

for nU + 1 ≤ k ≤ nU + r − 1, there holds

E ≤
2[2δ + θ(1− α) r−1

r ]

min{(1− θ)(1− νnL+k+1−r) + θ(1− α), (1− θ)(1− νk+1) + θ}
+ 8δ, (64)

and for k ≥ nU + r, there holds

E ≤
2[2δ + θ(1− α) r−1

r ]

(1− θ)(1− νk+1) + θ
+ 8δ. (65)

A.2 ADDITIONAL EXPERIMENTS

We run additional experiments on CIFAR-10 dataset with a noise rate γ varying from 0% to 60% in
Table 2. The parameter grid of θ for Mix is {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95}. Table 2 that our
Mix consistently outperforms SimCLR and SupCon.

Table 2: Additional Performance comparisons on CIFAR-10 dataset.

γ = 0% γ = 5% γ = 10% γ = 20% γ = 30% γ = 40% γ = 50% γ = 60%

SimCLR 92.30 91.99 91.63 91.59 90.95 90.42 90.18 88.92
SupCon 95.48 93.86 92.62 90.56 87.76 84.80 80.56 74.90
Mix 95.48 94.39 93.12 92.84 91.89 91.74 90.80 90.66

We run additional experimental comparisons on the TinyImagenet-200 dataset with noise rate γ =
0.4. The parameter grid of θ is {0.1, 0.2, 0.4, 0.6}. We additionally adopt Gaussian Blur for data
augmentation and keep the other experimental setups the same as Table 1. The results are presented
in Table 3. We show that Mix outperforms both SimCLR and SupCon on the TinyImagenet-200
dataset.

Table 3: Performance comparisons on TinyImagenet-200 dataset.

γ = 0% γ = 40%

SimCLR 53.78± 0.13 49.79± 0.05
SupCon 63.79± 0.23 50.24± 0.09
Mix 63.79± 0.23 53.40± 0.05
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