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Abstract

We construct four Schauder bases for the space C[0, 1], one using ReLU functions, another
using Softplus functions, and two more using sigmoidal versions of the ReLU and Softplus
functions. This establishes the existence of a basis using these functions for the first time, and
improves on the universal approximation property associated with them. We also show an
O( 1

n ) approximation bound based on our ReLU basis, and a negative result on constructing
multivariate functions using finite combinations of ReLU functions.

1 Introduction

Functions in spaces such as C[0, 1] with the supremum norm, L2[0, 1], and L2(R) can be approximated, or
in Kolmogorov’s sense represented, using finite linear combinations of the form:

N∑
i=1

αiσ(wix+ bi) (1)

Expressions like equation 1 resemble single hidden-layer neural networks. The component functions σ(wix+
bi), also known as plane waves, ridge functions, or sigmoids, have been widely applied in fields such as
finance, data analysis, statistics, and medical imaging (Ismailov, 2021).

Although originally linked to Kolmogorov’s representation theorem (Kolmogorov, 1957; Sprecher, 1965), this
formulation has found broader utility in function approximation, as neatly delineated by Sprecher (Demb and
Sprecher, 2021). This shift is seen in Cybenko’s universal approximation theorem (Cybenko, 1989), where
σ is assumed to be a fixed sigmoidal function. The Kolmogorov-Sprecher representational approach uses
function composition, like a two layer network, and the function σ depends on the specific target function f .
In contrast, Cybenko’s approximation perspective is like a single layer network with no function composition,
where σ is fixed and independent of f .

Our work extends beyond these two perspectives by constructing infinite series representations using fixed
activation functions. Specifically, we present four Schauder bases for C[0, 1]: one based on the widely used
ReLU function (Theorem 1), another based on its smooth variant, the Softplus function (Theorem 3), and
two more based on sigmoidal versions of these functions (Theorem 2, Theorem 6).
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There is a lot of interest in the neural network community on understanding the expressive power and
approximation capabilities of ReLU based networks. Our basis results can be applied towards these questions.
For instance, Theorem 7 shows an order O( 1

n ) approximation bound based on the first n basis functions.
This O( 1

n ) bound based on the supnorm on C[0, 1] is stronger than the O( 1
n ) L2 bound in (Barron, 1993)

since the L2 norm on C[0, 1] is dominated by the supnorm. Further note that the L2 error bound represents
a sort of average or expected error while our result represents worst case error offering better protection
against outliers. Our result is also an improvement, in terms of number of layers, on the construction of
(Daubechies et al., 2022) for L2[0, 1], as they require a multilayer network compared to our single layer
basis or network, to obtain a O( 1

n ) L2 approximation bound for univariate functions. In a limited way for
univariate functions, our approximation result is also an improvement on Savarese et al. (2019) where they
look at infinite width ReLU networks for functions f : R→ R. Whereas their O( 1

n ) L2 error bound depends
on target-specific basis functions, we achieve the same error bound with a fixed basis.

Finally we show a negative result in Theorem 8 that finite linear combinations of ReLU functions cannot
represent multivariate functions in general, thus suggesting the need for deep neural networks to support
multivariate functions. We hope to generalize this result to countable linear combinations, but this step
remains open at this time.

In the context of neural networks, having a basis offers certain potential benefits compared to density results
like those in Cybenko (1989). For example, a basis allows for structured initialization in neural network
training. Consider an infinite expansion of the form:

f(x) =
∞∑
i=1

αiσi(x), where σi(x) = σ(wix+ bi)

This expansion is to be interpreted in the sense of a Schauder basis, as discussed in the next section. A finite
truncation yields:

f(x) ≈ fM (x) =
M∑
i=1

αiσi(x)

Here, fM (x) can be seen as a neural network of widthM . To improve the approximation, one could consider
a wider network fN (x) with N > M , retaining both the functions σi and coefficients αi for i ≤M , and only
learning the new coefficients for i > M . This reuse of parameters from a narrower model is theoretically
justified only when an explicit basis is available. In contrast, density results offer no such structure and require
retraining from scratch. Another possible advantage of using a basis is that it ensures unique expansions,
and thus a unique global minimum during training.

In Banach space literature, functions similar to ReLU have appeared in basis constructions, such as the
Schauder hat and restricted hat functions (Semadeni, 1982, p.28). However, the restricted hat, which is
essentially a ReLU, is only used to describe the boundary behavior of a Schauder hat function, and not to
construct a full basis. The ReLU and Softplus functions have not been previously employed for full basis
constructions, possibly because their development was motivated by later applications in neural networks.

Within ridge function literature there is work on a universal sigmoidal function independent of the target
function f . The existence of such a universal function for target functions in C(R), with a prescribed
approximation error, and a prescribed number of neurons is guaranteed by a theorem of Maiorov and Pinkus
(Ismailov, 2021, p.158), and an algorithmic construction is provided by Ismailov (2021, p.164). Our basis
construction (Theorem 1) seemingly provides such a universal function for C[0, 1], but this is misleading
as the number of neurons will depend on the level of approximation desired. But again, the ability to
approximate arbitrarily well with a fixed number of neurons depends on the use of wild and pathological
functions, as Sprecher notes in Demb and Sprecher (2021), or the use of intricate algorithms as in Ismailov’s
smooth, almost monotone construction. In contrast, we use simple and standard functions like the ReLU in
our basis constructions, and do not require the use of function composition.

From a theoretical standpoint, Cybenko (1989) notes that completeness results typically fall into two broad
categories: those related to Weierstrass’s theorem on polynomial density and those based on Wiener’s
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translation-invariant systems. In a way, our results incorporate aspects of both, much like Schauder’s original
basis from 1927.

Our construction, like Weierstrass’s result, is situated within C[0, 1] and relies on a discrete bump function
- the Schauder hat. At the same time, it employs scaled and shifted versions of a single activation function,
akin to the translation-invariant methods of Wiener. This use of scaling and shifting is common in L2[0, 1]
literature, and in wavelet theory by extension.

2 Preliminaries

A countable sequence {xn} in a Banach space X is a basis for X if for all x in X there exist unique scalars
an(x) such that

x =
∞∑
n=1

an(x)xn (2)

where the above series converges in the norm of X (Heil, 2010). A normalized basis is a basis {xn} with
||xn|| = 1 for all n. A Schauder basis for X is a basis for X where the an’s are continuous linear functionals.
There are other definitions of a Schauder basis that involve uncountable index sets, but we restrict ourselves
to the above countable version. As it turns out, any basis for a Banach space is a Schauder basis. When
X = C[0, 1] we use the standard supnorm topology. Since C[0, 1] is not a Hilbert space there is no notion
of an inner product, and the linear functionals an(x) are the closest approximation to the usual coordinates
〈xn, x〉 based on an inner product 〈., .〉.

The ReLU function r(x) is defined as follows:

r(x) =
{

0 if x < 0,
x if x ≥ 0. (3)

The parameterized Softplus function defined as follows (Dugas et al., 2000):

pa(x) = ln(1 + eax)
a

. (4)

A function σ : R→ R is called sigmoidal if

lim
x→∞

σ(x) = 1 (5)

lim
x→−∞

σ(x) = 0 (6)

Schauder’s original basis functions for C[0, 1] ((Heil, 2010, p.142)) are defined by the ordered set S =
{sn,k|n ∈ N ∪ {0}, k ∈ {0, 1, . . . , 2n − 1}} under dictionary ordering, where

sn,k(x) =


1
2 if x = k+ 1

2
2n ,

linear on [ k2n ,
k+ 1

2
2n ] and [k+ 1

2
2n , k+1

2n ],
0 otherwise.

(7)

Please note that sn,k(x) = 1
2 in the first case rather than sn,k(x) = 1 as is standard. This change makes no

difference to the basis property, but helps with some downstream calculations.

Given f ∈ C[0, 1] let us denote its basis expansion by:

f = α0χ[0,1] + α1s1 +
∑
k<2n

αn,ksn,k. (8)
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Besides αn,ksn,k, the Schauder basis expansion contains two additional terms α0χ[0,1] and α1s1. These
involve two basis functions, namely the characteristic function χ[0,1] and the linear function s1(x) = x. We
assume standard ordering for the Schauder basis, which is essentially a dictionary ordering of (n, k). The
ordering is important for convergence since the basis is conditional. We will now look at a basis construction
for C[0, 1] based on the above ReLU function r(x).

3 ReLU Basis

We now construct a Schauder basis for C[0, 1] using the ReLU function r(x) and two auxiliary functions. In
particular, we prove the following theorem:
Theorem 1. The basis functions χ[0,1](x), s1(x) = x, r(2nx − k) and r(2nx − (k + 1

2 )) form a Schauder
basis for C[0, 1]. In particular, borrowing αn,k from the Schauder basis expansion equation 7, and setting
αn,−1 = 0, we have

f = α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0
{(αn,k + αn,k−1)r(2nx− k)− 2αn,kr(2nx− (k + 1

2))}. (9)

where the coefficient functionals α0, α1, (αn,k + αn,k−1) and −2αn,k are all bounded.

Please note that we have simplified notation by implicitly restricting our basis functions to [0, 1], and we will
continue to do so. i.e. we will write f(x) for f(x)|[0,1].

We begin our proof with the following lemma:
Lemma 1. Define tn,k as follows:

tn,k(x) = r(2nx− k)− 2r(2nx− (k + 1
2)) + r(2nx− (k + 1)). (10)

. We claim that tn,k(x) = sn,k(x) for all x ∈ R.

The proof of this lemma is entirely routine. The heart of Theorem 1 is in the specific construction of tn,k and
the proof of boundedness which follows the proof of Lemma 1 below. Not all linear combinations similar to
tn,k lead to valid Schauder basis. For instance, consider gn,k(x) = r(2nx− k)− r(2nx− (k+ 1

2 ))− r(−2nx+
(k + 1

2 )) + r(−2nx + (k + 1))− 1
2 . We can prove that gn,k(x) = sn,k(x), but unlike tn,k, gn,k does not lead

to a ReLU basis. The boundedness proof of Theorem 1 does not work for gn,k.

Proof. Let x = k+δ
2n . Then,

tn,k = r(2n k + δ

2n − k)− 2r(2n k + δ

2n − (k + 1
2)) + r(2n k + δ

2n − (k + 1))

= r(δ)− 2r(δ − 1
2) + r(δ − 1).

We will now establish equality of tn,k and sn,k in all the four cases listed in equation 7.

For x = k+ 1
2

2n , we have δ = 1
2

tn,k = r(δ)− 2r(δ − 1
2) + r(δ − 1)

= r(1
2)− 2r(0) + r(−1

2 )

= r(1
2)

= 1
2 .
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For x ∈ [ k2n ,
k+ 1

2
2n ], δ ∈ [0, 1

2 ]. Thus,

tn,k = r(δ) = δ = 2nx− k,

which is linear in x.

Similarly, for x ∈ [k+ 1
2

2n , k+1
2n ], we have δ ∈ [ 1

2 , 1]. So,

tn,k = r(δ)− 2r(δ − 1
2) + r(δ − 1)

= δ − 2(δ − 1
2) + 0

= 1− δ = 1
2 − (2nx− k)

= k + 1− 2nx,

which is also linear in x.

Next for x < k
2n , δ ≤ 0. Thus,

tn,k = r(δ)− 2r(δ − 1
2) + r(δ − 1)

= 0

Finally, for x > k+1
2n , δ > 1 and

tn,k = r(δ)− 2r(δ − 1
2) + r(δ − 1)

= δ − 2(δ − 1
2) + (δ − 1)

= 0.

We have tn,k(x) = sn,k(x) in all the cases considered, and thus tn,k(x) = sn,k(x) for all x ∈ R.

We will now prove Theorem 1 on the boundedness of the coefficient functionals.

Proof.

f = α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0

αn,ksn,k

= α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0

αn,ktn,k

= α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0

αn,k{r(2nx− k)− 2r(2nx− (k + 1
2)) + r(2nx− (k + 1))}

= α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0
{αn,kr(2nx− k)− 2αn,kr(2nx− (k + 1

2)) + αn,kr(2nx− (k + 1))}

= α0χ[0,1] + α1s1 +
∞∑
n=0
{αn,0r(2nx) +

2n−1∑
k=1
{(αn,k + αn,k−1)r(2nx− k)− 2αn,kr(2nx− (k + 1

2))}} (∗)

= α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0
{(αn,k + αn,k−1)r(2nx− k)− 2αn,kr(2nx− (k + 1

2))}
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where, for convenience, we have set αn,−1 = 0 in the last step. Notice that equation ∗ does not involve any
rearrangement of terms. The grouping of (αn,k + αn,k−1) involves only associativity, and no commutativity.
In particular, the conditional convergence of the earlier series and that of equation ∗ are equivalent.

Finally, given that the coefficient functionals αn,k are bounded, the coefficients of the ReLU expansion,
namely, α0, α1, αn,k + αn,k−1 and −2αn,k are all bounded as well. This establishes that the sequence of
functions χ[0,1](x), s1(x) = x, r(2nx− k) and r(2nx− (k + 1

2 ) form a Schauder basis.

Remarks: Let t(x) be defined as follows to be the discrete second derivative of r(x):

t(x) = r(x)− 2r(x− 1
2) + r(x− 1). (11)

t(x) is a triangular bump or hat function which is the essential building block of the original basis of Schauder.
Letting d(x) denote the expression r(x)−r(x− 1

2 ), we can see that t(x) matches the expression d(x)−d(x− 1
2 ).

Here d(x) can be interpreted as the first discrete derivative of r(x), and t(x) as the corresponding first discrete
derivative of d(x), or in effect the second discrete derivative of r(x).

The subscripted functions rn,k(x), dn,k(x) and tn,k(x) are dyadically scaled and shifted versions of r(x), d(x)
and t(x), for instance tn,k(x) = t(2nx−k). Correspondingly, dn,k(x) is the first discrete derivative of rn,k(x)
and tn,k(x) is the first discrete derivative of dn,k(x), or in effect the second discrete derivate of rn,k(x). It is
well known that the Haar basis elements represent the first derivative of the Schauder basis elements. The
current construction shows that the Schauder basis elements represent the first discrete derivative of dn,k
and the second discrete derivative of the ReLU basis elements rn,k.

dn,k(x) is a continuous sigmoidal function, and thus dense in C[0, 1] as per Cybenko (1989). Going beyond
Cybenko’s result, dn,k can be used to assemble a basis as shown in the following theorem:
Theorem 2. The functions dn,k(x) with n ≥ 0 and k ≤ 2n − 1 along with the auxiliary functions χ[0,1](x)
and s1(x) = 2 forms a Schauder basis for C[0, 1] with expansions of the following form for all f in C[0, 1]:

f = α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0

αn,kdn,k − αn,kdn,k− 1
2

(12)

where the coefficient functionals are all bounded.

Proof. We start with the basis expansion of f using the basis elements tn,k where αj and αn,k are borrowed
from the Schauder basis expansion equation 7.

f = α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0

αn,ktn,k

= α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0

αn,k(dn,k − dn,k− 1
2
)

= α0χ[0,1] + α1s1 +
∞∑
n=0

2n−1∑
k=0

αn,kdn,k − αn,kdn,k− 1
2

This concludes the proof since the coefficient functionals α0, α1 and αn,k are all known to be bounded.

We note a general principle at play here with regards to first and second discrete derivatives. In particular,
if fj ∈ X form a Schauder basis for Banach space X, and if fj are the first discrete derivatives of gj and the
second discrete derivatives of hj , then gj and hj form Schauder bases for X as well. One may argue that
the basis property of hj follows from the basis property of gj by induction, but an examination of the above
proofs shows that some care is required to avoid double counting as seen in the functional (αn,k + αn,k−1).

As noted earlier, dn,k forms a basis, but d(x) is not a universal sigmoidal function for C[0, 1]. Unlike the
construction of Ismailov (2021, p.164) for C(R), the number of terms in a series truncation increases with
the desired level of approximation.
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4 Softplus Basis

Schauder bases possess some stability properties wherein the basis property holds even if each element is
perturbed slightly. We use this stability property to perturb the ReLU basis and obtain a basis using Softplus
functions. In particular, we will prove the following theorem:
Theorem 3. The basis functions χ[0,1](x), s1(x) = x, pa(n,k)(2nx − k) and pa(n,k)(2nx − (k + 1

2 )) form
a Schauder basis for C[0, 1]. In particular, given f in C[0, 1], we have the following basis expansion with
a(n, k) = 4 ln 2 · 2K · 22n+2

f = γ0χ[0,1] + γ1s1 +
∞∑
n=0

2n−1∑
k=0
{γn,kpa(n,k)(2nx− k) + ψn,kpa(n,k)(2nx− (k + 1

2)}. (13)

where the coefficient functionals γ0, γ1, γn,k and ψn,k are all bounded.

We start by recalling some stability properties of Schauder bases. First, we have the notion of a basis
constant whose existence is asserted in the following classical theorem.
Theorem 4. (Lindenstrauss and Tzafriri, 1977) Let {xn} be a Schauder basis of a Banach Space X.
Then the projections Pn : X → X defined by Pn(

∑∞
i=1 aixi) =

∑n
i=1 aixi are bounded linear operators

and supn ||Pn|| <∞. The supremum K = supn ||Pn|| is called the basis constant of {xn}.

We then have the following stability property:
Theorem 5. (Lindenstrauss and Tzafriri, 1977, Prop. 1.a.9) Let {xn} be a normalized Schauder basis of a
Banach Space X with basis constant K. If {yn} is a sequence of vectors in X such that

∑∞
n=1 ||xn−yn|| <

1
2K ,

then {yn} is also a Schauder basis of X. This property holds for any fixed normalization constant c > 0 such
that ‖xn‖ = c ∀ n.

To prove that we can construct a basis with Softplus functions, we will start with an intermediate basis
whose basis elements qn,k are defined as follows using the parameterized Softplus function:

qn,k(x) = pa(2nx− k)− 2pa(2nx− (k + 1
2)) + pa(2nx− (k + 1)) (14)

a = a(n, k) = 4 ln 2 · 2K · 22n+2. (15)

We then have the following lemma:
Lemma 2. The functions χ[0,1](x), s1(x) = x and qn,k(x) (n ≥ 0, 0 ≤ k ≤ 2n − 1) form a Schauder basis
for C[0, 1].

Proof. Let us apply the stability property in Theorem 5 with X = C[0, 1] to perturb the ReLU basis tn,k.
Let K denote the basis constant for the ReLU basis and note that the ReLU basis is a normalized basis with
||tn,k|| = 1 as required by Theorem 5.

We will perturb the ReLU basis elements tn,k using a parameterized Softplus function pa(x) instead of the
ReLU function r(x) to obtain our new basis elements qn,k. As we show below, increasing a as a suitable
multiple of 22n+2, will ensure that the individual perturbations get smaller, and that the total perturbation
across all basis elements remains small.

A simple analysis of the parameterized Softplus function pa(x) equation 4 shows that |pa(x)− r(x)| attains
its maximum at x = 0, and this maximum value is pa(0) = ln 2

a . This maximum value drops as 1
a when we

increase the sharpness parameter a.

We further observe that for a fixed, sup |pa(2nx− k)− r(2nx− k)| = sup |pa(x)− r(x)| = ln 2
a . That is, the

supremum of the difference between pa and r does not change when the function parameters are scaled and
shifted. Since supx |pa(x) − r(x)| equals ||pa − r||, we can see that the norm of the perturbation ||pa − r||
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remains unchanged for a given a even when the function parameters for pa(x) and r(x) are scaled and shifted.
This gives us the following bound on the perturbation error between individual basis elements tn,k and qn,k:

||tn,k − qn,k|| = sup |(r(2nx− k)− 2r(2nx− (k + 1
2)) + r(2nx− (k + 1)))

− (pa(2nx− k)− 2pa(2nx− (k + 1
2)) + pa(2nx− (k + 1)))|

≤ sup |r(2nx− k)− pa(2nx− k)|+ 2|r(2nx− (k + 1
2))− pa(2nx− (k + 1

2))|

+ |r(2nx− (k + 1))− pa(2nx− (k + 1))|
= sup |r(x)− pa(x)|+ 2|r(x)− pa(x)|+ |r(x)− pa(x)|
= 4 sup |r(x)− pa(x)|

= 4 ln 2
a

.

The total perturbation error ∆ across all basis elements can now be bounded as:

∆ =
∞∑
n=0

2n−1∑
k=0
||tn,k − qn,k||

≤
∞∑
n=0

2n−1∑
k=0

4 ln 2
a

≤
∞∑
n=0

2n−1∑
k=0

1
2K

1
2n+2

1
2n

= 1
2K

∞∑
n=0

1
2n+2

<
1

2K

Since the total perturbation ∆ < 1
2K , we conclude that qn,k is a Schauder basis for C[0, 1]. This proves

Lemma 2.

Notice that qn,k form a smooth basis, but the elements of this basis are not scaled and shifted versions of
a single mother function. The sharpness parameter destroys this scale-shift property of the basis. We also
note that this construction cannot be based on sigmoidal functions like tanh since they lack a sharpness
parameter to control the supnorm error, and to thus bound the total perturbation.

We will now prove Theorem 3 establishing that pa(x) forms a basis. We mimic the proof of Theorem 1
though we make use of the basis elements qn,k defined above instead of the original Schauder basis elements
sn,k.
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Proof. We will start with a basis expansion using qn,k denoting the coefficient functionals as βj and βn,k:

f = β0χ[0,1] + β1s1 +
∞∑
n=0

2n−1∑
k=0

βn,kqn,k

= β0χ[0,1] + β1s1 +
∞∑
n=0

2n−1∑
k=0

βn,k{pa(2nx− k)− 2pa(2nx− (k + 1
2)) + pa(2nx− (k + 1))}

= β0χ[0,1] + β1s1 +
∞∑
n=0

2n−1∑
k=0
{βn,kpa(2nx− k)− 2βn,kpa(2nx− (k + 1

2)) + βn,kpa(2nx− (k + 1))}

= β0χ[0,1] + β1s1 +
∞∑
n=0
{βn,0pa(2nx) +

2n−1∑
k=1
{(βn,k + βn,k−1)pa(2nx− k)− 2βn,kpa(2nx− (k + 1

2))}} (∗)

= β0χ[0,1] + β1s1 +
∞∑
n=0

2n−1∑
k=0
{(βn,k + βn,k−1)pa(2nx− k)− 2βn,kpa(2nx− (k + 1

2))}

where, for convenience, we have set βn,−1 = 0 in the last step. Like in the earlier proof, we note that
equation ∗ preserves conditional convergence. Finally, given that the coefficient functionals βj and βn,k are
bounded, the coefficients of the Softplus expansion, namely, γ0 = β0, γ1 = β1, γn,k = (βn,k + βn,k−1) and
ψn,k = −2βn,k are all bounded as well. This establishes that the sequence of functions χ[0,1](x), s1(x) = x,
pa(2nx− k) and pa(2nx− (k + 1

2 ) form a Schauder basis, and concludes the proof of Theorem 3.

As a simple corollary, we construct a sigmoidal basis based on Softplus functions. The construction of un,k
mimics the construction of the first discrete derivative dn,k in Theorem 2.
Theorem 6. The functions un,k(x) defined to be pa(n,k)(2nx − k) − pa(n,k)(2nx − (k + 1

2 )), with a(n, k) =
4 ln 2 · 2K · 22n+2, for n ≥ 0, 0 ≤ k ≤ 2n − 1, along with the auxiliary functions χ[0,1](x) and s1(x) = x form
a sigmoidal Schauder basis for C[0, 1] .

Observe that un,k are indeed sigmoidal functions since limx→−∞ un,k(x) equals 0, and limx→∞ un,k(x) equals
1. It is also easy to see that un,k are smooth, monotonically increasing functions. We skip the proof of the
basis expansion as it follows the same lines as Theorem 2 except we use qn,k for the initial basis expansion
instead of tn,k.

5 Applications

In machine learning theory, it is well known that in the univariate case, one can achive O( 1
N ) approximation

error with N functions. We prove that our basis expansions achieve the same order of approximation with
N functions based on a simple interpolation scheme. Setting rn,k(x) = r(2nx− k), have the following:
Theorem 7. Given a Lipschitz function f ∈ C[0, 1] with Lipschitz constant c > 0, and a basis expansion
f = α0χ0 + α1χ1 +

∑∞
n=0

∑n
k=0(αn,krn,k + βn,krn,k+ 1

2
), we can obtain O( 1

N ) approximations using the first
N basis functions. In particular, given the first N basis functions referred to in general as bi, there exist βi
such that ‖f −

∑N
i=0 βibi‖ ≤

K
N for N sufficiently large, and for some fixed constant K independent of N .

Proof. The argument is a standard one for Lipschitz functions based on interpolation of equispaced points.
Let us first set α0 = f(0) and α1 = f(1)− f(0) where χ0(x) = 1, the constant function and χ1(x) = x, the
identify function. We see that the function g = f − (α0χ0 +α1χ1) has g(0) = 0 and g(1) = 0. Based on this
simple device, for the rest of this proof, we will assume without loss of generality that f(0) = f(1) = 0 and
do our interpolation based on the other basis functions without using χ0 and χ1.

We will derive a O( 1
N ) approximation error based on the Schauder basis sn,k(x), and use a simple counting

argument to prove that the same O( 1
N ) approximation error carries over to the ReLU basis as well.

9
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Given N > 0, let P = 2p be the largest power of 2 less than or equal to N . Clearly P ≥ N
2 Notice that the

first P terms of the basis expansion include all the basis functions of the form s2p,k for k ∈ [0, 2p]. The peaks
of these basis functions are the dyadic points x1 = 1

2p+1 , x2 = 3
2p+1 , . . . , xk = 2k+1

2p+1 for k ≤ 2p−1. Let us now
build an interpolating function fP as fP (x) =

∑
2f(xk)s2p,k(x). It is clear that fP (xk) = f(xk) ∀ k since

the support of each basis function s2p,k, essentially the hat, is limited to the interval [xk − 1
2p+1 , xk + 1

2p+1 ].
Further, fP is piecewise linear in (xk − 1

2p+1 , xk + 1
2p+1 ), and for x ∈ (xk − 1

2p+1 , xk + 1
2p+1 ), and x 6= xk, we

have f ′P (x) ≤ c, where c is the Lipschitz constant of f . This immediately gives us the approximation bound
we are looking for:

|fP (x)− f(x)| = |fP (x)− f(xk) + f(xk)− f(x)|
= |fP (x)− fP (xk) + f(xk)− f(x)|
≤ |fP (x)− fP (xk)|+ |f(xk)− f(x)|

≤ 2c
P
≤ 2c

N
2

= O( 1
N

)

as required for the Schauder basis sn,k. Now, we note that P Schauder basis functions sn,k are subsumed
by 2 ∗ P ReLU basis functions r(2nx− k), r(2nx− k + 1

2 ). In other words, the N -term approximation error
for ReLU functions is bounded by 2c

P
2

= O( 1
N ) as required.

We end with a simple but intriguing proposition that suggests the power of depth in ReLU networks. The
proposition is a negative result that our basis property does not generalize to dimensions d ≥ 2, and that
multilayer networks are required to represent multivariate functions in general. We do not have a proof
of this proposition yet, but we offer a preliminary result involving finite sums instead of countable sums
that conveys the general idea, and we believe this idea can be generalized. This negative proposition ties
in naturally with the Kolmogorov-Sprecher representation theorems which require function composition,
in effect 2-layer networks. It is interesting future work to construct such a 2-layer or multilayer network,
perhaps based on the pyramidal functions of (Semadeni, 1982).

Generalizing the theorem below from finite linear combinations to countable linear combinations will prove
the actual proposition we are looking for, that one cannot have a Schauder basis for C[0, 1]d based on ReLU
functions.
Theorem 8. There exist functions in C[0, 1]d that cannot be represented using a finite linear combination
of ReLU functions of the form r(wTx+ b).

Proof. We will exhibit a pyramidal function f : [0, 1]2 → R that cannot be expressed as a finite combination
of ReLU functions. From this, we can obtain similar negative results for fd : [0, 1]d → R with d > 2, by
setting fd(x1, x2, . . . , xd) := f(x1, x2). To verify this, let us assume, for the sake of contradiction, that fd can
be expressed as a finite sum of ReLU functions as fd(x1, x2, . . . , xd) =

∑N
i=1 αir

(
wTi (x1, x2, . . . , xd) + bi

)
.

In that case, setting x3 = · · · = xd = 0, we get f(x1, x2) =
∑N
i=1 αir

(
w′i
T (x1, x2) + bi

)
where w′i denotes

the vector consisting of the first two coordinates of wi. This violates the assumption that f cannot be
represented as a finite linear combination of ReLU functions.

Now consider a pyramidal function f : [0, 1]2 → R (as visualized in Figure 4, Appendix A) with peak value
of 1 at ( 1

2 ,
1
2 ) and zero on and outside the base. The base, denoted as B, is given by the set of points enclosed

by the lines x = 1
4 , x = 3

4 , y = 1
4 , y = 3

4 , or equivalently as the convex hull of {( 1
4 ,

1
4 ), ( 3

4 ,
1
4 ), ( 3

4 ,
3
4 ), ( 1

4 ,
3
4 )}.

We claim that this pyramidal function f cannot be constructed using a finite number of ReLU functions.
Suppose to the contrary, that f(x) =

∑N
i=1 αiri(x) where x ∈ [0, 1]2 and ri(x) = r(wTi x+ bi). Without loss

of generality, we assume that none of the wi or αi are zero, and the tuples (wi, bi) are distinct.

For a given ri define the associated line li by {x ∈ [0, 1]2 | wTi x+ bi = 0}. Notice that for each of the lines li,
ri is zero (or off) on one side of the line, and affine (or on) on the other side. Note that the li’s along with
the four boundaries of the unit square partition [0, 1]2 into convex polygonal regions (which we take to be
closed), and we denote the set of these regions as R. Given two regions R,Q ∈ R, we call them neighbors if

10
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they share some part of an edge. A region R ∈ R is called a zero region if f(x) = 0 ∀ x ∈ R, and a non-zero
region otherwise.

Our main observation is that a zero region cannot have another zero region as a neighbor. To see this, let us
first define zi : [0, 1]2 → {0, 1} as zi(x) = 0 whenever ri(x) ≤ 0 and zi(x) = 1 whenever ri(x) > 0. zi(x) is a
binary valued function which tracks whether ri is on or off, and thus ri(x) = zi(x)(wTi x + bi). For a given
region R ∈ R and a fixed i, zi(x) is the same for all x ∈ R. It is clear that crossing the line li changes the
value of zi(x) from zero to one or vice versa, and that zj remains unchanged for j 6= i.

Let us now consider the weight matrix w(x) =
∑N
i=1 αizi(x)wTi x and bias matrix b(x) =

∑N
i=1 αizi(x)bi.

Within a given region R ∈ R, w(x) and b(x) remain constant since zi(x) remains constant. Let us denote
by wR, the constant weight matrix for R, and by bR, the constant bias matrix. Now we note that wR must
be zero for a zero region R. Indeed, if wR were not zero, we can find x ∈ R such that wTRx+ bR 6= 0. Now,
given neighboring regions Q,R ∈ R with a common edge li, wQ = wR ±αiwi(x) which implies that wR and
wQ cannot both be zero since wi, αi 6= 0. This verifies the main observation above that a zero region cannot
have another zero region as a neighbor.

Let us now consider one of the corner points P of the base of the pyramid B, and all the regions outside
B which contain P as a vertex. There must be at least two such regions since the regions are convex, and
they subtend a total angle of 3π

2 at P . But all these regions must be zero regions since f is identically zero
outside B, which forces two adjacent zero regions, contradicting our main observation.

Thus, the pyramidal function f cannot be represented as finite linear combination of the form f(x) =∑N
i=1 αiri(x).

Note that the method of the proof can be used to generalize the above theorem to pyramidal functions whose
base is a convex polygon strictly contained in the unit square.

6 Conclusion

We constructed four Schauder bases for C[0, 1], one using the ReLU function (Theorem 1), another using
the Softplus function (Theorem 3), and two more using sigmoidal versions of the above (Theorem 2 and
Theorem 6). The last basis consists of smooth, monotonically increasing sigmoidal functions. Finally we
show an O( 1

n ) approximation bound using our ReLU basis (Theorem 7) and a negative result on constructing
multivariate functions with finite linear combinations of ReLU functions (Theorem 8).

In terms of future work, we wonder if scaled and shifted bases for C[0, 1] are possible using smooth functions.
In particular, we pose the following question: does there exist a smooth function σ : [0, 1] → R such that
σn,k(x) = σ(2nx− k) forms a basis for C[0, 1] ?
Acknowledgement. Dedicated to thatha-patti. Our sincere thanks to Prof. Nithin Nagaraj for supporting
this work, to Prof. K B Sinha for early comments on problem formulation, and to the anonymous reviewers
for the time spent, and helpful pointers connecting our mathematical results to machine learning theory.
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A Function Plots

This section contains function plots for easy visualization. We start with the ReLU function r(x), then look at
the first differences of these ReLU function dn,k(x), and then the second differences tn,k(x) which correspond
to the Schauder hat functions sn,k(x) as well. The last row contains the main part of the counter example
gn,k(x), then a perturbed Schauder hat function built from softplus functions, and finally the pyramidal
function used in Theorem 8.

Figure 1: ReLU function plots
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Figure 2: First Differences dn,k(x)

Figure 3: Second Differences tn,k(x) = sn,k(x)

Figure 4: (a) describes the counter example gn,k+0.5, (b) describes a perturbed Schauder built using Softplus
functions pa(x) with a = 10, and (c) shows the pyramidal function used in Theorem 8.

13


	Introduction
	Preliminaries
	ReLU Basis
	Softplus Basis
	Applications
	Conclusion
	Function Plots

