OptiMUS: Scalable Optimization Modeling
with (MI)LP Solvers and Large Language Models

Ali AhmadiTeshnizi' Wenzhi Gao? Madeleine Udell ! 2

Abstract

Optimization problems are pervasive in sectors
from manufacturing and distribution to health-
care. However, most such problems are still
solved heuristically by hand rather than opti-
mally by state-of-the-art solvers because the ex-
pertise required to formulate and solve these
problems limits the widespread adoption of op-
timization tools and techniques. This paper in-
troduces OptiMUS, a Large Language Model
(LLM)-based agent designed to formulate and
solve (mixed integer) linear programming prob-
lems from their natural language descriptions.
OptiMUS can develop mathematical models,
write and debug solver code, evaluate the gener-
ated solutions, and improve its model and code
based on these evaluations. OptiMUS utilizes
a modular structure to process problems, allow-
ing it to handle problems with long descrip-
tions and complex data without long prompts.
Experiments demonstrate that OptiMUS out-
performs existing state-of-the-art methods on
easy datasets by more than 20% and on hard
datasets (including a new dataset, NLP4LP, re-
leased with this paper that features long and com-
plex problems) by more than 30%. The im-
plementation and the datasets are available at
https://github.com/teshnizi/OptiMUS.

1. Introduction

Optimization problems are common in many fields such
as operations, economics, engineering, and computer sci-
ence. Important applications of optimization include reduc-

"Department of Management Science and Engineering, Stan-
ford University, CA, USA “Institute for Computational and Math-
ematical Engineering, Stanford University, CA, USA. Correspon-
dence to: Ali AhmadiTeshnizi <teshnizi@stanford.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

ing energy costs in smart grids, improving supply chains,
and increasing profits in algorithmic trading (Singh, 2012;
Antoniou & Lu, 2007). Major advances in optimization
algorithms over the last several decades have led to reli-
able and efficient optimization methods for a wide vari-
ety of structured optimization problems, including linear
programming (LP) and mixed-integer linear programming
(MILP), among many others. Unfortunately, optimization
modeling, transforming a business problem into a mathe-
matical optimization problem, still requires expert knowl-
edge. According to a recent survey, 81% of Gurobi’s com-
mercial solver users have advanced degrees, with 49 % of
them holding a degree in operations research (Gurobi Op-
timization, 2023). This expertise gap prevents many or-
ganizations from using optimization, even when it could
significantly improve their operations. Examples include
inventory management in supermarkets, patient operations
in hospitals, transportation policies in small municipali-
ties, energy management in local solar farms, and opera-
tions in small businesses or NGOs (Saghafian et al., 2015;
Aastrup & Kotzab, 2010; Yao et al., 2020; Shakoor et al.,
2016). Automating optimization modeling would allow
sectors that cannot afford to have access to optimization ex-
perts to improve efficiency using optimization techniques.
Large language models (LLMs) offer a promising way to
make optimization more accessible. LLMs have demon-
strated the ability to understand, generate, and interpret
natural language for many tasks. In the optimization do-
main, LLMs can make it easier to formulate problems and
obtain solutions, making expert-level optimization more
accessible (Ramamonjison et al, 2023) However, several
challenges remain before LLMs can reliably model real-
life optimization problems:

* Ambiguous Terms: An optimization problem can be
described in many ways. For example, a user might use
different terms (e.g. vehicle vs. car vs. truck vs. carrier),
notations (e.g. price and capacity vs. p and c vs. x and
1), or omit common-sense assumptions (e.g. capacity of
a vehicle is non-negative, number of employees is an in-
teger, etc.). Moreover, defining the right variables can
be a challenge. For instance, information flow through
a network requires a different set of variables than phys-

https://github.com/teshnizi/OptiMUS

Large Language Model for Optimization Modeling

Problem Description

Agent Team

A factory
Revenue: $4124
produces several products. |pre-processing el /\ _ $
Each product ———— Structured »| Manager > 8 g
requires different amounts Problem [groguctloné]
of raw materials, machine v Ly e
time, and labor. Each \A
product has a price. Parameter Data 0
The factory needs ’ s
to determine how much P: 131, '3 wy Formulator
of each product to MachineTime: [4,8, ...,5],
produce to maximize the
revenue while not MaterialRequirement: » Evaluator
exceeding resource [[3,2 4] Programmer
- 12y eeey ,
capacities. .
[1,4, ..., 2]]

Figure 1. OptiMUS uses a structured sequence of LLM agents to effectively model and solve optimization problems. First, the natural
language representation of the problem is preprocessed into a structured problem. Then, a team of agents iteratively augments the
structured problem with a connection graph, mathematical formulations of each clause, and code for each clause. The agents continue
work until the problem is solved. (Dashed lines represent communications that can occur multiple times.)

ical goods, as the quantity of information need not be
conserved.

¢ Long Problem Descriptions: LLMs have a limited con-
text size. However, real-world problems can be long
and complex: for example, the energy system problem
in (Holzer et al., 2023) has a 60-page documentation.
Even for long-context models, performance decreases
substantially as the input context grows (Liu et al., 2023).
Consequently, LLMs tend to make more mistakes as the
length of the problem description increases and perform
poorly on complex problems.

* Large Problem Data: The specification of an opti-
mization problem often involves large amounts of data,
such as customer attributes or sales of goods. Previ-
ous approaches to optimization modeling using LLMs,
which pass numerical data to the LLM directly, are thus
restricted to the simplest of toy problems. Once the size
of the problem data grows beyond a certain limit, passing
the whole data to the LLM is not feasible anymore.

* Unreliable Outputs: The solutions provided by LLMs
are not always reliable. The generated code may be in-
correct or even not executable. It is especially challeng-
ing to verify the solution when the code runs, but the out-
put is incorrect. For instance, if the code runs and claims
that the problem is unbounded, perhaps a constraint has
been accidentally omitted from the formulation.

Contributions. This paper develops a novel perspective
on optimization modeling that addresses each of these lim-
itations and makes the following contributions:

* Existing datasets for natural language optimization mod-
eling are too easy to capture the challenge of long prob-
lem descriptions and large problem data. This work in-

troduces NLP4LP, an open source dataset of 67 complex
optimization problems. Table 1 compares NLP4LP to
existing datasets and Section 4.1 describes NLP4LP.

* We develop a modular, LLM-based agent to model and
solve optimization problems, which we call OptiMUS.
OptiMUS beats the previous state-of-the-art methods on
existing datasets by over 20% and on our more challeng-
ing dataset by 30%. OptiMUS employs a novel connec-
tion graph that allows it to process each constraint and
objective independently. Using this connection graph,
and separating data from the problem description, Op-
tiMUS can solve problems with long descriptions and
large data files without excessively long prompts.

Structure of the Paper This paper is organized as fol-
lows: Section 2 discusses the background and related work;
Section 3 describes the details of our LLM-based optimiza-
tion agent; Section 4 discusses the datasets and presents
the experiments and analysis; Section 5 concludes the pa-
per with future directions and implications. The appendix
includes prompts, details on the experiments’ setup, and
further analysis.

2. Background and Related Work

Optimization problems are mathematically defined by an
objective function and a set of constraints. For example, an

Large Language Model for Optimization Modeling

MILP can be written mathematically as

minimize E CjT;

{z;}

j=1
n
subject to Zaijxj (<,=,2)b,i=1,...m
j=1
lj<z; <ujj=1,...,n
x; €L,5€L

An optimization workflow consists of 1) formulating an op-
timization problem in mathematical form by identifying its
objective and constraints, and then 2) solving the realiza-
tion of problem from real data, generally using code that
calls an optimization solver.

Progressin LLMs. Recent progress in Natural Language
Processing (NLP) has led to the development of large lan-
guage models (LLMs) useful for tasks such as answer-
ing questions, summarizing text, translating languages, and
coding (OpenAl, 2023; Touvron et al., 2023; Chowdhery
et al., 2022; Wei et al., 2023; Gao et al., 2023; Borgeaud
et al., 2022). Connections to other software tools extend
the reach and accuracy of LLMs, as demonstrated by plug-
ins for code writing and execution (Paranjape et al., 2023;
Wei et al., 2023). (Yang et al., 2023) use LLMs to directly
generate solutions to optimization problems without call-
ing traditional solvers through prompt optimization to im-
prove performance. The approach is limited to small prob-
lems since the performance of LLMs degrades as the input
context grows, even for explicitly long-context models (Liu
etal., 2023).

Chatbots for Optimization. In a recent paper, Chen
et al. (2023) developed a chatbot to help users detect and
fix infeasible optimization problems expressed in Pyomo
code and servers as an Al assistant rather than as a solver.
Li et al. (2023) designed a chatbot to answer natural-
language queries about an optimization model. Alibaba
Cloud (2022) also developed a chatbot to facilitate opti-
mization modeling, but there is no public paper or docu-
mentation available on it.

Constraint Learning and Automated Modeling. The
detection of constraints from structured representations
(Akgun et al., 2011) or natural language descriptions
(Kiziltan et al., 2016) has been a significant research fo-
cus in constraint programming. To enhance accuracy, con-
straint learning typically begins with a structured system of
prespecified constraint types and syntax (Beldiceanu & Si-
monis, 2012; 2016; Bessiere et al., 2017; De Raedt et al.,
2018). These system-based approaches are stable, explain-
able, and perform well when the problem aligns with the
corpus. However, they are less flexible when addressing

new problems, making large language models (LLMs) a
valuable complement in this context.

Benchmark-driven Optimization Modeling. More
closely related to our approach, (Ramamonjison et al,
2023) introduced a dataset of 1101 natural language rep-
resentations of LP problems. They proposed a two-stage
mapping from the natural-language representation to the
problem formulation using an intermediate representa-
tion. (Ramamonjison et al, 2022) designed a system to
simplify and improve the modeling experience for oper-
ations research, but did not offer an end-to-end solution.
(Xiao et al., 2024) presented a multi-agent cooperative
framework to automatically model and program complex
operation research (OR) problems, and evaluated it on
NLA4Opt and another more complex dataset they curate.

Traditional MILP solvers generally benchmark against the
MIPLIB benchmark, which offers a diverse collection of
MILP problems in standard form. Unfortunately, most of
these problems are not associated with a natural-language
description, and so cannot be used to study optimization
modeling as we do in this paper.

3. Methodology

This section details the design of OptiMUS. See Figure 1
for an illustration. The problem presented in Figure 2
serves as a running example. OptiMUS starts with a nat-
ural language description of the optimization problem. The
problem is first preprocessed to extract the parameters, con-
straints, objective function, and background information.
Then OptiMUS uses a multi-agent framework to process
and solve the structured problem. Appendix E includes all
prompts used in OptiMUS. For brevity, we use the word
clause to refer to a constraint or objective.

3.1. Structured Problem

The OptiMUS preprocessor converts a natural language de-
scription of the problem into a structured problem (Fig-
ure 2) with the following components:

* Parameters: A list of parameters of the optimization
problem. Each parameter has three components: 1) sym-
bol, 2) shape, and 3) text definition. OptiMUS can choose
symbols, infer the shape, and define the parameters if
they are not explicitly included in the problem statement.
Importantly, numerical data that may be included in the
problem statement is omitted from the parameters and
stored for later use. This ensures that the parameters are
short and easy to include in future prompts.

* Clauses: A list of the clauses (objective and constraints)
of the optimization problem. The preprocessor initializes
each clause with its natural language description. Later

Large Language Model for Optimization Modeling

Table 1. A comparison on different aspects of complexity for various datasets. The unit for description length is characters

Dataset Description Length Instances (#MILP) Multi-dimensional Parameters
NL4Opt 518.0 £ 110.7 1101 (0) X
ComplexOR 497.1 £ 247.5 37 (12) v
NLP4LP (Ours) 908.9 4+ 504.6 67 (13) v
Parameters
M Scalar Number of different machine types
MachineTimeCap [M] Capacity of machine time

A factory produces 25

I [R, P] IAmount of raw material required per unit of product]

several products. Each [MaterialReq
product requires
different amounts of raw Objective

materials, machine time,
and labor. Each product
generates a specific
amount of revenue. The
factory needs to
determine how much of
each product to produce
to maximize profits
while not exceeding

Pre-processing

Background

The factory aims to maximize its
profits.

Constraints

Production quantities of products are
non-negative.

Production quantities of products are
integral.

products cannot exceed

resource capacities.

A factory produces different
products, each requiring various
amounts of raw materials, machine
time, and labor. These products
generate specific revenues upon sale.

‘ Total raw materials used for all ’

MaterialCapacity.

Total labor used for all products
cannot exceed LaborCapacity.

Figure 2. OptiMUS preprocesses natural language representations of a problem into a modular state. The components of the modular
state are: 1) parameters and their shape, 2) objective, 3) background and context, and 4) implicit and explicit constraints.

these clauses will be augmented with ISTEX formulations
and code as well.

* Background: A short string explaining the real-world
context of the problem. This string is included in every
prompt to improve common sense reasoning.

The preprocessing uses three prompts: the first prompt ex-
tracts the parameters, the second segments the problem into
objective and constraints, and the third eliminates redun-
dant (e.g., two restatements of the constraint that produc-
tion quantity is nonnegative), unnecessary (such as facts
about the problem parameters, e.g., that price is nonneg-
ative), and incorrect constraints (e.g., production quantity
must exactly equal demand). The second step can also be
a challenge: for example, in the factory example shown in
Figure 2, the production amount for each product should be
a positive value, but this is not stated explicitly.

3.2. Agents

After preprocessing, OptiMUS defines problem variables,
formulates and codes each clause. To ensure consistency
of the formulations, OptiMUS constructs and maintains a
connection graph to record which variables and parameters

Algorithm 1 Workflow of OptiMUS
1: Input: Natural language description of problem P

P « PREPROCESS(P)

Initialize msg <

Initialize conversation < []

fort=1,...do
AGENT, task <~ MANAGER (conversation)
P msg < AGENT(P®, task)
conversation += msg
if msg = Done then break

Rl e R A AN S

_.
e

end

appear in each constraint. This connection graph is key to
performance and scalability of OptiMUS, as it allows the
LLM to focus only on the relevant context for each prompt,
generating more stable results. The list of variables and
the KTEX formulations and code are initially empty; when
all clauses are formulated, programmed, and validated, the
process is complete.

Manager. Inspired by (Wu et al., 2023), OptiMUS uses
a manager agent to coordinate the work of formulation,
programming, and evaluation, recognizing that these steps

Large Language Model for Optimization Modeling

Variables

7]

Objective Parameters
L. MaterialReq
Objective Parameters MEPIiAS Hie iRl Revene A_ IR, Pl
from producing various ’ !
- i products g
Maximize the total revenue Mat[e;lapl]Req ,' MaterialCap
from producing various ! . P [R]
products Constraints v,
MaterialCap /I' Ryr——
Constraints [R] For each material, the amount /,' a [oLr] ap
used should not exceed the [
> available capacity. S
For each material, the amount Lab[oLr]Cap ‘\ E
used should not exceed the \
X A .
available capacity. . . \\ Variables
.

V| e o omm o

Y/ Production

P 1
Z MaterialReq; ; - Production; < MaterialCap; Vi< R,
=1 .

Figure 3. The formulation process for a single constraint. The formulation agent identifies any parameters and variables appearing in the
constraint, including new variables that it may need to define. It defines new variables as needed, updates the connection graph which
records which constraints use which parameters and which variables, and annotates the constraint with a IKIgX formulation. (dashed

lines represent new connections and variables)

may need to be repeated to ensure consistency and correct-
ness (see Algorithm 1). At each step, the manager looks
at the conversation so far and chooses the next agent (for-
mulator, programmer, or evaluator) to process the problem.
The manager also generates and assigns a task to the cho-
sen agent, for example:

Review and fix the formulation of the objective.

Formulator. The formulator agent must:

1. Write and correct mathematical formulations for vari-
ables and clauses.

2. Define new variables and auxiliary constraints.

3. Update the links in the connection graph.

If the assigned task is to formulate new clauses, the formu-
lator iterates over the clauses that have not yet been formu-
lated and generates new formulations for them. During this
process, it will also define auxiliary constraints and new
variables when necessary. Moreover, it decides which pa-
rameters and variables are related to the clause (see Fig-
ure 3). This information is used to update the connection
graph. On the other hand, if the task is to fix incorrect
formulations reported by the evaluator or the programmer,
the agent iterates through the clauses marked as incorrect,
fixes their formulations, and updates the connection graph.
OptiMUS also has an extra modeling layer that captures
special model structures (e.g., special-ordered-set and indi-
cator variables) and we leave a more detailed discussion to
the Appendix B.

Programmer. The responsibility of the programmer
agent is to write and debug the solver code. When the pro-
grammer is called by the manager, it first reads the task. If
the task is to program new clauses, the agent iterates over
the clauses that have not yet been coded and generates code
from their formulations. If the task is to fix incorrect formu-
lations reported by the evaluator, the agent iterates through
the clauses marked as bogus and fixes their codes.

In our experiments, the programmer uses Python as the
programming language and Gurobi as the solver. Opti-
MUS can target other solvers and programming languages
as long as they are supported by the LLM.

Evaluator. The evaluator agent’s responsibility is to ex-
ecute the generated code on the data and to identify any
errors that occur during the execution. If evaluator faces a
runtime error, it flags the variable or clause with the bogus
code and responds to the manager with appropriate expla-
nation of the error. The information will later be used by
the other agents to fix the formulation and debug the code.

3.3. The connection graph

Recall from Section 3.2 that OptiMUS maintains a con-
nection graph over constraints, objectives, parameters, and
variables. OptiMUS uses this graph to retrieve the rele-
vant context for each prompt so prompts remain short. This
graph is used also to generate and debug code and to correct
wrong formulations. Figure 4 provides an example.

Large Language Model for Optimization Modeling

Task: Debug the runtime error for the
material capacity limit constraint

-

For each
material, the
amount used
should not exceed

MachineTime;;;\\\
LaborCap

MaterialCap

MachineTimeReq

Prompt

The execution of the following code results in a runtime error:

import numpy as np
import gurobipy as gp

R

data["R"] # scalar parameter

P
MaterialCap

datal["P"] # scalar parameter

np.array(data["MaterialCap"]1)

MaterialReq

LaborReq
MaterialReq
RevenuePerProd

Productioi/////

the available
capacity

NV

amounts

_

np.array(data["MaterialReq"])

Prod = model.addVars(P, vtype=gp.GRB.CONTINUOUS, name="production")
Add constraints for the quantity of raw material usage not exceeding available
for j in range(N):

model.addConstr(gp.quicksum(MaterialReq[j, il * Prod[i] for i in range(P)) \\
<= Available[j], name=f"material_usage_limit_{j}")
Here is the error message:
IndexError: index 4 is out of bounds for axis 0 with size 4

Identify the error and fix it.

['R']
['R*, 'P']

Figure 4. OptiMUS uses the connection graph to extract and use only the relevant context in each prompt. In this example, the pro-
grammer agent fetches the context via the connection graph to debug a bogus constraint code. Without the graph, the LLM would have
needed to process the whole code, including the code for the other parameters, variables, constraints, and the objective.

4. Experiments

In this section, we conduct a comprehensive evaluation of
OptiMUS. We begin by detailing the datasets used in our
experiments and showcase the superior performance of Op-
tiMUS across these datasets, highlighting its strengths. An
ablation study demonstrates the impact of different system
components on our results, and a sensitivity analysis probes
the internal dynamics of OptiMUS. We conclude this sec-
tion by identifying failure cases and potential areas for fur-
ther improvement.

4.1. Dataset

NL4OPT. This dataset is a collection of 1101 easy linear
programming problems proposed as part of the NLAOPT
competition (Ramamonjison et al, 2023). The dataset con-
tains a natural language description of each problem, along
with an annotated intermediate representation that lists pa-
rameters, variables, and clauses.

ComplexOR. ComplexOR is a collection of 37 complex
operations research problems in a variety of application do-
mains (Xiao et al., 2024). At the time of writing this paper,
the publicly available version of this dataset is incomplete.
We gathered 21 problems from the ComplexOR dataset to
use in our experiments by

NLP4LP. As shown in Table 1, existing datasets for natural
language optimization modeling lack problems with long
descriptions. Real-world problems often are much longer,
see e.g. (Holzer et al., 2023). To address this issue, we

create NLP4LP (Natural Language Processing for Linear
Programming), a benchmark consisting of 54 LP and 13
MILP problems (67 instances in total). NLP4LP problems
are drawn from textbooks and lecture notes on optimiza-
tion (Bertsimas & Tsitsiklis, 1997b; Williams, 2013; Nace,
2020), including facility location, network flow, schedul-
ing, portfolio management, and energy optimization prob-
lems. These resources were created before 2021, so it is
possible parts of these books have been used to train LLMs.
However, none of these textbooks includes code. More-
over, our results show that LLMs still find it challenging
to formulate and solve these problems. For each instance,
NLPA4LP includes the description, a sample parameter data
file, and the optimal value, obtained either from the text-
book solution manual or by solving the instance by hand.
Together, NLP4LP and ComplexOR offer a variety of chal-
lenging optimization problems with different lengths, facil-
itating the research on automated optimization modeling.

4.2. Overall Performance

To evaluate the overall performance of OptiMUS, we com-
pare it with standard prompting, Reflexion, and Chain-of -
Experts (CoE) (Shinn et al., 2023; Xiao et al., 2024) (More
details in D). Reflexion is the highest-performing general-
purpose framework and CoE is the state-of-the-art method
for natural-language optimization modeling. Three main
metrics have been used in the literature: accuracy, compi-
lation error (CE) rate, and runtime error (RE) rate. How-
ever, a method can generate a totally irrelevant short code

Large Language Model for Optimization Modeling

that runs, or fix runtime and complication errors by com-
pletely removing relevant sections of the code. Hence, we
only compare the models’ accuracy. Accuracy is defined
as the number of instances correctly solved (An instance
is considered as correctly solved only if the code runs suc-
cessfully and the optimal value is correct. Optimal values
are obtained from the dataset or by solving the problems
manually). Results are presented in Table 2. OptiMUS out-
performs all other methods in all datasets by a large mar-
gin. This remarkable performance improvement highlights
the importance of modularity and structure compared to a
single prompt to solve complex problems using LLMs.

The next experiments clarify which features of OptiMUS
contribute to its good performance.

4.3. Ablation Study

Table 3 shows the impact of debugging and of the choice
of LLM on the performance of OptiMUS. One interesting
observation is the significant performance drop that occurs
when smaller LLMs are used instead of GPT-4. The first
reason is that the OptiMUS prompts are on average longer
than the other methods and involve more complicated rea-
soning. Smaller LLMs are worse at reasoning (Wang et al.,
2023; OpenAl, 2023). The second reason is the novel and
modular structure of OptiMUS’s prompts. Prompts used in
the other methods mostly adhere to a questions answering
format that is abundant in the public domain (e.g. post-
ing the whole bogus code snippet and asking for the cor-
rect version is common on StackOverflow, or writing the
whole problem description and then the complete formula-
tion is common in optimization textbooks). However, in
OptiMUS, the prompts are more complex and not com-
mon in human-human interactions. Smaller LLMs have
limited generalization and reasoning abilities and, there-
fore, show poor performance on such prompts (OpenAl,
2023). Fine-tuning smaller models on these novel prompt
templates might improve their performance and reduce the
cost of running a system like OptiMUS.

We also evaluated a version of OptiMUS which uses GPT-
3.5 for the manager and GPT-4 for the other agents. We
can see that in NL4OPT the difference in performance is
small. The reason is that most instances of NL4OPT are
solved with a simple chain of formulation-programming-
evaluation. However, in ComplexOR and NLP4LP where
more complicated interactions between agents are required,
the manager’s importance becomes more visible. More-
over, we did experiments in which the debugging feature
of the programmer agent was disabled. Similarly to the
manager, we see that debugging is more important in more
complicated datasets.

Table 2. Performance of OptiMUS and the baselines using GPT4.

NL4OPT ComplexOR NLP4LP

Standard 47.3% 9.5% 35.8%
Reflexion 53% 19.1% 46.3%
CoE 64.2% 38.1% 53.1%
OptiMUS (Ours) 78.8% 66.7 % 72.0%
Table 3. Ablation study of OptiMUS.
NL4OPT ComplexOR NLP4LP

OptiMUS (GPT-4) 78.7% 66.7% 71.6 %
w/o debugging 72.3% 57.1% 58.2%
w/ GPT-3.5 Mngr 74.9% 52.4% 53.7%
w/ GPT-3.5 28.6% 9.5% 14.4%
w/ Mixtral-8x7B 6.6% 0.0% 3.0%

4.4. Sensitivity Analysis

Figure 5 shows how the maximum number of times the
manager is allowed to select agents affects the accuracy.
For NL4OPT, most problems are solved by selecting each
of the formulator, programmer, and evaluator agents only
once. However, for ComplexOR and NLP4LP, OptiMUS
often makes mistakes at the beginning and iteratively fixes
them by selecting the other agents multiple times.

Section 4.5 shows the number of times each agent is se-
lected per instance. As expected, the average selection fre-
quency is higher in ComplexOR and NLP4LP. Moreover,
programmer and evaluator agents are selected more often
than the formulator. This bias is reasonable:

* Coding errors are more common. LLMs often generate
code with trivial bugs that are easy to fix. In OptiMUS,
the programmer agent fixes such bugs.

» Coding errors are easier to identify and fix. In contrast,
identifying bugs in the formulation require deeper rea-
soning and is harder. Hence the manager in OptiMUS
is prompted to prioritize fixing the code before consid-
ering errors in the formulation. The formulator is only
selected for debugging if the programmer claims that the
code is correct.

Hence in our experiments, we observe the programmer is
selected more often than the formulator.

Table 4 shows the average prompt length of OptiMUS
and CoE for different data sets. Observe that the prompt
length for OptiMUS barely changes across datasets, while
the prompt length for CoE increases on more challenging
datasets. The reason is the modular approach, which allows
OptiMUS to extract and process only the relevant context
for each LLM call. Unlike non-modular methods, Opti-

Large Language Model for Optimization Modeling

0.8 =0 ® @ ® @ ® ®

N
g 0.6 g L
S g
< = ~8- NL4OPT
0.2 == ComplexOR | |
NLP4LP
0 | | | T T T
3 4 5 6 7 8 9 10

Maximum number of agent calls

Figure 5. OptiMUS can solve more problems on difficult datasets
(ComplexOR, NLP4OPT) when more agent calls are allowed,
demonstrating the importance of self-improvement.

MUS can scale to larger and longer problems.

4.5. Failure Cases

To understand its strengths and weaknesses, we analyze the
most common reasons why OptiMUS fails (Table 6). We
categorize failure cases into the following groups:

* Missing or wrong constraints: OptiMUS generates
wrong constraint in the preprocessing step (e.g.,
price > 0 where price is a parameter), or fails to ex-
tract all of the constraints from the description.

* Incorrect model: OptiMUS tackles the problem with
an incorrect mathematical model (e.g., defining binary
variables for visiting cities instead of links in TSP).

* Coding error: OptiMUS does not generate error-free
code even after debugging. Coding errors often occur
when the LLM is confused by the language used (e.g.,
in the “prod” problem in ComplexOR, the description
explicitly refers to “parameters” and “variables”).

‘We normalize the failure rates to sum to 1.0. Incorrect mod-
eling is more common on datasets with more complicated
problems, while on the easier dataset NLP4OPT, the model
is less likely to be wrong.

Understanding and interpreting the problems is also chal-
lenging for LLMs, resulting in formulations with missing
constraints and wrong constraints. Fine-tuning might im-
prove the performance of LLMs on this task, and is an im-
portant direction for future research.

5. Conclusion

How can LLMs collaborate and divide work in order to
achieve complex goals? This paper interrogates this ques-
tion in the domain of optimization and showcases the im-

w 3 :

§ 3 NL4OPT

g 1 ComplexOR

£ 9|0 NLPaLP | L m

)

o

=8

o I N

on

o]

3

< 0 T T T
Formulator Programmer Evaluator

Figure 6. Average number of calls to each agent among solved
problems. OptiMUS only requires one call per agent on the sim-
ple problems of NL4OPT. On the more complex datasets, it relies
more heavily on the programmer to fix errors identified by the
evaluator, but rarely improves by fixing formulation errors.

portance of modular structure. We develop OptiMUS, a
modular LLM-based agent designed to formulate and solve
optimization problems from natural language descriptions.
Our research serves as a proof-of-concept, illustrating the
potential for automating various stages of the optimiza-
tion process by combining LLMs with traditional solvers.
To showcase the performance of OptiMUS, we released
NLPA4LP, a dataset of long and challenging optimization
problems to demonstrate the efficacy of the techniques im-
plemented within OptiMUS. OptiMUS achieves SOTA per-
formance across all existing datasets, and scales to prob-
lems with large amounts of data and long descriptions.

Real-world optimization problems are often complex and
multifaceted. Developing LLM-based solutions for these
problems requires domain-specific considerations, includ-
ing integrating existing optimization techniques to lever-
age problem structure. We are at the early stages of this
research, but anticipate significant developments that will
enable these systems to address more complex, industrial-
level problems. It is interesting to notice that the challenge
of using Al for an applied domain is much larger in safety-
critical domains such as self-driving, which demand ex-
tremely high accuracy, than in domains where Al can func-
tion as an assistant and where answers are easy to check, as
in theorem-proving or optimization. Here, Al systems with
moderate accuracy can still usefully augment human effort.

Future directions. Smaller LLMs are faster and cheaper,
but our experiments indicate that they perform poorly in
optimization modeling out-of-the-box. Identifying which
prompts might benefit from fine-tuned small models and
which require large (and expensive) LLM calls is an im-
portant topic for future research. Furthermore, we believe
that integrating user feedback into the process can improve
the performance of agents on natural-language optimiza-

Large Language Model for Optimization Modeling

Table 4. CoE requires longer prompts on difficult datasets, while
OptiMUS barely increases its prompt length.

NL4OPT ComplexOR NLP4LP
CoE 2003 £456 3288 =780 3825 £ 1002
OptiMUS 2838 £822 3241 £ 1194 3146 £ 1145

Table 5. When OptiMUS fails, why?

Mistake NL4OPT ComplexOR NLP4LP
Incorrect modeling 43.0% 62.5% 53.8%
Missing constraints 36.0% 12.6% 15.4%
Coding errors 21.0% 24.9% 30.8%

tion modeling. Studying interactions between such agents
and their users is an exciting avenue. Another important di-
rection is to automatically select the best solver based on a
comprehensive evaluation of both accuracy and runtime re-
quirements. Finding the optimal formulation based on user
preferences, runtime, problem size, etc. is also another in-
teresting area to explore. Additionally, it would be interest-
ing to see how the modular LLM structure presented here
can be enhanced using reinforcement learning to teach the
manager how to choose the next agent.

Table 6. Runnable and solved instances

State NL4OPT ComplexOR NLP4LP

Runnable 85.6% 76.2 % 75.0%

Solved 78.8% 66.7 % 72.0%
Acknowledgements

The authors gratefully acknowledge support from the Of-
fice of Naval Research (ONR) Award N000142212825 and
the Alfred P. Sloan Foundation. We also appreciate the con-
structive feedback from the reviewers and the area chair.

Impact Statement

This paper presents work whose goal is to advance the field
of optimization modeling. There are many potential soci-
etal consequences of our work, none which we feel must be
specifically highlighted here.

References

Aastrup, J. and Kotzab, H. Forty years of out-of-stock
research—and shelves are still empty. The International
Review of Retail, Distribution and Consumer Research,
20(1):147-164, 2010.

Akgun, O., Miguel, 1., Jefferson, C., Frisch, A., and Hnich,
B. Extensible automated constraint modelling. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 25, pp. 4-11, 2011.

Alibaba Cloud. Alibaba cloud mindopt copilot, 2022. URL
https://opt.alibabacloud.com/chat.

Antoniou, A. and Lu, W.-S. Practical optimization:
algorithms and engineering applications, volume 19.
Springer, 2007.

Beale, E. and Forrest, J. J. Global optimization using spe-
cial ordered sets. Mathematical Programming, 10:52—
69, 1976.

Beldiceanu, N. and Simonis, H. A model seeker: Extract-
ing global constraint models from positive examples. In
International Conference on Principles and Practice of
Constraint Programming, pp. 141-157. Springer, 2012.

Beldiceanu, N. and Simonis, H. Modelseeker: Extracting
global constraint models from positive examples. Data
Mining and Constraint Programming: Foundations of a
Cross-Disciplinary Approach, pp. 77-95, 2016.

Bertsimas, D. and Tsitsiklis, J. N. Introduction to linear
optimization, volume 6. Athena scientific Belmont, MA,
1997a.

Bertsimas, D. and Tsitsiklis, J. N. Introduction to linear
optimization, volume 6. Athena scientific Belmont, MA,
1997b.

Bessiere, C., Koriche, F., Lazaar, N., and O’Sullivan, B.
Constraint acquisition. Artificial Intelligence, 244:315—
342,2017.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Ruther-
ford, E., Millican, K., Van Den Driessche, G. B.,
Lespiau, J.-B., Damoc, B., Clark, A., et al. Improv-
ing language models by retrieving from trillions of to-
kens. In International conference on machine learning,
pp- 2206-2240. PMLR, 2022.

Chen, H., Constante-Flores, G. E., and Li, C. Diagnosing
infeasible optimization problems using large language
models. arXiv preprint arXiv:2308.12923, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P.,, Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P, Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,

https://opt.alibabacloud.com/chat

Large Language Model for Optimization Modeling

H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pel-
lat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
0., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M.,
Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. Palm: Scaling
language modeling with pathways, 2022.

De Raedt, L., Passerini, A., and Teso, S. Learning con-
straints from examples. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 32, 2018.

Gamrath, G., Berthold, T., Heinz, S., and Winkler, M.
Structure-based primal heuristics for mixed integer pro-
gramming. Springer, 2016.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023.

of mathe-
URL

Gurobi Optimization. 2023 state
matical optimization report, 2023.
https://www.gurobi.com/resources/

report-state-of-mathematical-opt imization-Z¥3YV'E

Holzer, J., Coffrin, C., DeMarco, C., Duthu, R., El-
bert, S., Eldridge, B., Elgindy, T., Greene, S., Guo,
N., Hale, E., Lesieutre, B., Mak, T., McMillan,
C., Mittelmann, H., Oh, H., O’Neill, R., Overbye,
T., Palmintier, B., Safdarian, F., Tbaileh, A., Hen-
tenryck, P. V., Veeramany, A., and Wert, J. Grid
optimization competition challenge 3 problem for-
mulation. https://gocompetition.energy.
gov/sites/default/files/Challenge3_
Problem_Formulation_20230126.pdf, 2023.
Accessed: Access Date.

Kiziltan, Z., Lippi, M., Torroni, P., et al. Constraint detec-
tion in natural language problem descriptions. In IJCAI,
volume 2016, pp. 744-750. International Joint Confer-
ences on Artificial Intelligence, 2016.

Li, B., Mellou, K., Zhang, B., Pathuri, J., and Menache,
I. Large language models for supply chain optimization.
arXiv preprint arXiv:2307.03875, 2023.

Liu, N. F, Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts, 2023.

Nace, D. Lecture notes in linear programming
modeling, 2020. URL https://www.hds.
utc.fr/~dnace/dokuwiki/_media/fr/
lp—modelling upt_p2021.pdf.

OpenAl. Gpt-4 technical report, 2023.

10

Paranjape, B., Lundberg, S., Singh, S., Hajishirzi, H.,
Zettlemoyer, L., and Ribeiro, M. T. Art: Automatic
multi-step reasoning and tool-use for large language
models. arXiv preprint arXiv:2303.09014, 2023.

Ramamonjison et al, . Augmenting operations research
with auto-formulation of optimization models from
problem descriptions. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing: Industry Track, pp. 29—62, Abu Dhabi,
UAE, December 2022. Association for Computational
Linguistics. URL https://aclanthology.org/
2022 .emnlp-industry.4.

Ramamonjison et al, . NIl4opt competition: Formulat-
ing optimization problems based on their natural lan-
guage descriptions, 2023. URL https://arxiv.
org/abs/2303.08233.

Saghafian, S., Austin, G., and Traub, S. J. Operations re-
search/management contributions to emergency depart-
ment patient flow optimization: Review and research
prospects. IIE Transactions on Healthcare Systems En-

5(2):101-123, 2015.

Shakoor, R., Hassan, M. Y., Raheem, A., and Wu, Y.-K.
Wake effect modeling: A review of wind farm layout
optimization using jensen’ s model. Renewable and Sus-
tainable Energy Reviews, 58:1048-1059, 2016.

Shinn, N., Cassano, F., Berman, E., Gopinath, A.,
k Narasimhan, K., and Yao, S. Reflexion: Language
agents with verbal reinforcement learning, 2023.

Singh, A. An overview of the optimization modelling ap-
plications. Journal of Hydrology, 466:167-182, 2012.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F, et al. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023.

Wang, Y., Ivison, H., Dasigi, P, Hessel, J., Khot, T,
Chandu, K. R., Wadden, D., MacMillan, K., Smith,
N. A, Beltagy, I, et al. How far can camels go? ex-
ploring the state of instruction tuning on open resources.
arXiv preprint arXiv:2306.04751, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F, Chi, E., Le, Q., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models,
2023.

Williams, H. P. Model building in mathematical program-
ming. John Wiley & Sons, 2013.

https://www.gurobi.com/resources/report-state-of-mathematical-optimization-2023/
https://www.gurobi.com/resources/report-state-of-mathematical-optimization-2023/
https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230126.pdf
https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230126.pdf
https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230126.pdf
https://www.hds.utc.fr/~dnace/dokuwiki/_media/fr/lp-modelling_upt_p2021.pdf
https://www.hds.utc.fr/~dnace/dokuwiki/_media/fr/lp-modelling_upt_p2021.pdf
https://www.hds.utc.fr/~dnace/dokuwiki/_media/fr/lp-modelling_upt_p2021.pdf
https://aclanthology.org/2022.emnlp-industry.4
https://aclanthology.org/2022.emnlp-industry.4
https://arxiv.org/abs/2303.08233
https://arxiv.org/abs/2303.08233

Large Language Model for Optimization Modeling

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E.,
Li, B., Jiang, L., Zhang, X., and Wang, C. Autogen:
Enabling next-gen llm applications via multi-agent con-
versation framework. arXiv preprint arXiv:2308.08155,
2023.

Xiao, Z., Zhang, D., Wu, Y., Xu, L., Wang, Y. J,,
Han, X., Fu, X., Zhong, T., Zeng, J., Song, M., and
Chen, G. Chain-of-experts: When LLMs meet com-
plex operations research problems. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=HobyL1B9CZ.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou,
D., and Chen, X. Large language models as optimizers,
2023.

Yao, E., Liu, T., Lu, T., and Yang, Y. Optimization of
electric vehicle scheduling with multiple vehicle types
in public transport. Sustainable Cities and Society, 52:
101862, 2020.

11

https://openreview.net/forum?id=HobyL1B9CZ
https://openreview.net/forum?id=HobyL1B9CZ

Large Language Model for Optimization Modeling

A. System Design and Software Engineering

In this section, we include more details on software implementation of the pipeline.

A.1. Preprocessing

The preprocessor in OptiMUS extracts data parameters and constraints from the natural language problem description.
Preprocessor is driven by six prompts that extract a) problem type b) problem background c) parameters.

Here is an example of the prompts we used to identify the problem type:

You are an expert mathematical modeler and an optimization professor at a
top university. Here is the description of an optimization problem:

Your task is to identify the type of optimization problem this is, and put
it in a Jjson file in this format:

{{"type": "type of optimization problem"}}

You should replace "type of optimization problem" with the type of
optimization problem you think this is. Options are: 1. linear programming
2. mixed-integer programming 3. others

You will be awarded one million dollars if you get it right

A.2. Debugging

We maintain a for loop and a global code snippet variable, and every time we concatenate a new block of Python code (for
a constraint) from programmer to the code snippet. Then we execute the code using Python’s subprocesses library. Once
there is an error, we know that the error is thrown by the most recent code block (constraint) and mark the constraint as
“erroneous” in the state. Then the state is passed back to the programmer/formulator, where the LLM is given the error
message and the context of that constraint, and is asked to debug the constraint accordingly.

A.3. Connection Graph

In OptiMUS, a connection graph is maintained so that when we need to work on a particular constraint(context), agents
focus on only the relevant variables and parameters. This is important when the model gets large and there are many
variables/parameters.

The connection graph in OptiMUS is tripartite with three layers: 1) Parameters 2) Constraints, and 3) Variables. When
creating a new constraint, OptiMUS first adds new variable nodes if we need to define new variable. Then OptiMUS
asks the formulator to also identify the set of relevant variables and parameters for that constraint. Then, an edge is added
between this new constraint and the relevant variables/parameters. When OptiMUS needs to retrieve a context (for example
when manager decides to debug a constraint), we identify only the relevant nodes in the connection graph and format them
into a prompt. Here is an example:

12

Large Language Model for Optimization Modeling

10
11

12

13

for parameter in state["parameters"]:

if parameter["symbol"] in constraint_context["related parameters"]:

prep_code += parameter["code"]

for variable in state["variables"]:

b "\l’l"

if variable["symbol"] in constraint_context["related_variables"]:
prep_code += variable["code"] + "\n"

prompt = debugging_refined_template_target.format (

B. Optimization Techniques

Optimization solvers exploit problem-specific structure to improve performance when solving MILPs (Gamrath et al.,
2016) and often provide a customized interface for these special structures. Using the interface not only reduces the
complexity of (and potential for errors in) auxiliary variables or constraints, but also informs the solver about the existence
of structure that can be exploited to solve the problem faster. Moreover, the solver’s performance can suffer when these
structures are not signaled in the model. For example, a bad choice of big-M coefficient when reformulating an indicator
variable can reduce the strength of the linear relaxation. Typical examples of structure include Special Ordered Set (SOS)

Pool of modeling techniques \

Wy

Pool of structures \

olcle}

constraint=constraint,
prep_code=prep_code,
error_line=error_line,
error_message=error_message)

| have an optimization problem and here’s the description

| have a network with a set of edges and vertices. The network
has a source and a sink, and | also have information of the edge
connectivity, say C_i = 1 if vertex i and j are connected......

formulated as follows

minimize Pig)eE Wijdij

subject to qij = ma.x(p_, -pi,0), v(i,j) € E,
pa—ps=1,
pi€{0,1}, VieVv.

We know there is a type of mixed integer programming satisfying
totally unimodularity", which we describe as follows

Integer programming problems satisfying total unimodularity often
come from the following background.

1. Network Flow Problems: The constraint matrices of network
flow problems, such as the maximum flow problem and the
minimum cost flow problem, are totally unimodular.

2. Assignment Problems: The constraint matrices for assignment
problems, where tasks are to be assigned to agents

If the problem satisfies the aforementioned structure, please update the
formulation accordingly

Figure 7. OptiMUS iterates through a pool of advanced optimization techniques

(Beale & Forrest, 1976), indicator variables, and general constraints (Bertsimas & Tsitsiklis, 1997a).

Although state-of-the-art optimization solvers can detect some problem structures automatically, it works better to specify
structure during problem formulation. Hence the formulator is prompted to leverage advanced optimization techniques
and structures, including 1) Special Ordered Set. 2) Indicator variable. 3) General constraints. 4) SAT and constraint

programming problem. 5) Totally unimodular problem detection.

OptiMUS iterates through a sequence of “cheatsheet” prompts (Figure 7), each corresponding to one of these structures.

13

Large Language Model for Optimization Modeling

Within each prompt, the LLM is provided with the description of the structure, explained by an example illustrating how the
structure should be exploited. The LLM is asked to decide whether the structure can be applied to the existing formulation.
Upon identifying the appropriate structure, the formulation is adjusted to utilize the customized solver interface when
available.

C. Limitations and Weaknesses
C.1. Sensitivity of LLMs to and parameter variable names

Based on the training data, LLMs can be biased towards interpreted certain terms in certain ways that are not necessarily
correct. Consider the following optimization problems:

A global fashion brand sells articles of clothing in several markets. We have an estimate of how price changes affect sales
for each article, assuming constant price elasticity. Given the sales forecast per article for the next twelve months and past
elasticities, the goal is to choose new prices for each article to maximize expected revenue.

A manufacturing company produces different items using different raw materials. We have some amount of each raw
material available, and we know how much of each raw material is needed to produce I unit of each item. The price for
each item in the market is known. The goal is to choose how many of each item to produce to maximize the revenue.

In the first problem, prices should be defined as variables, while in the second problem prices are parameters. If the first
problem appears in an LLM’s training corpus, it will be biased to identify price as a variable in the second problem at
inference time. We did not perform large-scale experiments to evaluate the performance of LLMs on such cases, partic-
ularly because of lack of access to a relevant dataset. However, our experiments indicate that even small models such as
LLama3-8b can identify the differences and avoid confusion if prompted correctly.

C.2. Hidden Errors

A common issues with LLMs is high confidence hallucination. In the context of optimization modeling, this can be
problematic when in the modeling and coding steps, especially if the mistakes do not result in explicit errors (for instance
redundant incorrect constraints, or missing constraints). This is because of the nature of the task we are tackling, and can
happen even if the problem is solved by human experts. We believe that this such systems can be used as products if the
error rate goes below a certain threshold. To reduce the error rate, we can adopt methods that experts commonly use. This
includes 1) automatically generating dummy data with feasible solutions and evaluating the model on it, 2) generating plots
for the solution and looking at the trends (using VLMs), and 3) adding reasoning steps to double-check the correctness of
the initial LLM outputs. Moreover, we also believe that involving humans in the loop at the right time can be really helpful.
We have observed promising results in all of these areas, but discussing them in detail is out of the scope of this paper.

D. Applying Existing Methods to Our Dataset

In standard prompting the problem description and input data are passed into the LLM and it is asked to write solver code.
The code is then executed once to get the output. In Reflexion, the output of the LLM is updated multiple times based on a
feedback mechanism. The feedback is obtained from the compilation and runtime errors, allowing for iterative refinement
of the previous steps until the agent is satisfied with the answer. Chain of experts uses a system of agents with a manager
to solve the problem.

14

Large Language Model for Optimization Modeling

E. Prompts
E.1. Manager Prompt

You're a manager in a team of optimization experts. The goal of the team is to solve an optimization
problem. Your task is to choose the next expert to work on the problem based on the current situation.
- The user has already given us the problem description, the objective function, and the parameters. Only

call the user proxy if there is a problem or something ambiguous or missing.

Here's the list of agents in your team:

{agents}

And here's the history of the conversation so far:

{history}

Considering the history, if you think the problem is solved, type DONE. Otherwise, generate a json file
with the following format:
i

"agent_name": "Name of the agent you want to call next",

"task": "The task you want the agent to carry out"

}}

to identify the next agent to work on the problem, and also the task it has to carry out.

- If there is a runtime error, ask the prorammer agent to fix it.

- Only generate the json file, and don't generate any other text.

- If the latest message in history says that the code is fixed, ask the evaluator agent to evaluate the

code!

15

Large Language Model for Optimization Modeling

E.2. Formulation Generation Prompt

You are an expert mathematical formulator and an optimization professor at a top university. Your task is to model

{clausType} of the problem in the standard LP or MILP form.

Here is a {clausType} we need you to model:

{targetDescription}

Here is some context on the problem:

{background}

Here is the list of available variables:

{variables}

And finally, here is list of input parameters:

{parameters}

First, take a deep breath and explain how we should define the {clausType}. Feel free to define new variables if you

think it is necessary. Then, generate a json file accordingly with the following format (STICK TO THIS FORMAT!) :

!
"{clausType}": {{

"description": "The description of the {clausTypel}",
"formulation": "The LaTeX mathematical expression representing the formulation of the {clausType}"
13N
"auxiliary_constraints": [
{{
"description": "The description of the auxiliary constraint",
"formulation": "The LaTeX mathematical expression representing the formulation of the auxiliary constraint"

b}
]
"new_variables": [
{{
"definition": "The definition of the wvariable",
"symbol": "The symbol for the variable",
"shape": ["symboll", "symbol2", ...]

- Your formulation should be in LaTeX mathematical format (do not include the $ symbols).

- Note that I'm going to use python Jjson.loads () function to parse the json file, so please make sure the format is
correct (don't add ',' before enclosing '}}' or ']' characters.

- Generate the complete json file and don't omit anything.

- Use ''"‘Json' and '’ ' to enclose the json file.

- Important: You can not define new parameters. You can only define new variables.Use CamelCase and full words for
new variable symbols, and do not include indices in the symbol (e.g. ItemsSold instead of itemsSold or items_sold or
ItemsSold_1i)

- Use \\textup{{}} when writing variable and parameter names. For example (\\sum_{{i=1}}"{{N}}
\\textup{{ItemsSold}}_{{i}} instead of \\sum_{{i=1}}"{{N}} ItemsSold_{{i}})

- Use \\quad for spaces.

- Use empty list ([]) if no new variables are defined.

- Always use non-strict inequalities (e.g. \\leg instead of <), even if the constraint is strict.

- Define auxiliary constraints when necessary. Set it to an empty list ([]) if no auxiliary constraints are needed.

If new auxiliary constraints need new variables, add them to the "new_variables" list too.

Take a deep breath and solve the problem step by step.

16

Large Language Model for Optimization Modeling

E.3. Formulation Fixing Prompt

You are a mathematical formulator working with a team of optimization experts. The objective is to tackle a complex

optimization problem, and your role is to fix a previously modelled {target}.

Recall that the {target} you modelled was

{constraint}

and your formulation you provided was

{formulation}

The error message is

{error}

Here are the variables you have so far defined:

{variables}

Here are the parameters of the problem

{parameters}

Your task is carefully inspect the old {target} and fix it when you find it actually wrong.

After fixing it modify the formulation. Please return the fixed JSON string for the formulation.

The current JSON is

{json}

Take a deep breath and solve the problem step by step.

17

Large Language Model for Optimization Modeling

E.4. Clause Coding Prompt

You're an expert programmer in a team of optimization experts. The goal of the team is to solve an
optimization problem. Your responsibility is to write {solver} code for different {target}s of the problem.
Here's a {target} we need you to write the code for, along with the list of related variables and

parameters:
{context}

- Assume the parameters and variables are defined, and gurobipy is imported as gp. Now generate a code

accordingly and enclose it between " lines.

- Only generate the code and the ===== lines, and don't generate any other text.

- If the {target} requires changing a variable's integrality, generate the code for changing the variable's
integrality rather than defining the variable again.

- If there is no code needed, just generate the comment line (using #) enclosed in ===== lines explaining

why.

- Variables should become before parameters when defining inequality {target}s in gurobipy (because of the

gurobi parsing order syntax)

Here's an example:
input:

8

"description": "in month m, it is possible to store up to storageSize {{m}} tons of each raw oil for use
later.",
"formulation": "\ (storage_ {{i,m}} \leg storageSize, \quad \\forall i, m\)",
"related variables": [{{
"symbol": "storage {{i,m}}",
"definition": "quantity of oil i stored in month m",
"shape": [
nn,
iy
]
1,
"related parameters": [{{
"symbol": "storageSize {{m}}",
"definition": "storage size available in month m",
"shape": [
oy

PH]
1}

output:

Add storage capacity constraints
for 1 in range(I):
for m in range (M) :

model.addConstr (storage[i, m] <= storageSize[m], name="storage capacity")

Take a deep breath and approach this task methodically, step by step.

18

Large Language Model for Optimization Modeling

E.5. Variable Coding Prompt

You're an expert programmer in a team of optimization experts. The goal of the team is to solve an
optimization problem. Your responsibility is to write {solver} code for defining variables of the problem.
Here's a variable we need you to write the code for defining:

{variable}

Assume the parameters are defined. Now generate a code accordingly and enclose it between "=====" lines.

Only generate the code, and don't generate any other text. Here's an example:
input:

8

"definition": "Quantity of oil i bought in month m",
"symbol™: "buy {{i,m}}",
"shape": ["I","M"]

1}

output:

model.addVars (I, M, vtype=gp.GRB.CONTINUOUS, name="buy")

- Note that the indices in the symbol (what comes after _) are not a part of the variable name in code.

- Use model.addVar instead of model.addVars if the variable is a scalar.

Take a deep breath and solve the problem.

19

Large Language Model for Optimization Modeling

E.6. Debugging Prompt

You're an expert programmer in a team of optimization experts. The goal of the team is to solve an

optimization problem. Your responsibility is to debug the code for the problem.

When running the following code snippet, an error happened:
{context_code}

{error_line}

and here is the error message:

{error_message}

We know that the code for importing packages and defining parameters and variables is correct, and the
error is because of the this last part which is for modeling the {target}:

{error_line}

First reason about the source of the error. Then, if the code is correct and the problem is likely to be in

the formulation, generate a json in this format (the reason is why you think the problem is in the

formulation) :
{{
"status": "correct",
"reason": "A string explaining why you think the problem is in the formulation"

13

otherwise, fix the last part code and generate a json file with the following format:

{{

"status": "fixed",

"fixed code": "A sting representing the fixed {target} modeling code to be replaced with the last part
code"

}}

- Note that the fixed code should be the fixed version of the last part code, not the whole code snippet.
Only fix the part that is for modeling the {target}.

- Do not generate any text after the json file.

- Variables should become before parameters when defining inequality constraints in gurobipy (because of
the gurobi parsing order syntax)

- The parameter shapes are parameters definitions are correct.

Take a deep breath and solve the problem step by step.

20

