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Abstract
Diffusion generative models have been a leading
approach for generating high-dimensional data.
The current research aims to investigate the rela-
tion between the dynamics of diffusion models
and the tubular neighbourhoods of a data man-
ifold. We propose an algorithm to estimate the
injectivity radius, the supremum of radii of tubular
neighbourhoods. Our research relates geometric
objects such as curvatures of data manifolds and
dimensions of ambient spaces, to singularities of
the generative dynamics such as emergent critical
phenomena or spontaneous symmetry breaking.

1. Introduction
Generative modelling addresses the challenge of approxi-
mating and sampling from probability distributions. Some
recent studies report that diffusion models, a class of gener-
ative models, exhibit critical phenomena during sampling
where particular features of data emerge at the final stage of
generation process. We delve into this symmetry breaking
phenomena through a geometrical perspective. Our research
begins with elucidating the connections between the diffu-
sion and generation dynamics of diffusion models and the
injectivity radius of tubular neighbourhoods of a given data
manifold. The injectivity radius of a given data manifold, a
geometrically crucial parameter, dictates the supremum ex-
tent to which a neighbourhood of the manifold succeeds to
be without singularities (critical loci and self-intersections).
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Figure 1. Conceptual diagram of our per-
spective.

We also investigate the behaviour of the score vector at the
edge of the injectivity radius. Finally, we speculate that the
interplay between the injectivity radius, symmetry break-
ing, and singularities of the potentials in the Fokker–Planck
equation not only influences the performance of diffusion
models but also reveals deeper insights into the nature of
generative processes in high-dimensional spaces, offering
a theoretical bridge between diffusion models, statistical
thermodynamics, and Hessian (information) geometry.

Contributions. The main results in this paper are as follows.

• We present a geometrical perspective of diffusion models
to understand critical phenomena.

• For a given data manifold, we propose an algorithm to esti-
mate the injectivity radius of the tubular neighbourhoods
(Section 3).

• We examine behaviours of score vectors around tubular
neighbourhoods (Section 4).

• The phenomenon of spontaneous symmetry breaking in the
diffusion model is intricately associated with the singulari-
ties of noisy manifolds (Section 5).
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2. Preliminaries
In this section, we briefly introduce some basic mathemati-
cal concepts related to the paper.

2.1. Diffusion models

In Song et al. (2021), score-matching (Hyvärinen, 2005)
and diffusion-based (Sohl-Dickstein et al., 2015; Ho et al.,
2020) generative models have been unified into a single
continuous-time score-based framework where the diffu-
sion is driven by a stochastic differential equation. This
framework relies on Anderson’s Theorem (Anderson, 1982),
which states that under certain Lipschitz conditions on the
drift coefficient f : Rd ×Rd → Rd and on the diffusion
coefficient g : Rd×R → Rd×Rd and an integrability con-
dition on the target distribution p0(x0), a forward diffusion
process governed by the SDE

dxt = ft(xt)dt+ gt(xt)dwt (1)

has a reverse diffusion process governed by the SDE

dxt = −
[
ft(xt)−

gt(xt)
2

2
∇xt

ln pt(xt)

]
dt+ gt(xt)dwt,

(2)

where wt is a standard Wiener process in reverse time. We
could derive that probability distribution pt(x) of SDE sat-
isfies the Fokker-Planck equation

∂

∂t
pt(x) = −∇x · (pt(x)ft(xt)) +

1

2
∆x

[
gt(xt)

2pt(xt)
]
.

(3)

Diffusion models are trained by approximating the score
function ∇x ln pt(xt) with a neural network sθ(xt, t).

2.2. From the Manifold Hypothesis to Tubular
Neighbourhoods

Data often concentrates around a lower-dimensional mani-
fold, a concept known as the manifold hypothesis (Feffer-
man et al., 2013; Loaiza-Ganem et al., 2024). We work in
this paper based on this hypothesis. For simplicity, we will
assume all data manifolds are compact and embedded in the
Euclidean space Rd. In principle, any Riemannian mani-
folds can be isometrically embedded into some Euclidean
space (the Nash embedding theorem).

A tubular neighbourhood of a manifold is roughly speaking
a set of points near the manifold and every point of the
set has a unique projection onto it (see Appendix C.3 for
the formal definition). It is theoretically known that every
manifold embedded in Rd has a tubular neighbourhood.
In fact if we take a sufficiently small neighbourhood of a
manifold, we may find a tubular neighbourhood. On the

other hand, it is easy to imagine that we cannot take a
too large neighbourhood as a tubular neighbourhood. See
also Appendix A for previous studies which inspired our
perspective.

3. Injectivity radius of a data manifold
In this section, we present how to estimate the supremum of
radii of tubular neighbourhoods — the injectivity radius —
of a given data manifold. Based on the theoretical argument
in below, we establish the algorithm for the estimation (see
Algorithm 1 in Appendix F). Throughout this section, let
M denote an n-dimensional manifold (data manifold) in
the Euclidean space Rd. For the terminologies concerned
with Manifold Theory, see Appendices C.2 and C.3.

We refer to (Litherland et al., 1999) for some notions and the
case where (n, d) = (1, 3), i.e., the manifold M is a knot.
The first crucial claim of this section is that many theoretical
facts proven in their paper work for general dimensions as
well. The second claim is that the quantities appearing in
their paper can be estimated from a given data cloud and its
data manifold. For simplicity, we will explain the former
briefly and focus on the latter.

3.1. Endpoint maps and Tubular neighbourhoods

We explain how to realise a tubular neighbourhood of a
manifold embedded in the Euclidean space.
Definition 3.1. The ϵ-neighbourhood of M in Rd is the set

M(ϵ) =
⋃

x∈M
{y ∈ Rd | ∥y − x∥ < ϵ}.

Definition 3.2. The normal bundle to M in Rd is the set

NM = {(x,v) ∈ Rd ×Rd | x ∈ M,v ⊥ TxM},

where TxM denotes the tangent space to M at x.

Notice that the set NM forms a d-dimensional manifold.
(The dimensions in the direction to M and its normal are n
and d− n, respectively.)
Definition 3.3. Consider the summation map

E0 : R
d ×Rd → Rd, (x,v) 7→ x+ v.

We call its restriction

E = E0|NM : NM → Rd, (x,v) 7→ x+ v

the endpoint map (or the exponential map).
Proposition 3.4. Let ϵ > 0 and consider the subset

NMϵ = {(x,v) ∈ NM | ∥v∥ < ϵ} ⊂ NM.

Then the image of NMϵ under the endpoint map E coin-
cides with the ϵ-neighbourhood M(ϵ) of M in Rd. Fur-
thermore, this image forms a tubular neighbourhood of M
if and only if the map E|NMϵ is an embedding.
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(a) R1(M) (b) R2(M)

Figure 2. First and second injectivity radii

Proof. See the proof of Theorem C.11.

3.2. Injectivity radius and its estimation

We consider the following three quantities.

Definition 3.5. (0) The injectivity radius R(M) of M
is the supremum of numbers ϵ > 0 such that the ϵ-
neighbourhood of M in Rd is also a tubular neigh-
bourhood. If such ϵ does not exist, define R(M) = 0.

(1) The first injectivity radiusR1(M) of M is the infimum
of the set∥v∥

∣∣∣∣∣∣
(x,v) ∈ NM is
a critical point of the map E
for some point x ∈ M

 .

(2) The second injectivity radius R2(M) of M is the infi-
mum of the set1

2
∥x1 − x2∥

∣∣∣∣∣∣
x1,x2 ∈ M,x1 ̸= x2,
x1 − x2 ⊥ Tx1

M,
and x1 − x2 ⊥ Tx2

M

 .

Roughly saying, R1(M) is the radius that the endpoint map
fails to be regular at some point; R2(M) is the radius that
two separated tubes touch each other (see Figure 2).

Thanks to the following assertion, it suffices to estimate
R1(M) and R2(M).

Theorem 3.6. R(M) = min{R1(M), R2(M)}.

Proof. See §2 of (Litherland et al., 1999).

In this paper, the estimation of R2(M) is performed by
definition. See Appendix D.3 for some ideas which may
make the estimation easier. Therefore we here argue how to
estimate R1(M). It is simple if we consider the case that
n = 1 — the manifold M is a curve in Rd (see Appendix
D.2); in general case, it seems to be difficult. However we
show the following (see also Theorem C.7).

Theorem 3.7. Assume that the manifold M ⊂ Rd is ex-
pressed by M = F−1(0) = {x ∈ Rd | F (x) = 0}, where
F : Rd → Rd−n is a differentiable map of which 0 ∈ Rk

is a regular value. In addition, assume that we have vector
fields t1, t2, . . . , tN (n ≤ N) defined near M such that
for every x ∈ M the vectors t1(x), t2(x), . . . , tN (x) are
tangent to M and span the tangent space TxM. Then the
first injectivity radius R1(M) coincides with the infimum of
the Euclidean norm ∥v∥ of the vector v ⊥ TxM such that
the d× (d+N − n)-matrix

LM(x,v) =

[
∂F

∂x
(x)

T (∂φ1

∂x
(x,v)− ∂φ1

∂v
(x,v)

)T

· · ·
(
∂φN

∂x
(x,v)− ∂φN

∂v
(x,v)

)T
]
(4)

is degenerate for some point x ∈ M, where

φi : R
d ×Rd → R, φi(x,v) = ⟨ti(x),v⟩

for i = 1, 2, · · · , N .

This assertion is proven by an application of the Method
of Lagrange Multiplier. See Appendix D.1 for its precise
proof. We here note some remarks.

Remark 3.8. The condition that the matrix L(x,v) degen-
erates at (x,v) ∈ NM is equivalent to that the determinant
of the d× d-minor[

∂F

∂x
(x)

T (∂φi1

∂x
(x,v)− ∂φi1

∂v
(x,v)

)T

· · ·
(
∂φin

∂x
(x,v)− ∂φin

∂v
(x,v)

)T
] (5)

of L(x,v) vanishes for every n-tuple (i1, . . . , in) satisfying

that 1 ≤ i1 < · · · < in ≤ N . Indeed, the matrix
∂F

∂x
(x) is

of full-rank for every point x ∈ M = F−1(0).

Remark 3.9. It is crucial to find vector fields ti satisfying
the above condition. For example, (small extensions of) the
gradient vector fields ti = gradxi (i = 1, . . . , d) satisfies
the condition, where xi : M → R denotes the projection to
the i-th axis in Rd. In general, we have to take the number
N greater than n.

3.3. Example (unit circle S1)

Let us verify Theorem 3.7 through the most typical manifold
— the unit circle S1. Define a function F : R2 → R by

F (x, y) = x2 + y2 − 1.

Then we have S1 = F−1(0). One of the normal vector
field on S1 is given as grad(F ) = (∂F∂x ,

∂F
∂y ) = (2x, 2y),

3
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so (−y, x) is a tangent vector field which spans the tangent
space to S1 at each point (x, y) ∈ S1.

Applying Theorem 3.7, the first injectivity radius R1(S
1) is

calculated as follows. For a point (x, y) ∈ S1, the matrix

LS1((x, y), (v1, v2)) =

[
2x v2 + y
2y −v1 − x

]
is degenerate (i.e., its determinant is zero) if and only if
(v1, v2) = (−x,−y). Thus, we obtain

R1(S
1) =

√
(−x)2 + (−y)2 = 1.

By definition, R2(S
1) is also equal to 1, so the injectivity

radius R(S1) is equal to 1.

3.4. A pilot numerical experiment to validate the
algorithm

We perform a pilot experiment to verify the algorithm.
The detailed setting and the results are present in the Ap-
pendix F.1. The estimated R for S1 is 0.999± 0.006.

4. Some observable relations between the
behaviour of the score function and a
tubular neighbourhood

As in the previous section, let M denote an n-dimensional
manifold (data manifold) embedded in the Euclidean space
Rd. In this section, we discuss relation between the be-
haviour of the score function and the tubular neighbourhood.

4.1. Curvatures of the data manifolds and the score
functions within the tubular neighbourhoods

Let us explain a property of the score vectors in a tubu-
lar neighbourhood of a manifold by an Example 4.1. It
is observed that the score vectors ∇x ln pt(x) within the
tubular neighbourhood changes its direction in proportional
to the curvature at the uniquely projected point π(x). Sim-
ilar phenomena are observed in prior research ((Sidorova
et al., 2004)[Lemma 11]). In (Batzolis et al., 2022)[The-
orem 5.1], the authors proved that when t → 0 the score
vectors ∇x ln pt(x) converges to the normal space at π(x)
if x is in the tubular neighbourhood of the data manifold.

r

r
∆θ

∆x

Figure 3. Arc seg-
ment

This mathematical fact explains that
the score vectors change its direction
proportional to the curvature if the
Brownian motion has a component
tangent to the manifold within the
tubular neighbourhood when σt → 0.
Example 4.1. Let us consider a circle
of radius r (see Figure 3). In this case
we have

lim
t→0

∇x ln pt(x) =

[
cos θ
sin θ

]
(6)

for some 0 ≤ θ < 2π. Here x is a point in a tubular
neighbourhood and θ is the angle of π(x). Let ∆x be an
infinitesimal arc length. Then we have ∆θ = ∆x

r by defini-
tion. Moreover, taking Taylor’s series, we may compute the
change rate tangent to the circle of the score vectors (6) as:

lim
∆x→0

1

∆x

[
cos(θ +∆θ)− cos(θ)
sin(θ +∆θ)− sin(θ)

]
=

1

r

[
sin θ
cos θ

]
.

4.2. Analysis of the behaviour of the score vector field at
the boundary of the tubular neighbourhood

In (Batzolis et al., 2022)[Appendix. D], the authors re-
expressed the score vectors as:

∇x ln pt(x) =
1

σ2
t pt(x)

∫
M
(y − x)N(y|x, σ2

t I)p0(y)dy,

where N(y|x, σ2
t I) is a normal distribution and pt(x) =∫

MN(y|x, σ2
t I)p0(y)dy. p0 is a smooth function on M

such that
∫
M p0(y)dy = 1. dy is a volume form on M (dy

is a nowhere vanishing n-form on M,
∫
M dy = Vol(M)).

As pointed out by the authors, it means that the score is the
weighted average of vectors pointing from x to y over all
choices of points y on the manifold, with weights given by
w := N(y|x, σ2

t I)p0(y). One may notice from the expres-
sion (7) that if x is far enough from the data manifold M
and σt is large, the score vectors points toward the centre
of gravity. If p0(y) is symmetric with respect to (0, 0), it is
clear that if for example M = S1 in R2 with its centre at
the origin and let x = (0, 0). We find:

∇x ln pt(x) = 0.

On the other hand, (0, 0) is a point of the boundary of the
tubular neighbourhood. We understand that the points that
the score ∇x ln pt(x) vanishes is important because the sec-
ond term of (2) becomes dominant at this point. Therefore
we presume the behaviour of the score vector field at the
boundary of the tubular neighbourhood has a significant
influence on a trajectory of the diffusion model.

Conjecture 4.2. Suppose M is a compact oriented mani-
fold embedded in Rd. We predict the following observation:
Let ϵ > 0 be the injectivity radius. Let n be a unit out-
ward pointing normal vector to ∂M(ϵ). Assume ϵ >

√
dσt,

x ∈ ∂M(ϵ) and p0(y) is constant C greater than 0 on M.
Assume moreover the following conditions:

(i) For any y ∈ M with (y − x) ·n > 0, there exists y′ ∈
M and some c > 0 such that −c(y − x) = (y′ − x).

(ii) Assume that for each y ∈ M such that (y−x) ·n < 0,
there exists ỹ ∈ M and c > 0 such that −c(ỹ − x) =
(y − x). Then c ≤ 1.

(iii) For any y ∈ M, {c(y − x)|c > 0} ∩M is a finite set.
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Then:
∇xpt(x) · n ≤ 0.

The verification of this conjecture for the case d = 2 and M
being a curve can be found in Appendix G.2.

Remark 4.3. The condition ϵ >
√
dσt in Conjecture 4.2

tells us how to control ∇xpt(x). These three values deter-
mine the behaviour of directions of the score vectors at the
boundary of the tubular neighbourhood. For example if the
dimension d is much larger than the radius ϵ, you have to
take very small σt to have ∇xpt(x) ·n < 0. A related work
can be found in (Chen et al., 2023b)[Proposition 2.].

4.3. Escaping time from the tubular neighbourhood

Let ϵ > 0. Let M(ϵ) be the ϵ-neighbourhood of a compact
oriented manifold M in the Euclidean space Rd as defined
in Definition 3.1. Assume M(ϵ) is a tubular neighbourhood.
Suppose pt(x) is a smooth solution to the Fokker-Planck
equation (3) with an initial condition p0(x) = δM(x) here
δM(x) is Dirac’s density function with its support M. We
define a function ΓM(ϵ)(t) as follows:

ΓM(ϵ)(t) :=

∫
M(ϵ)

pt(x)dx. (7)

Remark 4.4. If the data manifold M is the n-sphere Sn

the blue lines in Subsection 6.2 represents the graphs of
ΓM(ϵ)(t).

Proposition 4.5. Assume β(t) : R≥0 → R is a smooth
function and f(t, x) = β(t) f(x)2 , g(t, x) =

√
β(t) in (3)

(f(x) is some smooth vector field). We have:

lim
t→0

∂

∂t
ΓM(ϵ)(t) = 0 and lim

t→∞

∂

∂t
ΓM(ϵ)(t) = 0.

Thus there exists at least one tc in (0,+∞) such that
∂2

∂t2
ΓM(ϵ)(tc) = 0. Moreover if β(t) > 0 and

(∇x ln pt(x)− f(x)) · n < 0 (8)

for any x ∈ ∂M(ϵ) and any t ∈ R>0 then ΓM(ϵ)(t) is
strictly monotonically decreasing. Here n is a unit outward
pointing normal vector field along ∂M(ϵ).

The verification of this can be found in Appendix G.3.

Remark 4.6 (Returning time into the tubular neighbour-
hood). Suppose pt(x) is a solution to the Fokker-Planck
equation (12) associated to the reverse diffusion process
with an initial value condition p0(x) equals to some simple
distribution. We predict we may prove there exists tc such
that the second derivative of

Γ̃M(ϵ)(t) =

∫
M(ϵ)

pt(x)dx

at tc vanishes in a similar way as above. We think that the
main problem is an estimation of score vectors and we could
make use of the fact like (Bortoli, 2022a)[Lemma C.1.].

5. Evolution of latent structures during
diffusion processes

The geometry of diffusion models can be conceptualised as a
set of noise manifolds spreading in layers around a data man-
ifold. This involves the space of latent variables xt created
by centring the data manifold and adding stochastic noise
(See Figure 4). We first elucidate the relationship between
the stochastic Riemannian metric of the noisy manifold and
the number of particles within the tubular neighbourhood in
Subsection 5.1. Subsequently, in Subsection 5.2, we reca-
pitulate the perspective that the continuous-time diffusion
model can be interpreted as an infinitely deep hierarchical β-
VAE (Huang et al., 2021; Luo, 2022; Kingma & Gao, 2023),
a type of variational autoencoder with an inverse tempera-
ture hyperparameter β varying at each layer. We confirm
that the equivalent of spontaneous symmetry breaking in the
latent space of a particular layer of this hierarchical β-VAE
occurs in a trained β-VAE by observing the training error
of the trained β-VAE. In Subsection 5.3, we experimen-
tally confirm that a phase transition occurs in the geometric
structure of the latent space, using β-VAE with temperature
parameters, corresponding to diffusion steps in the diffusion
models.

5.1. Geometrical structure

Initially, we can deduce that the probability distribution
pt(xt) of the stochastic differential equation (SDE) of the
diffusion process adheres to the Fokker-Planck equation
(see Appendix H for details):

dxt = ft(xt)dt+ gtdwt, (9)
∂

∂t
pt(xt) = −∇xt

· [∇xt
ut(xt)pt(xt)] , (10)

where

ut(xt) :=

∫ xt

x0

ft(z)dz −
g2t
2

ln qt(xt). (11)

Here, we introduce the potential function ut(xt) (Raya &
Ambrogioni, 2023). On the other hand, the probability dis-
tribution qt(xt) of the SDE for the reverse diffusion process
also adheres to the another Fokker-Planck equation:

dxt = −∇xtut(xt)dt+ gtdwt, (12)
∂

∂t
qt(xt) = ∇xt · [∇xtft(xt)qt(xt)] (13)

with qt(xt) = pT−t(xT−t), where T is the number
of diffusion steps at which the diffusion process termi-
nates (Franzese et al., 2023). Hence, the fixed point x̄t
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of the potential function leads to the following relationship:

∇xt
ut(x̄t) = 0 =⇒ ∂

∂t
peq(x̄t) = 0, (14)

=⇒ ft(x̄t) =
g2t
2
∇xt

ln peq(x̄t). (15)

where peq(xt) is the solution of ∂
∂tpt(xt) = 0. This property

is observed in the equilibrium thermodynamic formulation
of diffusion models, previously discussed in the work of Am-
brogioni (2023), where stochastic fluctuations of physical
quantities can be ignored. Non-equilibrium thermodynam-
ics (stochastic thermodynamics), on the other hand, where
such stochastic fluctuations cannot be ignored, is given by
∂
∂tpt(xt) ̸= 0. In other words, the trajectory on the fixed
points x̄t consists only of states in which equilibrium ther-
modynamics holds.

Utilising the potential function ut(xt), the second derivative
of the function ΓM(ϵ)(t), as introduced in the section 4, can
be expressed as follows (see Appendix H):

∂2

∂t2
ΓM(ϵ)(t) =

∫
∂M(ϵ)

(2∆ut(z) +∇zut(z) · ∇z ln pt(z))

[∇zut(z) · n] pt(z)dz. (16)

As the diffusion step t progresses, the latent space structured
by the latent variable xt undergoes notable transformations.
In the following, we explore these transformations, drawing
on the approach of Arvanitidis et al. (2021), who analysed
the geometric structure of the latent space in VAE through
the Jacobian Jβt(xt) := ∇xt ln pt(xt) and the stochastic
Riemannian metric Gβt(xt) := JT

βt
(xt)Jβt(xt).

The stochastic Riemannian metric, initially introduced for
analysing the geometric structure of the latent space in
VAEs, offers significant insights into the geometric con-
figuration at various diffusion steps within diffusion models.
Two typical drift terms are variance-preserving ft(xt) =

− g2
txt

2 and variance-exploding ft(xt) = 0. Then, (Eq. 16)
simplifies into the following tabular form (see Appendix H):

νt(xt) := ∆ut(z)−
g2t
4

(
xt · ∇xt ln pt(xt) + Gβt(z)

)
,

(17)

∂2

∂t2
ΓM(ϵ)(t) =

∫
∂M(ϵ)

2νt(xt) [∇zut(z) · n] pt(z)dz. (18)

From (Eq. 8), we have ∇zut(xt) · n > 0. Therefore, the
following relationship holds between the diffusion steps tc at
which the second-order derivative of the function ΓM(ϵ) (t)

Figure 4. Geometric schematic of the diffusion process: The star-
shaped figure at the center represents the data manifold. The
diffusion process, where noise is incrementally added to the data, is
depicted by light blue Brownian particles (arrows). Conversely, the
reverse diffusion process, where noise is gradually removed from
the data, is illustrated by magenta Brownian particles (arrows). At
each diffusion step t, a noise manifold Mt is formed by the latent
variable xt and its stochastic Riemannian metric Gβt(xt).

vanishes:

∂2

∂t2
ΓM(ϵ)(tc) = 0 =⇒∫
∂M(ϵ)

νt(z) [∇zut(z) · n] pt(z)dz = 0 (19)

As stated in the previous study (Raya & Ambrogioni, 2023),
there exists a specific diffusion time tc at which the second-
order derivative of the potential function ∆ut(xt) becomes
zero, indicating a moment when spontaneous symmetry
breaking occurs within the latent space. This equation
clearly elucidates that spontaneous symmetry breaking in
the diffusion model is intricately linked to the singularities
of the stochastic Riemannian metric of noisy manifolds.

5.2. Correspondence with β-VAE

As noted at the beginning of this section, the continuous-
time diffusion model can be viewed as an infinitely deep
hierarchical VAE. Furthermore, the dependence on the num-
ber of layers in each hierarchical VAE layer can be expressed
by varying βt in the β-VAE. The relationship between the
standard diffusion model and β-VAE can be described by

6
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the following SDE, gt =
√

2
βt

:

dxt = ft(xt)dt+

√
2

βt
dwt, (20)

dxt =

[
−ft(xt) +

1

βt
∇xt ln qt(xt)

]
dt+

√
2

βt
dwt, (21)

where the inverse temperature βt = 1
σ2t decreases mono-

tonically as the diffusion step t proceeds. The objective
function at each layer of the U-net in the diffusion model
coincides with the objective function of the β-VAE. The
diffusion and reverse diffusion processes are represented by
the following probability model (Watanabe, 2010).

qβt(xt+dt, xt) =
q(xt)q

βt(xt | xt+dt)

Zq(βt)
, (22)

pβt
(xt+dt, xt) =

pβt(xt)p(xt+dt | xt)
Zp(βt)

. (23)

The objective function of β-VAE is defined as follows.

Lβ−VAE := Eq(xt+dt,xt) [ln p(xt+dt | xt)]
−βtEq(xt) [DKL (q(xt | xt+dt)∥p(xt))] . (24)

Now, the Jacobian of β-VAE is Jp,βt
:= ∇xt

ln pβt(xt).
Then, the stochastic Riemanian metric of β-VAE isGp,βt

:=
JT
p,βt

Jp,βt
. The magnification factor mp,βt

of β-VAE (Ar-
vanitidis et al., 2021) is

mp,βt
:=
√
detGp,βt

= βd
tmp,1. (25)

Hence, the magnification factor mp,βt
, which represents

the local curvature of the latent space, exhibits a strong
dependence on the inverse temperature. By our definition,
the inverse temperature βt = 1

σ2t decreases progressively
as the diffusion step t proceed. As the diffusion steps in-
creases, the magnification factor approaches flatness. This
indicates that the spatial threshold for embedding the input
data into different regions in the latent space based on its
characteristics tends to disappear.

5.3. Numerical Experiment

Figure 5 is a graph showing the βt dependence of training
error, validation error measured after training the β-VAE
for various inverse temperatures βt. In this experiment, the
β-VAE was trained for 3000 epochs on MNIST.

6. Numerical analysis
In this section, we present experiments investigating the
behaviour of tubular neighbourhoods in diffusion models.

Figure 5. As the inverse temperature β increases, there exists dis-
continuity in the performance. A phase transition occurs in the
curvature (magnification factor) of the latent space, depicted by
the red heatmap in the background, which shows a scatterplot of
the embedded hand-written digits from 0 to 9.

6.1. Experiment setting

The particles on each of unit spheres S0, S1, and S2 are
diffused and again reversed. We count the proportions inside
and outside the injectivity radius. The detailed description
of the experiment setting is described in Appendix I.

6.2. Results

The results are shown in Figure 6 for the forward process
and Figure 7 for the backward process. In both graphs, it can
be observed that there are inflection points in the proportion
outside the tubular neighbourhoods.

7. Future works
We can extend the current research in which we present
some basic arguments on tubular neighbourhoods and
around to have a chance to deepen them employing the
knowledge of Geometry — both Differential Geometry and
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(a) Forward 1D Diffusion Result S0
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(b) Forward 2D Diffusion Result S1
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(c) Forward 3D Diffusion Result S2

Figure 6. The Proportion Outside the Tubular Neighbourhoods Over Time with Symmetry Breaking Time Point. Forward Diffusion
Results for Initial States S0, S1, and S2.
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(a) Backward 1D Diffusion Result S0
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(b) Backward 2D Diffusion Result S1
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(c) Backward 3D Diffusion Result S2

Figure 7. The Proportion Outside the Tubular Neighbourhoods Over Time with Symmetry Breaking Time Point. Backward Diffusion
Results for Initial States S0, S1, and S2.

Topology — as follows.

7.1. Reconsidering how to estimate the injectivity radius

The injectivity radius of a data manifold is a constant defined
as the infimum of norms of normal vectors, which make
the endpoint map critical, to the manifold. However, the
radius of a tubular neighbourhood should be able to be taken
smaller and larger at each point. For instance, the tubular
neighbourhood of S1 ⊂ R2 can only extend inwards close
to the centre, but outwards as far as possible.

Besides, although we used the endpoint map to define the
tubular neighbourhood, it can be defined more generally by
the flow of a vector field, which is called a spray. Because
the score function deviates from the normal direction as
it moves away from data manifold, we could be able to
estimate the injectivity radius much more accurately if we
obtain a spray that well approximates the score function.

According to this geometrical picture, we might be able to
control generation results of diffusion models by varying
the scaling of radii of the tubular neighbourhood and the
normal direction at each point.

7.2. From the viewpoint of Singularity Theory

Singularity Theory is the research area which studies prop-
erties of singularities (or critical points) appearing in spaces,
functions, and maps to investigate the geometry of them
(cf., e.g., (Arnold et al., 1985)). Since mid 20th century, it
has been discovered that singularities have important data
of geometric objects from many aspects of mathematics.
Being based on Singularity Theory, we have a chance to es-
timate how much the ϵ-neighbourhood M(ϵ) of a given data
manifold M fails to be tubular for a given radius ϵ > 0, by
analysing the singularities appearing in the boundary ∂M(ϵ)
and the critical points of the endpoint map E : NM → Rd.

We also note that Singularity Theory has numerous appli-
cations — they are nothing but the revival and new genera-
tion of Thom’s Catastrophe Theory (Arnold, 1992). Specif-
ically, a powerful generalisation of the Amari–Nagaoka
Theory (Amari & Nagaoka, 2000) to singular models is
suggested (Nakajima & Ohmoto, 2021).

8
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7.3. Connection with stochastic thermodynamics and
information geometry

Based on the findings in the literature (Ambrogioni, 2024),
which highlight the connection between non-equilibrium
thermodynamics and diffusion models, we can analyse spon-
taneous symmetry breaking in the latent space as the diffu-
sion step increases using the tools of physics. Furthermore,
we propose that the equilibrium equations presented in this
paper may have more general counterparts applicable to
non-equilibrium states. This assertion is supported by the
insights from (Ito, 2023), which elucidate the close rela-
tionship between non-equilibrium thermodynamics and the
rapidly advancing field of information geometry.
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Wu, Z., ė, A., Arvaniti, E., Beattie, C., Bertolli, O.,
Bridgland, A., Cherepanov, A., Congreve, M., Cowen-
Rivers, A. I., Cowie, A., Figurnov, M., Fuchs, F. B.,
Gladman, H., Jain, R., Khan, Y. A., Low, C. M. R.,
Perlin, K., Potapenko, A., Savy, P., Singh, S., Stec-
ula, A., Thillaisundaram, A., Tong, C., Yakneen, S.,
Zhong, E. D., Zielinski, M., dek, A., Bapst, V., Kohli,
P., Jaderberg, M., Hassabis, D., and Jumper, J. M. Ac-
curate structure prediction of biomolecular interactions
with alphafold 3. Nature, May 2024. ISSN 1476-4687.
doi: 10.1038/s41586-024-07487-w. URL https:
//doi.org/10.1038/s41586-024-07487-w.

Amari, S. and Nagaoka, H. Methods of Information Ge-
ometry. American Mathematical Society, 2000. URL
https://doi.org/10.1090/mmono/191.

Ambrogioni, L. The statistical thermodynamics of gener-
ative diffusion models. CoRR, abs/2310.17467, 2023.
doi: 10.48550/ARXIV.2310.17467. URL https:
//doi.org/10.48550/arXiv.2310.17467.

Ambrogioni, L. The statistical thermodynamics of gen-
erative diffusion models: Phase transitions, symmetry
breaking and critical instability, 2024.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313–
326, 1982. ISSN 0304-4149. doi: https://doi.org/10.101
6/0304-4149(82)90051-5. URL https://www.scie
ncedirect.com/science/article/pii/03
04414982900515.

Arnold, V. I. Catastrophe Theory. Springer Berlin, Heidel-
berg, 1992. ISBN 978-3-642-58124-3. doi: 10.1007/97
8-3-642-58124-3. URL https://doi.org/10.1
007/978-3-642-58124-3.

Arnold, V. I., Guseı̆n-Zade, S. M., and Varchenko, A. N.
Singularities of differentiable maps. Vol. I, volume 82 of
Monographs in Mathematics. Birkhäuser Boston, Inc.,
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A. Related works
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have emerged as a powerful class
of generative models (Bond-Taylor et al., 2022), demonstrating remarkable performance in various domains, image
synthesis (Dhariwal & Nichol, 2021; Croitoru et al., 2023), audio generation (Chen et al., 2021; Kong et al., 2021; Liu et al.,
2023), video generation (Ho et al., 2022; Singer et al., 2023; Xing et al., 2023), natural language processing (Lou et al.,
2023), robot manipulations, and protein interactions (Abramson et al., 2024). These models define a forward stochastic
process that progressively adds noise to the data until it reaches a Gaussian distribution, followed by a generative process
that denoises the data through the approximation of the gradient of the forward logarithmic density, known as the Stein
score.

Motivations and related works. Our work is motivated by several recent theoretical advancements and practical challenges:

• Optimisation of Diffusion Time: Some empirical studies report existence of an optimal diffusion time that enhances
model efficiency (Franzese et al., 2023).

• Critical Phenomena and Statistical Thermodynamics of Diffusion Models: There are some empirical studies report
heterogeneity/non-uniformity, critical phenomena during generation (Ho et al., 2020; Meng et al., 2022; Choi et al., 2022;
Zheng et al., 2023; Raya & Ambrogioni, 2023; Georgiev et al., 2023; Sclocchi et al., 2024; Biroli et al., 2024).

• Geometrical approaches: There are some geometrical perspectives on diffusion models inspired our work (Chung et al.,
2022; Wenliang & Moran, 2023; Chen et al., 2023a; Park et al., 2023).

• Other theories to understand diffusion and generation processes: A deeper understanding of these processes is essential
for advancing theoretical research and practical applications, such as generation control through prompting and interpolation.
Recent studies have delved into the underlying mechanisms of diffusion and generation trajectories to identify optimal
intervention points during the generation process, which can help achieve desired data outputs. While flow-matching
algorithms have shown promise, in the practical user cases, diffusion models surprisingly sometimes outperform the
flow-matching, underscoring the need to understand the factors contributing to this superior performance. There are several
works on convergence guarantees for diffusion models (Bortoli et al., 2021; Bortoli, 2022b; Block et al., 2020; Chen et al.,
2023c; Lee et al., 2022; Liu et al., 2022; Pidstrigach, 2022; Wibisono & Yang, 2022; Chen et al., 2023e; Lee et al., 2023; Li
et al., 2023; Benton et al., 2023a;b; Chen et al., 2023d; Li et al., 2024)

• Flow matching techniques: Flow matching algorithms (Lipman et al., 2023; Tong et al., 2024) are yet another prominent
techniques in generative modelling. They are closely related to diffusion models as flow matching often leverages diffusion
paths for training, in which optimal transport via ODEs yields straighter trajectories. It is very interesting to consider the
influence on the quality and diversity of generated samples or critical dynamics such as spontaneous symmetry breaking.
Our method may have the potential to analyse these aspects. Such generative models considering a transport from one
distribution to another are expected to continue to develop, and geometric interpretations will further contribute to improving
interpretability, efficiency, and control to ensure safety.

B. Social Impacts
• Green AI (Environmental Impact): Reducing the high energy consumption of diffusion models during both training

and generation is crucial. The exponential increase in computational demands due to the growing use of diffusion
models in industry poses significant environmental concerns. Optimising these models can lead to more sustainable AI
practices, addressing the urgent need for eco-friendly AI technologies. Recent studies emphasise the need for environmental
sustainability in AI, focusing on reducing the energy consumption and carbon footprint of AI models (Verdecchia et al.,
2023).

• AI Safety and Alignment: Ensuring AI safety and alignment is critical. This includes improving the mechanistic
interpretability of diffusion models, optimising control to prevent undesirable behaviours, and mitigating risks such as
hallucinations and adversarial attacks. Effective control mechanisms and interpretability can enhance trust and safety in AI
applications. Matsumoto et al. (2023) report that the diffusion time is the crucial for mitigating the membership inference
attacks on diffusion models (Pang et al., 2023; Pang & Wang, 2023; Duan et al., 2023; Tang et al., 2023; Fu et al., 2023;
Dubinski et al., 2024; Kong et al., 2023)

C. Mathematical Supplementaries
In this appendix, we quickly recall basic mathematical concepts and facts concerned with Linear Algebra and Manifold
Theory. See, e.g., (Lee, 2013) for a detail of Manifold Theory.
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C.1. Formal operations in Linear Algebra

For the Euclidean space Rd and its linear subspace V ⊂ Rd, let V ⊥ denote the orthogonal complement of V in Rd.

Proposition C.1. Let V and W be subspaces of Rn. Then the following hold:

(1) V ⊂W if and only if V ⊥ ⊃W⊥;

(2) V ⊥ ∩W⊥ = (V +W )⊥.

C.2. Differentiable manifolds

In this paper, as manifolds, we treat only ‘submanifolds of the Euclidean space Rd’. So we adapt the following definition.

Definition C.2. A subset M of Rd is called an n-dimensional manifold, if for each point x ∈ M, there is an open
neighbourhood U of x in Rd, an open subset of V in Rd = Rn × Rd−n, and a diffeomorphism ϕ : U → V such that
ϕ(M∩ U) = V ∩ (Rn × {0}). We call the map ϕ a chart on M around x.

Definition C.3. Let M ⊂ Rd be a manifold and x ∈ M be a point. Then the tangent space TxM to M at x is defined as
the set consisting of all velocity vectors of curves on M through x, that is,

TxM =

{
dγ

dt
(0)

∣∣∣∣ γ : (−ϵ, ϵ) → M, γ(0) = x

}
.

Notice that the tangent space forms a linear subspace of Rd.

Definition C.4. Let M ⊂ Rd and M′ ⊂ Rd′
be manifolds, and let F : M → M′ be a differentiable map (i.e., there is an

extension F̃ : U → Rd′
of F which is a differentiable map on an open set U of Rd). Then the differential dFx of F at x is

defined as the linear map

dFx : TxM → TF (x)M′, dFx

(
dγ

dt
(0)

)
=
d(F ◦ γ)

dt
(0).

Remark C.5. Take charts ϕ : U → V and ψ : U ′ → V ′ on M and M′, respectively. Also let (x1, . . . , xn) and (y1, . . . , yn′)
denote the coordinate on V ⊂ Rn and V ′ ⊂ Rn′

, respectively. Then the diffenrential dFx is represented by the Jacobi
matrix

∂(ψ ◦ F ◦ ϕ−1)

∂x
(x) =

[
∂(ψ ◦ F ◦ ϕ−1)i

∂xj
(x)

]
of the map ψ ◦ F ◦ ϕ−1 : V → V ′ at the point x ∈ M.

Definition C.6. Let F : M → M′ be a differentiable map between manifolds. A point x ∈ M is called a regular point
(resp. a critical point) if the differential dFx : TxM → TF (x)M′ is surjective (resp. not surjective). A point y ∈ M′ is
called a regular value (resp. a critical value) if every point x ∈ M satisfying that F (x) = y is a regular point of F (resp. or
not).

The following is essentially a consequence of Implicit Function Theorem.

Theorem C.7 (cf. (Lee, 2013)[Corollary 5.14]). Let F : Rd → Rd′
be a differentiable map and y ∈ Rd′

a regular value of
F . Then the level set

F−1(y) = {x ∈ Rd | F (x) = y} ⊂ Rd

forms a (d− d′)-dimensional manifold.

Remark C.8 (explicit description of the tangent spaces to a manifold). Consider the same setup of Theorem C.7 and denote
F = (F1, . . . , Fd′). Then the normal to the tangent space TxM coincides with〈

∂F1

∂x
(x)T , · · · , ∂Fd′

∂x
(x)T

〉
R

,

which is spanned by the gradient vectors of components of F . Therefore the tangent space itself is noting but its orthogonal
complement, i.e.,

TxM =

〈
∂F1

∂x
(x)T , · · · , ∂Fd′

∂x
(x)T

〉⊥

R

.
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Figure 8. Image under E and tubular neighbourhood of the
cosine curve in R2
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Figure 9. Tubular neighbourhood of S1 embedded in R3

Definition C.9. A differentiable map F : M → M′ is called an embedding if its differential dF : TxM → TF (x)M′ is
injective for every point x ∈ M and the restriction F : M → f(M) is a topological homeomorphism (i.e. there is the
inverse map F−1, and both F and F−1 are continuous).

C.3. Tubular neighbourhoods

Let M ⊂ Rd be a manifold. Recall the normal bundle

NM = {(x,v) ∈ Rd ×Rd | x ∈ M,v ⊥ TxM}

to M and the endpoint map
E : NM → Rd, E(x,v) = x+ v,

which are defined in §3 (Definitions 3.2 and 3.3).

Definition C.10 (Tubular neighbourhood). A tubular neighbourhood of M is a neighbourhood of M in Rd that is the
diffeomorphic image under E of an open subset V ⊂ NM of the form

V = {(x,v) ∈ NM | ∥v∥ < δ(x)}

for some positive continuous function δ : M → R.

Theorem C.11 (Theorem 6.24 in (Lee, 2013)). Every manifold embedded in Rd has a tubular neighbourhood.

Proof. Let M0 denote the subset {(x, 0) | x ∈ M} ⊂ NM. Fix a point x ∈ M. Since both differentials dE|T(x,0)M0
:

T(x,0)M0 → TxM and dE|NxM : NxM → NxM are isomorphisms, we have that dE : T(x,0)NM → Rd is also an
isomorphism. By Inverse Function Theorem, the map E is a diffeomorphism on a neighbourhood of (x, 0) ∈ NM. We can
take the neighbourhood to be of the form Vδ(x) = {(x′,v′) ∈ NM | ∥x− x′∥ < δ, ∥v′∥ < δ} for some δ > 0. Let ρ(x)
denote the supremum of all such δ < 1. We can prove that the function ρ : M → R is positive and continuous.

Now consider the open subset V = {(x,v) ∈ NM | ∥v∥ < 1
2ρ(x)} of NM. Then the map E is injective on V , and hence

E|V : V → Rd is a smooth embedding. Thus E(V ) is a tubular neighbourhood of M.

D. Theoretical supplementaries of Section 3
D.1. Proof of Theorem 3.7

Under the setup of Theorem 3.7, put k = d− n and we define a map φ : Rd ×Rd → RN+k by

φ(x,v) = (F (x), φ1(x,v), · · · , φN (x,v)).
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Notice that the normal bundle NM to M is expressed by

NM = φ−1(0) = {(x,v) ∈ Rd ×Rd | φ(x,v) = 0}.

Hence the tangent space T(x,v)NM ⊂ Rd ×Rd to NM at a point (x,v) coincides with the orthogonal complement of〈[
∂F1

∂x

T

0

]
, · · · ,

[
∂Fd

∂x

T

0

]
,

[
∂φ1

∂x

T

∂φ1

∂v

T

]
, · · · ,

[
∂φN

∂x

T

∂φN

∂v

T

]〉
R

in Rd ×Rd (cf. Remark C.8).

We now employ the Method of Lagrange multiplier. That is, we paraphrase the condition that a point (x,v) ∈ NM is a
critical point of the endpoint map

E = E0|NM : NM → Rd

(i.e., the differential dE(x,v) : T(x,v)NM → Rd, which is a linear map, is degenerate) as follows. First, the condition is
equivalent to that there exists a non-zero vector of T(x,v)NM which vanishes by the differential (dE0)(x,v) : R

d ×Rd →
Rd, i.e.,

T(x,v)NM∩Ker(dE0)(x,v) ⊋ {0}.

Moreover, we have the following:

T(x,v)NM∩Ker(dE0)(x,v) ⊋ {0}

⇐⇒

〈[
∂F1

∂x

T

0

]
, · · · ,

[
∂Fk

∂x

T

0

]
,

[
∂φ1

∂x

T

∂φ1

∂v

T

]
, · · · ,

[
∂φN

∂x

T

∂φN

∂v

T

]〉⊥

R

∩
〈[

e1
e1

]
, · · · ,

[
ed
ed

]〉⊥

R

⊋ {0}

⇐⇒

〈[
∂F1

∂x

T

0

]
, · · · ,

[
∂Fk

∂x

T

0

]
,

[
∂φ1

∂x

T

∂φ1

∂v

T

]
, · · · ,

[
∂φN

∂x

T

∂φN

∂v

T

]〉
R

+

〈[
e1
e1

]
, · · · ,

[
ed
ed

]〉
R

⊊ Rd ×Rd,

where {e1, · · · , ed} denotes the standard basis of Rd. Here we used a property on orthogonal complements (see Appendix
C.1).

Finally, it is equivalent to that the matrix [
∂F
∂x

T ∂φ1

∂x

T
· · · ∂φN

∂x

T
Ed

On,d
∂φ1

∂v

T
· · · ∂φN

∂v

T
Ed

]

is degenerate. Performing elementary row and column operations, and by the definition of R1(M), the conclusion of
Theorem 3.7 follows.

D.2. Curvature and the first injectivity radius of a curve

Let M be a curve in Rd, i.e., a one-dimensional manifold embedded in Rd. We see that, in this case, the first injectivity
radius R1(M) is derived from the curvature of M as follows.

Definition D.1. Let γ : R → Rd be an arc-length parametrization of the curve M, i.e.,
∥∥∥∥dγds

∥∥∥∥ ≡ 1. Then the curvature κ of

M at a point p = γ(s) ∈ M is defined by the Euclidean norm of the second order derivative
d2γ

ds2
(s).

Proposition D.2. Assume that n = 1. Let γ : R → Rd be an arbitrary regular parametrization of the curve M. Then the
curvature κ of M is computed by

κ(γ(u)) =

√
∥γ′(u)∥2∥γ′′(u)∥2 − ⟨γ′(u), γ′′(u)⟩2

∥γ′(u)∥3
, (26)

where ′ denotes the differential by u.
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Although this is a well-known fact, we show it briefly as follows.

Proof. Let s and u denote an arc-length parameter and an arbitrary regular parameter of the curve M. Since it holds that

γ′ = s′
dγ

ds
, (27)

we also have that

γ′′ = s′′ · dγ
ds

+ (s′)
2
κ · ν, (28)

where ν denotes the normalization of the vector
d2γ

ds2
. Since two vectors

dγ

ds
and ν form an orthonormal frame of the curve

M, it holds that

∥γ′′∥2 = (s′′)2 + (s′)4 · κ2. (29)

Now notice the following: it holds that

∥γ′∥2 = (s′)2 (30)

by Equation (27), and hence

⟨γ′, γ′′⟩ = s′ · s′′. (31)

Applying Equations (30) and (31) to Equation (29), we have the claim.

Theorem D.3. Assume that n = 1. Let κ denote the curvature of M. Then R1(M) coincides with the infimum of radii of
curvature 1/κ.

Proof. See Lemma 1 of (Litherland et al., 1999).

D.3. Comments on the computation of the second injectivity radius

In this paper we used the definition of R2(M) as-is for the numerical estimation.

We note that one can weaken the condition appearing to the definition of R2(M) as follows.

Proposition D.4. The second injectivity radius R2(M) coincides with the infimum of the set{
1

2
∥x1 − x2∥

∣∣∣∣ x1,x2 ∈ M,x1 ̸= x2,
and x1 − x2 ⊥ Tx1M

}
.

Proof. See §4 of (Litherland et al., 1999).

We also have a comment on R2(M). Numerically, it seems to be possible to compute R2(M) by using the persistent
homology of the given data cloud. Indeed, the topology of the ϵ-neighbourhood of the data cloud might change when two
tubes touch each other.

E. Other examples of injectivity radii
We have already seen that Theorem 3.7 works in the case that a data manifold is the unit circle S1 ⊂ R2. In this appendix,
we verify the theorem by observing other typical manifolds.

19



The Geometry of Diffusion Models

E.1. Torus T 2

Let r′ > r > 0, and define a function F : R3 → R by

F (x, y, z) = (
√
x2 + y2 − r′)2 + z2 − r2.

Then we have a torus T 2 = F−1(0) embedded in R3. We can see that vector fields

t1 = (−y, x, 0), t2 = (xz, yz, r′
√
x2 + y2 − x2 − y2)

satisfy the assumption in Theorem 3.7. Then the matrix LT 2((x, y, z), (v1, v2, v3)) is calculated as follows:

LT 2((x, y, z), (v1, v2, v3))

=


2(
√
x2 + y2 − r′) x√

x2+y2
v2 + y zv1 − 2xv3 − xz + r′xv3√

x2+y2

2(
√
x2 + y2 − r′) y√

x2+y2
−v1 − x zv2 − 2yv3 − yz + r′yv3√

x2+y2

z 0 xv1 + yv2 + x2 + y2 − r′
√
x2 + y2

 .
We now parametrise the torus T 2 by (x, y, z) = ((r′+r cos t) cosu, (r′+r cos t) sinu, cos t) of T 2 ⊂ R3. Then the vector
(v1, v2, v3) makes LT 2((x, y, z), (v1, v2, v3)) degenerate if and only if

(v1, v2, v3) = −(r cos t cosu, r cos t sinu, r sin t) or

(v1, v2, v3) = −r
′ + r cos t

r cos t
(r cos t cosu, r cos t sinu, r sin t)

(
t ̸= ±π

2

)
.

Hence we obtain R1(T
2) = min{r, r′ − r}. Moreover we can see that R2(T

2) = min{r, r′ − r}. Thus the injectivity
radius is R(T 2) = min{r, r′ − r}.

E.2. Unit Sphere S2

Define a function F : R3 → R by
F (x, y, z) = x2 + y2 + z2 − 1.

Then we have S2 = F−1(0). Considering the rotation in R3 around coordinate axes, we see that vector fields

t1 = (−y, x, 0), t2 = (−z, 0, x), t3 = (0,−z, y).

satisfy the assumption of Theorem 3.7. (Here notice that the number of vector fields which we desire is needed to be greater
than 2, by topological reason.) Then the matrix LS2((x, y, z), (v1, v2, v3)) is calculated as follows:

LS2((x, y, z), (v1, v2, v3))

=

2x v2 + y v3 + z 0
2y −v1 − x 0 v3 + z
2z 0 −v1 − x −v2 − y

 .
This matrix is degenerate on ((x, y, z), (v1, v2, v3)) ∈ NS2 if and only if (v1, v2, v3) = (−x,−y,−z). Hence we obtain
R1(S

2) =
√

(−x)2 + (−y)2 + (−z2) = 1. Moreover it is clear that R2(S
2) = 1. Thus the injectivity radius is R(S2) = 1.

E.3. Unit n-Sphere Sn

As the final example, we observe the unit n-sphere. Define a function F : Rn+1 → R by

F (x1, x2, . . . , xn+1) = x21 + x22 + · · ·+ x2n+1 − 1.

Then we have Sn = F−1(0). Considering gradient vector fields of the height functions (x1, x2, . . . , xn+1) 7→ xj
(j = 1, 2, . . . , n+ 1), we see that vector fields

tj = (−x1xj , . . . ,−xj−1xj , 1− x2j ,−xj+1xj , . . . ,−xn+1xj) (j = 1, 2, . . . , n+ 1)
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Table 1. Estimated injectivity radii of various manifolds.

DATA SET R1 R2

S1 1.005± 0.003 0.999±0.006
S2 1.063± 0.032 0.997±0.038
S128 1.068± 0.023 0.922±0.056

satisfy the assumption of Theorem 3.7. Then the matrix LSn(x,v) is calculated as follows:

LSn(x,v)

=


2x1 −2x1 −

∑
i ̸=1 xivi + x21 − 1 −xn+1v1 + xn+1x1

... −x1v2 + x1x2
. . .

...
...

...
. . . −xn+1vn + xn+1xn

2xn+1 −x1vn+1 + x1xn+1 −2xn+1vn+1 −
∑

i ̸=n+1 xivi + x2n+1 − 1

 ,

where x = (x1, x2, · · · , xn+1),v = (v1, v2, · · · , vn+1). Now notice that for a point x ∈ Sn and a normal vector v to x,
there exists a scalar c ∈ R such that v = cx. Using it and performing the elementary row and column operations, the matrix
LSn(x,v) is transformed as follows:

x1 −c
∑

i x
2
i − 1 0 · · · 0

... 0
. . . . . .

...
...

...
. . . . . . 0

xn+1 0 · · · 0 −c
∑

i x
2
i − 1

 .

Hence the vector v makes the matrix LSn(x,v) degenerate if and only if c = −1. Hence we obtain R1(S
n) = ∥ − x∥ = 1.

Moreover it is clear that R2(S
n) = 1. Thus the injectivity radius is R(Sn) = 1.

F. Algorithm for Estimating the injectivity radius
In this appendix, we show the pseudo-algorithm for estimating the injectivity radius (see Algorithm 1) and some preliminary
numerical experiments to verify the proposed algorithm.

F.1. Numerical experiments to validate AIER

For the S1, S2, S128 cases, the estimated R1 and R2 using the proposed algorithm are shown in Table 1. We first generate
dataset using the exact generative equations and add some Gaussian noise. The F is then approximated using a neural
network. The following Step 1 to Step 4 are executed using the neural network approximation F . We note that we use the
cosine similarity instead of inner products for the discrimination condition defined in the Step 4.

G. Calculation and verification in Section 4
G.1. Example in Section 4

Example G.1. Let us consider a circle of radius r (see Figure 3). In this case

lim
t→0

∇x ln pt(x) =

[
cos θ
sin θ

]
(32)

for some 0 ≤ θ < 2π. Here x is a point in a tubular neighbourhood and θ is the angle of π(x). Let ∆x be an infinitesimal
arc length. By definition, ∆θ = ∆x

r . And by taking Taylor’s series we may compute the change rate tangent to the circle of
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Algorithm 1 Algorithm for estimating the injectivity radius (AEIR)

Input: data D ⊂ Rd

Step 0: Estimate a map F = (F1, . . . , Fd−n) : R
d → Rd−n such that the point 0 is a regular value of F and the

manifold F−1(0) ⊂ Rd approximates data D. Put M := F−1(0).
Step 1: Estimate vector fields t1, t2, . . . , tN (n ≤ N ) defined near M such that for every x ∈ M the vectors
t1(x), t2(x), . . . , tN (x) span the tangent space TxM.
Step 2: Put gi : Rd ×Rd → R, gi(x,v) := ⟨v, ti(x)⟩ (i = 1, 2, . . . , N ). Calculate the matrix

[A1, · · · , Ad−n, B1, · · · , BN ] :=


∂F1

∂x1
· · · ∂Fd−n

∂x1

∂φ1

∂x1
− ∂φ1

∂v1
· · · ∂φN

∂x1
− ∂φN

∂v1

...
. . .

...
...

. . .
...

∂F1

∂xd
· · · ∂Fd−n

∂xd

∂φ1

∂xd
− ∂φ1

∂vd
· · · ∂φN

∂xd
− ∂φN

∂vd

 ,
where x = (x1, · · · , xd),v = (v1, · · · , vd).
Step 3: Collect sufficient amount of samples from the set(x,v) ∈ Rd ×Rd

∣∣∣∣∣∣
F (x) = 0, gi(x,v) = 0 (i = 1, 2, · · · , N),
det[A1, . . . , Ad−n, Bi1 , . . . , Bin ] = 0
(1 ≤ i1 < · · · < in ≤ N)

 ,

and estimate min ∥v∥ on the set. Put this value R1.
Step 4: Collect sufficient amount of samples from the set(x1,x2) ∈ Rd ×Rd

∣∣∣∣∣∣
F (x1) = F (x2) = 0,x1 ̸= x2,
⟨x1 − x2, ti(x1)⟩ = ⟨x1 − x2, ti(x2)⟩ = 0
(i = 1, 2, · · · , N)

 ,

and estimate min ∥x1 − x2∥ on the set. Put this value R2.
Step 5: Calculate R := min{R1, R2}.
Output: R, which estimates R(M).

the score vectors (32) as:

lim
∆x→0

1

∆x

[
cos(θ +∆θ)− cos(θ)
sin(θ +∆θ)− sin(θ)

]
= lim

∆x→0

1

∆x

[
cos(θ + ∆x

r )− cos(θ)
sin(θ + ∆x

r )− sin(θ)

]
= lim

∆x→0

1

∆x

[
∆x
r θ −

1
3
∆x
r θ

3 + · · ·
∆x
r − 1

2!
∆x
r θ

2 + · · ·

]
=
1

r

[
sin θ
cos θ

]
.

Remark G.2. We suspect the above discussion could be generalised in the language of differential geometry (covariant
derivative, connection, scalar curvature and etc...). We would also like to highlight that there are significant mathematical
studies showing that curvature has rich connections with the topology of a manifold, with the Gauss-Bonnet theorem being
one of them.
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G.2. Verification of Conjecture 4.2

We have the following re-expression:

∇x ln pt(x)

=
∇xpt(x)

pt(x)
(33)

=
1

σ2
t pt(x)

∫
M
(y − x)N(y|x, σ2

t I)p0(y)dy.

Conjecture G.3. Suppose M is a compact oriented manifold embedded in Rd. We predict the following observation: Let
ϵ > 0 be the injectivity radius. Let n be an unit outward pointing normal vector to ∂M(ϵ). Assume ϵ >

√
dσt, x ∈ ∂M(ϵ)

and p0(y) is constant C and greater than 0 on M. Assume moreover the following condition.

(i) For any y ∈ M with (y − x) · n > 0 there exists y′ ∈ M and some c > 0 such that −c(y − x) = (y′ − x).

(ii) Assume that for each y ∈ M such that (y − x) ·n < 0, there exists ỹ ∈ M and c > 0 such that −c(ỹ − x) = (y − x).
Then c ≤ 1.

(iii) For any y ∈ M, {c(y − x)|c > 0} ∩M is a finite set.

Then:
∇xpt(x) · n ≤ 0.

Proof. (this proof is yet informal. Although we only perform this proof for the case d = 2 and M is a curve, we hope it can
be done in general dimensions). Performing a change of variables w = y−x

σt
we have:

∇xpt(x) · n =
1

σ2
t

∫
M
(y − x)N(y;x, σ2

t I)p0(y)dy · n

=

∫
M−x
σt

wN(w; 0, I)p0(x+ σtw)dw · n

=

∫
M−x
σt

w

|w|
· n|w|N(w; 0, I)p0(x+ σtw)dw

=

∫
N−

w

|w|
· n|w|N(w; 0, I)p0(x+ σtw)dw +

∫
N+

w

|w|
· n|w|N(w; 0, I)p0(x+ σtw)dw

=

∫
R2

z

|z|
· n|z|N(z; 0, I)p0(x+ σtz)δN−(z)dz +

∫
R2

z

|z|
· n|z|N(z; 0, I)p0(x+ σtz)δN+

(z)dz, (!)

where M−x
σt

is the image of the manifold M by a diffeomorphism y 7→ y−x
σt

and N− (resp. N+) is {w ∈ M−x
σt

;w · n <

0(resp. > 0)}. dz is a volume form of Rd. Let θ be the angle between z/|z| and n. If we use the polar coordinates (|zθ|, θ) ∈
(0,∞]× [0, 2π), since cos(θ + π) = − cos(θ), (put Nz(θ) := {(|z|, θ) ∈ (0,∞]× [0, 2π); z ∈ N for some θ s.t. cos θ =
z
|z| · n)}) we may estimate (!) as follows:

(!) =

∫ −π/2

π/2

cos θ

(∫ ∞

0

|zθ|2N(zθ : 0, I)δNz(θ)(|zθ|)d|z|
)
dθ +

∫ π/2

−π/2

cos θ

(∫ ∞

0

|zθ|2N(zθ : 0, I)δNz(θ)(|zθ|)d|z|
)
dθ

=

∫ π/2

−π/2

cos θ
(∑

|zθ+ |2N(zθ+ : 0, I)−
∑

|zθ− |2N(zθ− : 0, I)
)
dθ

≤ C ′
∫ π/2

−π/2

cos θ
(
|zθ+ |2N(zθ+ : 0, I)− |zθ− |2N(zθ− : 0, I)

)
dθ, (

∫
)

where zθ+ ∈ N+, zθ− ∈ N− and zθ+ = −cθzθ− for some cθ > 0. If there is no such zθ+ , we set zθ+ = 0. Also we
set |zθ+ |N(zθ+ : 0, I) := max{|zθ+ |2N(zθ+ : 0, I)} and |zθ− |N(zθ− : 0, I) := min{|zθ− |2N(zθ− : 0, I)}. Thus by the
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assumption (ii) we may obtain (
∫

). This integral (
∫

) is negative or zero if

(
|zθ+ |2N(zθ+ : 0, I)− |zθ− |2N(zθ− : 0, I)

)
≤ 0 (34)

for any θ. Since x ∈ ∂M(ϵ) and by the assumption (ii), |zθ+ | ≥ |zθ− | ≥ ϵ
σt

holds. Since |z|2N(z : 0, I) is strictly
monotonically decreasing if |z| ≥

√
2, the inequality holds for |zθ+ | ≥ |zθ− | ≥

√
2. Thus when ϵ

σt
≥

√
2 the result

follows.

G.3. Escaping time from the tubular neighbourhood

Let ϵ > 0. Let M(ϵ) be the ϵ-neighbourhood of a compact oriented Riemannian manifold M embedded in the Euclidean
space Rd as defined in Definition 3.1. Assume M(ϵ) is a tubular neighbourhood. Suppose pt(x) is a solution to the
Fokker-Planck equation (3) with an initial condition p0(x) = δM (x) here δM (x) is Dirac’s density function with its support
M. We define a function ΓM(ϵ)(t) as follows:

ΓM(ϵ)(t) :=

∫
M(ϵ)

pt(x)dx. (35)

Proposition G.4. Assume β(t) : R≥0 → R is a smooth function and f(t, x) = 1
2β(t)f(x), g(t, x) =

√
β(t) in (3) (f(x)

is some smooth vector field). We have:

lim
t→0

∂

∂t
ΓM(ϵ)(t) = 0

and

lim
t→∞

∂

∂t
ΓM(ϵ)(t) = 0.

Thus there exists at least one tc in (0,+∞) such that
∂2

∂t2
ΓM(ϵ)(tc) = 0. Moreover if β(t) > 0 and

∇xpt(x) · n− pt(x)f(x) · n < 0 (36)

for any x ∈ ∂M(ϵ) and any t ∈ R>0 then ΓM(ϵ)(t) is strictly monotonically decreasing. Here n a unit outward pointing
normal vector field along ∂M(ϵ).

Proof. (informal) We may compute for t > 0:

∂

∂t
ΓM(ϵ)(t) =

∫
M(ϵ)

∂

∂t
pt(x)dx

= β(t)

∫
M(ϵ)

(∇x · pt(x)f(x) + ∆xpt(x)) dx

= β(t)

(
−
∫
∂M(ϵ)

pt(x)f(x) · nds+
∫
∂M(ϵ)

∇xpt(x) · nds

)
(37)

t→0−−−→ 0.

The second equality follows since pt(x) satisfies the Fokker-Planck equation (3). The third equality follows from the
divergence theorem where n is the unit outward pointing normal vector field along ∂M(ϵ). The last limit follows since
lim
t→0

pt(x) = δM(x) and in particular lim
t→0

pt(x) = 0 and lim
t→0

∇xpt(x) = 0 in ∂M(ϵ). To be more precise the convergence
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of the limit we could make use of the following chain of inequalities:

∣∣∣∣∣β(t)
(
−
∫
∂M(ϵ)

pt(x)f(x) · nds+
∫
∂M(ϵ)

∇xpt(x) · nds

)∣∣∣∣∣
≤ |β(t)|

(
max

x∈∂M(ϵ)
{|f(x)|}

∫
∂M(ϵ)

|pt(x)|ds+
∫
∂M(ϵ)

|∇xpt(x) · n|ds

)

≤ |β(t)|

(
max

x∈∂M(ϵ)
{|f(x)|} sup

x∈∂M(ϵ)

|pt(x)|
∫
∂M(ϵ)

1ds+ sup
x∈∂M(ϵ)

|∇xpt(x)|
∫
∂M(ϵ)

1ds

)

= |β(t)|
∫
∂M(ϵ)

1ds

(
max

x∈∂M(ϵ)
{|f(x)|} sup

x∈∂M(ϵ)

|pt(x)|+ sup
x∈∂M(ϵ)

|∇xpt(x)|

)
.

When t→ ∞, pt(xt) tends to be stationary i.e., lim
t→∞

∂

∂t
pt(xt) = 0. Therefore

lim
t→∞

∂

∂t
ΓM(ϵ)(t) = 0.

The existence of an inflection point follows from the mean value theorem. Finally let us show it is strictly monotonically
decreasing. The negativity of ∂

∂tΓM(ϵ)(t) follows from (37) and (36).

H. Second-order derivative of the function ΓM(ϵ) (t)

The Fokker-Planck equation for a forward diffusion process can be reformulated utilizing the potential function ut(xt) as
follows.

∂

∂t
pt(xt) = −∇xt · [ft(xt)pt(xt)] +

g2t
2
∆xtpt(xt), (38)

= −∇xt
·
[
ft(xt)pt(xt)−

g2t
2
∇xt

pt(xt)

]
, (39)

= −∇xt
·
[(
ft(xt)−

g2t
2
∇xt

ln pt(xt)

)
pt(xt)

]
, (40)

= −∇xt
· [∇xt

ut(xt)pt(xt)] . (41)

Furthermore, the second-order derivative of the function ΓM(ϵ) (t) can be expressed in terms of the potential function as
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follows.

∂2

∂t2
ΓM(ϵ)(t) =

∂

∂t

∫
M(ϵ)

∂

∂t
pt(z)dz, (42)

= − ∂

∂t

∫
M(ϵ)

∇z · [∇zut(z)pt(z)] dz, (43)

= − ∂

∂t

∫
∂M(ϵ)

[∇zut(z) · n] pt(z)dz, (44)

=

∫
∂M(ϵ)

−
[
∂∇zut(z)

∂t
· n
]
pt(z)− [∇zut(z) · n]

∂pt(z)

∂t
dz, (45)

=

∫
∂M(ϵ)

−
[
∇z

∂ut(z)

∂t
· n
]
pt(z) + [∇zut(z) · n]∇z · [∇zut(z)pt(z)] dz, (46)

=

∫
∂M(ϵ)

[
∇z

∥∇zut(z)∥2

2
· n

]
pt(z) + [∇zut(z) · n] (∆ut(z) +∇zut(z) · ∇z ln pt(z)) pt(z)dz, (47)

=

∫
∂M(ϵ)

(2∆ut(z) +∇zut(z) · ∇z ln pt(z)) [∇zut(z) · n] pt(z)dz, (48)

=

∫
∂M(ϵ)

(
2∆ut(z) + ft(z) · ∇z ln pt(z)−

g2tGβt
(z)

2

)
[∇zut(z) · n] pt(z)dz (49)

We here applied ∂ut(z)
∂t + ∥∇zut(z)∥2

2 = 0 in (Aurell et al., 2011) Eq.(14).

I. The detailed description of the experiments
I.1. Experimental Setup

In our experiments, diffusion was performed for T=1000 steps according to Equation 1, which represents the forward
dynamics. Taking the initial states as S0, S1, S2, we counted the propotion of particles outside the injectivity radius at each
time step. Here, a particle is considered outside if it is located at a point that is at or beyond the injectivity radius from its
initial position. There are two methods for counting the proportion of particles. The green line represents the method where
once a particle exits the injectivity radius, it is considered outside for all subsequent time steps. The blue line represents
the method where a particle is counted as inside if it re-enters the injectivity radius after having exited. Next, using the
pre-trained DDPM, backward diffusion was performed according to Equation 2, which represents the backward dynamics.
The expected final states are S0, S1, S2, and the proportion of particles outside the injectivity radius was counted at each
time step. The red dashed line in the figure indicates the theoretical time point at which spontaneous symmetry breaking
occurs. To examine the relationship with spontaneous symmetry breaking, we predict that the green line method for counting
particles outside the injectivity radius is more appropriate. Therefore, only the green line method is shown for the backward
case.

I.2. Rationale for the Setup

In this experiment, we used the injectivity radius from each point on the manifold to count the particles outside the tubular
neighbourhoods. There is room for discussion regarding whether this counting method accurately reflects the concept of
tubular neighbourhoods, which we will examine here.

First, as explained in Section 3, a tubular neighbourhood is defined for a manifold M. However, in this experiment, we
consider the injectivity radius at each point on the manifold and categorize particles as inside or outside based on whether
they are within the injectivity radius from each point. These two concepts do not necessarily coincide. This discrepancy
arises because the condition for our experimental setup to reflect the concept of tubular neighbourhoods is that the vector
representing the displacement of the particles must be orthogonal to any vector constituting the basis of the tangent plane.

Therefore, the counting method using the injectivity radius in this experiment can be considered a technique that reflects the
concept of tubular neighbourhoods in practical applications.
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J. Additional experiments
J.1. Score Vector field

We present additional experiments detailing the score vectors of DDPM. This section includes two experimental setups
concerning the score vector field. Firstly, for the 2D S1 case, the experimental setup includes a grid size of 32× 32 and a
trained DDPM with T = 1000. The training data is S1, with the red circle at the centre representing S1.
Secondly, for the 3D S2 case, the experimental setup includes a grid size of 16 × 16 × 16 and a trained DDPM with
T = 1000. The training data is S2. Except for the grid size and training data, all other settings remain the same.
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Figure 10. Time evolution of score vectors in the backward process of DDPM, S1
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(d) T=1000, S2

Figure 11. Time evolution of score vectors in the backward process of DDPM, S2

J.2. Square of the Jacobian J of the Score Vector Field

In this section, we extend our analysis to the square of the Jacobian J of the score vector field. We utilize updated
experimental setups for both the 2D S1 and the 3D S2 cases. For the 2D S1 case, the grid size is 128× 128 with a trained
DDPM using T = 1000. The training data remains S1, and we compute and analyze the square of the Jacobian of the score
vector field for this setup.
Similarly, for the 3D S2 case, the grid size is 128× 128× 128 with a trained DDPM using T = 1000. The training data
remains S2, and we compute and analyze the square of the Jacobian of the score vector field for this setup.
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(b) T=500, S1
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(d) T=1000, S1

Figure 12. Time evolution of the squared Jacobian of score vectors in the backward process of DDPM, S1

29



The Geometry of Diffusion Models

−1.0
−0.5

0.0
0.5

1.0 −1.0
−0.5

0.0
0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.51e−7

(a) T=0, S2

−1.0
−0.5

0.0
0.5

1.0 −1.0
−0.5

0.0
0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.51e−7

(b) T=500, S2

−1.0
−0.5

0.0
0.5

1.0 −1.0
−0.5

0.0
0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.51e−7

(c) T=823, S2

−1.0
−0.5

0.0
0.5

1.0 −1.0
−0.5

0.0
0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.51e−7

(d) T=1000, S2

Figure 13. Time evolution of the squared Jacobian of score vectors in the backward process of DDPM, S2

J.3. Inflection Points in the Proportion within Tubular neighbourhoods

We analyzed the inflection points in the graph of the green line representing the proportion within tubular neighbourhoods.
Each forward process was analyzed for S0, S1, and S2. For the analysis, we first applied smoothing to the data using the
Savitzky-Golay filter. Specifically, we processed the data with a window width of 51 and a cubic polynomial. Afterwards,
we computed the moving average of the second derivative with a window size of 5, and then estimated the values visually.
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(a) forward diffusion process S0
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(b) forward diffusion process S1
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(c) forward diffusion process S2

Figure 14. The Proportion Outside the Tubular Neighbourhoods Over Time with Symmetry Breaking Time Point and Inflection Points

J.4. Proportion Analysis Outside the Tubular Neighbourhoods on a Torus

As an extension of the experiment conducted in Section 6, we investigated the proportion of particles outside the tubular
neighbourhood using a torus. Here, the torus is defined with a major radius r′ = 2 and a minor radius r = 1. Thus, the
supremum of the tubular neighbourhood is min{r, r′ − r} = 1. For both the forward and backward processes, we plotted
the proportion of particles outside the tubular neighbourhood at each time step on the vertical axis. In the transition of the
backward process, we used a model trained with DDPM where T = 1000.
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(a) forward diffusion process Torus
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Figure 15. Proportion of Particles Outside the Tubular Neighbourhoods Over Time for Both Forward and Backward Processes Using Data
on a Torus

J.5. Evaluation of Reconstruction Error Using the Wasserstein Distance

We evaluated the reconstruction error of the data with late initialization using the Wasserstein distance, utilizing a DDPM
trained on S1 data. The experiments involved delaying the initialization with a Gaussian distribution by 0, 700, 785, and 900
steps during inference, i.e., the backward process. Subsequently, we prepared 1000 points for each time step and calculated
the Wasserstein distance for both the forward process and the backward process.
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(a) Wasserstein distance for the case where late initialization
time is 0.
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(b) Wasserstein distance for the case where late initialization
time is 700.
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(c) Wasserstein distance for the case where late initialization
time is 785.
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(d) Wasserstein distance for the case where late initialization
time is 900.

Figure 16. Evaluation of reconstruction error using the Wasserstein distance for S1 data.
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