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Abstract

Public opinion governance in social networks is critical for public health cam-
paigns, political elections, and commercial marketing. In this paper, we addresse
the problem of maximizing overall opinion in social networks by strategically
modifying the internal opinions of a fixed number of nodes. Traditional matrix
inversion methods suffer from prohibitively high computational costs, prompting us
to propose two efficient sampling-based algorithms. Furthermore, we develop a de-
terministic asynchronous algorithm that exactly identifies the optimal set of nodes
through asynchronous update operations and progressive refinement, ensuring both
efficiency and precision. Extensive experiments on real-world datasets demonstrate
that our methods outperform baseline approaches. Notably, our asynchronous
algorithm delivers exceptional efficiency and accuracy across all scenarios, even in
networks with tens of millions of nodes.

1 Introduction

Online social networks have fundamentally transformed the dissemination, evolution, and formation
of opinions, serving as a powerful catalyst for accelerating and amplifying modern perspectives [[1].
Compared to traditional communication methods, they facilitate faster, broader, and more decen-
tralized information exchange, thereby enhancing the universality, criticality, and complexity of
information propagation [2]. Within this intricate interplay between network structure and human
behavior, the concept of overall opinion emerges as a key quantitative metric, representing the focal
point of public sentiment on contentious issues [3]]. This quantified equilibrium of public opinion has
been applied in fields such as commercial marketing, political elections, and public health campaigns.

The optimization of overall opinions has garnered significant attention in recent times. Various
methods have been explored to optimize collective opinions, including modifying resistance coef-
ficients [4H6], adjusting expressed opinions [7], and altering network structures [8, 9]]. Meanwhile,
research [[10] has highlighted the significant correlation between node topological positions and the
evolution of global opinions, revealing that changes in the internal opinions of nodes can have a
nonlinear amplification effect on opinion propagation. This provides the possibility of optimizing
public opinion at low cost by modifying the internal opinions of key nodes.

In this paper, we address the following optimization problem: given a social network with n nodes and
m edges (whether directed or undirected), along with an integer k£, how can we strategically identify
the k£ nodes and modify their internal opinions to maximize the overall opinion? Existing exact
solution methods require a time complexity of O(n?), rendering them impractical for large-scale
networks. We propose two sampling approaches to approximate the solution, but these approaches
face the challenge of balancing between extensive sampling requirements and accuracy. Inspired
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by the random walk interpretation, we further introduce a asynchronous update algorithm that
exactly identifies the optimal set of nodes through asynchronous update operations and progressive
refinement. We conducted extensive experiments on various real-world networks to evaluate algorithm
performance. The experimental results demonstrate that all three proposed algorithms significantly
outperform baseline methods in terms of effectiveness. Moreover, our asynchronous algorithm
exhibits both high efficiency and exact precision, while maintaining excellent scalability for networks
with tens of millions of nodes.

2 Related Work

We review the related literature from the following two perspectives, including modeling opinion
dynamics and optimization problems in opinion dynamics.

Opinion Dynamics Models. Opinion dynamics has been the subject of intense recent research to
model social learning processes in various disciplines [11H13]]. These models capture the mechanisms
and factors influencing opinion formulation, shedding light on understanding the whole process of
opinion shaping and diverse phenomena taking place in social media. In the past decades, numer-
ous relevant models have been proposed [14-18]]. Among various existing models, the DeGroot
model [19] and the Friedkin-Johnson (FJ) model [20] are two popular ones. After their establishment,
the DeGroot model and the FJ model have been extended in a variety of ways [[L1} 211 (8, 22| 4], by
incorporating different factors affecting opinion dynamics, such as peer pressure [23], susceptibility
to persuasion [4} [8]], and opinion leader [[7]. Under the formalism of these models, some relevant
quantities, properties and explanations have been broadly studied, including the equilibrium ex-
pressed opinions [24H26]], sufficient condition for the stability [27], the average internal opinion [24],
interpretations [28,[25]], and so on.

Optimization Problems in Opinion Dynamics. Recently, several optimization problems related
to opinion dynamics have been formulated and studied for different objectives. For example, a
long line of work has been devoted to maximizing the overall opinion by using different strategies,
such as identifying a fixed number of individuals and setting their expressed opinions to 1 [7],
changing agent’s initial opinions [29, |8, [30]], as well as modifying individuals’ susceptibility to
persuasion [4H6]]. [31] studies the problem of allocating seed users to opposing campaigns with a
goal to maximize the expected number of users who are co-exposed to both campaigns. In additon,
[32]] studies the problem of balancing the information exposure. These studies have far-reaching
implications in product marketing, public health campaigns, and political candidates. Another
major and increasingly important focus of research is optimizing some social phenomena, such
as maximizing the diversity [33| 134], minimizing conflict [35| 36], disagreement [37, 138, 9]], and
polarization [39, |38} 9]].

3 Preliminaries

This section is devoted to a brief introduction to some useful notations and tools, in order to facilitate
the description of problem formulation and algorithms.

Notations. We denote scalars in R by normal lowercase letters like a, b, ¢, sets by normal uppercase
letters like A, B, C, vectors by bold lowercase letters like a, b, ¢, and matrices by bold uppercase
letters like A, B, C. We use 1 to denote the vector of appropriate dimensions with all entries being
ones, and use e; to denote the 7*" standard basis vector of appropriate dimension. Let @ " and AT
denote, respectively, transpose of vector a and matrix A. We write A(4, j) to denote the entry at row
¢ and column j of A and we use a(7) to denote the ith element of vector a. Let @ax, Gmin, @ and
Qg denote the maximum element, the minimum element, the mean of the elements in vector a and

the sum of all elements in vector a, respectively.

Graph and Related Matrices. Let G = (V, E) denote an directed graph with n = |V| nodes and
m = |E| edges. The existence of (v;,v;) € E means that there is an edge from v; to v;. In what
follows, v; and ¢ are used interchangeably to represent node v;, when it is clear from the context. For
anode v € V, the in-neighbors of v are given by Nj,(v) = {u|(u,v) € E}, and the out-neighbors
of v are given by Noy (v) = {u|(v,u) € E}. The connections of graph G = (V, E) are encoded in
its adjacency matrix A = (a; ;)nxn, With the element a; ; being 1 if (v;,v;) € E and 0 otherwise.



For anode i € V, its out-degree d; is defined as d;” = 2?21 a; j, and its in-degree d, is defined
asd; =)"_, a;,;. The diagonal degree matrix of G is defined as D = diag(d;,dy,...,d;). We

j=1
define L =D — A and P = D' A as the Laplacian matrix and the transition matrix of graph G.

Opinion Dynamic Model. In this work, we adopt an opinion formation model introduced by the
work of DeGroot [19] and Friedkin and Johnsen [40], which has been used in [4, 16, 24]]. In this model,
each agent ¢ is endowed with an internal opinion s; in [0, 1], where O and 1 are polar opposites of
opinions about a certain topic. Each agent also has a parameter that represents the susceptibility to
persuasion, which we call the resistance coefficient «; € (0, 1]. The internal opinion s; reflects the
intrinsic position of the agent ¢ on a certain topic. A higher value on the resistance coefficient «;
means that the agent is less willing to conform to the opinions of the neighbors in the social network.
According to the opinion dynamics model, the final opinion of each agent i is a function of the social
network, the set of internal opinions, and the resistance coefficients, determined by computing the
equilibrium state of a dynamic opinion updating process. The social network is represented as a
graph where edges capture influence relationships, with an edge from i to j indicating that agent ¢ is
influenced by the expressed opinion of agent j. During the process of opinion evolution, the internal
opinion s; remains constant, while the expressed opinion z! evolves at time ¢ + 1 as follows:

ZjGNom(i) Z;
df ’
which can also be expressed in matrix form as 2!*! = Rs + (I — R)Pz". This dynamic converges

to a unique equilibrium if o; > 0 for all ¢ € V' [14]. The equilibrium opinion vector z is the solution
to a linear system of equations:

2 = s + (1 — ) -

z= (I~ (I -R)P) 'Rs, (1)

where R = Diag(«) is a diagonal matrix called resistance matrix and entry R(%, ¢) corresponds to ;.
We call z(i) the expressed opinion of agent i. Let M = (I — (I — R)P)"'R, we have z = M.
Note that M is a row-stochastic matrix such that M1 = 1.

4 Problem Formulation

An important quantity for opinion dynamics is the overall expressed opinion or the average expressed
opinion at equilibrium, the optimization problem for which has been addressed under different
constraints [[7, 41} 141 6, [8, 129} 30]. In this section, we propose a problem of maximizing overall
expressed opinion in a graph, and introduce an exact algorithm optimally solving the problem.

Overall Opinion and Structural Centrality. For the opinion dynamic model in graph G = (V, E),
the overall expressed opinion is defined as the sum zg,,,, of expressed opinions z; of every node
i € V at equilibrium. By Eq. (1), zsum = 1" M s. Given the internal opinion vector s and the
resistance matrix R, we use f(R, s) to denote the overall expressed opinion. By definition,

f(R,s)=1T2=1"Ms = Z ZM(um)s(v). )

ueVveV

Eq. (@) tells us that the overall expressed opinion f(R, s) is determined by three factors: the internal
opinion and the resistance coefficient of every node, as well as the network structure characterizing
interactions between nodes, all of which constitute the social structure of the opinion system. The first
two are intrinsic property of each node, while the last one is a structure property of the network, both
of which together determine the opinion dynamics system. Concretely, for the equilibrium expressed
opinion z,, = Y -y, M (u,v)s(v) of node u, M (u, v) indicates the convex combination coefficient
or contribution of the internal opinion for node v. And the average value of the v-th column elements
of M, denoted by p, £ > ey M (u,v), measures the contribution of the internal opinion of node
vto f(R, s). We call p, as the structural centrality [42] of node v in the opinion dynamics model,
since it catches the long-run structure influence of node v on the overall expressed opinion. Note that
matrix M is row stochastic and 0 < M (u,v) < 1 for any pair of nodes v and v, 0 < p,, < n holds
foreverynodev € V' ,and ), p, = n.

Using structural centrality, the overall expressed opinion f(R,s) is expressed as f(R,s) =
> vev Pus(v), which shows that the overall expressed opinion f(R, s) is a convex combination of
the internal opinions of all nodes, with the weight for s,, being the structural centrality p, of node v.



Problem Statement. As shown above, for a given graph G = (V, E)), its node centrality remains
fixed. For the FJ opinion dynamics model on G = (V, E) with internal opinion vector s and
resistance matrix R, if we choose a set 7' C V of k nodes and persuade them to change their internal
opinions to 1, the overall equilibrium opinion, denoted by fr (R, s), will increase. It is clear that
forT =0, fy(R,s) = f(R,s). Moreover, for two node sets H and T, if H C T C V , then
fr(R,s) > fu(R,s). Then the problem OPINIONMAX of opinion maximization arises naturally:
How to optimally select a set 7" with a fixed number of k£ nodes and change their internal opinions to
1, so that their influence on the overall equilibrium opinion is maximized. Let the vector A be the
potential influence vector, where A (i) = p;(1 — s(¢)) defines the potential influence of node i on
the growth of the overall equilibrium opinion. Mathematically, it is formally stated as follows.

Problem 1. (OPINIONMAX) Given an unweighted graph G = (V, E), an internal opinion
vector s, a resistance matrix R, and an integer parameter k < n, we aim to find the set
T C V with |T| = k nodes, and change the internal opinions of these chosen k nodes to 1,
so that the overall equilibrium opinion is maximized. That is,

T = R.s) = A, 3
arg | max  fu(R.s) argUCr‘r/{?gjzkgj (i) 3)

Similarly, we can define the problem OPINIONMIN for minimizing the overall equilibrium opinion
by optimally selecting a set T' of k£ nodes and changing their internal opinions to 0. The goal of
problem OPINIONMIN is to drive the overall equilibrium opinion fr (R, s) towards the polar value
0, while the goal of problem OPINIONMAX is to drive fr(R, s) towards polar value 1. Although
the definitions and formulations of problems OPINIONMAX and OPINIONMIN are different, we
can prove that they are equivalent to each other. In the sequel, we only consider the OPINIONMAX
problem in this paper.

Optimal Solution. The most naive and straightforward method for solving Problem [I]involves
directly computing z by inverting the matrix I — (I — R)P, which has a complexity of O(n?).
Identifying the top k elements using a max-heap has a complexity of O(nlog k). Therefore, the
overall time complexity of the algorithm involving matrix inversion is O(n?). This impractical time
complexity makes it infeasible for networks with only tens of thousands of nodes on a single machine.
In the following sections, We propose a new interpretation and attempt to propose a new precise
algorithm based on this explanation.

5 Sampling Methods

In this section, apart from the algebraic definition, we give two novel interpretations and propose
corresponding sampling algorithms to approximately solve Problem|[I}

Random Walk-Based Algorithm. Observing that the expression for the overall equilibrium opinion
in Eq. (2) can be expanded as 17 >°:° (I — R)P)"Rs via the Neumann series, we introduce the
absorbing random walk. For a absorbing random walk starting from node s, at each step where
the current node is j, the walk either (i) is absorbed by node j with probability o, or (ii) moves
uniformly at random to a neighboring node with probability 1 — «;, where the resistance coefficient
aj of node j is represented as the absorption probability of the random walk at node j.

Lemma 1. For an unweighted graph G = (V, E), let p, € RVl be the absorption probability
vector of absorbing random walks starting at node i € V. The structural centrality of node v is

Pov = Ziev pi(v)'

Leveraging this connection between structural centrality and termination probabilities, we propose
a random walk-based algorithm RWB to efficiently estimate structural centrality for all nodes and
compute an approximate solution to Problem [I] In algorithm RWB, we first simulate N runs of
the absorbing random walk {X};>0, where each realization starts from a node uniformly chosen
from V. We then estimate the structural centrality p; for each node j € V' by scaling the empirical
absorption frequency at j by n.

Lemma 2. Let G = (V, E) be an unweighted graph with internal opinion vector s, and resistance
matrix R. For any error tolerance ¢ € (0,1), if algorithm RWB simulates N = O (E% log n)



independent random walks, then the estimated structural centrality p; of any node i € V satisfies
- 1

Pr(lpi—pil Z€) < 5.

Theorem 1. Consider a graph G = (V, E) with internal opinion vector s and resistance matrix R.

Let aupin = mingey R(7,1) and amax = max;cy R(i,1). Under the error guarantee ofLemma

Omax (1 —Cmin)

algorithm RWB achieves a time complexity ofO(EQ(aiz. -nlogn).

We now establish that algorithm RWB provides provable approximation guarantees for OPINIONMAX.
While Lemma [2]bounds the error of individual p; estimates, the following result demonstrates that

the collective quality of the selected set T is near-optimal:

Corollary 1. Let p; be the estimator of p; from algorithm RWB with absolute error parameter e,
and T* be the optimal solution to Problem|l| For the set T consisting of the k nodes achieving
arg max|p|—i ;e Pi(1 — si), we have: Y, i pi(1 —si) > > e pi(1 — 8i) — 2ke.

Forest Sampling Algorithm.  For matrix @ + L, where @ is a diagonal matrix, the elements of its
inverse can be interpreted combinatorially in terms of spanning converging forests in a graph [43}144].
In particular, by setting @ = D (I — R)™! R, we can reformulate Eq. (2) in terms of the fundamental
matrix, thereby establishing a direct correspondence between the structural centrality and spanning
converging forests.

Lemma 3. Let F be the set of all spanning converging forests of graph G, and let F*9 C F be the sub-

set where nodes i and j are in the same converging tree rooted at node i. For a forest F € F, let r(F)

Yjev Lrerii uerry Quu)
EFE]—‘ Hue r(F) Q(u,u)

be the set of roots of F'. Then the structural centrality of node i is p; =

This theoretical insight connects significantly with an extension of Wilson’s algorithm. As shown
in [30], Wilson’s algorithm, based on loop-erased random walks, effectively simulates the probability
distribution of rooted spanning trees when each node i € V is assigned a probability Q(i,) of
being the root. Building upon this theoretical framework, we propose an algorithm FOREST. The
experiment in [30] demonstrates that the algorithm can maintain good effectiveness with a small
number of samplings. More details are presented in Appendix [B] The following theorem provide its
time complexity:

Theolrem 2. When the number of samplings is l, the time complexity of algorithm FOREST is
O( In).

Qmin

6 Fast Exact-Selection Method via Asynchronous Updates

Sampling methods face challenges in identifying optimal size-k node sets with maximal potential
influence, as their sample complexity scales as ¢~2. In this section, we present a deterministic
asynchronous algorithm that provides rigorous error guarantees, enabling exact computation of the
highest-influence node set without reliance on stochastic samplings. To maintain consistency, we
present our derivation using unweighted graphs, noting that the corresponding algorithms can be
readily extended to weighted graphs.

6.1 Asynchronous Update-Based Approximation

Let ' denote the residual vector at time ¢, initialized as 7° = 1, and updated recursively via
rtt1 = PT(I — R)r'. By unrolling this recurrence, we obtain ! = (P (I — R))1, which
captures the distribution probability of a ¢-step absorbing random walk originating from a uniformly
chosen node. This probabilistic interpretation motivates our deterministic algorithm employing
asynchronous computation. The asynchronous paradigm provides two fundamental advantages:
First, it enables local computation where each node’s residual evolves independently based on its
neighborhoods; second, it supports node-specific termination through local convergence monitoring
of individual node states. These properties collectively overcome the synchronization constraints of
global methods while eliminating the sampling overhead of probabilistic approaches.

Global Influence Approximation. We propose an efficient asynchronous algorithm to compute
the potential influence vector A for the OPINIONMAX problem. The algorithm maintains a residual

vector 7, initialized to 1, an estimated potential influence vector A initialized to 0, and uses a
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boundary vector h = €l (which € € (0,1)) as the termination criterion. At each iteration, for
every node i satisfying 7, (i) > h(i), the algorithm performs three key operations: (i) distributing
(1—a;)/d] -74(i) to each out-neighbor’s residual 7 (j) for j € Noy(7), (ii) accumulating (1—s;)cv; -
74(i) to the node’s own potential influence estimate A (i), and (iii) resetting 4 (i) to 0. These updates
are managed asynchronously through a first-in-first-out queue @), processing nodes when they meet
the residual threshold condition. The algorithm terminates when the residual condition 7(v) < h(v)
holds for all nodes v € V. Each push operation maintains strict locality by only accessing direct
neighbors, while the asynchronous execution enables efficient computation of the potential influence
scores needed for opinion maximization. The pseudo code is provided in Algorithm [T}

Algorithm 1: GLOBALINFAPPROX(G, R, s, €)

Input :Graph G = (V, E), resistance matrix R, internal opinion vector s, error parameter €.
Output :Estimated potential influence vector A and residue vector r,.
Initialize : A = 0;r,=1
while Jv € V s.t. 4 (v) > e do

A(v) = A(v) + (1= s(v))ayrq(v)

for each u € N,,(v) do

t ro(u) = To(u) + 1;15)}“ rq(v)
ro(v) =0

return A, r,

The correctness of the algorithm relies on the relationship between the residual vector and the
estimation error, which is guaranteed by the following lemma.

Lemma 4. For any node i € V during the execution ofAlgorithm the equality A(7) — A(z) =
(1—5(i)) - e] M "r, holds.

Using Lemmaf] we can further establish the relative error guarantees for the results returned upon
termination of the Algorithm |l as shown in the following lemma.

Lemma 5. For any parameter ¢ € (0, 1), the estimator A returned by Algorithm |l| satisfies the
following relation: (1 — e)A(v) < A(v) < A(v),Vv € V.

Targeted Node Refinement. Algorithm|[I]provides solutions with rigorous relative error guarantees.
As established in Lemma ] these precise error bounds allow us to determine whether a given node
must necessarily belong to the size-k set with maximal potential influence. Furthermore, when the
error tolerance € becomes sufficiently small, we can completely identify the exact size-k node set
that maximizes opinion influence. However, since each error threshold setting generates a distinct
candidate set of boundary nodes, repeatedly computing global error bounds through Algorithm [T]
would incur unnecessary computational overhead. This motivates our key optimization: Can we focus
computations exclusively on a reduced candidate set identified by Algorithm [I]to improve efficiency?

Algorithm 2: TARGETEDNODEREFINE(G, 74, 7°, €)

Imput :Graph G = (V, E), forward residual vector r,, initial residual vector 79, error
parameter .

Output :Estimator A and residue vector 7.
Initialize : A = 0; r, = 0
while Jv € V s.t. 75(v) > e, do
A=A+71,0) ryv)
for each u € Ny, (v) do
t rs(u) = re(u) + 1;51"7‘5(71)
rs(v) =0

return A, rg
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The theoretical foundation comes from Lemmad] which provides the exact decomposition for all
nodes in the network. This decomposition directly motivates Algorithm[2} designed to approximate
the influence propagation term (1 — s(i)) - e] M " 7, for any given node 4. The algorithm initializes
with estimate A = 0 and residual vector 7, = 70, using h = € R1 as the boundary vector. For each
node v satisfying 74(v) > h(v), the algorithm updates A by adding 7, (v) - r,(v) and propagating
residuals to in-neighbors before resetting r(v) = 0. The process repeats until 7;(v) < h(v) for all
nodes.

While Algorithm s asynchronous operations do not maintain the random walk interpretation, its
correctness is established through the following analysis.

Lemma 6. When Algorithm@is initialized with 1° = av,,(1 — s(v)) e, the equality A(v) — (A(v) +
A) = r] M R™"r, holds throughout execution.

Building upon Lemmal6] we can derive the following absolute error bound when specific initialization
conditions are met.

Lemma 7. For Algorithm |2| with initial residual ° = o, (1 — s(v))e,, given any parameter

e € (0,1), the estimator A satisfies the absolute error bound: 0 < A(v)—(A(v)+A) < €-(T4)sum-

6.2 Fast Exact-Selection Algorithm

Let T C V be the set of nodes guaranteed to be contained in the optimal size-k node set with maximal
value of sequence a, and let C C V' \ T denote the candidate nodes that may belong to this optimal
set when considering estimation errors. Given an estimator a with uniform error bounds (either
absolute or relative), we can formally characterize these sets through the following lemma.

Lemma 8. Let a approximate a with uniform error 0 < a(i) — a(i) < egor 0 < a(i) — a(i) <
eva(i) foralli € V, and let a;~ denote the i-th largest value in a. Then,

* Element i € T if either (i) > G<pt1> + €4 07 @(i) > Gcpy1>/(1 — €);
* Elementi € Cifi ¢ T and either a(i) > G<p> — €q 0r (i) > @< (1 — €p).

Let kg, denote the difference between the k-th and (k + 1)-th largest values in the true potential
influence vector A. When the absolute error € < kg,p, We can guarantee exact identification of the
optimal size-k node set. However, since kg, is typically unknown a priori, we employ an iterative
refinement approach that progressively tightens the error bound € across successive iterations. This
process leverages residual vectors from previous iterations as initial conditions, thereby reducing
recomputation overhead through warm-start optimization. The algorithm operates through two
computational phases. First, global relative error bounds are applied to identify a small candidate
set C. Then, Algorithm [2] computes absolute error guarantees specifically for nodes in C' while

Algorithm 3: MAXINFLUENCESELECTOR(G, R, s, ¢, k)

Input :Graph G = (V, F), opinions s, parameter k.
Output :Optimal node set 7.

Initialize : T =0; C =V

A, r, = GLOBALINFAPPROX(G, R, s, €)

Update T" and C via Lemmawith {A(v)}yey and error €

Initialize 7, = a, (1 — 8y) - €, Yo € C
for ¢’ = 1,%,...,%,...d0
for v € C' do

Ar, = TARGETEDNODEREFINE(G, 7¢, T4, €' /(T4 )sum)
Aw)=A@Ww) +A
Update T" and C' via Lemmawith {A(v)}yec and error ¢
if |T| = k then
| return T




progressively shrinking the candidate set size. The procedure terminates when the error bound
satisfies € < kg, and the candidate set becomes empty, at which point we obtain the exact optimal
size-k set with maximal potential influence. The pseudo code is provided in Algorithm

Theoretical guarantees of this approach are established in the following theorem, which provides an
upper bound on the time complexity.

Theorem 3. For sufficiently small €, the upper bound on the time complexity of Algorithm 3] is
+
O(aatlog § + 722 —).

gap* Cmin

7 Experiments
In this section, we experimentally evaluate our proposed three algorithms. Additional experimental
results and analyses are presented in Appendix [C|

Machine. Our extensive experiments were conducted on a Linux server equipped with 28-core
2.0GHz Intel(R) Xeon(R) Gold 6330 CPU and 1TB of main memory. All the algorithms we proposed
are implemented in Julia v1.10.7 using single-threaded execution.

Table 1: Datasets

DBLP Google YoutubeSnap  Pokec Flixster LiveJournal =~ Twitter SinaWeibo

Nodes 317,080 875,713 1,134,890 1,632,803 2,523,386 4,847,571 41,652,230 58,655,849
Edges 1,049,866 5,105,039 2,987,624 30,622,564 7,918,801 68,993,773  1,468,365,182 261,321,071
df.. 343 456 28,754 8,763 1,474 20,296 770,155 278,491

Type undirected directed undirected directed undirected directed directed undirected

Datasets and Metrics. We use 8 benchmark datasets that are obtained from the Koblenz Network
Collection [45], SNAP [46] and Network Repository [47]. Tablemsummarizes the key characteristics
of the networks used in our experiments, including network name, number of nodes, number of
edges, maximum out-degree, and network type. The networks are listed in ascending order based
on node count. A more detailed description of the datasets is provided in Appendix [D} On each
dataset, we employ the algorithm GLOBALINFAPPROX with a relative error parameter 10712 to
compute the ground-truth structural centrality scores. This ensures that each ground-truth value has
at most 10~ 2 relative error. We evaluate the maximum influence node selection problem for varying
set sizes k € {1,2,4,...,1024}. We evaluate the accuracy of each method using three metrics:
overall opinion, along with two standard ranking measures, precision and Normalized Discounted
Cumulative Gain (NDCG) [48]. We initialize internal opinions with uniform distribution as their
configuration does not significantly affect experimental results.

Methods. We present numerical results to evaluate the performance of our proposed algorithms,
RWB, FOREST and MAXINFLUENCESET against existing baselines. For consistency, we abbreviate
MAXINFLUENCESET as MIS in the following text. In all experiments, we set the absolute error pa-
rameters of RWB to 1072, For algorithm FOREST, we set the number of samplings [ = 4000. We set
the initial error parameter of algorithm MIS to 10~2. To further demonstrate the effectiveness of our
approach, we compare against five widely-used benchmark algorithms: TOPRANDOM, TOPDEGREE,
TOPCLOSENESS, TOPBETWEENNESS, and TOPPAGERANK [49] across all networks.

Resistance Coefficient Distributions. In our experiments, resistance coefficient are generated
using three distinct distributions: uniform, normal, and exponential. They are abbreviated as Unif.,
Norm., and Exp. in the figures. We set the minimum value of the resistance coefficient a,i, =
0.01 because a zero resistance coefficient would lead to non-convergent results. For the uniform
distribution, each node 1 is assigned an opinion s; uniformly sampled from the interval [aumin, 1].
For the normal distribution, each node 7 is assigned a sample z; drawn from the standard normal
distribution z; ~ N(0,1). These values are then normalized to the interval [aumin, 1]. For the
exponential distribution, we generate n positive numbers x using the probability density function
f(z) = e™mine™" where Zmin > 0. These values are similarly normalized to the range [amin, 1] to
represent resistance coefficients.

Efficiency. Table [2| compares the execution time of three algorithms: RWB, FOREST, and our
proposed MIS (with & = 64), under various resistance coefficient distributions. The direct matrix
inversion based EXACT algorithm was excluded from the comparison as it failed to complete



Table 2: Running time with k£ = 64.

Time(s)
Name RWB FOREST MIS
Unif. Norm. Exp. Unif. Norm. Exp. Unif.  Norm. Exp.
DBLP 120.61 101.72 703.31 66.02 58.65 104.41 0.28 0.51 1.81
Google 344.02 326.83 1368.66 162.87 154.62 223.67 0.39 0.40 291
YoutubeSnap 896.66  900.97 10495.42 196.53 208.92 312.03 1.03 0.87 6.85
Pokec 1037.87 1028.07  6562.19 467.81 493.82 784.69 3.72 3.21 24.68
Flixster 2342.12  2142.68 - 326.52 321.75 376.91 2.59 2.14 13.56
LiveJournal 3275.20  2580.90 - 1454.37 1472.17  2147.34 8.61 13.17 56.49
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Figure 1: Performance of algorithms in accuracy across four smaller graphs.

even on the smallest DBLP network within the 6-hour time limit. Similarly, RWB executions
exceeding 6 hours on large-scale networks with strict resistance distributions were terminated due to
impractical runtime requirements. In contrast, both FOREST and MIS demonstrated robust scalability,
successfully processing networks with tens of millions of nodes across all distribution scenarios. The
data reveals that FOREST consistently achieves faster execution than RWB, while MIS outperforms
both algorithms by a substantial margin in all test conditions. Notably, the execution time of RWB and
MIS shows considerable sensitivity to resistance coefficient distributions, whereas FOREST maintains
relatively stable performance in most cases despite distribution variations. As shown in Table[2] the
excellent efficiency of our MIS algorithm can be easily applied in large-scale networks containing
tens of millions of nodes, whether directed or undirected. This performance advantage makes MIS a
feasible solution for large-scale network analysis tasks in the real world.

Accuracy. Figures[T]and [2] presents a comprehensive evaluation of opinion optimization per-
formance, precision, and NDCG scores for all methods under uniformly distributed resistance
coefficients. Due to excessively long running times, we omitted the performance of the RWB algo-
rithm on the Twitter and SinaWeibo networks in Figure[2] Our experimental evaluation reveals that
the proposed algorithms (RWB, FOREST, and MIS) consistently outperform all baseline methods
across all evaluation metrics. This superior performance demonstrates the effectiveness of our ap-
proach in opinion optimization tasks. The result shows that while RWB and FOREST exhibit show
measurable variations in precision under certain conditions, these fluctuations do not substantially
affect their overall opinion optimization performance. The robustness of these algorithms across
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Figure 2: Performance of algorithms in accuracy across four larger graphs.

different network structures further confirms their practical utility. Notably, the MIS algorithm
achieves perfect computational precision (exactly 1) while maintaining NDCG scores approaching 1,
indicating both optimal opinion optimization results and accurate sequence ordering. When combined
with its exceptional efficiency demonstrated in Table 2} these results further underscore the superiority
of the MIS algorithm in both accuracy and computational performance.

8 Limitations

Despite its advantages, our MIS algorithm has certain limitations. As formally established in Theo-
rem 3] the algorithm remains sensitive to resistance coefficients—particularly exhibiting prolonged
runtime when these values are small. Furthermore, in exact optimization scenarios where boundary
nodes contribute equally, the algorithm may encounter termination issues, though such cases are
practically negligible. We note that this edge case can be effectively addressed by relaxing constraint
conditions.

9 Conclusion

This paper proposes novel solutions for optimizing overall opinions in social networks by modifying
the internal opinions of key nodes. As traditional matrix inversion methods face computational
limitations in large-scale networks, we introduce two sampling-based algorithms. Building upon
a random walk interpretation, we further develop a exact asynchronous update algorithm. This
deterministic asynchronous approach provides guaranteed error bounds, leveraging asynchronous
update operations and progressive refinement to efficiently and exactly identify nodes with the greatest
potential influence. Extensive experiments demonstrate that compared to baseline methods and our
sampling approaches, this method achieves superior efficiency and accuracy while effectively scaling
to networks with tens of millions of nodes. Future research directions include extensions to dynamic
network configurations and multi-opinion optimization scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions, in-
cluding proposing efficient sampling-based algorithms (RWB, FOREST) and a deterministic
asynchronous algorithm (MIS) for opinion maximization in large-scale networks. The
claims align with theoretical analysis and experiments on real-world datasets (Section 4-7).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper acknowledges limitations in scalability of traditional methods and
mentions future extensions to dynamic networks or multi-opinion scenarios (Section 8).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical assumptions (e.g., resistance coefficients «; € (0, 1]) are clearly
stated. Proofs for lemmas and theorems are provided in Appendix A with logical derivations.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper details the algorithm implementations (e.g., RWB, FOREST, MIS),
parameter settings, dataset sources, and hardware configurations in the Experiments section
(Section 7). This information is sufficient for independent researchers to reproduce the main
experimental results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experimental code has been packaged into ZIP files and submitted as sup-
plementary materials with the paper. Sufficient instructions are provided in the supplemental
material to faithfully reproduce the main experimental results, including details on dataset
preparation, parameter settings, and execution steps.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setup includes dataset statistics, machine specifications, parame-
ter choices, and baseline methods. See Table 1 and Section 7.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The deterministic nature of the MIS algorithm ensures zero variance in its
outputs. Furthermore, we provide rigorous mathematical definitions for all test distribu-
tions (uniform/normal/exponential) and their parameters, with comprehensive experimental
validation demonstrating consistent performance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative

error rates).

If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides complete computational resource specifications: (1)
Dataset scales (nodes/edges) are detailed in Table 1; (2) Execution times for all algorithms
are reported in Table 1 and Figure 2; (3) All experiments were conducted in single-threaded
mode on a 28-core 2.0GHz Xeon server with 1TB RAM, as specified in Section 7.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work is purely algorithmic and does not involve any research with human
participants, crowdsourcing, or data collection from human subjects. All experiments are
conducted on publicly available benchmark datasets.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both positive applications (e.g., public health campaigns,
political elections) and potential negative societal impacts (e.g., opinion manipulation risks)
in Sections 1 and 8, fulfilling the requirement for broader impact analysis.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This study belongs to basic algorithm research and does not involve the
publication of high-risk models or data (such as large language models or sensitive datasets),
therefore, it is not subject to safeguard measures requirements.

Guidelines:

Justification: The paper introduces new algorithmic implementations (e.g., RWB,
FOREST, and MIS) as part of its contributions. These assets are well-documented in
the Methods and Experiments sections (Sections 5-7), with detailed descriptions of
the algorithms, parameter settings, and computational workflows. The code is released
under the MIT License, and documentation is provided in the supplemental materials
to ensure reproducibility.

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The public datasets (Koblenz, SNAP, Network Repository) have been sourced,

but specific licenses have not been cited. The data source references (such as [42], [43],
[44]) have been provided (Section 7).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new algorithmic implementations (e.g., RWB, FOREST,
and MIS) as part of its contributions. These assets are well-documented in the Methods and
Experiments sections (Sections 5-7), with detailed descriptions of the algorithms, parameter
settings, and computational workflows. The code is released under the MIT License, and
documentation is provided in the supplemental materials to ensure reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: The work does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects are involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not used in the core methodology. Writing/editing uses standard
tools without LLM assistance.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Omitted Proofs

A.1 Proof of Lemmalll
According to Neumann series, we have M = (I — (I — R)P)"'R=Y;° (I - R)P)" R. Let

p,=¢ >, (I-R)P )" R represent the absorption probability vector of absorbing random
walks starting from node 7. Hence, we have:

Pv = ZM(ivv) = Z e;F Z((I o R)P)t Re, = Zpi(v)'

eV eV t=0 eV

A.2 Proof of Lemma[2l

Algorithm RWB simulates N independent runs of the absorbing random walk {X;}Y ;. where:

x, _ 1 if the ¢-th walk is absorbed by v,
‘10, otherwise.

The estimator p,, = % Zfil X; has the following properties:

=1 ueV

1 1 &
~ _ _ 2 2
Var(p] = g7 3 VarlX) = g7 3 (EIX?] - BLX])

N

1 5 P o\ puln—py) _ n?
- A — <
N?Z}(" n v) N 4N

We now apply the following Chernoff bound for bounded variables.

Lemma 9 (Chernoff Bound). Ler X;(1 < i < N) be independent random variables satisfying
X; < EX;))+Mforl <i<N. Let X = %fo\il Xi. Assume that E[X] and Var[X] are
respectively the expectation and variance of X. Then we have

AN
2Var[X]+2MX\/3

Pr(|X — B[X]| = \) < 2exp(— ).

Applying this lemma with M = n and A\ = ¢, we obtain

2N 2N
Pr (|pw — pol > €) < 2exp |~ | =2exp |~ | .
2. 75 +2ne/3 oy +2ne/3

When N = O (e%logn), we have Pr (|p, — py| > €) < %
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A.3  Proof of Theorem

We first prove the expected length of a random walk. Since Zfil [zt

have

= (1_%)2 for |z| < 1, we

oo
E[Walk length starting from node u] = Z [ - Pr(Walk length starting from node w is 1)
1=0

o0 o0
T
= Zl c €y ((I Z amln amax
1=0 1=0
o0
= CVrnax amm Zl amln
=1
_ amax(l - amin)
=== =,
Xmin
According to Lemma |I} we have N = 7 logn, hence the upper bound of time complexity is
max (1 —Qmin
O(% -nlogn).

min

A.4 Proof of Lemma[3l

We begin by establishing the representation M = (Q + L)™' Q. Starting from the definition of M,
we derive

M=I-I-RP)'R=I-I-RD 'A)'R=(DI-R)"'-A)'DI-R'R

=(DY R -A4)'Q=(D> R R+D-A)"'Q
3 =0

= (D(;— RT'R+L)'Q=(Q+L)'Q.

To prove Lemma 3] we invoke a result from [44] concerning spanning converging forests:

Lemma 10 ([44]])). Let L_g be the matrix obtained from L by deleting the rows and columns
corresponding to the nodes in S C V, and let Fg be the set of spanning converging forests of
graph G with | S| components that diverge from the nodes of S. Then, the determinant det(L_g) =
> rers W(F), where w(F) represents the product of edge weights in forest F'. Furthermore, for any

nodes i,j € V\ S, the (i,j)- cofactorL]S =D perii  W(F).

SU{i}

Let L, = M~ ' = Q (L + Q), We analyze det(L,) as follows:

det(L,) = det(Q 1) det(L + Q) = det(L+ Q)

-
[Lev Qv,v)
= mz Z det(L H Q(u,u)

t=0 ‘%‘CV ues
1 n
_ w(F) Q(u,u)
[T,ev Qv U)gig_\/}?;s ul;[S
1
_ w(F U, U
Mo Qi 2 2 " 1L @
1
HUEV Q( ) I;rw(F) uelr_([F) Q(MU)
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For the (i,j)-cofactor Lv , we similarly obtain

. o Q)
J — d 1 d 1] — d 7/‘7
det(Ly') = det((Q™")") det((L + @)%) Mooy Q(0,0) et((L+ Q)Y)
= det(Lij ) Q(u,u)
HUEVQ ;SCVZ\{ZJ} ° UI;»[S
|S|=t
e D DD DTS | E 080
veV t=0 SCVl\_{z,]} FG]:éJU{ 5 u€esS
R YD SRRl | 100
H'I}GV Q(’U, ) SCV\{i,j} FG.F;JU{ 5 u€sS
1
mmﬂwwggﬂwlﬂgm“”

Since all edge weights in G are 1, the inverse L;l simplifies to

det(L”) _ ZFE]:]‘«L HuE’r(F) Q(U, U)
det(Lg) Yorer HuEr(F) Q(u,u)

L, (i,j) =

Finally, as p; = 3, oy M (v,i) = 3,y L; " (v,), the expression for node 4’s structual centrality
p; follows

p; = Z ZFefm’ HuET(F) Q(u,u)
1 jEV ZFGJ: HuGr(F) Q(U,’U,) .

This completes the proof of Lemma 3]

A.5 Proof of Theorem

The time complexity of the algorithm depends on the times nodes are visited in loop-erased random
walks. Thus, the time complexity of FOREST is

l- Z i(([ —R)P){(v,v)=1-Te(I - (I-RP)H=1-Tr(MR™ ') < ! Tr(M).

veV i=0 Qmin

Since M (i,7) < 1forany i,j € V, the final time complexity is obtained as O(=1—1In).

Amin

A.6  Proof of Corollary 1]

Define the ground-truth utility of a set T as U(T') = >, pi(1 — s;) and the estimated utility as
U(T) = Lier pi(l = si)-
By the error condition |p; — p;| < ¢, for any set T with |T'| = k, we have:

‘— ) <3 el —s1) < ke,

€T
where the last inequality holds because 0 < 1 — s; < 1. This implies

U(T) + ke > U(T) > U(T) — ke. 4

—pi)(1—s;)

lET

Since we select 7" to maximize U (T), it satisfies

U(T) > U(T*) > U(T*) — ke, )
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Combining (4) and , we bound U (T') as:
U(T) > U(T) — ke > (U(T*) — ke) — ke = U(T™*) — 2ke.

Thus, » ;7 pi(1 = 5:) = > ;- pi(1 — 8;) — 2ke, as required.
A.7 Proof of Lemmald

We demonstrate that the invariant holds by using induction. First, we verify that before any computa-
tion has begun, the invariant is satisfied by the initialized values:

A (0

A-A"=A-0=(1-s)OM'"1.

Let rff) denote the residual vector before an update task for any node 4, and let 'r’,(fH) denote the
residual vector after the update task. Then a single update task corresponds to the following steps:

A"V 2 AY 4 r0()1 - 5)© Re,,

P = 2O 2O ()e;, + rO()PT(IT - R)e; =D — O @) (I - PT(I — R))e;

© _ 1-s5)06 MTr,(f’), it follows that

®

Assuming that A — A

A - AY

=A-A"—¢e/(1-5)oRrY

=(1-s)oM"rl) —rB)(1-5)© Re;

—(1-s)oM" (rng) +r®O@I - PT(I - R))ei) —rW)(1 - s)© Re;
=(1-s)o M riHY,

which completes the proof.

A.8 Proof of Lemmalf3

On the one hand, since 7, > 0, by Lemma@ we have A(v) > A(v), Vv € V; on the other hand,
the condition in Line 2 of AlgorithmE]indicates that, after termination, the vector r, < €1, then we
have that: )

A-A=1-5)0M"'r,<e(l-s5)0M'1=EeA. (6)
The equation above implies that (1 — €)A(v) < A(v), Vv € V, hence the estimator A returned by
Algorithmsatisﬁes (1—e)A) < A@W) < A(v),Yv e V.

A.9 Proof of Lemmal6l

We demonstrate that the invariant holds by using induction. First, we verify that before any computa-
tion has begun, the invariant is satisfied by the initialized values for any node v € V:

AW) — (AW +A) =AW —AWw)=1—-50) e, M r,=r] MR .

Let rét) denote the residual vector before an update task for any node u, and let rgH) denote the
residual vector after the update task. Then a single update task corresponds to the following steps:

AU = AD 4 p () - r® (u),
D = O _ 2O e, + 78 (u)(I — R)Pe, = Y —rO(u)(I — (I — R)P)e,
Assuming that A(v) — (A(v) + A®) = rT MR~'r, it follows that
A®v) = (A() + AMY) = A(v) = (A(v) + AW 4 74 (u) - Y (u))
=r MR v —r,(u)- ¥ (u)
=i MR () 4 e (w)(I = (I = R)P)e, ) = ra(u) - 70 (w)

= 'I";FMR_lT(tJrl),

a

which completes the proof.
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A.10 Proof of Lemmal(7l

On the one hand, since r; > 0, by Lemma@ we have A(v) — (A(v) + A) > (; on the other hand,
the condition in Line 2 of Algorithm E]indicates that, after termination, the vector r, < eR1, then
we have that

AW)— (AW +A)=r] MR 'r, <er] M1 =c- (rq)sum.

Hence the estimator A returned by Algorithmsatisﬁes 0<A®) - (AW) +A) <€ (Ta)um-

A.11 Proof of Lemmal§|

We present the proof for absolute errors; the relative error case follows analogously through error
bound transformations and is thus omitted.

Let $* denote the optimal size-k node set. We first show that any node ¢ € 7" must belong to &*.
By definition of 7', we have a(i) > @41y + €. Applying the error bound yields a(i) > a(i) >
@41y + €. For any node j ¢ S*, it holds that

a(j) < agpry < @pgry +€ < ali).

This shows a(i) > a(j) forall j ¢ S*, which implies i € S*.

Next, we prove that S* \ 7' C C'. Suppose for contradiction that there exists i € S* withi ¢ T U C.
By definition of C, this requires a (i) < a ) — €. Using the error bound, we obtain

However, since ¢ € S*, optimality implies a(i) > agy > &<k>, which contradicts the above
inequality. Therefore, S* \ T' C C must hold.

A.12 Proof of Theorem[3|

We first proof Lemma [T 1] which explains the upper bound of the time complexity of Algorithm I
Lemma 11. An upper bound on the running time ofAlgorithm is O(gjﬂ—“ﬁ‘n log %)

Proof. During the processing, we add a dummy node that does not actually exist. This node is
initially placed at the head of the queue and is re-appended to the queue each time it is popped. The
set of nodes in the queue when this dummy node is processed for the (i + 1)-th time is regarded as
S@  and the residue vector at this time is regarded as 'r((f). The sum of the vector 7'((12) is denoted as

(ra)éi?m. The process of handling this set is considered the (¢ + 1)-th iteration. In the context of the
(i + 1)-th iteration, when node v € S(¥) is about to be processed, it holds that 7, (v) > r) (v). Upon
the completion of this operation, the sum of residual vector is decreased by «,,7,(v). Consequently,
by the conclusion of the (i + 1)-th iteration, the total reduction in the sum of residue vector amounts

to:
(ra)gfl)m - (T'a)gfirrnl) = Z ayTq(v) = Z O‘v"’fzi)(v)~ N
veS@) veS®)
Given that the bound for any node v is €, we obtain:
(7) (1)
Zves(w ‘Trz (U) >¢ and ngsu) 7'@ (U) <e
|S®] [V\ SO

Therefore, it follows that:

Yueso T (0) | Tyeso 76 (0) + Fogsor 76 (0) _ (ro)im

1S - [SE]+ [V SO oon
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Substituting the above expression into Eq. (7)), we obtain

(Ta)(Hl) < Z Qy T(Z ("’a)g}m Qmin Z rgi)(v)

veS@) veS @)
<(1- O‘“;“lsmbmﬂ')

sum

<H Lt | G0 (1)),

By utilizing the fact that 1 — x < e™", we obtain

(i+1) < 7amin : (t)
(ra)sum = €Xp < n (Z |S |)> n. (8)

t=0

Let 70+ = Zi:o |S®)| be defined as the total number of updates before the start of the (i + 1)-th

iteration. According to Eq. , to satisfy (ra)gﬁnl) < en, it suffices to find the minimum number of

updates that meets the following conditions:
exp (_ Qmin T(i+1)> <e<exp ( Omin (Z))
n n

Thus, we obtain TV < —L_nlog L < TGV, Given the fact that 70 — T = |SO)] < n, we
further derive

TEHD < 76 4 <

1
nlog — + n.
€

min

For node v, the push operation reduces (74 )sum by @74 (v). Consequently, after incurring a total
number of updates 7', the reduction in (r,)sum is at least ea, T. Hence starting from the state of
(ra)sum < en, the time cost T' is bounded by O(n/amin), thereby constraining the overall time

. . df, 1
complexity of Algorithm|l|to O(Z222nlog 2). O

For the refinement stage, we first proof the time complexity of Line 7 in Algorithm [3] when the
absolute error parameter ¢ = 1. Assuming that estimating node is v € V, the contribution of r; at

node v € V each time is rs(u). Due to the existence of boundary h = WRI its minimum

value is «,,, and the upper bound on the total contribution is (1 — s(v))M (u,v). Therefore, the
upper bound on the number of updates at node  is (ra)sum:(1= s(v))M( v) . Therefore, assuming that
the candidate set returned in Line 3 of Algorithm [3is C,,, the upper bound of the time complexity

during the first round of execution in the refinement stage is

ZZ 'rabum'l_s( )M (u, )d;S(Tabum maxZZMuv

(0%
vEC, ueV min weV vel,
(Ta sum max max
- o E pv > o § Pu-
min veC, min veCy,

Now we consider when absolute error parameter ¢ = %, i, R ﬁ, .... We assume that the error
in one round of the process is €', so the error in the previous round of the process is 2¢’. The upper

bound of time complexity of this round is

2¢'/(Ta)sum - (1 — s(v)) (MR R1)(u)d; 9 ) om
> 2 s () oms <=3 D (M)W, =|Cof
veCq, ueV a/sum“tu min vEC, ueV min
When the current error ¢ is 3, the upper bound of the total time complexity from ¢’ = 3 to € = %

is |Cy] - (2;“’" Hence, when ¢ < Kgap, the upper bound of the total time complexity is |C \ o —

2ap* Xmin
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Hence, the upper bound of time complexity of Algorithm 3]is

dt..n 1 |Calm
O max 1 _ v — ).
( Omin ( o8 € e Z P ) * kgap ' O‘min)

vel,

Under normal circumstances, when ¢ is sufficiently small, we obtain |C,| as either O or a relatively
+
small constant. Therefore, we can derive the upper bound of time complexity as O(w log % +

K Amin
™ ) in the general case.

kgi\p'amin

B Forest Sampling Algorithm

For a graph G = (V, E), a spanning subgraph of G is a subgraph with node set V' and edge set being
a subset of . A converging tree is a weakly connected graph where exactly one node, called the root,
has out-degree 0, while all other nodes have out-degree 1. An isolated node is considered a trivial
converging tree with itself as the root. A spanning converging forest of G is a spanning subgraph
in which every weakly connected component is a converging tree. This structure coincides with
the notion of an in-forest as introduced by [50] and further studied by [51]]. Spanning converging
forests are closely related to the fundamental matrix of our model. Following the Lemma 3| and its
Proof[A.4] it can be shown that the any entry of the fundamental matrix can be represented in the
form of spanning converging forest.

Wilson’s algorithm [52] provides an efficient method for generating uniform spanning trees by
leveraging loop-erased absorbing random walks. For any graph G = (V| E), Wilson’s algorithm can
be adapted to generate a uniform spanning converging forest, by using the method similar to that in
[53,130]. The details of the algorithm are presented in

Algorithm 4: RANDOMFOREST(G, R)

Input :graph G, resistance matrix R.
Qutput :root index vector RootIndex.
for i < 1tondo
L InForest[:] < false; Next[:] < -1; RootIndex[] < O;

for i +— 1tondo
u < 1;
while not InForest[u] do
if RAND() < «,, then
InForest[u] < true
Next[u] « —1
RootIndex[u] + u
else
L u < Next[u] +~ RANDOMSUCCESSOR(u, G)

RootNow < RootIndex[u]

for u < i, not InForest[u]; u < Next[u] do
InForest[u] < true
RootIndex[u] < RootNow

return RootIndex

The Algorithm @]initializes three vectors: InForest (marks nodes added to the spanning forest), Next
(tracks random walk steps), and RootIndex (records root assignments), all set to false, -1, and 0
respectively (Line 1). For each node in order (Line 3), it performs a loop-erased absorbing random
walk that terminates either: (1) with probability av,, (making u a new root, Line 6-7), or (2) upon hitting
existing forest nodes (Line 5). The walk’s path is recorded in Next. After termination, the algorithm
backtracks along the walk path (Line 13-14), adding all nodes to the forest and assigning them the
current root index. This continues until all nodes are processed (Line 3), returning the RootIndex
vector representing the sampled rooted spanning forest (Line 15). Then, based on Lemma [3| we
obtained the implementation of our algorithm FOREST, and the pseudocode is shown in Algorithm [5]
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Algorithm 5: Forest(G, R, s, 1)
Input :graph G, resistance matrix R, internal opinion vector s, sample count [.
Output :the target set T.
Initialize : 7' < (); p < 0
fort < 1toldo
RootIndex < RANDOMFOREST(G, R)
fori < 1tondo
u < RootIndex|[7]
Lbueﬁu+1

b b/l
fori =1tondo

U = argmax, oy 7 Py (1 — 8v)
| T+ TU{u}

return 7'

C Additional Experiments

C.1 Efficiency

Figure [3|and Table [3|collectively present a comprehensive performance analysis of our proposed MIS
algorithm under different parameters and network conditions. Figure [3]demonstrates the algorithm’s
runtime performance across all tested networks under various resistance coefficient distributions
as parameter k varies. The results indicate that although fluctuations in the potential influence
distribution near the k-th most influential node cause minor variations, MIS consistently maintains
superior performance compared to both RWB and FOREST algorithms in all test cases.

-©- uniform distribution -&- normal distribution -5~ exponential distribution
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Figure 3: Running time of algorithm MIS under different resistance coefficient distributions.

Complementing the runtime analysis, Table [3]evaluates computational efficiency by examining the
average number of updates per node during algorithm convergence under the specific parameter
setting of k=64 and uniform resistance coefficients. The update ratios for all networks remain within
a practical range of 27.06 to 249.28, with Twitter maintaining controllable levels despite its largest
scale while Google achieves optimal efficiency. These results confirm that the algorithm achieves
near-linear time complexity in practice, with stable constant factors that do not increase significantly
with network size, demonstrating strong scalability for large-scale network applications.
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Table 3: Updates per node across networks.

Network DBLP Google

YoutubeSnap  Pokec

Flixster LiveJournal

Twitter SinaWeibo

Ratio 4993  27.06 49.34 126.86  114.84 106.05 249.28 78.77

C.2 Accuracy

Extending the analysis from Figures[I[]and [2] we conduct a comprehensive evaluation of accuracy
performance across multiple experimental configurations. Figures[]and[5|examine performance under
normal distribution conditions. Similarly, Figures [6] and [7] demonstrate algorithm behavior under
exponential distribution. The complete set of experimental results reveals several important findings.
First, our proposed algorithms (RWB, FOREST, and MIS) consistently outperform all baseline
methods across every tested condition. While the RWB algorithm fails to complete execution within
practical time limits for certain cases due to its computational complexity, the algorithms FOREST
and MIS successfully deliver results in all scenarios. More significantly, the MIS algorithm achieves
exact solutions in every case while simultaneously maintaining near-perfect accuracy (NDCG = 1)
in sequence ordering. This combination of guaranteed precision and optimal ordering performance
clearly establishes the superiority of our MIS approach over both baseline methods and our own
alternative proposals.
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Figure 4: Performance of algorithms in accuracy under normal distribution.
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Figure 5: Performance of algorithms in accuracy under normal distribution.
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Figure 6: Performance of algorithms in accuracy under exponential distribution.
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Figure 7: Performance of algorithms in accuracy under exponential distribution.

D Dataset Details

The study utilizes eight benchmark datasets obtained from the Koblenz Network Collection [43]],
SNAP [46]], and Network Repository [47].

DBLP is an undirected co-authorship network where nodes represent authors and edges indicate co-
authorship relationships. The dataset uses the largest connected component, with publication venues
(conferences or journals) defining ground-truth communities, retaining the top 5,000 high-quality
communities each containing at least three nodes. Google is a directed network where nodes represent
web pages and edges represent hyperlinks, originating from the 2002 Google Programming Contest.
YouTube is an undirected social network where nodes represent users and edges represent friendships,
with communities defined by user-created groups, similarly retaining the top 5,000 communities with
at least three nodes and using the largest connected component. Pokec is a Slovak social network
where nodes represent users and directed edges represent friendships, containing anonymized user
attributes such as gender and age. Flixster is an undirected movie social network where nodes
represent users and edges represent social connections. LiveJournal is a directed online community
network where nodes represent users and edges represent friend relationships. Twitter is a directed
social network where nodes represent users and edges represent follower relationships. SinaWeibo
is a directed microblogging social network where nodes represent users and edges represent social
connections. Detailed statistical characteristics of each network are provided in Table [T}
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