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Bounded Self-Weights Estimation Method for
Non-Local Means Image Denoising

Using Minimax Estimators
Minh Phuong Nguyen and Se Young Chun, Member, IEEE

Abstract— A non-local means (NLM) filter is a weighted
average of a large number of non-local pixels with various image
intensity values. The NLM filters have been shown to have
powerful denoising performance, excellent detail preservation
by averaging many noisy pixels, and using appropriate values
for the weights, respectively. The NLM weights between two
different pixels are determined based on the similarities between
two patches that surround these pixels and a smoothing para-
meter. Another important factor that influences the denoising
performance is the self-weight values for the same pixel. The
recently introduced local James-Stein type center pixel weight
estimation method (LJS) outperforms other existing methods
when determining the contribution of the center pixels in the
NLM filter. However, the LJS method may result in excessively
large self-weight estimates since no upper bound is assumed,
and the method uses a relatively large local area for estimating
the self-weights, which may lead to a strong bias. In this
paper, we investigated these issues in the LJS method, and then
propose a novel local self-weight estimation methods using direct
bounds (LMM-DB) and reparametrization (LMM-RP) based on
the Baranchik’s minimax estimator. Both the LMM-DB and
LMM-RP methods were evaluated using a wide range of natural
images and a clinical MRI image together with the various levels
of additive Gaussian noise. Our proposed parameter selection
methods yielded an improved bias-variance trade-off, a higher
peak signal-to-noise (PSNR) ratio, and fewer visual artifacts when
compared with the results of the classical NLM and LJS methods.
Our proposed methods also provide a heuristic way to select a
suitable global smoothing parameters that can yield PSNR values
that are close to the optimal values.

Index Terms— James-Stein estimator, minimax estimator,
non-local means, center pixel weight, bounded self-weight, image
denoising.

I. INTRODUCTION

IMAGE denoising is a fundamental task in image process-
ing, low-level computer vision, and medical imaging algo-

rithms. The goal of denoising is to suppress image noise
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when restoring desired details using prior information about
the images. For example, based on prior information regarding
“smooth images”, a simple filter, such as a Gaussian filter, can
be designed as a weighted average of the image intensities
of the pixels in the local neighborhood with non-adaptive
weights. However, this type of filter blurs the edges and
details of images because these features are not captured in
the assumed prior information. Many edge-preserving denois-
ing methods have been proposed, including bilaterial fil-
ters [1], [2], anisotropic diffusion [3], non-local means (NLM)
filters [4], [5], collaborative filters (BM3D) [6], and total
variation filters [7]. Many filters, including bilaterial filters,
anisotropic diffusion, and NLM filters (but, not BM3D,
see [8]), can be represented as the weighted averages of
adaptive weights or adaptive smoothing [9]. It should be noted
that it is important to select appropriate weights in these
types of filters in order to obtain improved denoised image
quality [8].

Classical NLM filters use the similarities between two local
patches in a noisy image to determine the weights in non-
local adaptive smoothing [4]. The NLM weights are obtained
by first calculating the Euclidean distance between the two
local patches, which is denoted d , and then by evaluating
exp(−d2/h2), where h is a smoothing parameter. This method
allows higher weights to be assigned to pixels with similar
patches so that edges and details can be preserved through
non-local weighted averaging.

There are four different factors that determine the output
image quality of a NLM filter in terms of weights. 1) The
first factor is the similarity measure d . The Euclidean distance
is a usual choice [4], but other similarity measures have also
been proposed, such as hypothesis testing with adaptive neigh-
borhoods [10], principal component analysis (or the subspace
based method) [11], [12], blockwise aggregation [13], rotation-
invariant measures [14]–[16], shape-adaptive patches [17], and
patch-based similarities with adaptive neighborhoods [18].
In multimodal medical imaging, inaccurate weights for noisy
molecular images were enhanced by using additional high
quality anatomical images [19], [20]. 2) The second factor
is the strategy for determining the smoothing parameter h.
Optimization strategies have been developed based on Stein’s
unbiased risk estimation (SURE) method for NLM with
Gaussian noise [21], [22], NLM with Poisson noise [23], and
blockwise NLM with Gaussian noise [24]. 3) The third factor
is in selecting the function to use to determine the weights,
such as exp(−x2). Other functions have also been proposed
to calculate the weights, such as compact support func-
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tions [25], [26] and statistical distance functions [27], [28].
4) The last factor, which is the focus of this article, is in how
best to determine the self-weights for the same pixel in the
input and output images.

The NLM weights for two different pixels are essentially
determined by the distance between the two noisy local
patches around these pixels. However, the weights for the
same pixel, or the self-weights, are not affected by the
noise in the patches and the distance is always 0. For an
extremely noisy image, the self-weights will be relatively too
large when compared to the other weights, which will cause
the filter output to be almost the same as the input noisy
image. Therefore, the use of appropriate self-weight values can
significantly affect the quality of the denoised image. Many
researchers have investigated strategies for determining the
self-weights, which are also known as center pixel weights,
in order to alleviate the so-called “rare patch effect.” For
the classical NLM filter proposed by Buades et al., the self-
weights were set to be either one or the maximum weight
in a neighborhood [4]. This strategy guaranteed that at least
one or two of the largest weights would be the same. Doré
and Cheriet also used the maximum weight in a neighborhood
as the self-weight, but only if that maximum weight was
large [29]. Brox and Cremers proposed a method to have
at least n number of the weights to be the same [30], and
Zimmer et al. considered the self-weight to be a free para-
meter during the estimation process [31]. Salmon developed
a SURE-based method for determining the self-weights that
accounted for the noise [32].

Recently, Wu et al. proposed a method to determine the
self-weights using a James-Stein (JS) type estimator [33].
The idea of that work was to use a JS estimator to determine
the reparametrized self-weight in a local neighborhood (called
the local JS estimator (LJS)). The LJS method yielded the
best peak signal-to-noise ratio (PSNR) results when compared
to other existing self-weight selection methods [4], [32].
However, the method had some limitations. First, the LJS
could yield self-weights that were theoretically much larger
than 1 because no upper bound for the self-weights was
assumed, and this may lead to severe rare patch artifacts. The
JS estimator does not guarantee its optimality for bounded
shrinkage parameters. Second, the original LJS method was
tested with a relatively large local neighborhood when deter-
mining a self-weight because it was assumed that the self-
weights were the same in the local neighborhood. However,
the problem is that the selection of a local neighborhood size
that is too large may introduce a strong bias into the resulting
denoised images.

In this article, we investigate the original LJS method in
terms of the local neighborhood size for self-weight esti-
mation and the potential for excessive self-weight estima-
tion when no upper bound is applied on the self-weight.
We then propose novel self-weight estimation methods for
NLM that account for bounded self-weights using Baranchik’s
minimax estimator [34], called local minimax self-weight esti-
mation with direct bound (LMM-DB) and with reparametriza-
tion (LMM-RP). We evaluated our proposed methods using
performance criteria including PSNR, the bias-variance trade-

off curve and visual quality assessment with a wide range
of natural images and a real patient MRI image with various
noise levels. We compared the performance of our proposed
methods with a classical NLM filter using self-weights of 1 [4]
and the state-of-the-art LJS method, which has already been
shown to be the best among all other previous self-weight
determination methods [33].

This article is an extension of a work that was presented
at the 2016 IEEE International Symposium on Biomedical
Imaging (ISBI) [35], and goes into more depth regarding the
theory of the minimax estimator and provides an evaluation
of the methods using a significantly larger image dataset.

This paper is organized as follows. Section II reviews the
classical NLM filter and revisits the LJS method. Section III
investigates the LJS method in terms of the local neighborhood
size for self-weight estimation and the potential for exces-
sively large self-weight estimates. Then, Section IV proposes
novel LMM-DB and LMM-RP methods using Baranchik’s
minimax estimator in order to overcome two limitations of
the LJS method. Section V illustrates the performance of our
proposed methods by providing our simulation results. Lastly,
Sections VI and VII discuss and then conclude this paper,
respectively.

II. REVIEW OF THE LOCAL JAMES-STEIN SELF-WEIGHT

ESTIMATION METHOD FOR THE NLM FILTER

In this section, we will briefly review both the classical
NLM method proposed by Buades et al. [4] and the LJS self-
weight selection method proposed by Wu et al. [33].

A. Reviewing the Classical Non-Local Means Filter

Let us assume that an image x is contaminated by noise n,
which produces a noisy image y:

y = x + n (1)

where n is zero-mean white Gaussian noise with standard
deviation σ . The NLM filtered value at the pixel i is the
weighted average of all pixels in a search region �i :

x̂i =
∑

j∈�i
wi, j y j

∑
j∈�i

wi, j
(2)

where yi is the i th element of y, wi, j is the weight between
the i th and j th pixels, and �i is the set of all pixels in an
area around the i th pixel, which could be an entire image.
The similarity weight of the classical NLM is defined as:

wi, j = exp

(
− ∥

∥Pi y − P j y
∥
∥2

2 |P| h2

)

(3)

where Pi is an operator used to extract a square-shaped patch
centered at the i th pixel, ‖·‖ is an l2 norm, |P| is the number of
pixels within a patch, and h is a global smoothing parameter.
Equation (3) implies that the self-weights wi,i are always
equal to 1. Previous works on self-weights have shown that
good strategies for determining the self-weights also affect the
image quality of the NLM filtering [4], [29], [32], [33].
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B. Reviewing Local James-Stein Self-Weight Estimation

The LJS method was proposed in order to determine wi,i

as follows [33]. First, (2) was decomposed into two terms:

x̂i = Wi

Wi + wi,i
ẑi + wi,i

Wi + wi,i
yi (4)

where Wi = ∑
j∈�i\{i} wi, j and

ẑi =
∑

j∈�i\{i}
wi, j y j/Wi . (5)

The terms ẑi do not contain wi,i . Then, the LJS method
reparametrized (4) using

pi = wi,i

Wi + wi,i
(6)

so that (4) became:

x̂i = (1 − pi) ẑi + pi yi . (7)

The problem of estimating the self-weights wi,i became the
problem of estimating pi . Lastly, the JS estimator [36], [37]
for pi was proposed:

pLJS
i = 1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2 (8)

where Bi is an operator used to extract a square-shaped
neighborhood centered at the i th pixel, |B| is the number of
pixels within that neighborhood, and σ is the known noise
level.

Equation (8) implies that pLJS
i ∈ (−∞, 1]. Since

the weights are non-negative, it was proposed to use the
zero-lower bound for pLJS

i as follows [33]:

x̂LJS+
i =

(
1 − pLJS+

i

)
ẑi + pLJS+

i yi (9)

where

pLJS+
i :=[pLJS

i ]+ =
[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
(10)

and [s]+ := max (s, 0). Wu et al. also mentioned that a user-
defined upper bound for pi can be used, but did not investigate
further [33]. It should be noted that the JS estimator does not
guarantee its optimality when bounding pLJS

i in (8).

III. LIMITATIONS OF THE LOCAL JAMES-STEIN

SELF-WEIGHT ESTIMATION FOR

THE NLM FILTER

We now investigate two limitations of the original LJS
method [33] in terms of the size of local neighborhoods for
self-weight estimation, and the potential for excessive self-
weight estimation.

A. Size of Local Neighborhood for Self-Weight Estimation

In the method described in [33], there are two implicit steps
required in order to obtain the LJS self-weight estimator (10).
The first step is to choose a local set of pixels around the i th
pixel, referred to as set �B

i , that correspond to the operator Bi ,
and assume that:

x̂ j = (1 − pi) ẑ j + pi y j , j ∈ �B
i . (11)

Fig. 1. Bias-variance curves (cameraman example) for the classical NLM and
LJS methods (LJS+) for different sizes of local neighborhoods (B). The curves
were plotted while varying the smoothing parameter h (log2 h ∈ [1.8, 3.2]).

Based on the works of Stein [36] and James and Stein [37],
if |B| ≥ 3, then for a neighborhood �B

i extracted using Bi ,

x̂ j =
(

1 − pLJS+
i

)
ẑ j + pLJS+

i y j , j ∈ �B
i . (12)

is a dominant estimator for x j “locally” in �B
i . The LJS

method used the zero lower bound when estimating pi in
order to obtain a realistic non-negative self-weight value. This
was also a good choice in terms of the estimator perfor-
mance since the positive part of the JS estimator is dominant
over the original JS estimator, according to the works of
Baranchik [34], [38] and Efron and Morris [39].

The second implicit step is to assign the resulting pLJS
i to pi

in (7) for only the single pixel i so that:

x̂LJS
i =

(
1 − pLJS

i

)
ẑi + pLJS

i yi . (13)

Wu et al. evaluated the LJS method with |B| = 15 × 15 [33],
which seems relatively large.

Based on this implicit two-step interpretation, we can sur-
mise that using a smaller size of |B| may be more desirable
for obtaining a less biased estimate of pi since the assumption
of having the same pi in �B

i is less likely to be true for
larger sizes of �B

i . Figure 1 confirms our conjecture. The
bias-variance curves of the LJS method yielded better bias-
variance trade-offs than those in the classical NLM method for
both large local neighborhoods with a half window size B = 7
(|B| = 15 × 15) and small local neighborhoods with B = 2
(|B| = 5 × 5). However, using larger local neighborhood sizes
for estimating pi yielded stronger biases than those estimated
using smaller sizes for the same level of variance.

B. Excessively Large Self-Weight Estimates

In the LJS method for determining the self-weights by
estimating values for pi [33], it is theoretically possible that
the self-weights have excessively high values. For example,
(6) suggests that if pi = 1 and Wi > 0, then wi,i � 1.
Slight artifacts were observed in [33] in the background area
that were potentially caused by excessive self-weight estimates
when a relatively larger neighborhood size |B| = 15 × 15 was
used. We observed a significantly higher degree of degradation
in the visual image quality in the background area when the
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Fig. 2. Denoised image of the cameraman example using the original LJS
method [33] with no upper bound for the self-weights (top left), estimated pi
values (top right), calculated Wi (bottom left), and resulting self-weights (wi,i )
showing excessive self-weights (bottom right). B = 2 and σ = 10.

size of |B| in (8) was small, as shown in the image in the top
left figure of Fig. 2.

We investigated this issue using an example of the camera-
man image that was denoised using the LJS method [33], but
with a smaller neighborhood size |B| = 5 × 5. For areas with
more details, such as edges and textures, large pi values were
estimated and yielded large self-weights, as shown in the top
right figure of Fig. 2. However, since the values for Wi were
also very small in these areas, as shown in the bottom left
image in Fig. 2, the resulting self-weight map yielded values
close to 1 in the areas with details as shown in the bottom
right image in Fig. 2.

In contrast, for areas with almost no details, such as those
with a flat intensity background, relatively smaller pi values
were estimated, some of which were much larger than 0
while the rest were closer to 0, as shown in the top right
image in Fig. 2. However, since the Wi values for the flat
areas were relatively large, as shown in the bottom left image
in Fig. 2, some of the estimated pi values obtained using the
LJS method (LJS+) were estimated to yield excessively large
self-weights that were much larger than 1, as shown in the
bottom right image of Fig. 2. Consequently, these excessively
large self-weights caused severe rare patch artifacts in the
filtered image, which resulted in visual quality degradation,
as observed in the top left image of Fig. 2.

IV. LOCAL MINIMAX ESTIMATION METHODS FOR UPPER

BOUNDED SELF-WEIGHTS IN A NLM FILTER

In this section, we propose two local upper bounded self-
weight estimation methods that use Baranchik’s minimax
estimator [34].

A. Bounded Self-Weights

It is usually assumed that the self-weights satisfy wi,i ∈
[0, 1]. However, there are many possible upper bounds for the
self-weights, including 1 [4] or some positive value that is

possibly less than 1 based on SURE [32]. In this article, two
different upper bound values wmax

i,i for the self-weights were
evaluated such that 0 ≤ wi,i ≤ wmax

i,i . One upper bound
was:

wmax−one
i,i = 1, (14)

which is the usual choice for the self-weights in the classical
NLM method [4]. The other upper bound was:

wmax−stein
i,i = exp

(
−σ 2/h2

)
, (15)

which was motivated by the SURE-based NLM
self-weights [32]. We assume that σ is known and h is
pre-determined, which means that the upper bound for
the self-weights can also be determined in advance.
Equation (15) takes the noise level into account. As σ is
smaller, the maximum self-weight in (15) is closer to one.
It should be noted that the difference between (15) and (14)
will be greater at higher noise levels.

Since pi is estimated instead of wi,i , it is necessary to derive
the range of pi that corresponds to 0 ≤ wi,i ≤ wmax

i,i .
From (6), the derivative of pi with respect to wi,i is non-
negative as follows:

d

dwi,i
pi = Wi

(Wi + wi,i )2 ≥ 0

since Wi ≥ 0. Therefore, pi is a non-decreasing function of
wi,i and for 0 ≤ wi,i ≤ wmax

i,i , the range of pi will be

0 ≤ pi ≤ wmax
i,i

Wi + wmax
i,i

=: pmax
i ≤ 1.

Note that if Wi = 0, then pmax
i = 1. The estimator

pLJS+
i in (10) automatically guarantees that 0 ≤ pi ≤ 1 if

|B| ≥ 2. However, since Wi > 0 generally holds for most real
images with noise, it is necessary to constrain pi to be less
than or equal to the upper bound pmax

i , which is usually less
than one.

B. Local Minimax Self-Weight Estimation With Direct Bound

Enforcing the upper limit pmax
i on the estimated pi in (10)

using min(pLJS+
i , pmax

i ) breaks the optimality of the JS estima-
tor if pmax

i < 1. In this article, we propose using Baranchik’s
minimax estimator [34] to incorporate bounded self-weights
into the estimator (see Baranchik [34], Erfon and Morris [39],
and Strawderman [40] for more details on this minimax
estimator).

Theorem 1 (Baranchik): For y ∼ Nr
(
x, σ 2I

)
, r ≥ 3, and

loss L(x, x̂) = ∥
∥x − x̂

∥
∥, an estimator of the form x̂ = qy

where

q =
[

1 − c (‖y‖) σ 2(r − 2)

‖y‖2

]

(16)

is the minimax, provided that:
(i) 0 ≤ c (‖y‖) ≤ 2 and
(ii) the function c(·) is nondecreasing.

Here y shrinks toward 0 which is the initial estimate of x.
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Fig. 3. Graphical illustrations of the original and positive part JS estimators
without upper bounds, and the proposed minimax self-weight estimators with
upper bounds in terms of c (‖s‖) vs. ‖s‖. (a) Original and positive-part JS
estimators. (b) Proposed minimax estimators with bounds.

The original JS estimator and its positive part are special
cases of Baranchik’s minimax estimator. For the original JS
estimator (8):

c (‖s‖) = 1, (17)

where s = Bi y − Bi ẑ so that both conditions (i, ii) of
the Baranchik’s theorem are satisfied. In the positive part
estimator (9), it can be shown that:

c (‖s‖) =
⎧
⎨

⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

1, otherwise
(18)

where Y1 := σ
√

r − 2. The original and positive part
JS estimators are illustrated in Fig. 3 (a).

We propose a new local minimax self-weight estimation
method that uses a direct bound with a specific upper-bound
value, as follows:

pLMM−DB
i := min(pLJS+

i , pmax
i ). (19)

This estimator is minimax under certain conditions that can
be derived using Baranchik’s minimax estimator theorem.
According to this theorem, this operation can be interpreted
as follows:

c (‖s‖) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

1, Y1 < ‖s‖ ≤ Y2

‖s‖2 (1 − pmax)

σ 2(r − 2)
, Y2 < ‖s‖

(20)

where Y2 := σ
√

(r − 2)/(1 − pmax). We call this
a local minimax self-weight estimator using direct
bound (LMM-DB), which is illustrated in Fig. 3 (b)
where Y4 := σ

√
2(r − 2)/(1 − pmax).

However, note that LMM-DB is not minimax for ‖s‖ > Y4.
Fortunately, ‖s‖ = ‖Bi y − Bi ẑ‖ can be limited by adjusting
the smoothing parameter h by making it smaller so that all
‖s‖ ≤ Y4 and c

(‖Bi y − Bi ẑ‖
) ≤ 2. Then, the LMM-DB

becomes “practically” a minimax estimator. Let us denote the
maximum h that satisfies ‖s‖ ≤ Y4 as hmax.

In this case, a question can be raised: will the optimal value
for h fall into the range of h that satisfies ‖s‖ ≤ Y4? Interest-
ingly, our simulations with many natural images showed that
the optimal smoothing parameter h∗ based on the true images
is very close to hmax. This is because the LMM-DB yielded
pmax → 1 so that Y2 → ∞, and almost all

∥
∥Bi y − Bi ẑ

∥
∥ were

less than or equal to Y4. Therefore, pLMM−DB
i is “practically”

a minimax value based on Baranchik’s theorem for many
natural images. Moreover, the LMM-DB method may provide
a way to choose the optimal global smoothing parameter value
h without knowing the underlying true image. We empirically
investigate this issue in Section V.

C. Local Minimax Self-Weight Estimation With
Re-Parametrization

The LMM-DB algorithm set p to be the same pmax for a
wide range of

∥
∥Bi y − Bi ẑ

∥
∥ values. We now propose another

new method, called the local minimax self-weight estimation
with reparametrization (LMM-RP) method, that assigns dif-
ferent p values for different

∥
∥Bi y − Bi ẑ

∥
∥.

We reparametrized pi in (7) in the following way:

x̂i = ẑi (pi/pmax
i )pmax

i (yi − ẑi )

= ẑi + pT
i (yT

i − ẑT
i ) (21)

= (1 − pmax
i )ẑi + ẑT

i + pT
i (yT

i − ẑT
i ) (22)

where ẑT
i = pmax

i ẑi , yT
i = pmax

i yi , and

pT
i = 1

pmax
i

wi,i

Wi + wi,i
. (23)

Note that for 0 ≤ wi,i ≤ wmax
i,i , pT

i is an increasing function
of wi,i and the range of pT

i is 0 ≤ pT
i ≤ 1. We propose

to use the positive part of the JS estimator to estimate the
reparametrized pT

i , as follows:

p
T,LJS+
i =

[

1 − (|B| − 2) (pmax
i )2σ 2

∥
∥Bi yT − Bi ẑT

∥
∥2

]

+

=
[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
= pLJS+

i . (24)

This method is equivalent to using a multiplicative factor pmax
i

for the original JS shrinkage (9):

x̂LMM−RP
i = (1 − pLMM−RP

i )ẑi + pLMM−RP
i yi (25)

where

pLMM−RP
i = pmax

i

[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
. (26)

This proposed LMM-RP estimator is not dominant when
estimating xi , but rather is dominant when estimating pmax

i xi ,
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as shown in (22). Thus, the positive part JS estimator does not
guarantee that the LMM-RP is dominant.

Baranchik’s minimax estimation theorem can be used to
analyze the LMM-RP estimator as follows:

c (‖s‖) =

⎧
⎪⎪⎨

⎪⎪⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

‖s‖2(1 − pmax)

σ 2(r − 2)
+ pmax, Y1 < ‖s‖

(27)

where if ‖s‖ is Y3 := σ
√

(2 − pmax)(r − 2)/(1 − pmax), then
c (‖s‖) = 2. The LMM-RP method is also illustrated in Fig. 3
(b), and is minimax if ‖s‖ ≤ Y3. The global smoothing
parameter h can be adjusted so that this condition is satisfied
for different images. As in the case of the LMM-DB, it turns
out that the optimal global smoothing parameter h∗ and
the upper bound h that satisfies ‖s‖ ≤ Y3 are also very
close to each other when the LMM-RP method is applied
to many natural images. Therefore, the LMM-RP method
is “practically” a minimax. The following table summarizes
the LJS self-weight estimation method and our proposed
LMM-based self-weight estimation methods.

Summary of Self-Weight Estimation Methods

LJS+ [33] :
pLJS+

i =
[
1 − (|B| − 2) σ 2/

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
x̂LJS+

i = (1 − pLJS+
i )ẑi + pLJS+

i yi

LMM − DB :
pLMM−DB

i = min(pLJS+
i , pmax

i )

x̂LMM−DB
i = (1 − pLMM−DB

i )ẑi + pLMM−DB
i yi

LMM − RP :
pLMM−RP

i = pLJS+
i pmax

i

x̂LMM−RP
i = (1 − pLMM−RP

i )ẑi + pLMM−RP
i yi

V. SIMULATION RESULTS

A. Simulation Setup

Ten natural images1 (cameraman, lena, montage, house,
pepper, barbara, boat, hill, couple, fingerprint) and five images
from the SUN database2 (abbey, airplane cabin, airport ter-
minal, alley, amphitheater) were used in our study as noise-
free images (128 × 128, 256 × 256, or 512 × 512 pixels,
8 bits). A real patient MRI (512 × 512 pixels, 8 bits) that was
acquired and processed under institutional review board (IRB)
approved protocols was also used. White Gaussian noise was
added to each input image with various standard deviations
σ ∈ {10, 20, 40, 60}.

All algorithms were implemented using MATLAB
R2015b (The Mathworks, Inc., Natick, MA, USA). The patch
size and search window size of the NLM filter were chosen
to be 7 × 7 and 31 × 31, respectively, which were the same

1Available online at: http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_images.
zip as the date of 16 Nov. 2015.

2Available online at: http://vision.princeton.edu/projects/2010/SUN/ as the
date of 16 Sep. 2016.

as those used in [33]. Both the state-of-the-art LJS algorithm
and the proposed algorithms were tested using B = 1, · · · , 9
where |B| = (2B + 1)2 > 3.

The global smoothing parameter h was chosen empirically
to yield the best PSNR:

PSNR
(
x̂
) = 10 log10

2552

∥
∥x̂ − x

∥
∥2

/N
, (28)

where N is the size of the image. In addition to the PSNR, the
mean bias vs. the mean variance trade-off curves were used as
performance measures for the different smoothing parameter
values h:

bias2 = 1

N

N∑

i=1

(x̄i − xi )
2, (29)

var = 1

N

N∑

i=1

1

k − 1

k∑

j=1

(
x̂i j − x̄i

)2
, (30)

where k is the number of realizations (20 in our simulation),
x̂i j is the j th estimation at the i th pixel, and x̄i is the mean
of x̂i j , as given by:

x̄i = 1

k

k∑

j=1

x̂i j .

A visual quality assessment was also performed.

B. Performance Studies Using the PSNR

In order to estimate values of pi for a fixed neighborhood
size B , the optimal NLM smoothing parameter h∗ was deter-
mined such that the PSNR was maximized. In our proposed
methods, the two maximum self-weights in (14) and (15) were
used. The LMM-DB and LMM-RP methods given by (14)
are denoted LMM − DBone and LMM − RPone, while the
LMM-DB and LMM-RP methods given by (15) are denoted
LMM − DBstein and LMM − RPstein. Table I summarizes the
quantitative PSNR results for the 16 images with 4 different
noise levels. When B = 7, our proposed LMM-DB and
LMM-RP methods based on Baranchik’s minimax estima-
tor yielded much better PSNR results than did setting the
self-weight to one in the classical NLM method [4], and
comparable PSNR values to the LJS method based on the
JS estimator [33]. When B = 2, our proposed LMM-DB
and LMM-RP methods yielded better PSNR values than did
the LJS.

For the five examples of lena, house, peppers, barbara,
boat with σ = 20, PSNRs of our proposed methods (global
smoothing parameter and fixed neighborhoods, but adaptive
self-weight) were 0.72 ∼ 0.97 dB better than classical
NLM. In [10], it is reported that for the same five examples
with the same level of noise, the work of Kervrann et al.
(fixed self-weight, but local smoothing parameters and adap-
tive neighborhoods) yielded 0.99 ∼ 1.55 dB better PSNR
than classical NLM. Self-weights, local smoothing parameter,
neighborhoods size are important factors in the NLM filter to
determine output image quality.
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TABLE I

PSNR (dB) SUMMARY (MEAN ± STANDARD DEVIATION) FOR VARIOUS NATURAL IMAGES

C. Performance Studies With Bias-Variance Trade-Off
The bias-variance trade-off was investigated using many

natural images. As shown in Fig. 1, a neighborhood size B was
used to estimate pi using the LJS method [33], and this was a
significant factor when determining the bias. This tendency
was also observed for the other different natural images,
as illustrated in Fig. 4. Increasing B in the LJS method moved
the bias-variance trade-off curves in the bottom right direction,
meaning that the bias increased and the variance decreased.
However, the role of the smoothing parameter h changed in
the LJS method. Unlike in classical NLM method (see the
NLM bias-variance curve in Fig. 1), increasing the smoothing
parameter h beyond a certain point in the LJS method did not
further decrease the variance in any of the natural images that

we tested. This is because increasing h will also increases the
pi values so that the resulting LJS estimator becomes closer
to the noisy input image yi due to the lack of bounds for the
self-weights.

Our proposed methods (LMM-DB, LMM-RP) yielded
trade-off curves that have decreased variances for increasing
values of the smoothing parameter h. Figure 5 shows the
trade-off curves for the cameraman example for different
methods (LMM-DB, LMM-RP), different neighborhood sizes
(B = 2, 7), and different noise levels (σ = 10, 40). Our
proposed methods yielded bias-variance curves that were less
than or equal to those in the LJS method for fixed B and σ .
This tendency was also observed with other natural images,
as illustrated in Fig. 4. It was important to choose appropriate
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Fig. 4. Bias-variance curves for natural images using LJS+ [33] and our proposed LMM − DBone and LMM − RPone methods with a noise level of σ = 10.
(a) couple. (b) montage. (c) lena. (d) pepper . (e) house. (f) M R I .

neighborhood sizes B in order for the LJS method to obtain
a certain level of bias, but our proposed methods were able
to achieve that same level of bias by adjusting the smoothing
parameter h, which was the same as in classical NLM. Based
on our results, it appears that the use of LMM-RP has slightly
more advantages than using LMM-DB in terms of the PSNR,
as shown in Table I, and the bias-variance trade-off curves, as
shown in Fig. 5, for high noise levels.

D. Performance Studies With Visual Quality Assessment

The most important improvements in our proposed
LMM-DB and LMM-RP methods when compared to the
LJS method were achieved in terms of the visual quality.
Figure 6 (a) shows the true cameraman image (left) and the
noisy image (right) with a noise level of σ = 10. Figure 6 (b)
presents the filtered images using the LJS method [33] with
B = 2 and B = 7. Severe artifacts were observed in the
background areas when using B = 2, and these artifacts were
reduced when using B = 7. However, there were still some
artifacts near the edges of objects. Our proposed LMM-DB
and LMM-RP methods exhibited fewer image artifacts than
were observed in the images processed using the LJS method
for both B = 2, 7. This tendency was observed in many of the
natural images, as shown in Fig. 7, especially in the high inten-
sity flat areas. PSNR improvements in the LJS method were
achieved with severe (when B = 2) or mild (when B = 7)
artifacts; however, our proposed methods achieved both a high

Fig. 5. Bias-variance curves for LMM − DBone and LMM − RPone for
comparison with LJS+ for two neighborhood sizes B = 2, 7 and two noise
levels σ = 10, 40. (a) LMM − DBone(σ = 10). (b) LMM − DBone(σ = 40).
(c) LMM − RPone(σ = 10). (d) LMM − RPone(σ = 40).

PSNR and significantly reduced visual artifacts. This ability
to reduce the number of visual artifacts in a denoised image
is important in some applications, such as diagnostic medical
imaging.
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Fig. 6. True, noisy (σ = 10), and filtered images using LJS+ [33] ,
and the proposed LMM − DBone and LMM − RPone. (a) True and noisy
images (σ = 10). (b) LJS+ [33]. (c) Proposed LMM − DBone. (d) Proposed
LMM − RPone.

E. Maximum Self-Weights: One vs. Stein’s

Two maximum self-weights were proposed for use: the
value one in (14) that was proposed in [4], and Stein’s
in (15) that was proposed in [32]. Figure 8 shows that the
LMM − DBone method yielded an improved bias-variance
curve and PSNR than did the LMM − DBstein method when
the noise levels were low. For high noise levels σ = 40,
the LMM − DBstein method yielded an improved PSNR and
bias-variance curve than did the LMM − DBone method.
However, these differences were not significant, as also illus-
trated in terms of the PSNR in Table I. In terms of the visual
quality, no significant differences were observed between the
two methods.

TABLE II

PERCENTAGE (%) OF c(‖s‖) THAT EXCEED 2 USING LMM − DB
AND LMM − RP METHODS, σ = 10, B = 2

F. “Practical” Minimax Estimator

The proposed LMM-DB and LMM-RP methods are min-
imax with respect to ‖s‖ ≤ Y4 and ‖s‖ ≤ Y3, respectively,
as shown in Fig. 3. However, these conditions impose upper
bounds for the smoothing parameters h and the optimal
h∗, which means that the smoothing parameter values that
yield the best PSNR may not be achievable. We empirically
investigated this issue using many natural images.

Table II shows the ratio (percentage unit) of the number of
pixels for which c(‖s‖) > 2 to the total number of pixels
in the cameraman, fingerprint, and MRI images when the
optimal h∗ for the highest PSNR was chosen based on the true
images for the proposed LMM-DB and LMM-RP methods.
For most of the pixels, the LMM-DB and LMM-RP values
were minimax. The relationship between the percentage of pix-
els with c(‖s‖) > 2 and the root mean squared error (RMSE)
is illustrated in Fig. 9 for the cameraman and MRI images.
Surprisingly, the optimal global smoothing parameters h for
the lowest RMSE point (or the highest PSNR) of the LMM-
DB and LMM-RP methods are very close to the smoothing
parameters h such that the percentage of c(‖s‖) > 2 is 0.1%.
This phenomenon was not only observed in these two images.
As shown in Table III, the pixel percentage of c(‖s‖) > 2 that
do not require knowledge of the true image can still determine
smoothing parameters that are able to yield comparable PSNR
values to the best PSNR values obtained by using the optimal
smoothing parameters calculated based on knowledge of the
true image. This was observed in all of the natural images
used in our simulations, with different noise levels, and when
B = 2 was used. However, the criteria of using the pixel
percentage of c(‖s‖) > 2 did not work very well for B = 7 in
our simulations. These criteria can be potentially used when
choosing a global smoothing parameter with our proposed
methods as a heuristic approach without knowing the true
image.

G. Computation Time for Algorithms

Table IV reports the computation time of the proposed
methods in comparison with the classical NLM and LJS+.
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Fig. 7. Filtered results using LJS+ [33] and the proposed LJS − RPone method with a noise level of σ = 10 and neighborhood size B = 2. (a) couple.
(b) montage. (c) lena. (d) pepper . (e) house. (f) M R I .

Fig. 8. Bias-variance curves and PSNR vs. varying neighborhood sizes (B)
using classical NLM (only in the PSNR figure), LJS, and the proposed
LMM − DBstein vs. LMM − DBone for the cameraman example.

We used 8 threads (Intel Core i7 2.8 GHz) when computing
the patch distances for all methods. The local block size was
B = 2, the patch size was 7 × 7, and the window size

was 31 × 31. All parameters were fixed for all of results pre-
sented in this section. Adjusting these parameters can greatly
reduce the running time. For example, setting B = 4, the patch
size to 5 × 5, and the window size to 13 × 13 reduces the
computation time of the proposed methods to 0.60, 1.12, and
2.91 seconds (s) for 1282, 2562, and 5122 images, respectively.
However, analytically, the classical NLM requires 3|P||�| +
4|�| − 1 operations per pixel where |�| is the number of
elements in �i and LJS+ requires 3|P||�| + 4|�| + 3|B| + 5
operations per pixel. It is reported in [33] that the additional
operations for LJS+ (3|B| + 6 operations) were negligible
compared to the NLM filtering computation (3|P||�|+4|�|−
1 operations). Analytically, the additional computation for
LMM − DB and LMM − RP is 3|B| + 7 operations, which
is almost the same as the additional computation for LJS+.
Therefore, further implementation optimization is possible by
exploiting the redundant computation of the patch distances
for the minimax estimator and NLM weights.

VI. DISCUSSION

The classical NLM method was a significant work in image
denoising [4], and required the determination of two important
parameters for good denoising performance: a smoothing
parameter and a self-weight value. The LJS method proposed
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TABLE III

THE PSNR VALUES (dB) OF THE PROPOSED METHODS WITH B = 2
WHEN CHOOSING THE SMOOTHING PARAMETER SO AS TO YIELD

THE HIGHEST PSNR USING THE TRUE IMAGE (TRUE),
AND WHEN CHOOSING THE SMOOTHING PARAMETER

SO AS TO YIELD THE PERCENTAGE OF c(‖s‖) > 2
TO BE 0.1% (ESTIMATED) FOR

DIFFERENT NOISE LEVELS

by Wu et al. [33] developed a state-of-the-art method for self-
weight determination using JS estimation [37] and yielded
superior results in terms of the PSNR compared to the other
existing methods. However, since the LJS method did not
impose an upper bound for self-weight estimation, the bias
could no longer be controlled by the smoothing parameter,
which resulted in visual quality degradation. Our proposed
methods based on the Baranchik’s minimax theorem [34]
yielded comparable PSNR results to the state-of-the-art LJS
method. By imposing upper bounds for the self-weights,

Fig. 9. Comparison plots of the RMSE vs. the smoothing parameter h
and the percentage of c(‖s‖) > 2 vs. the same smoothing parameter when
using LMM-DB and LMM-RP with B = 2 and σ = 10. (a) cameraman
LMM − DBone. (b) MRI LMM − DBone. (c) cameraman LMM − RPone.
(d) MRI LMM − RPone.

TABLE IV

EXECUTION TIME (S) COMPARISON. THIS WILL VARY
WITH PARAMETER SELECTION

the bias-variance trade-off was able to be controlled by a
smoothing parameter, and substantial visual artifact reduction
was achieved.

The focus of this article was self-weight parameter selec-
tion in the classical NLM filter with theoretical justification.
As discussed in the Introduction, there are other factors that
affect the performance of NLM based filters, and we expect
that our proposed methods would not be able to achieve
state-of-the-art denoising performance if there were no other
optimizations performed except the self-weights. Indeed, our
proposed methods with one patch size (non-adaptive neighbor-
hood) and one global smoothing parameter were not able to
achieve the level of denoising performance of the state-of-the-
art denoising methods such as BM3D [6]. However, when our
proposed methods have incorporated some of the other factors
into the NLM filters, such as local smoothing parameters
and adaptive neighborhoods [10], they have great potential to
achieve significantly improved denoising performance.

The minimax property of our proposed methods depends on
the choice of smoothing parameters. When using sufficiently
small smoothing parameters, the LMM-DB and LMM-RP
methods are “practically” minimax according to Baranchik’s
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theorem [34]. However, when large smoothing parameters are
used, there may be some pixels that are not minimax for self-
weight estimation. More empirical investigation showed that
the optimal global smoothing parameter h that yielded the
best PSNR only resulted in a very small portion of the pixels
that did not have minimax self-weight estimators. In fact,
this can be used as a useful heuristic when choosing a good
smoothing parameter since testing the minimax properties of
our proposed methods does not require the true image. More
theoretical analysis for this observation, or a statistical analysis
using many natural images as shown in [41], are potential
extensions of this work. Therefore, our proposed methods do
not only provide an optimal way to determine self-weights, but
also provide a heuristic way to determine a good smoothing
parameter.

VII. CONCLUSION

We proposed two methods, LMM-DB, LMM-RP, to deter-
mine the self-weights of NLM filters that are “practically”
minimax, and this methods yielded a comparable PSNR, better
bias-variance trade-offs, and reduced visual quality artifacts
when compared to the results obtained using the state-of-the-
art LJS method. Our methods also provide a potentially useful
heuristic way to determine a global smoothing parameter
without knowledge of the original image.
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