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Abstract

We explore the training dynamics of neural networks in a structured non-IID setting
where documents are presented cyclically in a fixed, repeated sequence. Typically,
networks suffer from catastrophic interference when training on a sequence of
documents; however, we discover a curious and remarkable property of LLMs
finetuned sequentially in this setting: they exhibit anticipatory behavior, recov-
ering from the forgetting on documents before encountering them again. This
behavior occurs even though the documents are never presented in context together.
The behavior emerges and becomes more robust as the architecture scales up its
number of parameters. Through comprehensive experiments and visualizations,
we demonstrate a new mechanism by which over-parametrized neural networks
can recover from catastrophic interference and uncover new insights into training
over-parameterized networks in cyclically structured environments.

1 Introduction

Large language models (LLMs) [1, 2, 3, 4] have demonstrated remarkable general capabilities in
a wide range of natural language tasks. During the training of LLMs, documents are typically
uniformly sampled at random. Due to the large scale of the training set—in contrast to many other
domains—LLM training typically occurs in an online fashion: each document is used only once for
just one update step without further repetition [5, 6, 7].

Such a training style is in stark contrast with how real world agents like humans acquire new
knowledge. In naturalistic settings, the material we are exposed to is structured in time and often
repeats in predictable, quasi-cyclic patterns (e.g., a person’s everyday morning routine consists of first
taking a shower, then eating breakfast, and finally dressing up). Hence it is important to understand
how existing deep learning methods and architectures perform in this setting.

Toward the goal of investigating more naturalistic training setups, we study a simplistic setting
involving structured training of LLMs: documents are presented cyclically in a fixed sequence and
repeated multiple times, just as we humans go through our daily routines. Moreover, to account for
the cost of switching among documents (analogous to the mental switching cost between different
environments and the waiting cost of obtaining new data), we allow the network to take multiple
gradient steps for each document. Compared to standard task-incremental and class-incremental
continual learning settings [8] which experience each task only once, our cyclic training setting better
approximates the quasi-cyclic temporal structure of real-world environments.

Typically, networks exhibit catastrophic interference (also known as catastrophic forgetting) [9]
when training on a sequence of tasks: the loss on a given document increases as the training
advances to other documents. Curiously, we discover that in a structured training environment,
LLMs exhibit a remarkable anticipatory recovery behavior: they recover from the forgetting of
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Figure 1: (a) Loss curves on document 1 for cyclic and random shuffled fine-tuning on a pre-trained Pythia-1B
model. The black circles indicate points just prior to training on the focal document. The inverted-U loss curves
within each epoch demonstrate the anticipatory recovery phenomenon. (b) Shift-averaged loss curve for cyclic
fine-tuning. (c) Online loss curves for cyclic and random shuffled fine-tuning with prequential evaluation.

Model Size 410M 1B 1.4B 2.8B
Cyclic 1.09 ± 0.03 1.03 ± 0.03 1.14 ± 0.06 1.34 ± 0.06
Shuffle 1.34 ± 0.02 1.51 ± 0.04 1.51 ± 0.04 1.79 ± 0.06

Table 1: Average online loss across epochs 2 to 5 for cyclic fine-tuning and random shuffled fine-tuning.

one document before seeing it again, multiple steps in the sequence prior to the recurrence of the
document (see Figure 1(a) and 1(b)). It is analogous to a person anticipating to eat breakfast while
taking a morning shower, but leaving the thought aside for the rest of the day. Critically, we never
present two documents together in context, so the model cannot directly learn sequential relationships
between them. Thus, our finding is surprising as there is no explicit memory in LLMs that stores
sequential knowledge across context windows, and there is no systematic overlap of content across
documents—the behavior emerges from a random document sequence after repeated exposure to
that sequence. Furthermore, we demonstrate that, as a result of anticipatory recovery, training with
fixed ordering achieves superior performance than random shuffling in the prequential evaluation [10]
setting (see Figure 1(c) and Table 1). For an agent that continuously acts and learns in the real world,
the performance on the upcoming task is what matters, and prequential evaluation measures such
performance. This result hints at the practical benefits of structured training.

Through extensive experiments, we study how different factors in model architecture and training
contribute to the anticipatory recovery phenomenon (Section 3.3). We show that only large-scale
networks exhibit this reawakening of knowledge, and smaller ones exhibit no such behavior (Sec-
tion 3.2). We also show that this phenomenon is not unique to LLMs; some vision models with
sufficient width and depth also demonstrate a similar behavior, but LLMs on language modeling tasks
exhibit the strongest recovery (Section 3.4). We offer insights on the training dynamics in sequentially
and cyclically structured input data and propose hypotheses for the causes of the behavior (Section 4).

2 Data and Experiment Setup

In this section, we describe the models, datasets, and training setups that we use in the subsequent
experiments. Additional details are presented in Appendix A.

Models. For the LLM experiments, we use Pythia [11], a suite of decoder-only autoregressive
language models pre-trained on the Pile dataset [12, 13]. We use pre-trained Pythia models ranging
from 160M to 2.8B parameters. For the vision experiments, we use pre-trained Image GPT [14]
models for causal image modeling and pre-trained vision transformer (ViT) [15] and VGG-19 [16]
models for image classification.

Datasets. For the LLM experiments, we use the CNN/Daily Mail news dataset [17]. We repurpose
it for causal language modeling by discarding the summaries and only using the articles. Importantly,
the CNN/Daily Mail dataset is not part of the Pile dataset and hence it is a new domain for the Pythia
pre-trained models. We use the same documents for both training and evaluation. Our goal here
is not to determine whether a trained model generalizes to new documents, but rather to study the
memory for a particular document as a function of position within the training history. For the vision
experiments, we use images sampled from CIFAR-10 [18] and ImageNet [19].
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Figure 2: Effect of model size for (a) pre-trained models and (b) random initializations. In each subfigure, the
left shows shift-averaged loss curves and the right shows the recovery score as a function of model size.

Training Setup. We randomly sample T documents from the dataset. In pre-processing, we
truncate each document to the first C tokens (we refer to C as “context length” in subsequent text).
We then fine-tune the LLM on each pre-processed sample for M gradient steps (i.e., using a batch
size of 1). We refer to the multiple gradient updates of each document as an “episode”. After each
episode we evaluate the loss on all T documents. We repeat the training process for E epochs,
where an epoch consists of one episode of each document in a fixed sequence. We use a vanilla
gradient descent optimizer. Unless otherwise stated, the default hyperparameters in the subsequent
experiments are T = 25, C = 256, M = 10, E = 5. We use the average cross entropy loss (average
negative log-likelihood for each token) as our training and evaluation metric.

3 Emergent Anticipatory Recovery

In this section, we present our experimental results that reveal the anticipatory recovery phenomenon
in cyclic fine-tuning of large language models. We then demonstrate that anticipatory recovery is an
emergent behavior that appears only for models with sufficient capacity.

3.1 The Anticipatory Recovery Phenomenon

In this first experiment, we have T = 100 documents, and we do cyclic fine-tuning of a pre-trained
Pythia-1B model [11] on the documents for E = 5 epochs in the same ordering. Both the documents
and the ordering are sampled at random beforehand, but kept fixed during the sequential fine-tuning
process. We refer to these T documents as x1, · · · ,xT . At the start, we fine-tune on x1 for M = 10
gradient steps, leading to a significant decrease in the model’s loss on x1. As we move away from x1

and fine-tune on other documents, we naturally observe catastrophic interference: the model’s loss
on x1 gradually increases until we finish fine-tuning on all other documents and return to x1. As we
iterate through the same document sequence for a second time, we would normally expect the loss on
x1 to increase monotonically after the initial decrease. However, Figure 1(a) shows that the loss on x1

peaks around x60 and then starts to decrease. Before we return to x1, the model has recovered more
than half of its initial forgetting during the second epoch. We refer to this counterintuitive decrease in
loss as the anticipatory recovery phenomenon. In Figure 1(b), we plot the losses for all the documents
and re-align them so that 0 on the x-axis refers to the loss on each document t immediately before
training on it for the first time. The figure confirms that the anticipatory recovery phenomenon exists
for not only x1 but all documents. On the other hand, when we randomly shuffle the document order
within each epoch (except x1 is always the first document), we do not observe such anticipatory
recovery behavior, and the loss on x1 keeps increasing before we return to it every time.

To quantify the strength of the anticipatory recovery phenomenon, we define the recovery score as the
proportion of the initial forgetting during the current epoch that the model recovers before returning
to the same document. Mathematically, let the mean (over t) of the maximum loss on each document
xt between the nth and (n+1)th time we train on that document be lmax(n), right before the (n+1)th

time we train on it be lbefore(n), and right after the (n + 1)th time we train on it be lafter(n). Then
we define the recovery score (RS) for epoch n to be1 RS(n) = lmax(n)−lbefore(n)

lmax(n)−lafter(n−1) . In the following

1In some cases, a randomly initialized model will produce loss curves that decrease throughout the epoch,
because its knowledge is so poor that it enjoys positive generalization among all documents. This yields a
misleadingly large recovery score under this definition. We do not include such cases in our experiments so do
not bother with more nuanced recovery scores.
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Figure 3: Models trained from scratch with (a) dif-
ferent width (token embedding size) and (b) different
depth (number of transformer blocks).

(a) (b)

Figure 4: Effect of data randomization strength. (a)
Random masking with probability up to 0.3; (b) Ran-
dom shift of context window up to 128 tokens.

(a) (b)

(c) (d)

Figure 5: Effects of (a) number of documents (b) number of gradient steps (c) context length and (d) number of
frozen blocks.

subsections we compute the recovery scores for different model sizes and training hyperparameters
(Figures 2 and 5) to investigate their effects on the anticipatory recovery phenomenon.

3.2 Anticipatory Recovery is an Emergent Behavior

To study how the model size affects the amount of anticipatory recovery, we repeat this experiment
with pre-trained Pythia models [11] of sizes 160M, 410M, 1.4B, and 2.8B. We plot the average loss
curves as well as the recovery score for epoch 4 in Figure 2(a) . We observe that larger models clearly
demonstrate stronger anticipatory recovery. The sharp increase of average recovery score from the
160M model to the 410M model indicates that anticipatory recovery is an emergent behavior.

Anticipatory Recovery in Randomly Initialized Models. To study whether anticipatory recovery
is a result of pre-training, we repeat the experiments on randomly initialized models of different sizes,
and plot the loss curves and average recovery scores in Figure 2(b). We follow the model initialization
recipe of [11]. From the loss curves for the 410M and 1B models, especially in the last epoch, we
see that the anticipation phenomenon also exists in randomly initialized LLMs. We observe that the
anticipation effect is not as strong as in the pre-trained models. The effect of model size still holds:
larger models clearly demonstrate stronger recovery.

Effects of Model Width and Depth. To further study the effect of model width and depth on the
anticipatory recovery phenomenon beyond the model hyperparameters in the Pythia suite, we take
a Pythia-1B model and vary the width (size of token embedding) and depth (number of transformer
blocks) of the model and plot the average loss curves for cyclic training from random initializations in
Figure 3. The original Pythia-1B model has token embedding of size 2048 and 16 transformer blocks.
We observe that the model needs sufficient width (at least 512) and depth (at least 8 transformer blocks)
to exhibit noticeable recovery, confirming that it is an emergent behavior contingent on model size.
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3.3 Other Influential Factors

In this section we discuss the effect of other training hyperparameters on the anticipatory recovery
phenomenon. We also include additional experiment details in Appendix A.1 and additional results
in Appendix B.

Number of Tasks. Figure 5(a) plots the loss curves for different number of documents
(T ∈ {10, 25, 50, 100, 200}). We observe clear recovery for all the curves, suggesting that the
model can “memorize” a certain task transition even after training on 200 other tasks.

Number of Gradient Steps. Figure 5(b) plots training curves with different numbers of gradient
steps taken on each document (M ∈ {1, 5, 10, 20}). More gradient steps in general leads to a higher
recovery score, although in Appendix B.2 and B.8 we show that slight anticipation is still observed
for 1 gradient step if we use a larger learning rate, and that the anticipation effect is stronger when the
same total update is divided among more gradient steps by scaling the learning rate inversely with M .

Context Length. Figure 5(c) plots the loss curves for different context lengths (C ∈
{128, 256, 512, 1024}). Documents are padded to the same length with padding tokens if they
are shorter than the specified context length. With the same number of gradient steps, larger context
length is correlated with lower recovery score. This suggests that sufficient training on each task is
necessary, and for longer input context it takes more gradient descent steps to memorize the task.

Number of Frozen Blocks. We experimented with freezing the first B ∈ {4, 6, 8, 10, 12} trans-
former blocks in the pre-trained Pythia-1B model and tune only the last 16−B blocks. Loss curves
are plotted in Figure 5(d) . More frozen transformer blocks is correlated with lower recovery score.
This observation is consistent with section 3.2 and confirm that the model needs sufficient depth to
exhibit anticipatory recovery even with a frozen pre-trained deep representation.

Optimizer. In addition to the gradient descent optimizer, we experimented with the Adam opti-
mizer [20]. Loss curves are plotted in Figure 6. We reset the optimizer state for each document.
Results show that Adam, which is a stronger optimizer, further facilitates anticipatory recovery for
both randomly initialized and pre-trained models.

Data Randomness. In realistic sequential learning setting the data points might be slightly different
for each repetition (e.g. different descriptions of the same concept, different perspectives of the same
object), leading to stochasticity in the optimization process. To explore sequential cyclic training
with data randomness, we design the following two training settings: (1) we randomly mask a subset
of the tokens in the input, and (2) we randomly shift the “window” of C tokens used for training. The
resulting loss curves are plotted in Figure 4. We observe that, while anticipatory recovery is generally
weaker when there is more variation in each data point, the recovery still clearly exists.

Summary. The experiment results in this subsection suggest that the model’s ability to fit on each
task is crucial for the strength of anticipatory recovery. With a larger number of gradient steps,
shorter context length, more learnable layers, and a better optimizer, the model is more capable of
fitting to the focal task, and those factors also correlate with larger recovery score. We also confirmed
that anticipatory recovery exists for long task sequences and slightly augmented data points within
each episode, and again these factors that make learning harder also reduce anticipatory recovery.

3.4 Anticipatory Recovery in Vision Models

To examine the generality of the anticipatory recovery phenomenon, in this subsection we explore the
sequential cyclic training setting on two tasks in computer vision: causal image modeling and image
classification. More detailed experiment setup is available in Appendix A.

Causal Image Modeling. Similar to the LLM experiments, we fine-tune a pre-trained Image GPT
model [14] on each sampled image from CIFAR-10 [18] for M gradient steps, and repeat E epochs
with a fixed order of the images. The resulting loss curves are shown in Figure 7(a). The results
show that the anticipatory recovery phenomenon also exists for sequential cyclic training of image
modeling in addition to language modeling.
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(a) (b)

Figure 6: Comparison between Adam and vanilla gra-
dient descent on (a) randomly initialized and (b) pre-
trained Pythia-1B models with cyclic training.

(a) (b)

Figure 7: Results for cyclic training on (a) Causal
image modeling with Image GPT. (b) image classifi-
cation with vision transformers and VGG networks.

(a) (b) (c) (d)

Figure 8: Heat map visualizations for (a) cosine similarities between the gradient vectors of the attention layer in
transformer block 12 of the model for each task; (b) loss recoveries for training on task xi (y-axis) and evaluating
on task xj (x-axis); (c) cosine similarities between the flattened model weight residuals at each point in training;
(d) cosine similarities between the last layer activations for document x1 at each point in training.

Image Classification. For each experiment, we randomly sample 800 images from Imagenet [19]
and divide them into 25 batches of 32 images each. We fine-tune a pre-trained vision transformer
(ViT) [15] and VGG-19 [16] model on each batch for M gradient steps and repeat E epochs with a
fixed order of the batches. The resulting loss curves are plotted in Figure 7(b). Results show that both
the transformer ViT and the convolutional VGG exhibit anticipatory recovery in cyclic training.

By these experiments we confirm that anticipatory recovery occurs not only for LLMs but also for at
least some of the widespread image classification models and non-transformer architectures.

3.5 Online Loss Evaluation

We compare the performance of training with fixed ordering and random shuffling of each epoch in
the prequential evaluation setting with T = 100 documents. Prequential evaluation [10] measures
online performance by evaluating the model on the document it is about to be trained on, which is
equivalent to evaluating the training loss of each batch. For the random shuffling condition, document
1 is always trained first in each epoch, and the other 99 documents are presented in a different random
order in each epoch. In this experiment we set C = 512, M = 10, E = 5 and the error bars are
based on 10 different seeds.

The resulting loss curves are plotted in Figure 1(c), and the average loss throughout each run is
summarized in Table 1. We exclude epoch 1 when computing the average loss since all documents
are new to the model for both the cyclic training and random shuffling condition. We observe that
training with fixed ordering is superior to random shuffling in the prequential evaluation setting across
all 4 pre-trained Pythia models of different sizes, due to the structure in the data stream. The results
suggest practical potential of structured training.

4 Understanding Cyclic Training Dynamics

An important general question about anticipatory recovery is whether it is due to some causal
mechanism relating the dynamics of model parameters to the training sequence, or whether it is more
correlational in that adjacent tasks come to be represented more similarly by the model. We found ini-
tial evidence for the latter hypothesis in experiments locally reversing the task sequence (e.g., showing
that xt+1 primes xt nearly as much as vice versa). To further test this learned similarity hypothesis, we
explore the relationships between tasks and the model’s loss gradients, weights, and activations across
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Figure 9: Top three PCA compo-
nents of last layer weights in the first
three epochs.
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Figure 10: Loss curve for task 1 in computational toy model, with
different fi. More experiment details in Appendix A.5.
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Figure 11: Visualization of PCA embeddings of the projected data points (f−1
i (Pxi), where fi(w) = yi −w)

in the toy model throughout training. Epoch 0 refers to the model before any training.

training history. The results enable us to better understand the dynamics of cyclic training. Unless
otherwise stated, all visualizations in this section use the 410M model and default hyperparameters.

4.1 Temporal Structure of Gradients

We first explore the similarities of gradient information between documents during the training
process. Our goal is to test the hypothesis that anticipatory recovery is mediated by increased
similarity between gradients of proximal documents in our training sequence.

We do cyclic training for 4 epochs and compute the gradient of each document at the attention layer
of transformer block 12 at the conclusion of training. In Figure 8(a), we plot the cosine similarities
between these gradient vectors of each document. Results show that the gradients have mostly positive
cosine similarities (except for the last document, on which the model has just been trained). To our sur-
prise, the gradient similarities are highest near the center of the heat map rather than peaking along the
diagonal. That is, the gradient similarity between documents xt−1 and xt depends on where we are in
the cycle. This result suggests an additional layer to the anticipatory recovery phenomenon: Recovery
for document xt is greatest from training on document xt−1, but the strength of the potential facilita-
tion between xt−1 and xt is actually greatest after we train for another b documents (for some small
number b). We verify this by computing the pairwise recovery: we take the model checkpoint after 4
epochs of cyclic training, and then for each pair of documents (xi,xj), we do M gradient updates on
xi and compute the difference in the loss of xj before and after these gradient updates. We plot these
pairwise loss recoveries in Figure 8(b). Results confirm that the amount of recovery on document xj

is highest when the model checkpoint is taken from roughly b documents before or after document
xj in cyclic training and then fine-tuned on a proximal document xi in the sequence. The fact that
this pairwise loss recovery matrix is roughly symmetric also suggests that the anticipatory recovery
phenomenon approximately exhibits task symmetry: gradient updates on document xt decrease
the loss for document xt+k for small integers k, and vice versa. We provide additional visualizations
for T = 50, 100, 200 in Appendix C and a more detailed description for this phenomenon.

4.2 Temporal Structure of Model Weights

We explore the structure of model weights along the optimization trajectory of cyclic training. We
flatten and concatenate the model weight vectors after fine-tuning on each document. However,
the cosine similarities between these raw model weight vectors are all very close to 1 without
obvious structure, due to the proximity of model weights along the same optimization trajectory
and numerical instability in huge weight vectors. To resolve these issues, we instead explore the
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structure of “weight residuals.” We compute the weight residuals by subtracting the average of
weights in a window of length T centered at the current document from the current weight, i.e.
wres(t) = w(t)− 1

T

∑t+T/2
n=t−T/2 w(n). This removes the shared components along the optimization

trajectory and allows us to focus on the model weight updates for each document. Figure 8(c)
visualizes a heat map of the cosine similarity between each pair of weight residuals from the second
epoch to the fourth epoch. The visualization shows a cyclic structure in the weight residuals, as
equidistant bright stripes that align with the training epochs. Furthermore, each stripe spans several
documents, suggesting the similarity of weight residuals for proximal documents.

In addition to cosine similarities between weights, we explore visualizing the weights in a lower-
dimensional space with Principle Component Analysis (PCA). We compute the top three PCs of the
flattened last-layer weight vector (the output word embedding layer) for the Pythia-1B model, and
plot its trajectory in Figure 9. The plot exhibits a clear helical structure that gradually converges. We
believe this is highly relevant to anticipatory recovery: right before revisiting a task, the projected
model weights in the helix move closer to the point corresponding to the previous appearance of
that task, leading to anticipatory recovery on the loss of that task. As we go on with cyclic training,
the model also exhibits less forgetting and gradually converges to a solution that achieves low loss
on all tasks. It is important to note that the helical structure of the weight trajectory is not an
obviously necessary consequence of the cyclical training. Cyclical training could be expected to yield
a repeating pattern, but the facts that the tasks come to be organized in a circle that respects their
ordering and that the trajectory goes through one full revolution per epoch (rather than some other
arc length) are nontrivial and seem to be essential for anticipatory recovery.

4.3 Temporal Structure of Activations

In addition to gradients and weights, we visualize the trajectory of activations on a single document
during the course of cyclic training. We do cyclic training for three epochs and save model checkpoints
after fine-tuning on each document. We then compute the model activations before the output word
embedding layer for document x1 on each model checkpoint, and plot the cosine similarities between
the flattened activation vectors in Figure 8(d). From the plot we can clearly observe the blocked
pattern wherein the similarity between the activations become progressively higher across each
epoch of cyclic training. This pattern suggests that every time we train on document xi, the internal
representation of xi in the model is more resistant to gradient updates on other documents xj .

4.4 Computational Toy Model

To further understand the essential mechanism that yields anticipatory recovery, we design a
minimalist “toy” simulation experiment. In this toy simulation, each task (formerly, document)
i ∈ {1, · · · , T} is described by a single data point, x1, · · · ,xT ∈ RN . We assume a learnable linear
embedding P ∈ RM×N that projects each xi into an M -dimensional embedding space. We also
assume a learnable vector w and task-specific mappings fi, where fi(w) is the target for task i in the
same embedding space. We require each fi to be invertible as a simplifying assumption.

We define the loss for task i as ℓi(P ,w) = 1
2∥Pxi − fi(w)∥22. Just as when training a deep net, we

assume here that representation learning occurs slowly, and that one training step for task i involves a
single gradient update of P with step size α:

P ← P − α(Pxi − fi(w))x⊤
i . (1)

In contrast, at each training step, w, analogous to the fast-adapting weights in a neural network, can
be rapidly tuned to solve for task i, yielding the loss minimizer conditional on P :

w ← f−1
i (Pxi). (2)

As in our main experiments, we sequentially optimize each ℓi as we iterate through the sequence of
tasks. In each training step, we first update P and then solve for w given the update to P . Updating
P approximately reduces the distance between Pxi+1 and fi+1(f

−1
i (Pxi)), which entails reducing

the upper bound of ||f−1
i+1(Pxi+1)− f−1

i (Pxi)||, assuming that each f−1
i is Lipschitz continuous.

As a result of this optimization objective, the model will evolve along the optimization trajectory such
that the f−1

i (Pxi) for all tasks i gradually form a circular pattern. This gives an intuitive explanation
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on the anticipatory recovery phenomenon, since updaing w according to equation 2 will also bring it
closer to f−1

i+1(Pxi+1), thus reducing the loss on task i+ 1 and exhibits anticipatory recovery.

We experimented with two very simple choices of fi: fi(w) = w and fi(w) = yi −w for some
task-dependent targets yi. We follow the same order over tasks—1, · · · , T—for multiple epochs of
training. The resulting loss curves are shown in Figure 10, which exhibits very similar anticipatory
recovery trajectory as the full-blown LLM experiment. Visualizations of the 2-dimensional PCA
embeddings for f−1

i (Pxi) in the second experiment are shown in Figure 11, which confirms our
analysis that they gradually self-organize into a cyclic structure.

There are two potential reasons large overparameterized networks might produce the anticipatory
recovery in a way analogous to the toy simulation. First, for larger networks, it is more likely that
the network can develop task-specific parameters that quickly adapt to and memorize new input
data, corresponding to Equation 2. And when the fast memorization is achieved, the gradient descent
dynamics of the slow weights push the representations of the two adjacent tasks (Pxi and Pxi+1)
closer when f is an identity function, according to Equation 1. This effect can be seen in earlier LLM
experiments (Figure 2), where larger models achieve significantly lower losses within a few gradient
update steps. Second, larger networks have more learning capacity to map the features of two adjacent
tasks closer. In our linear projection model, anticipatory recovery keeps growing over many epochs,
whereas the anticipatory effect is already at the strongest within 2 or 3 epochs in LLM experiments.
Moreover, all data points are randomly generated in the toy model, which makes it easier to separate
and map their representations according to a temporal structure than real-world data. In contrast,
real-world data could require more representation capacity since data points are noisy and correlated.

4.5 Summary

In this section, we visualized model weight dynamics with heatmaps and we showed model activations
and gradients during cyclic training. We discussed the special temporal structure that is exhibited in
these heat maps. We also plotted the pairwise degree of recovery for fine-tuning on document i and
evaluating on document j, as well as the change of distance between fine-tuned model weights on
different tasks. The results suggest that after we train on a document, the model’s representation of
that document becomes less sensitive to gradient updates on other documents. Finally, we showed a
simple toy experiment that demonstrates a similar anticipatory recovery phenomenon in its loss curve,
and discuss its connections to neural network training dynamics through the lens of task-specific and
task-general parameters. Overall, these results shed some light on the dynamics of cyclic training.

5 Related Work

In this section we discuss the most relevant prior works to this paper. Please refer to Appendix D for
additional related work.

Cyclic and Structured Training. Prior theoretical works have studied convergence rates, under
various assumptions, for the training setup where the data points are shuffled only once and that order
is reused for all epochs [21, 22, 23, 24]. On the empirical side, [25] found that shuffling the data
only once in the beginning can achieve a convergence rate comparable to shuffling every epoch. The
training setup is equivalent to our cyclic training setup, but our research examines the loss on each
task throughout the training cycle and discovers the anticipatory recovery effect. We also extend it to
multiple gradient update steps on each data point.

Online Learning. Online learning deals with the setting where the tasks come from an online
sequential stream. One of the simplest algorithms in online learning is follow-the-leader [26], which
stores all previous data from the stream and minimizes the total loss. It has strong performance
guarantees but is computationally very expensive, and it also might not be feasible to store all the past
data. Many subsequent works have developed cheaper algorithms under different assumptions [27,
28, 29]. Many recent works also explore the connection between online learning and meta-learning
or continual learning [30, 31, 32, 33, 34, 35, 36]. The cyclic training setting that we explore in this
research can be considered as a special case of the online learning setting where the data stream
has a cyclic repetition structure. We employ multiple steps of online gradient descent [37] on each
document from the stream and study the training dynamics of over-parameterized neural networks.
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Catastrophic Interference. When transitioning between tasks sequentially, neural networks often
experience “catastrophic interference” [9], marked by a significant drop in performance on previously
learned tasks. Numerous algorithms have been proposed to mitigate catastrophic forgetting, focusing
on general approaches including parameter regularization [38, 39, 40], data replay [41, 42, 43],
knowledge distillation [44, 45, 46, 47], and architectural isolation and expansion [48, 49, 50, 51].
Our work extends interleaved training [52] to a larger number of tasks, specifically investigating
the emergent anticipatory recovery phenomenon in cyclic training. This finding adds to the above
literature by demonstrating a new mechanism by which large networks can avoid or recover from
catastrophic interference.

Continual Learning Continual learning [8, 53, 54, 55] addresses a simplified setup where a
model sequentially learns a set of tasks without revision. Recently, there have been debates over
the practicality of continual learning setups. Studies like [56] have shown that as networks learn
more tasks, they improve in learning speed and reduce forgetting. In large models, studies suggest
that pre-trained vision classifiers can undertake continual learning with ease, by either freezing or
fine-tuning representations [57, 58, 59]. In the language domain, research also suggests that LLMs
exhibit emerging continual learning capabilities [60, 61]. Nevertheless, it is uncommon in real
environments for tasks to occur only once yet for an agent to need to retain them. Unlike prior
literature on continual learning, our research uniquely focuses on sequential learning environments
with cyclic repetition.

6 Discussion and Limitations

In this work, we explored the training dynamics of overparametrized neural networks, especially
LLMs, in sequential cyclic fine-tuning, where a finite set of documents are presented in the
same order within each epoch. We demonstrated the remarkable phenomenon of anticipatory
recovery—networks recover from the initial forgetting before seeing the same document again. The
effect holds across many different network instances and training hyperparameters. This phenomenon
is a sharp contrast with the well known phenomenon of catastrophic interference, where forgetting
increases monotonically as a network is trained on a sequence of different documents.

We showed that anticipatory recovery occurs only when the network has sufficient width and depth
and when it is well fitted to each document before moving to the next. Visualizations of model
weights, model activations, and gradients exhibit clear temporal structure, which provide insights on
the underlying mechanisms of anticipatory recovery.

Our research indicates that there is value in exploring naturalistic task sequences within continual
learning, where tasks interleave in statistically regular patterns. This approach could expand the
field’s current focus on learning and retaining new tasks to also consider how effectively previously
encountered tasks are re-learned when they reappear. With the anticipatory recovery phenomenon, we
discovered a mechanism in which ML models can do surprisingly better than expected on prequential
evaluation. By analyzing the different factors of model pre-training and fine-tuning that moderate this
phenomenon, our experiments provide a promising first step toward leveraging structured training
with agents in realistic environments.

Limitations. The cyclic training setup investigated in this work is distinct from the IID training set-
ting assumed in the vast majority of the machine learning literature. It accounts for task repetition and
task switching costs, which are critical components of the learning experience of humans and other
real world agents. However, our current setup is still highly simplified. Future research could investi-
gate the emerging training dynamics of neural networks in different types of structured environments,
such as multiscale temporal dynamics [62], from both theoretical and empirical perspectives.

The mathematical foundation of anticipatory recovery also requires further investigation. Although
our computational toy model reproduces the anticipatory recovery phenomenon, it does not explain
why the effect is stronger in LLMs and autoregressive tasks than in other types of architecture or
learning objectives. In terms of the empirical experiments, the ablation studies are only run in a single
setting. Future research could run the experiments in more settings to reach more conclusive results
and investigate possible alternative theoretical explanations to the anticipatory recovery phenomenon.
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tive text summarization using sequence-to-sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural Language Learning, pages 280–290, 2016.

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
University of Toronto, 2009.

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on Computer Vision and Pattern
Recognition, pages 248–255. IEEE, 2009.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[21] Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. SGD with shuffling: Optimal rates without
component convexity and large epoch requirements. Advances in Neural Information Processing
Systems, 33:17526–17535, 2020.

[22] M Gurbuzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Convergence rate of incremental gradient
and incremental newton methods. SIAM Journal on Optimization, 29(4):2542–2565, 2019.

[23] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Sim-
ple analysis with vast improvements. Advances in Neural Information Processing Systems,
33:17309–17320, 2020.

[24] Itay Safran and Ohad Shamir. How good is SGD with random shuffling? In Conference on
Learning Theory, pages 3250–3284. PMLR, 2020.

[25] Lijie Xu, Shuang Qiu, Binhang Yuan, Jiawei Jiang, Cedric Renggli, Shaoduo Gan, Kaan Kara,
Guoliang Li, Ji Liu, Wentao Wu, et al. Stochastic gradient descent without full data shuffle.
arXiv preprint arXiv:2206.05830, 2022.

[26] James Hannan. Approximation to Bayes risk in repeated play. Contributions to the Theory of
Games, 3:97–139, 1957.

[27] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In International Conference on Machine Learning, pages 928–936, 2003.

[28] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

[29] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107–194, 2012.

[30] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regularization. In International Conference on Machine
Learning, pages 1566–1575. PMLR, 2019.

[31] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning.
In International Conference on Machine Learning, pages 1920–1930. PMLR, 2019.

[32] Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, and Massimiliano Pontil. Online-within-online
meta-learning. Advances in Neural Information Processing Systems, 32, 2019.

[33] Khurram Javed and Martha White. Meta-learning representations for continual learning. Ad-
vances in Neural Information Processing Systems, 32, 2019.

12



[34] Enrico Fini, Stéphane Lathuiliere, Enver Sangineto, Moin Nabi, and Elisa Ricci. Online contin-
ual learning under extreme memory constraints. In Proceedings of the European Conference on
Computer Vision, pages 720–735. Springer, 2020.

[35] Mengye Ren, Michael Louis Iuzzolino, Michael Curtis Mozer, and Richard S. Zemel. Wandering
within a world: Online contextualized few-shot learning. In International Conference on
Learning Representations, 2021.

[36] Jianren Wang, Xin Wang, Yue Shang-Guan, and Abhinav Gupta. Wanderlust: Online continual
object detection in the real world. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10829–10838, 2021.

[37] Michael Biehl and Holm Schwarze. Learning by on-line gradient descent. Journal of Physics A:
Mathematical and general, 28(3):643, 1995.

[38] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences, 114(13):3521–3526, 2017.

[39] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International Conference on Machine Learning, pages 3987–3995. PMLR,
2017.

[40] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision, pages 139–154, 2018.

[41] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[42] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence replay for continual learning. Advances in Neural Information Processing Systems, 32,
2019.

[43] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

[44] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[45] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947, 2017.

[46] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in Neural
Information Processing Systems, 33:15920–15930, 2020.

[47] Divyam Madaan, Hongxu Yin, Wonmin Byeon, Jan Kautz, and Pavlo Molchanov. Heteroge-
neous continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15985–15995, 2023.

[48] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. In International Conference on Learning Representations,
2018.

[49] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning,
pages 4548–4557. PMLR, 2018.

[50] Mustafa B Gurbuz and Constantine Dovrolis. NISPA: Neuro-inspired stability-plasticity adap-
tation for continual learning in sparse networks. In International Conference on Machine
Learning, pages 8157–8174. PMLR, 2022.

13



[51] Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark
Hasegawa-Johnson, Sung Ju Hwang, and Chang D Yoo. Forget-free continual learning with
winning subnetworks. In International Conference on Machine Learning, pages 10734–10750.
PMLR, 2022.

[52] David Mayo, Tyler Scott, Mengye Ren, Gamaleldin Elsayed, Katherine Hermann, Matt Jones,
and Michael Mozer. Multitask learning via interleaving: A neural network investigation. In
M. Goldwater, F. K. Anggoro, B. K. Hayes, and D. C. Ong, editors, Proceedings of the 45th
Annual Conference of the Cognitive Science Society, volume 45, 2023.

[53] Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Seungwhan Moon, Paul Crook, Bing Liu,
Zhou Yu, Eunjoon Cho, Pascale Fung, and Zhiguang Wang. Continual learning in task-
oriented dialogue systems. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 7452–7467, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics.

[54] Chengwei Qin and Shafiq R. Joty. LFPT5: A unified framework for lifelong few-shot language
learning based on prompt tuning of T5. In International Conference on Learning Representa-
tions. OpenReview.net, 2022.

[55] Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad
Almahairi. Progressive prompts: Continual learning for language models. In International
Conference on Learning Representations. OpenReview.net, 2023.

[56] Guy Davidson and Michael C Mozer. Sequential mastery of multiple visual tasks: Networks
naturally learn to learn and forget to forget. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition, pages 9282–9293, 2020.

[57] Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed Elhoseiny. A simple baseline that
questions the use of pretrained-models in continual learning. In NeurIPS 2022 Workshop on
Distribution Shifts: Connecting Methods and Applications, 2022.

[58] Kuan-Ying Lee, Yuanyi Zhong, and Yu-Xiong Wang. Do pre-trained models benefit equally in
continual learning? In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 6485–6493, 2023.

[59] Enrico Fini, Victor G Turrisi Da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari,
and Julien Mairal. Self-supervised models are continual learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9621–9630, 2022.

[60] Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. Fine-tuned language models are
continual learners. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 6107–6122, 2022.

[61] Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual
pre-training of language models. In International Conference on Learning Representations,
2022.

[62] Matt Jones, Tyler R. Scott, Mengye Ren, Gamaleldin Fathy Elsayed, Katherine L. Hermann,
David Mayo, and Michael Curtis Mozer. Learning in temporally structured environments. In
International Conference on Learning Representations, 2023.

[63] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics.

[64] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

14



[65] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[67] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022.

[68] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

[69] Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
generative models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability,
and Transparency, pages 1747–1764, 2022.

[70] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[71] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramèr, and
Chiyuan Zhang. Quantifying memorization across neural language models. In International
Conference on Learning Representations, 2023.

[72] A Emin Orhan. Recognition, recall, and retention of few-shot memories in large language
models. arXiv preprint arXiv:2303.17557, 2023.

15



A Additional Experiment Details

A.1 LLM Experiments

We use the Huggingface Transformers Library [63] for fine-tuning the LLMs. The learning rate 0.001
for vanilla gradient descent and 0.00001 for Adam. For all experiments we run 3 to 5 trials with
different random seeds, except the results in Figure 1 which are based on 20 seeds. The shaded area
in the figures denotes standard deviation among trials and documents (for shift-averaged loss curves).

A.2 Causal Image Modeling Experiments

Models Image GPT [14] is a GPT-2-like model trained to predict the next pixel value in an image.
It is pre-trained on the Imagenet dataset [19] resized to 32x32. The Image GPT authors provide three
pre-trained models of different sizes. In our experiments, we use the Image GPT-small and Image
GPT-medium models.

Datasets We use the CIFAR-10 [18] dataset for fine-tuning. For tokenization, the pixel RGB values
are categorized into 512 pre-determined clusters with the nearest-neighbor classifier, as in [14]. After
pre-processing, each image is transformed to a sequence of length 1024, with code book of size 512.

Training Setup We did not manage to sequentially fine-tune the model stably with the dropout
layers, so the dropout layers are turned off during the Image GPT fine-tuning experiments. We use
the Adam optimizer [20] with learning rate 0.001. The default hyperparameters in the experiments
are T = 25 images, M = 10 gradient update steps, E = 5 epochs. Same as the LLM experiments,
we use the average cross-entropy loss as our evaluation metric.

A.3 Image Classification Experiments

The images are resized to 256x256 followed by a center crop of 224x224. We use the Adam optimizer
with learning rate 0.0001 for M = 10 gradient steps on each batch of images.

A.4 Shift-averaged Loss Calculation

The shift-averaged loss curves plotted in Figure 1(b) are calculated by replicating Figure 1(a) on each
document in the training sequence, re-aligning these curves so that 0 on the x-axis always represents
the moment before the first occurrence of the focal document, and average them. For example, if the
length of the sequence is 50, then for training epoch 0.5 on the x-axis, we take the loss of document 1
after training on document 25; the loss of document 2 after training on document 26; . . . ; the loss of
document 50 after training on document 24 of the next epoch; and average these losses. Subsequent
figures (Figure 2-7, 12-19) are plotted with the same approach.

A.5 Computational Toy Model

For Figure 9a, we pick fi(w) = w, and each data point xi and w is a vector of length N = M =
1000. We have T = 25 data points and use the vanilla gradient descent optimizer with learning rate
0.01. The projection matrix is initialized with every entry sampled independently from N (0, 1/N2).
Each entry of the data points xi and w is sampled independently from Unif(−1, 1). For Figure 9b,
we pick fi(w) = yi −w, N = M = 100, T = 25, and learning rate 0.01. Each entry of yi is also
sampled independently from Unif(−1, 1).

A.6 Compute Resources

Each experiment presented in the paper is run with one NVIDIA A100 GPU, 2 CPUs, and 32GB
of RAM. The training time highly depends on the hyperparameter choices, especially model size
and number of gradient steps. The longest fine-tuning experiment with 20 gradient steps per episode
on the Pythia-1B model takes roughly 30 minutes under this setup. The minimal compute resource
requirement needed to reproduce the experiments with a Pythia-1B model is one GPU with 16GB of
GPU memory.
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B Additional Experiment Results
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B.1 Partial Random Shuffling

Throughout the paper we have been focusing on the setting where the document ordering is sampled
once and stay fixed for all epochs. What if we only fix the first and the last document, and shuffle the
documents in between? We experimented with shuffling the documents from document x2 through
xN for N ∈ {8, 16, 24} every epoch. In Figure 12 we plot the loss curves for document x1. From the
loss curves we can observe that even when N = 24 we can still observe some anticipatory recovery,
suggesting that the order of the tasks between two consecutive repetitions of the x25 and x1 can be
arbitrary for us to observe recovery on x1.

B.2 One-step Gradient Descent with Larger Learning Rate

In Figure 5(b) we observe that there is no anticipation when we take only one gradient descent step
on each document with learning rate 0.001. We experimented with one-step gradient descent using a
higher learning rate, 0.01. We plot the resulting average loss curves under the same training setup
in Figure 13. We observe that, with a larger learning rate, slight anticipation is still observed for 1
gradient step.

B.3 Effect of Number of Attention Heads

In addition to varying the model width and model depth in Figure 3, we also experimented with
varying the number of attention heads h ∈ {2, 4, 8, 16} while keeping model width to be 2048 and
model depth to be 16. Loss curves on document x1 are shown in Figure 14. The results suggest that
the number of attention heads does not have a big effect on cyclic training in our setting.

B.4 Effect of LLM Model Initialization

Here we compare the performance of the initialization scheme used by [11] (also used for all
randomly initialized models in the main text) and a simple initialization scheme that samples the
weight matrices from an isotropic Gaussian distribution with σ = 0.02. The loss curves for document
1 under these two initializations of the Pythia-1B model are plotted in Figure 15. We observe that
Pythia’s initialization scheme achieves much better average loss and also exhibits stronger anticipatory
recovery. This demonstrates the importance of LLM initializations. The result is consistent with our
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observations in section 3.3 that the model’s ability to fit on each task is correlated with the amount of
anticipatory recovery.

B.5 Effect of Pre-training Steps

In addition to comparing pre-trained models and randomly initialized models in Figure 2, we further
study the effect of model pre-training by examining model checkpoints with different numbers of pre-
training steps. We took Pythia models pre-trained for 6K, 12K, 24K, 48K, and 96K steps and plot the
shift-averaged loss curves for cyclic fine-tuning in Figure 16. We found that more pre-training does
give rise to higher anticipatory recovery. As we summarize at the end of section 3.3, we hypothesize
this result fits a broader pattern in which the strength of the anticipatory recovery effect is related
to how well the model can fit each successive training task. Models with more pre-training steps
are more capable of fitting each successive training task, and therefore exhibit higher anticipatory
recovery.

B.6 Effect of Cosine Learning Rate Schedule

For experiments in the main paper we used a constant learning rate during the fine-tuning process. To
study whether anticipatory recovery occurs in typical LLM optimization schemes, we experimented
with cosine learning rate scheduling on the Pythia-1B model with 10 epochs (minimum learning rate
= 0, maximum number of epochs = 10), and plot the results in Figure 17. We show that the model
also exhibits the anticipatory recovery effect in other learning rate schedules.

B.7 Effect of Inserting Random Documents after the Repeating Sequence

To examine how the anticipatory recovery effect may generalize to other forms of structured training,
we experimented with a new setting where only the first 20 documents are kept fixed in each epoch,
and a random number of other documents (between 20 and 100) are inserted after the first 20. These
random padding documents appear only once in the entire sequence. This new setting generalizes
cyclic training in that (1) rather than having the same documents in every epoch, we insert random
other documents between every repetition (2) epochs can have different lengths. The resulting loss
curve is plotted in Figure 18. We still observe anticipatory recovery for documents 2 through 20 in
this setting, suggesting that anticipatory recovery exists as long as there is a repeating sub-sequence
in the data stream.
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Figure 19: Effect of number of gradient steps (a) with inverse learning rate scaling and (b) for context length
1024.

B.8 Effect of Number of Gradient Steps with Inverse Learning Rate Scaling

In Figure 19a we experimented with inversely scaling the learning rate with the number of gradient
steps. We use a learning rate of 0.01 for M = 1, learning rate 0.002 for M = 5, learning rate 0.001
for M = 10, and learning rate 0.0005 for M = 20. The results suggest that the anticipation effect is
stronger when the same total update is divided among more gradient steps.

B.9 Effect of Number of Gradient Steps for Long Context Length

In Figure 19b we experimented with different number of gradient steps M ∈ {10, 20, 40} for context
length 1024. The results confirm that longer context length is not a fundamental limitation to
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anticipatory recovery, and we can achieve the same recovery score as a smaller context length with
more gradient steps.
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Figure 22: Magnitude of (a) model activation updates
and (b) model weight updates through cyclic training.

B.10 Experiments with GPT-2

To evaluate how the anticipatory recovery phenomenon generalizes across different LLM architectures,
we experimented with GPT-2 architecture [64], specifically the GPT2-large pre-trained model (812M
parameters) on the CNN/Daily Mail dataset. The loss curve for document 1 is plotted in Figure 20.
The model consistently observed anticipatory recovery. Note that GPT-2 is the predecessor of many
modern LLMs and therefore the results further suggest that the anticipatory recovery phenomenon is
prevalent among more recent LLM architectures.

B.11 Experiments with Wikitext

To evaluate how the anticipatory recovery phenomenon generalizes across different natural language
datasets, we experimented with the wikitext-103 dataset [65], which contains over 100 million tokens
from articles on Wikipedia. Since Wikipedia data is part of the pre-training dataset of Pythia, we
only experiment with randomly initialized models. The loss curve for document 1 is plotted in
Figure 21. The result suggest that the anticipatory recovery phenomenon is generalizable to different
data sources.

C Additional Visualizations

C.1 Magnitude of Changes in Model Weights and Model Activations

We plot the magnitude of the difference between the x1 activations of model checkpoints saved at
consecutive episodes throughout four epochs of cyclic training of a Pythia-410M model in Figure 21a,
and observe a clear stepwise pattern. In contrast, the magnitude of model weight updates (Figure 21b)
decreases monotonically over the training episodes and do not exhibit this stepwise pattern. This
result is consistent with the pattern we observe in section 4.3.
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Figure 23: Loss recoveries for training on task xi (y-axis) and evaluating on task xj (x-axis) for longer document
sequences of different lengths.
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C.2 Pairwise Recovery Matrices for Longer Document Sequences

Similar to Figure 8(b), we plot the pairwise loss recoveries for each pair of documents (xi,xj) in
longer document sequences, where T = 50, 100, 200 respectively, in Figure 23. We use the 1B
model and default hyperparameters. We observe that, as we increase the length of the document
sequence, the highlight area near the center of the matrix is separated into two blobs, one in the
top-left corner and the other in the bottom-right corner. We also observe a "boundary" on the sides of
the matrix where there is little or no recovery. The width of this "boundary" stays relatively constant
across different lengths of document sequences and is around 10 to 15 documents. This confirms
our observation in the main text that the recovery on document xj when fine-tuning on a proximal
document xi is highest when the model checkpoint is taken from document xj±b where b is a small
number relative to the length of the document sequence.

D Additional Related Work

Learning in Structured Environments. Our research also relates to the more general topic of
learning in structured environments. [62] studied regression and classification tasks with multi-scale
temporal structure in the environment characterized by 1/f dynamics. While the cyclic training
setting that we study is a more simplified setup than that of [62], we aim at unveiling more insights
on applying standard SGD on over-parameterized networks. A potential direction for future work
would be to study anticipatory recovery in regimes with richer, hierarchical sequence structure.

LLM Emergent Capabilities. Recent advancements in large-scale Transformer networks [66, 1]
have demonstrated exceptional ability to model long sequence language data. Beyond basic language
modeling and downstream task performance, these models have shown emergent behaviors [67]
that appear to manifest only beyond a certain model scale [2, 68, 69, 70]. Related to our research,
recent studies reveal that LLMs possess remarkable memorization skills, enabling them to recall
news sentences after just a few exposures [11, 71, 72]. However, the sequential learning dynamics
behind such memorization have not been thoroughly examined. Our work comprehensively explore
the sequential learning setting with cyclic task repetition and demonstrates task anticipation, a new
emergent capability of large models.

E Broader Impact

This research deepens our understanding of catastrophic interference in naturalistic training setups.
This understanding could lead to the design of better training algorithms of LLMs and other large
neural networks that are more similar to human learning. These algorithms may give rise to more
powerful and embodied AI systems with online adaptive learning capability, which may have many
potential societal consequences.

Recovery from catastrophic interference might be undesirable in scenarios where some documents are
intended to be forgotten. Our research provide more understanding into the anticipatory recovery phe-
nomenon. Future research into the unlearning problem as well as a deeper understanding of the train-
ing dynamics of different types of structured environments can help further address the privacy issue.
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Answer: [Yes]

Justification: The authors confirm that the claims made in the abstract and introduction
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Guidelines:
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and how they scale with dataset size.
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Answer: [NA]
Justification: The paper does not include theoretical results. While we provide a well-defined
computational model in section 4.4, we are not trying to prove new theoretical results and
the purpose of section 4.4 is to provide more intuition on how the anticipatory recovery
phenomenon might occur.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Sections 2, 3 and Appendices A, B we disclose all the information needed to
reproduce the main experimental results of the paper. The pre-trained models and datasets we
use are also publicly available. We also include the code for reproducing main experimental
results in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code and instructions for reproducing main experimental
results in the supplementary material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings and details are provided in Section 2 and Ap-
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• The answer NA means that the paper does not include experiments.
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material.
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duce the experiments in Section A.6.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release new data or models.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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faith effort.
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Justification: This paper does not release new assets.
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