Under review as a conference paper at ICLR 2026

CONTROLLED DISAGREEMENT IMPROVES GENERAL-
IZATION IN DECENTRALIZED TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Decentralized training is often regarded as inferior to centralized training be-
cause the consensus errors between workers are thought to undermine conver-
gence and generalization, even with homogeneous data distributions. This work
challenges this view by introducing decentralized SGD with Adaptive Consen-
sus (DSGD-AC), which intentionally preserves non-vanishing consensus errors
through a time-dependent scaling mechanism. We prove that these errors are not
random noise but systematically align with the dominant Hessian subspace, acting
as structured perturbations that guide optimization toward flatter minima. Across
image classification and machine translation benchmarks, DSGD-AC consistently
surpasses both standard DSGD and centralized SGD in test accuracy and solu-
tion flatness. Together, these results establish consensus errors as a useful implicit
regularizer and open a new perspective on the design of decentralized learning
algorithms.

1 INTRODUCTION

In large-scale deep learning, decentralized optimization, where workers exchange model parameters
only with neighbors, reduces the overhead of global synchronization and avoids costly all-reduce
communication (Abadi et al., 2016; [L1 et al.l [2020). This neighbor-only exchange can substan-
tially reduce communication overhead, latency, and single points of failure, making decentralized
approaches attractive for geographically distributed systems (Dhasade et al., 2023} |Gholami & Se-
feroglul 2024) and even GPU clusters (Lian et al.,|2017; |Assran et al., 2019; Wang et al., [2025)).

Despite its practical appeal in runtime efficiency, decentralized training methods such as Decen-
tralized Stochastic Gradient Descent (DSGD) are conventionally viewed as suboptimal compared to
centralized/synchronous SGD in terms of convergence and, importantly, generalization performance
even with i.i.d. data distributions among workers. This gap is largely attributed to consensus errors
— persistent discrepancies in the model parameters maintained by different workers (Alghunaim &
Yuan, [2022; Zhu et al., |2022)). Prior work has focused heavily on minimizing these consensus errors
to close the gap. Massive efforts have been made to reduce consensus errors, which involve commu-
nication topologies (Ying et al.l [2021} Takezawa et al., [2023) and algorithm designs (Pu & Nedic}
2021; Wang et al.l 2019; [Lin et al.l 2021} to ensure decentralized training closely approximates
centralized training.

However, the conventional perspective neglects the potential constructive role of consensus errors.
Rather than detrimental noise, these discrepancies may serve as structured perturbations that facili-
tate exploration of flatter minima in the loss landscape — solutions known to correlate with superior
generalization (Jiang et al.l [2019). This insight draws inspiration from sharpness-aware minimiza-
tion strategies (Foret et al., 2020; Bisla et al., 2022; [Li et al., 2024b)), which explicitly introduce
curvature-aware perturbations to enhance model robustness and performance.

In this study, we challenge the conventional view by introducing Decentralized SGD with Adaptive
Consensus (DSGD-AC), an algorithm that strategically preserves non-vanishing consensus errors
through an adaptive, time-dependent scaling mechanism. We provide a theoretical analysis demon-
strating that consensus errors align with the dominant subspace of the Hessian matrix, thereby induc-
ing beneficial curvature-related perturbations from the global average. Notably, DSGD-AC incurs
negligible additional computational overhead relative to standard SGD or DSGD and enjoys the
superior runtime efficiency over SGD at the same time.
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Comprehensive experiments reveal that DSGD-AC consistently surpasses both DSGD and central-
ized SGD in terms of test accuracy and the flatness of the attained minima. To the best of our
knowledge, this work constitutes the first demonstration of decentralized training outperforming
centralized approaches under optimal conditions by a clear margin.

The main contributions of this work are: (1) the proposal of DSGD-AC, an adaptive consensus
algorithm that maintains theoretically-justified non-vanishing consensus errors at minimal compu-
tational expense, (2) a theoretical characterization of consensus error and its alignment with the
dominant Hessian subspace, and (3) empirical validation of the superior generalization performance
of DSGD-AC on typical deep learning tasks.

1.1 RELATED WORK

Canonical view about consensus errors The prevailing perspective on decentralized training is
that it should approximate synchronous/centralized training as closely as possible. To mitigate dis-
crepancies among local models caused by weakly connected networks, prior work has focused on
tracking global information (Wang et all 2019; |Pu & Nediél 2021} [Yuan et al., [2021; Takezawa
et al.,[2022)), enhancing communication topologies to improve convergence rates (Ying et al., 2021}
Zhu et al., 2022; [Takezawa et al., 2023, and more. In addition, several theoretical studies (Zhu
et al [2022; |Alghunaim & Yuanl 2022)) establish a theoretical connection between the connectivity
of decentralized communication topologies and both convergence and generalization, demonstrating
that weaker connectivity results in poorer outcomes on both fronts. In contrast, we demonstrate the
potential advantages of the consensus error by identifying its correlation with the dominant Hessian
subspace, and we propose DSGD-AC in which consensus errors can, in practice, outperform SGD
in deep learning tasks.

Explorations beyond the canonical view As the canonical perspective dominates, the effort that
has been made towards suggesting potential benefits of consensus errors is limited. Kong et al.
(2021) conducts empirical studies aimed at identifying thresholds of consensus errors. Although
they highlight advantages of consensus errors in certain phases, the regime where consensus er-
rors exceed those of DSGD with a ring topology remains unexplored, and the consensus control
scheme proposed in the work does not yield clear performance improvements. |Zhu et al.| (2023)
offers a novel interpretation, framing consensus errors in DSGD as random perturbations around the
global average, which are asymptotically equivalent to average-direction SAM (Bisla et al., [2022).
Our work further identifies the intrinsic curvature-related property of the consensus errors, and, by
proposing DSGD-AC, empirically demonstrates the superior potential of decentralized training over
centralized training without being limited to the large-batch setting.

Explicit curvature-related perturbations improve generalization but are costly With the idea
of taking the global average as the deployed model (Zhu et al., [2023), decentralized learning can be
interpreted as the learning on the (virtual) global average with the workers as the perturbed global
average. Sharpness-aware minimization (SAM) was first proposed by [Foret et al.|(2020) to improve
the generalization of deep neural networks, and many variants (Kwon et al., 2021} Bisla et al.,
2022; [Liu et al., [2022; [Li et al.l 20244} [Luo et al., 2024)) were developed to further improve SAM.
However, to achieve the best performance, the algorithms typically require one or more additional
rounds of gradient evaluations, which significantly increase the computational costs. Our work
utilizes the potential of the consensus errors as free perturbations to enhance the generalization
without introducing extra computation.

2 PROBLEM SETTINGS AND NOTATIONS

Practical remarks on data distributions and the distributed data sampler Our work focuses
on decentralized training in GPU clusters where the whole dataset can be easily accessed by all
workers. This scenario is also widely studied in many other literature (Assran et al., |2019; |Ying
et al., 2021} [Kong et al., [2021}; [Wang et al.l 2025), and is important for improving the efficiency
of large-scale distributed training. The common practice for the distributed data sampler (also used
in our experiments) is to reshuffle the full dataset at the start of each epoch and partition it evenly
across workers. The strategy ensures, in expectation, i.i.d. data distributions among workers.
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Decentralized Optimization We denote the set of integers {1,2,--- ,k} by [k], the number of
workers by n € N*, and the dimension of model parameters by d € N7, In the standard decentral-
ized optimization setup with n workers, each worker ¢ € [n] holds a local objective determined by

its local dataset D;:

fi(z) = Esp, [fi(z; 5)], (1)
and the optimization problem is the local losses evaluated on the local models with a hard consensus
constraint:

1 n
minimize F(x1, - ,2,) = — Zfi(xi), subject to x; = x;,Vi,j € [n] 2)

{I17m27"' 7mn}
In the i.i.d. data distribution setting, we have f; = f; = F forall ¢, j € [n].

Decentralized SGD (DSGD) The update of DSGD (Lian et al.,[2017) on worker i is:

2V =20 = a0V i)+ 3T Wil — ) 3)
JEN(3)

where N () is the set of neighbors of worker ¢ (including itself), W is a symmetric non-negative,
and doubly stochastic matrix defining the welghts of the edges (W;; = 0 if worker 7 is not a neighbor
of worker j), and s( ) denotes the stochastic mini-batch sampled by worker i at iteration ¢.

Following the common notations in decentralized optimization, we denote the global average by

7z = Zn 1 x( ) the consensus error of worker ¢ by e(t) : Z(»t) — 7® | the matrix form of all

local models by X (t) =[x (1t), RN ! )] R the matrix form of all local stochastic gradients
by G®) = [V f(x} (t=1), (t))7 ,Vin (gcg,t Y, sgf))], the matrix form of all consensus errors as
AW = [egt), e (t)] and the matrix X by X() = [z(®) ... z(®)],

Note that there is another variant of DSGD that performs the local update before communication.
We focus on the variant in Eq. as it is shown to be more efficient (Lian et al.| 2017; Wang et al.,
2025)), and two variants are proven to have the same generalization bound (Bellet et al., [2023).

3 DSGD-AC: DECENTRALIZED SGD WITH ADAPTIVE CONSENSUS

In this section, we use the experiment of training a wide ResNet (WRN28-10) (Zagoruyko & Ko-
modakis, [2016) on CIFAR-10 (Krizhevsky et al.,|2009) as a showcase to demonstrate the limitation
of DSGD and the improvement brought by our proposed algorithm. In the experiment, we em-
ploy the standard cosine annealing learning rate schedule (Loshchilov & Hutter,2016) with a linear
warm-up during the first 10 epochs (Figure [T} left). This learning rate schedule is commonly used
in practice and can strike a balance between the training stability and generalization (Gotmare et al.}
2018 |[Kalra & Barkeshli, |2024). For decentralized training, we use 8 workers and the one-peer ring
as the decentralized communication topology.

3.1 FINDING: VANISHING CONSENSUS ERROR IN DSGD

We start by empirically investigating the dynamics of consensus errors when trained with DSGD.
We track the average norm of the consensus errors during the training. We observe that, for DSGD,
the consensus errors gradually vanish as the learning rate decreases (Figure/I] right).

From the theoretical perspective, by interpreting the mixing step as a gradient step on a quadratic
consensus penalty, one obtains the per-step surrogate

J(t)(l'l, . ,xn)

- 1
=2 5@+ g 2 Wallel? -2
i=1 [ ]

VSl

“)
n
_ () o)) )] 1 O 02
- Zfl(x ) +Z fz fz x +2()é(t) Z Wm”xi Z; ”
i=1 i,j€[n]
objective on deployed model sharpness consensus regularizer



Under review as a conference paper at ICLR 2026
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Figure 1: Decentralized training of WRN28-10 on CIFAR-10 (3 random runs for each algorithm)
with 8 workers, and the communication topology is the one-peer ring topology. Left: Learning rate
schedule (same for both algorithms). Right: Average norm of consensus errors evaluated at the end

of every epoch (& SN | 2{T) — 2(D)|)). pis set to 3 for DSGD-AC.

With symmetric mixing weights and no momentum or adaptivity, each DSGD step is exactly a
(stochastic) gradient on .J. Thus, when o goes to 0, the consensus regularizer dominates the
objective function, which minimizes the consensus errors. If considering this surrogate function,
the empirical observation is not surprising because it reflects the hard constraint in the optimization
problem in Eq. (Z). However, the vanishing consensus errors void the sharpness term in Eq. ()

because the sharpness term because fi(a:l(»t)) ~ fi(z(") as xl(-t) — T — 0. The only term left that is
relevant to the deployed model Z(*) is the first term, which is the same objective as in synchronous
SGD. Therefore, to maintain the potential benefits of free sharpness-aware regularization (Zhu et al.,

2023) by the consensus errors, we need to maintain a non-vanishing radius throughout the training.

3.2 ALGORITHM: DECENTRALIZED SGD WITH ADAPTIVE CONSENSUS

The proposed algorithm is shown in Algorithm|[1] The difference from DSGD is highlighted, and,
compared with DSGD, the proposed variant includes an adaptive factor to maintain non-diminishing
consensus errors intentionally. At the end of training, the algorithm takes the global average of all
local models as the deployed model.

Algorithm 1: Decentralized SGD with adaptive consensus (DSGD-AC) on worker ¢
Data: Dataset (D), the number of workers (/V), the number of epoch (E), the number of
batches per epoch (T'), intialization (z(?)), and a hyperparameter (p € R) .

Result: Deployed model T = % Z?:1 ngE )
ng) = 1‘50) R x’ELO) = x(o)

fort =1t TE do
g\ = Vf@!D;s)
7O = [0 farmas]”
20— L= a(t)g(t)+ ~(®) ZjeN(i) Wij(xgtil) _ x(tq))

end

Note that o(*) is determined by the learning rate scheduler like cosine annealing (Loshchilov &
Hutter, 2016), and oy is the maximal learning rate throughout the training, which ensures ~®) is
in the range [0, 1].

We evaluate the performance of DSGD-AC on classical deep learning tasks in Section 4] In the
numerical experiments, the results demonstrate the superior generalization performance of DSGD-
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AC over DSGD and centralized SGD. We will analyze the reasons behind this by showing that
DSGD-AC maintains non-diminishing and useful consensus errors in the following sections.

3.3 CONTROLLED CONSENSUS ERRORS IN DSGD-AC

The motivation of DSGD-AC is to maintain non-diminishing consensus errors. Therefore, we mul-
tiply the weight of the consensus regularizer in Eq. @) by an adaptive -y, which directly leads to the
DSGD-AC algorithm. The per-step surrogate function of DSGD-AC is mostly the same as that of
DSGD. Only the weight of the consensus regularizer becomes () /(2Na®).

In this section, we investigate the impact of p on the magnitude of consensus errors. First, we can
rewrite the update of DSGD-AC in matrix form,

x® = xt-1) _ ,®Oq®) _ 'y(t)X(t_l)(I W)= X(t—l)([ _ 'y(t)L) —a®a® (5)
where we denote the Laplacian matrix Lby L =1 — W.

By subtracting X () on both sides of Eq. and using the fact that A®) = X®) (T — 1117), the
dynamics of consensus errors A(*) can be derived as

AW = Xt~y _ oG _ x®
— S (t— 1
= XN - 'y(t)L) —aWa® _ xt-1 L O g® . E11T ©)
— A (10— oG~ 11q7)
n

Next, we denote P = [ — %11—'—, perform an eigen-decomposition of L = Uy, AU, , and multiply
Eq. (6) by U, from the right to obtain

A(t)UL = A(t_l)(f — ’}/(t)ULALU[T)UL — O{(t)G(t)PLUL

(7
= AUVUL (T —4PAL) — aWGE® PU,
By introducing Z() = AU, and G® = G PU, we can re-write the update as
7@ — Z(tfl)(] _ 7(t)AL) — a®gt=1 (8)

Here, Z(®) collects the consensus error expressed in the eigenbasis of the Laplacian. The k-th row

A lgt) contains the coefficients of A(*) along the k-th Laplacian eigenvector, or network mode, and
thus describes a characteristic pattern of disagreement across agents induced by the communication
graph. We measure the overall amount of disagreement by the disagreement radius

= E[AO)3].

Since U7, is orthogonal, |[A® || = || Z(*)|| z, so the radius can be equivalently studied through the
Laplacian-mode dynamics of Z(*) in Eq. (8). By analyzing these dynamics, we obtain the following
proposition; the proof is deferred to Section[A.T]in the appendix.

Proposition 1 (Disagreement radius and the role of v) In a quasi-stationary regime with mild
bounded-moment and spectral assumptions (see Appendix[A.1) the disagreement radius satisfies

(t))2
2 _ (04 )
Tt_@( 7 )
2

In particular, if 'Y — 0 and v is bounded away from zero, then r; — 0. Thus, no constant
) can maintain a non-vanishing disagreement radius under diminishing stepsizes. However, if we
choose YV = go (a'D)? for some go > 0 and p > 0, then as a®) — 0,

p<2 = 1250, p=2 = r2=0(1), p>2 = 12— oo

and p > 2 is necessary to keep the consensus errors at a nontrivial scale.
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Figure 2: Left: Losses on the whole training dataset at local workers and global average. The losses
are evaluated every 10 epochs. Right: Training loss at epoch 180 along: (1) worker 1i: lines
connecting global average and worker 7, (2) gradient: the line that aligns with the full-batch
gradient at the global average and crosses the global average, and (3) random: 500 lines that cross
the global average and follow random directions generated as in (Bisla et al [2022). The z-axis
means the directional magnitude of the perturbation along these directions. The red dots represent
the losses at the local models. The losses are computed on ~ 1/4 of the training dataset due to
computation complexity.

The proposition establishes that DSGD-AC maintains a nontrivial level of consensus errors through-
out iterations. In fact, the proof of the proposition shows that the effective disagreement radius
r? = E[|A®||%] is on the order of («®))?/+("). Since it has been empirically observed (see, e.g.,
Bisla et al.| (2022); [Li et al.|(20244)) that it is advantageous to increase the radius slightly towards
the end of the training, we chose v(*) = go(a(t))p with p = 3. Under cosine learning rate sched-
ules, this choice induces a mild uptick in the radius toward the final stages of training, as illustrated
in Figure [T] (right). A detailed sensitivity analysis in Appendix further supports the theory,
demonstrating radius shrinkage for p < 2 and growth for p > 2 as o) — 0 (see Figure .

3.4 CONSENSUS ERRORS ALIGN WITH DOMINANT SUBSPACE OF HESSIAN

Even though DSGD-AC maintains non-vanishing consensus errors, its role in leading to flatter min-
ima and better generalization remains underexplored. In (Zhu et al., 2023, Theorem 1), consensus
errors are interpreted as random perturbations within the subspace defined by the weight diversity
matrix, and the resulting (asymptotically equivalent) average-direction SAM effect is shown to im-
prove generalization. While this connection is insightful, the intrinsic structure of consensus errors
(or the weight diversity matrix) has not been examined in detail.

To study this structure, we compare the training losses at local models with those at their global
average. As shown in Figure [2] (left), the global average consistently achieves lower training loss
than any individual worker. To further distinguish consensus errors from random perturbations,
we evaluate the training losses along the directions of consensus errors and compare them against
losses along sufficiently many random directions. Figure 2] (right) shows that the random directions
are almost flat, which is expected given the large parameter space (~36M in WRN28-10) and the
low-rank structure of the Hessian (Gur-Ari et al., 2018; Song et al., [2024). It is also consistent with
empirical observations in (Keskar et al.,[2016).

In contrast, directions induced by consensus errors yield significant increases in training loss, high-
lighting that these errors are not random but aligned with directions of higher curvature. This phe-
nomenon suggests a correlation between consensus errors and the dominant subspace of the Hessian
(or directions with larger curvature). Motivated by this observation, we formalize it in the following
proposition, with the proof deferred to Appendix [A-2]

Proposition 2 (Structure of consensus errors) Let x* be a locally strongly convex minimizer of F
with Hessian H = UHAHUE and eigenvalues 0 < A\ (H) < -+ < A\g(H). Assume i.i.d. local
objectives (f; = F), and let W be a symmetric, doubly stochastic communication matrix associated
with a connected undirected graph. Let A" denote the consensus error at time t. Consider the
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DSGD-AC recursion in a neighbourhood of x* and approximate the local gradients by their first-

order Taylor expansion, Vfi(:vl(-t)) ~ H (:c(.t)

, — ). For non-increasing stepsizes a® > 0 and

oo t .
consensus factors 'y(t) > 0, the projection Aé )= u;A(t) of the consensus error onto each Hessian
eigenvector uy, then evolves as a scalar linear system whose stability requires

a® < 2+()\min(W)*1)V(t),
A (H)

where Amin (W) is the smallest eigenvalue of W. The right-hand side of Eq. @) is decreasing in
Ae(H), so with non-increasing stepsizes a® modes corresponding to smaller eigenvalues enter
the stable regime earlier, while high-curvature modes remain closer to instability for longer and
therefore retain higher variance under the same injected noise.

€))

Remark 1 (Theoretical benefit of adaptive consensus) A smaller consensus factor v*) relaxes
the stability condition in @) As v(*) decreases during training, more low-curvature modes become
stable, while the high-curvature modes remain closer to instability. As a result, the consensus errors
gradually concentrate on a lower-dimensional subspace spanned by the dominant Hessian directions.

Remark 2 (Alignment is meaningful only with a controlled disagreement radius) The conclu-
sion of Proposition[2Jonly holds when the disagreement radius stays in a reasonable range. Although
one may relax the condition (@) by the selection of W and ("), taking v(*) too small or using a graph
with a very large A\pin (W) can cause the disagreement to grow quickly (Proposition . In that case,
the iterates may move out of the region where the local Taylor approximation is accurate. On the
other hand, if the radius becomes too small, the disagreement barely perturbs the model, and its
directional structure becomes unimportant. Thus, the alignment effect is useful only when the dis-
agreement radius is neither too large nor too small.

To connect the result of Proposition 2] to the objective optimized by DSGD-AC, Appendix [AJ3]

analyzes the deployed model Z(t) and the disagreements 51@ = zgt) — 2", Using a second-order
expansion of F' around z*, we show that

N
% Z £ (@) = F) + 3 oe(HE,) + O((tr5,)%/?),

where ¥, is the disagreement covariance. Thus, in this local regime, DSGD-AC can be interpreted
as minimizing the central loss F'(Z(t)) plus a Hessian-weighted disagreement penalty. A spectral
decomposition of this penalty reveals that the mode weights are strictly increasing in the Hessian
eigenvalues. Disagreement in sharper directions therefore incurs a larger penalty, resulting in a
“curvature tilt” toward flatter minima; see Appendix [A.3]for more details.

Given the alignment between the consensus errors and the dominant subspace, DSGD-AC can be
interpreted as optimization over  with curvature-correlated noises, which has been both empiri-
cally and theoretically studied by many works (Foret et all, [2020; [Zhang et al 2023}, [Luo et al.}
2024} [Benedetti & Ventura, 2024). By maintaining non-vanishing consensus errors along with its
regularization effect on the curvature of the loss landscape, DSGD-AC is expected to achieve better
generalization performance than DSGD and SGD.

While the alignment exists and can be shown theoretically, the alignment is noisy and spans on
less-sharp directions when compared with the gradient direction. As shown in Figure [ (right),
the gradient computed on the corresponding dataset leads to a sharper increase than the consensus
errors. An interesting direction for future work could be an improved algorithm based on DSGD-
AC that can utilize the gradient information to promote the concentration of consensus errors on the
dominant Hessian subspace with small computational overhead.

4 NUMERICAL EXPERIMENTS

In this section, we present the results of the numerical experiments on image classification with wide
ResNet (Zagoruyko & Komodakis| 2016)) and on machine translation with transformers
2017). In the experiments, we follow hyperparameters in the corresponding original papers,
and we reproduce the same baseline performance for a fair comparison. For DSGD-AC, we use
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p = 3 in all experiments. We defer the other hyperparameter details to Appendix [A:4] and the
sensitivity analysis on p to Appendix [A.5.4]

Each set of experiments consists of three random runs with fixed random seeds. We report 1x
standard deviation in all tables, and the shaded areas in plots correspond to the 95% confidence
interval.

4.1 IMAGE CLASSIFICATION WITH WIDE RESNET

We train two variants of Wide ResNets (WRN28-10 and WRN16-8) (Zagoruyko & Komodakis,
2016) on two datasets, CIFAR-10 and CIFAR-100 (Krizhevsky et al. |2009). The classification
accuracies on the test set and training/test losses of WRN28-10 on CIFAR-10 are shown in Figure[3]
The test performance and the flatness of the solutions are reported in Table [ The curves and
statistics of the remaining experiments are deferred to Appendix[A.5.1] Due to space limitations, we
defer the results with varying topologies and worker counts to Appendix [A.5.2]and [A:5.3]

Since finding the best sharpness metric that always reflects the potential generalization is still an
open question, we use the top-1 eigenvalue as a surrogate, which is widely used in other literature
and proven to have a strong correlation (Bisla et al., {2022} |Luo et al., 2024)).

Model Dataset Algorithm  Test Acc. (%) T  Test Loss |  Top-1 Eigenvalue |
DSGD 79.86 £0.22 0.899 £ 0.008 49.57 +4.80
CIFAR-100 SGD 80.15+£0.42 0.878 £ 0.020 37.37 £2.88
28-10 DSGD-AC 82.38 + 0.09 0.755 + 0.008 19.80 £ 0.66
WRN28- DSGD 96.07 £ 0.13 0.176 £ 0.005 22.43 £3.99
CIFAR-10 SGD 95.96 £0.14 0.182 + 0.004 16.84 £0.32
DSGD-AC 96.77 £ 0.11 0.128 + 0.003 8.96 + 0.35
DSGD 79.25 £0.26 0.854 £ 0.016 36.19 £3.80
CIFAR-100 SGD 79.42 +£0.18 0.849 £ 0.015 33.77£0.78
WRN16-8 DSGD-AC 80.67 = 0.11 0.771 £ 0.005 19.81 £ 0.16
DSGD 95.94 £0.11 0.152 £ 0.001 18.19 £ 0.64
CIFAR-10 SGD 95.81 £0.13 0.153 +£0.003 17.49 + 1.61
DSGD-AC 96.17 + 0.04 0.129 + 0.003 11.82 £ 0.48

Table 1: Performance comparison of DSGD, SGD, and DSGD-AC on image classification with
wide ResNet with 8 workers. The top-1 eigenvalue is computed on the whole training set and
approximated using the power iteration. The one-peer ring is used for decentralized training.

Test accuracy over epochs for WRN28-10 on CIFAR10 Train and test loss over epochs for WRN28-10 on CIFAR10
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Figure 3: WRN28-10 on CIFAR-10. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training losses (evaluated on the workers
for decentralized training, and evaluated on perturbed points for SAM) and test losses (evaluated on
the global average model for decentralized training). The curves for each algorithm are based on 3
runs with the same set of random seeds.
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In the experiment results, DSGD-AC outperforms DSGD and SGD in test accuracy, test losses, and
solution flatness by a clear margin. Moreover, it can also be seen that DSGD can not outperform
SGD with its best performance.

4.2 MACHINE TRANSLATION WITH TRANSFORMERS

We also validate the idea of controlling consensus errors on transformer models by simply replacing
the local update with the Adam optimizer (Adam et al.,2014). DSGD-AC is then adapted to DAdam-
AC. We train Transformer (the big variant, ~213M parameters) (Vaswani et al., 2017) on WMT14
(English-to-German) (Bojar et al.,[2014) and present the curves of training losses and BLEU scores
on the test set. The BLEU scores (Papineni et al., |2002) (which is used to evaluate the translation
quality in the original paper) and the losses on the test set and the training set are reported in Table[2]

Training and test loss over epochs BLEU score over epochs

\ Algorithm & Loss Type 0.29
34 ‘\‘\‘ —— Adam
33 DAdam
—— DAdam-AC (ours) 028
3.2 g
a —— Train Loss @ 0.27
231
3 == Test Loss 2
3.0 @026 "
Algorithm
2.9 —— Adam
2.8 0.25 DAdam
—— DAdam-AC (ours)
2.7 0.24
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Epoch Epoch

Figure 4: Transformer (big) on WMT14 English-to-German. Left: Losses on training set. Right:
BLEU scores on the test set.

Algorithm BLEU score 1 Test loss | Train loss |
Adam 28.68 £0.07  2.9290 £0.0026 2.8310 +0.0019
DAdam 28.38 £0.22 29258 £0.0018  2.8195 + 0.0008
DAdam-AC  28.89 £0.17  2.9205 + 0.0020 2.8456 + 0.0016

Table 2: Performance comparison of DAdam, Adam, and DAdam-AC on neural machine translation
with the transformer model.

The results demonstrate that DAdam-AC can outperform other baselines on the translation quality
metric and the test loss. The adaptive consensus brings substantial improvement compared with
DAdam. We believe further improvement is possible if we take the adaptive consensus into account
when designing the optimizer (see the discussion in Appendix [A.6).

5 CONCLUSION

This work challenges the long-standing perception that decentralized training inevitably sacrifices
generalization for communication efficiency. Through DSGD-AC, we demonstrate that maintain-
ing controlled consensus errors improves robustness and solution flatness, offering both practical
scalability and superior model performance. The method introduces negligible computational over-
head and integrates seamlessly with existing decentralized frameworks. Our experiments on CIFAR
benchmarks and WMT 14 confirm the broad applicability of this approach. These results suggest a
paradigm shift: consensus errors should no longer be minimized at all costs but strategically man-
aged as a form of implicit regularization. Beyond immediate applications to deep learning clusters,
we envision that the principle of adaptive consensus could inform the design of future large-scale,
resource-efficient, and generalizable learning systems. For a more extensive discussion about future
potential improvements, please see Appendix
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A APPENDIX

A.1 PROOF OF PROPOSITION[I]

Recall that
P=I-21117
L:IfW:ULALULT

GO = G0 py, (10)
20 = Z0=D(] — /A, ) — DG
where Z(*) describes the consensus error projected onto the eigenbasis of the Laplacian.
Each column zl(:) of Z®) evolves as
) = (1= OA(L)zf 7 — g (11)
where A, (L) is the k-th eigenvalue of L.
To quantify the dynamics of ||zl(f) ||2, consider a quasi-stationary regime where
Elg") = pi. Ell|g” — i3] = o? (12)
Then, by taking the expectation on Eq. and letting m; = E[z;], we have
mi = (1 =N (L)mi — alVp; (13)
from which we find (for all modes i > 2)
1 (t)
= - (14)

™ TR 0

(t) ()

Next, we define z;’ = z;’ — m; so that

77 = (=77 = oG — )

where we have subtracted m; from both sides and used the expression for m; just derived. Letting
(t=1)

i

V; = E[|z1"||2] and assuming that the innovation n(*~1) = §
given all events up to iteration £ — 1, we obtain

Vi= (1= "N(L0)*Vi + ()%},

— p; is conditionally independent

Solving for V; gives
(al)? 2 (a)? 2

TI (1 AONE)2ET T 20 (LD — N(LD)2(0)2 T

Vi

For ¢ large enough we have )\i(L)w(t) <1, so
(D) < 2X(D)y Y = M(D)2(v )2 < 2X(L)y .

Consequently,
ﬂoﬂ <V < ﬂoﬂ
20, (L)y® 7t = 7 T N (L)@

so in the quasi-stationary regime we have V; = ©((a?)?/®)). Combining with yields

15)

(a®)?
E |10 = Vi+ lmilld = Vi+ 550 el

If v > 10 > 0 and a® — 0, then by Eq. (15) we have V; < (a?)202/(A\;(L)Ymin) — 0, and
similarly ||[m;[|3 = O ((a®”)?) — 0. Hence E ||

weight (*) cannot maintain a non-vanishing disagreement radius.

t .
|zl( )||§} — 0 for each 4, so a constant consensus

14
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With the schedule v®*) = go(a(?))P and gy > 0, on the other hand, we obtain the lower bound
1 1
IE[ Zi(t) 2} > a®Y2=2p |1, 112 NON o2.

If p > 2, at least one of the exponents 2 — 2p or 2 — p is non-positive, so the right-hand side

@3

does not converge to zero as o) — 0. Thus for p > 2 the per-mode energy {Hzt } is non-

vanishing in the quasi-stationary regime. Finally, since || Z(®)||Z. = ||A®)||2 by orthogonality of U,
a non-vanishing || Z(*||%, implies that 77 = E||A(")||2. is non-vanishing as well.

A.2 PROOF OF PROPOSITION[2]

We work in a neighbourhood of a locally strongly convex minimizer z* of F', with Hessian H =
UnApUygy at x* and eigenpairs {(A\g(H),ug)}¢_,, A\(H) > 0. Let N be the number of agents
and collect the local iterates in

X0 = [0 20 e RN X = [o¥,. 2] e RN,

We denote the communication matrix by W (symmetric, doubly stochastic), and its Laplacian by
L=I-W.

Let G = [g%t), NN g%)} denote the stochastic gradients used at time ¢, and define the gradient
noise

20 =0 —vF(XY),  VRXCD) = [VAETY),. L Vi)
The DSGD-AC update can then be written as
X = XD (1 4Oy — o®(VE(XED) 4 20). (16)

Let P:=1— %11T be the projection onto the disagreement subspace, and define the consensus
error matrix
AW = xOp,

whose columns are precisely the disagreements 51@ = xz(-t) —zW, Using LP = PL = L (since
L1 = 0) and multiplying Eq. (I6) on the right by P yields

A = AT 4O - oW VEXEDY P —a®a®P, (17)

By the i.i.d. local data assumption we have f; = F for all ¢ and therefore H;(x*) = H at the shared
minimizer. A first-order Taylor expansion around z* gives, for each 7,

Vfi(ﬂﬂ(-t_l)) = Vfi(x") + H(xgt_l) —z")+ n(t—l)y

K2

where the remainder rl(t*l) is O(||:vl(-t71) —x*||?). Atz* we have V f;(z*) = 0, and in a sufficiently
small neighbourhood of x* we may neglect the rgtfl) terms, which yields the local approximation

VE(X® Dy~ H (XD - X*). (18)
Since X*P = 0, this implies
VFEF(X® NP~ HACD, (19)
Substituting Eq. (T9) into Eq. (T7) gives the linearized consensus-error dynamics
AW = AD(T — Oy - O HFAED — o0 =0 p, (20)
We now project onto the eigenvectors of H. Let Uy = [uq, ..., uq] collect the eigenvectors of H

and Ay = diag(\(H), ..., \q(H)). For each k, define the projection of the consensus error onto
uy, by

Ag) = u,IA(t) e RN,
and the projected noise
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Left-multiplying Eq. (20) by u, and using Hus, = A\ (H )uy, yields
AP ~ A1 —4OL) — O N (H) ALY — o e @1)
Thus, for each k, the projected consensus error A;Ct) evolves as a linear system on RV driven by
fea (0
noise &;.”.

To study stability, we temporarily freeze the stepsizes on a short time window around a fixed time ¢,
writing @ = a(*) and v = v(*). Then Eq. becomes

AD =AY e A =T — L — el (H)I
Using L = I — W, we can rewrite Ay, as
Ar=T—~vI-W)—aN(H) = (1 -~ —aXe(H))I +~W. (22)

Since W is symmetric and doubly stochastic, its eigenvalues {\;(W)}I, lie in (—1,1], with
A1(W) = 1 because the graph is connected. The eigenvalues of A, are therefore
pij =1—~—aX,(H)+ v\ (W), j=1,...,N.

As Ay, is symmetric, mean-square stability of the homogeneous system A,(;’) = A,(f_l)Ak is equiv-
alent to |5, ;| < 1 for all j. Thus we require

—1<1l—y—aX(H)+v\(W) <1 Vj.
The right inequality is automatically satisfied for & > 0 because A1 (W) = 1 and A\;(W) < 1 imply
1—vy—al(H)+v\(W) <1—-al(H) <1
The left inequality is most restrictive for the smallest eigenvalue A\"V: of W, giving

2 + ()‘min(W) B 1)’}/
Ak (H)

1—y—are(H) + Y Amin(W) > -1 <~

This is exactly the condition Eq. (9).

Since the right-hand side of Eq. (@) is strictly decreasing in \j,(H), non-increasing stepsizes o(*)
will enter the stable regime for small-curvature modes k earlier along the training trajectory, while
high-curvature modes remain closer to instability for longer. In the presence of comparable injected
noise, these high-curvature modes therefore sustain larger steady-state variance, which completes
the proof.

A.3 LOSS ENVELOPE AND CURVATURE TILT

In this section we relate the consensus errors maintained by DSGD-AC to the local geometry of
the global objective. Our goal is to understand which perturbations of the deployed model Z(t) are
implicitly favored or suppressed by the algorithm.

Lemma 1 shows that, in a neighbourhood of a locally strongly convex minimizer x*, the average
local loss decomposes into the loss at the deployed model plus a quadratic envelope term depending
on the disagreement covariance X, up to higher-order corrections. Thus, in this regime, DSGD-AC
can be viewed as minimizing F(Z(t)) together with a Hessian-weighted disagreement penalty.

Lemma 1 (Local loss envelope) Let x* be a locally strongly convex minimizer of F' with Hessian H

atz*. Forafixedtimet, let Z(t) .= L 3" | xgt) be the deployed model and define the disagreements

egt) = :rgt) — Z(t). Let

1 — T
Y= - ;egt)egt)

(1)

denote their empirical covariance. Assume that ||x;’ — x*|| is small for all i. Then

% ifi (") = F(&(t)) + $ tr(HZY) + O((tr 2,)%/?). (23)
i=1

16
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(®

%

[i(Z +e;) = fi(Z) + Vfi(if)—rei + %GZTHQ’ + R;,

Proof. Fix t and abbreviate 7 = z(*), e; = e,”. A Taylor expansion of f; around Z yields

where R; = O(||e;||?) and we used that all f; have Hessian H at z*. Averaging over i gives
1 n ( ) 1 n 1 n 1 n
t - T T
— i\ =F — Vv i 3 — i H i — Ri.
n;f(ml) (x)+n; f(x)e+2n;e e%;

By definition of z we have Z?:l 0; = 0, hence

n

6i> =0.

i—1

SRS

% Z Vi) e = VF(JE)T(

~

Moreover,
1 & T 1 RN T 1
%Zei H€i:§tr HEZezeL :§tr(HEt)
i=1 i=1

For the remainder, there exists a constant C' > 0 such that |R;| < C/|&;|| in the local region. Thus

1 n C n 1 n 3/2 5/
\n;& Snglleilg’sc(n;ew) = (s,

where the second step follows from Holder’s inequality. This gives the claimed O ((tr Zt)3/ 2) bound
and for the remainder and concludes the proof. ]

To understand how this disagreement penalty depends on curvature and on the communication
graph, we diagonalize the local dynamics in the joint eigenbasis of the Hessian and the Laplacian.
This leads to the following spectral representation.

Proposition 3 (Curvature tilt) Under the assumptions and notation of Proposition[2land Lemmall]
fix a time t in a local quasi-stationary regime and freeze oo = oY) and v = v, Let L = T — W
be the graph Laplacian and denote its eigenvalues by 0 = A1 (L) < A\y(L) < -+ < An(L), and let
M(H) < -+ < A\g(H) be the eigenvalues of H. Let 3, be the disagreement covariance at time t.
Then the leading-order Hessian-weighted disagreement envelope can be written as

d
> wi(\e(H)) qrgs (25)

where qi, ; > 0 is the innovation variance of the Laplacian—Hessian mode (j, k) and, for A > 0,

A
(A) = .
wj( ) ’y(t)Aj(L) Jra(t))\

(26)

For each fixed graph mode j > 2, the weight w;(\) is strictly increasing in \.

Proof. We work in the local quadratic regime around x* and on a short time window around ¢
where we freeze @ = ¥ and v = ). From the linearization in Appendix A.2 (cf. the proof of
Proposition[2) we have

AT AT — L) —aHAY — aZCFVP, 24

for s in a short window around ¢, where Z(**t1) collects the gradient noise and P is the projection
onto the disagreement subspace.

Let L = UrAp ULT and H = UygAgU E be the eigendecompositions of the Laplacian and Hessian,
with eigenvalues 0 = A1 (L) < Ay(L) < -+ < Ap(L)and 0 < A\ (H) < -+ < Ag(H). We write
the consensus error in the joint eigenbasis as

A = Uy U],

17
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for some coefficient matrices Y (*) € RN and define the corresponding noise coefficients
Z6tD =y =t py,.
Substituting these into Eq. and using I —yL = Ur,(I —yAL)U} and H = Ug Ay U}, gives
YD =y —yAL) — aAgY®) —az6D,
Taking the (k, j) entry yields, fork =1,...,dand j = 1,..., N,

YO = vl —adtY, any = 1- (L) — adk(H), (25)

where Cﬁsf V= Z;is;r D Since A®) lies in the disagreement subspace, the consensus graph mode
J = 1 does not contribute and we may restrict to j > 2.

On the short time window around ¢, we approximate Eq. (23)) as a stationary AR(1) recursion driven
by zero-mean innovations with variance

Qk,j = Var(g“,gf]).).

Assuming |ay ;| < 1 (the stability condition of Proposition [2) and that the innovations are uncor-
related across the short time window, the stationary variance Sy ; := Var(Y} ;) satisfies the scalar
Lyapunov equation
2 2
Skj = @i j5k,j + 7,
hence

Sk,j = 1_7012_(1167]* (26)

Using ay,; = 1 —yA;(L) — alp(H), we compute

L—af; = 1= (1= (L) = ade(H))” = 2(yA5 (L) + ade(H)) = (YA;(L) + oAy ()2,

In the small-stepsize regime where yA; (L) + a),(H) is small, the quadratic term can be neglected
and we obtain the approximation

a2

Sy~ .
59 500 (L) + ane (7)) T

27)

Next, recall that

5, = LE[AOAOT],
n

Using A® = Uy Y WU, and orthogonality of Uy and Uy, we obtain
1 1
E[tr(HS,)] = - E[tr(HAVAO )] = ~E[r(AgYOY® ).
n n

The last trace equals Y ¢_, Ax(H) i ]E[(Yk(tj))Q] Approximating E[(Yk(?)Q] by the stationary
variance S}, ; in Eq. for j > 2 and noting again that the j = 1 consensus mode does not

contribute, we obtain

Multiplying by 3 yields

with

which is exactly Eq. 23)-Eq. (26).
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Finally, for each fixed j > 2 we have A\;(L) > 0 and ¢,y > 0, so for A > 0,

A (L
(VA (L) + )
Thus w; () is strictly increasing in A for every j > 2, which completes the proof. (]

The spectral form in Proposition 3 separates the envelope into curvature-dependent weights
w; (A (H)) and mode-wise innovation variances g, ;. To go further, we specialize to the case where
these innovations arise from mini-batch SGD noise. A growing body of empirical and theoretical
work has shown that, near a local minimum, the covariance of mini-batch SGD gradients is approx-
imately Hessian-aligned and scales with both the loss value and curvature, Cov(g(z) — VF(x)) ~
¢t L(x)H (x), in linear models and deep networks (e.g., Ziyin et al.| (2022); |Wu et al.| (2022); Mori|
et al[(2022)). Under this structure the gy, ; inherit the same dependence on the Hessian eigenvalues,
which yields a curvature-dependent spectral penalty of the form in Eq. (29).

Corollary 1 (Hessian-aligned mini-batch noise) Under the assumptions and notation of Proposi-
tion[3} assume in addition that the gradient noise driving DSGD-AC is inherited from a mini-batch
SGD oracle whose covariance is approximately Hessian-aligned,

Cov(gi(z) — V fi(x)) ~ ¢; L(x) H(z), (28)

for some scalar factor ¢y > 0 depending on the batch size and possibly on time t. Then, in the
local quadratic regime around x*, the leading-order Hessian-weighted disagreement envelope can
be written as

DN | =

d
Eltr(HS)] ~ L)Y wi(A(H)), (29)
k=1

where wy : [0,00) — [0,00) is strictly increasing and satisfies that X — w¢(X)/ X is also strictly
increasing on (0, 00). In particular, larger Hessian eigenvalues receive a disproportionately larger
penalty relative to their magnitude than smaller ones.

Proof. By Proposition[3] the leading-order envelope can be written as

1 ~ (a®))?
SE[(Hs)] ~ 2

ij(kk(H)) k.5

n
j=2 k=1
with )
wi(A) = ,
N = o)+ o

and g;, ; the innovation variances of the joint Laplacian—Hessian modes. Under the Hessian-aligned
covariance structure Eq. (28), the per-step gradient noise covariance in the Hessian eigenbasis is
approximately diagonal with entries proportional to L(z(*)) A, (H). Projecting into the joint basis,
the gy, ; inherit this alignment and, up to graph-dependent constants, satisfy

Qk,j = Ct L(i"(t)) A (H).

Substituting this scaling gives

1 (a(t))QCt N /\k(H)2
~Eftr(HS,)] ~ L(zW) —2—= '
S Efu(H2)] ~ L) ;;V(tw@)m(tuk(ﬂ)

and we recover (29). with

N

- (a(t))2ct )\2
V) = N 2 SR T AP

Jj=2

It remains to verify the monotonicity properties of w;. For each fixed j > 2, define

)\2
he i (A) =
t,J( ) ,Y(t)Aj(L)+a(t)>\

= ijo‘)»
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where w; () is the weight from Proposition We have already shown that, for A > 0, w;(A) > 0
and w; () is strictly increasing. Therefore, for A > 0,

By j(A) = w;(A) + Awj(A) >0,

so each hy ; is strictly increasing on (0, 0o) (and nondecreasing on [0, 00)). Since w; is a positive
linear combination of the A, ;, wy () is strictly increasing on (0, co). Moreover,

o) _ (@) A (@)
A 4n Zy(tuj(L)jLa(t)/\— in ;%(A)-

=2

Each w; () is strictly increasing in A by Proposition[3] so their positive linear combination w;(X)/A
is also strictly increasing on (0, c0). This proves the monotonicity stated in the corollary. ]

Remark The spectral form in Eq. (Z9) shows that, under Hessian-aligned mini-batch noise, the
leading-order loss inflation induced by DSGD-AC behaves like an implicit spectral penalty of the
form L(z(t)) >, w¢(Ar(H)), where both w,(\) and w;(\)/A are strictly increasing. In particular,
larger eigenvalues of H are penalized disproportionately more per unit curvature than smaller ones.
This contrasts with classical criteria that depend only on tr(H) or log det H, and implies that the
top eigenvalues of H are implicitly regularized by the combination of consensus noise and mini-
batch SGD. Conceptually, this connects DSGD-AC to explicit eigenvalue regularization schemes
that aim to control large curvature directions in sharpness-aware methods such as Eigen-SAM
or Hessian-based noise-stability regularization (Zhang et all, 2023), but here the reg-
ularization arises automatically from decentralized averaging and stochastic gradients rather than
from additional optimization steps.

A.4 EXPERIMENT DETAILS

A.4.1 IMAGE CLASSIFICATION EXPERIMENTS ON CIFAR10

The selection of hyperparameters follows the original paper (Zagoruyko & Komodakis| 2016), and
our baseline implementation perfectly matches its performance.

Category Setting
General

Number of epochs 200
Global batch size 128

Learning rate scheduler

Base optimizer
Data shuffle

Linear warm-up to 0.1 in the first 10 epochs, followed by cosine anneal-
ing until the end

SGD with momentum (0.9), weight decay =5 x 107

Randomly shuffled and split into IV local datasets each epoch

Decentralized training
Number of workers
Communication topology

DSGD-AC parameters
BatchNorm calibration

8

One-peer ring (alternating between neighbors ¢ — 1 and ¢ + 1 across
iterations)

Exponent p = 3 (tuned based on experiments); v = 1 during warm-up
Similar to the case in (Defazio et al.|[2024), a calibration on the Batch-
Norm statistics is needed because there is a mismatch between the local
models and the global average. To calibrate mismatched statistics, a full
pass over the training set is conducted before validation. Only one cali-
bration should be done if intermediate checkpoints are not evaluated.

A.4.2 TRANSFORMER ON WMT 14

The selection of hyperparameters follows the original paper (Vaswani et al.}[2017)), and our baseline
implementation perfectly matches its performance.
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Category Setting
General

Number of epochs 20

Global batch size ~25k tokens

Learning rate scheduler

Base optimizer

Data shuffle

Linear warm-up to 5 x 10~% over the first 4000 iterations, then decay as
ap - (4000/t)%-5 ( is the iteration index). ag = 0.0005 for centralized
Adam, and oy = 0.0013 for decentralized methods.

Adam (B8; = 0.9, 82 = 0.98) for centralized Adam, and (5, = 0.974,
B2 = 0.999) for decentralized methods.

Randomly shuffled and split into NV local datasets each epoch

Decentralized training
Number of workers
Communication topology

DSGD-AC parameters
Normalization

8

One-peer ring (alternating between neighbors ¢ — 1 and ¢ + 1 across
iterations)

Exponent p = 2 (tuned based on experiments); v = 1 during warm-up
Since only layer normalization is used, no calibration is needed.
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A.5 ADDITIONAL EXPERIMENT RESULTS

A.5.1 IMAGE CLASSIFICATION WITH WIDE RESNET

The complete statistics of the image classification task are deferred to this section due to the space
limit. Even though comparing DSGD-AC with SAM-like methods is not our emphasis, we imple-

ment SAM (Foret et al., [2020) and the average-direction SAM (Bisla et al.l |2022)) and report their
results for reference. We follow (2020) to use p = 0.05 in all the experiments, and use
the same schedule of the variance of the random perturbations as described in the official GitHub

repository[] (Bisla et al.| 2022).

Figures[5}[6][7] and[8|and Table[3|present all the results on the image classification task. We summary
the results as
* SAM always outperforms other methods at the cost of 2x computation.
* DSGD-AC always achieves the best test loss among the methods with 1x computation.
* AD-SAM outperforms DSGD-AC in the solution flatness only on experiments with
WRN16-8, which is relatively smaller than WRN28-10.

Note that (1) for training loss, it is evaluated on the workers for decentralized training, and evaluated
on perturbed points for SAM, (2) for test loss, it’s evaluated on the global average model for decen-
tralized training, (3) each curve for each algorithm is based on 3 runs with the same set of random
seeds, and (4) the shaded parts correspond to the 95% confidence interval.

Test accuracy over epochs for WRN28-10 on CIFAR10 Train and test loss over epochs for WRN28-10 on CIFAR10
98 10°

Algorithm & Loss Type

N e
S 94 Lo-1 |~ DSGD-AC (ours) [~
3 @ —— DSGD
° 92 Algorithm ] — SGD
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2 90 —— DSGD 1o-2 | — AD-SAM
88 — SGD
— SAM —— Train Loss
86 —— AD-SAM == Test Loss
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

Figure 5: WRN28-10 on CIFAR-10. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training and test losses.
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Figure 6: WRN28-10 on CIFAR-100. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training and test losses.

'"https://github.com/devansh20la/LPF-SGD/blob/master/codes/README . md
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Test accuracy over epochs for WRN16-8 on CIFAR10 Train and test loss over epochs for WRN16-8 on CIFAR10
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Figure 7: WRN16-8 on CIFAR-10. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training and test losses.
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Figure 8: WRN16-8 on CIFAR-100. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training and test losses.

Model Dataset Algorithm Test Acc. (%)1  TestLoss| Mean Top-1 Eigenvalue | Computation |
DSGD 96.07 +0.13 0.176 + 0.005 22.4360 + 3.9916 Ix
SGD 95.96 £ 0.14 0.182 + 0.004 16.8485 + 0.3251 1x
CIFAR-10 DSGD-AC 96.77 £0.11 0.128 + 0.003 8.9693 + 0.3514 1x
AD-SAM 96.37 +0.11 0.168 + 0.002 24.9059 + 1.6212 1x
SAM 97.33 £ 0.04 0.100 + 0.002 0.3523 £ 0.0312 2x
WRN28-10
DSGD 79.86 £0.22 0.899 + 0.008 49.5719 + 4.8022 1x
SGD 80.15 +0.42 0.878 £ 0.020 37.3799 + 2.8886 1x
CIFAR-100 DSGD-AC 82.38 +0.09 0.755 + 0.008 19.8061 + 0.6653 1x
AD-SAM 82.57+0.31 0.891 £ 0.007 32.6371 +2.3362 1x
SAM 83.79 £ 0.25 0.618 + 0.003 1.7295 + 0.0385 2x
DSGD 95.94 £0.11 0.152 +0.001 18.1998 + 0.6427 1x
SGD 95.81+0.13 0.153 £ 0.003 17.4934 + 1.6191 1x
CIFAR-10 DSGD-AC 96.17 £ 0.04 0.129 + 0.003 11.8250 + 0.4883 1x
AD-SAM 96.25 £0.12 0.152 £ 0.002 8.5178 + 0.5453 1x
WRNL6-8 SAM 96.81 + 0.08 0.102 £ 0.003 1.3928 + 0.0586 2x
DSGD 79.25£0.26 0.854 £0.016 36.1998 + 3.8028 1x
SGD 79.42£0.18 0.849 £ 0.015 33.7733 £ 0.7897 1x
CIFAR-100 DSGD-AC 80.67 £0.11 0.771 + 0.005 19.8032 + 0.1652 1x
AD-SAM 81.36 + 0.06 0.858 + 0.004 17.5450 + 1.2583 1x
SAM 81.51 + 0.08 0.677 + 0.003 4.7932 + 0.1957 2x

Table 3: Algorithm comparison on image classification including SAM (Foret et al., 2020) and

average-direction SAM (Bisla et al.} 2022).
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A.5.2 VARYING NUMBER OF WORKERS AND TOPOLOGY

In this section, we evalute the performance of DSGD-AC with various number of workers (8, 16, 32)

and with various communication topologies (one-peer ring, exponential graph (Ying et al., 2021),
complete graph). The results where DSGD-AC outperforms centralized SGD are marked in green

and those where it under-performs are marked in red . As in the main text, the statistics of each
result are based on 3 random runs. For the 32-worker case, we used 256 as the global batch size for
an appropriate scaling efficiency, and the learning rate is linearly scaled up by 2x accordingly.

Interpretation of the results

* The results in Tables [ [5] and [6] demonstrate a superior performance of DSGD-AC over
DSGD and SGD with 8 and 16 workers on almost all topologies (except WRN16-8 on
CIFAR10 with 16 workers and one-peer ring topology).

¢ For the experiments with 32 workers, DSGD-AC does not bring further improvement com-
pared with the DSGD baseline. This is expected as the variance in the updates is too large
and, in this case, the adaptive consensus mechanism may hurt the convergence.

* To further improve the performance, we vary the epoch at which we activate the adaptive
consensus in Section The results of DSGD-AC after tuning the start epoch, shown
in Tables[7]and [§] demonstrate that this technique largely alleviates the observed problems
and demonstrates the practicality of AC mechanism.

Algorithms (Test Acc. 1/ Test Loss )

n topology DSGD DSGD-AC
complete  79.66 £ 0.86/ 1.017 £ 0.027 | 81.83 £ 0.21/0.004 £ 0.028
8  exp  80.03%0.98/0.941 +0.023 8199 +0.14/0.882 % 0.027
ring  79.86+0.22/0.899 +0.008 8238 +0.09/0.755 % 0.008
complete  79.77 035/ 1.080 £ 0.029 _ 82.27 % 0.44/0.768 + 0.012
16 exp  79.87+036/0.983+0.078 82.37%0.36/0.753 + 0.022
ring  79.84+ 1.17/0.964 +0.047 8229 % 0.03 / 0.748 % 0.007
complete  79.90 £ 0.51/ 1.046 £ 0.045 _ 81.86 £ 0.40/0.707 £ 0.005
32 exp  80.38%0.28/0.980+0.056 80.50 +0.24/0.766 % 0.017
ring  80.52+045/0.948 £0.042 78.56 +030/0.831 £0.010

Table 4: WRN28-10 on CIFAR100. Centralized SGD baseline: 80.15 +0.42 / 0.878 + 0.020.
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n topology

Algorithms (Test Acc. 1/ Test Loss )

DSGD

DSGD-AC

complete
8 exp

ring

95.90 £0.27/0.189 £ 0.003
96.08 £ 0.26 /0.186 + 0.016
96.07 +0.13/0.176 £ 0.005

96.48 +0.24 / 0.129 + 0.006
96.61 £ 0.08 /0.126 + 0.003
96.77 +£0.11/0.128 £ 0.003

complete
16 exp
ring

96.00 +0.53/0.179 £ 0.018
95.98 +0.18/0.194 + 0.001
95.89+0.42/0.196 £ 0.013

96.56 +0.26 / 0.115 £ 0.005
96.39 +0.14 /0.116 + 0.001
96.24 +0.18 /0.117 + 0.003

complete
32 exp

ring

95.87 +0.31/0.200 £ 0.013
95.88 £ 0.09 /0.194 + 0.008
96.16 + 0.10/0.180 + 0.002

96.01 +0.10/0.122 + 0.002
95.27 £ 0.33/0.141 £ 0.005
94.44 +0.21/0.170 £ 0.007

Table 5: WRN28-10 on CIFAR10. Centralized SGD baseline: 95.96 + 0.14 / 0.182 + 0.004.

n topology

Algorithms (Test Acc. 1/ Test Loss )

DSGD

DSGD-AC

complete
8 exp

ring

95.82+0.17/0.166 + 0.008
95.68 £0.19/0.165 £ 0.008
95.94 +£0.11/0.152 £ 0.001

96.22 +0.15/0.127 + 0.003
96.19 +0.34/0.125 £ 0.010
96.17 £ 0.04 /0.129 £ 0.003

complete
16 exp
ring

95.81 £0.25/0.157 £ 0.007
95.67 +0.11/0.162 + 0.008
95.86 +0.31/0.161 £ 0.003

96.21 £0.16/0.115 £ 0.003
95.93+0.11/0.122 £ 0.004
95.77 +£0.21/0.125 £ 0.002

complete
32 exp

ring

95.77+0.16/0.172 + 0.002
95.76 £0.09/0.159 + 0.011
95.65 +£0.30/0.163 £ 0.012

95.56 +0.34/0.134 + 0.002
95.03 £0.26 /0.147 £+ 0.003
94.24 £ 0.08 /0.172 £ 0.006

Table 6: WRN16-8 on CIFAR10. Centralized SGD baseline: 95.81 +0.13/0.153 = 0.003.
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A.5.3 VARYING EPOCH TO ENABLE ADAPTIVE CONSENSUS

In this section, we vary the epoch in which we enable the adaptive consensus (AC). In all experiment
so far, we enabled AC directly after the warmup phase (10th epoch). We now test the performance
of DSGD-AC with starting epochs {10 (defaulr), 50, 100, 170, 200 (equivalent to DSGD)}, for

different worker counts {16, 32} and topologies {complete, exponential graph, one-peer ring}.

In the experiments, we fix p = 3, and ayy,y is taken as the learning rate at the start of the epoch when

AC is enabled (« is monotonically decreasing after the warmup, so -y is always kept in (0, 1]).

Interpretation of the results

* For the case with larger number of workers (32), delaying the activation of AC can bring

better performance compared to the default setup.

* As shown in Tables [7] and [§] DSGD-AC can achieve both better test accuracy and better
test loss than DSGD and (centralized) SGD on at least one starting epoch (that is not 200)

on all setups. This implies that the AC mechanism can improve the generalization.

Algorithm
Model / Dataset  Topology DSGD DSGD-AC

WRN28-10 / complete  79.77 +£0.35/1.080 £ 0.029  82.30 £ 0.17/0.791 + 0.012
CIFAR-100 exp 79.87 £0.36/0.983 +£0.078  82.42 +0.20/0.760 = 0.011
ring 79.84 £1.17/0.964 £ 0.047 82.50 £ 0.33/0.756 + 0.022

WRN28-10 / complete  96.00 £0.53/0.179 £0.018  96.56 + 0.21/0.115 + 0.003
CIFAR-10 exp 95.98 £0.18/0.194 £ 0.001  96.65 + 0.16 / 0.122 + 0.003
ring 95.89 £0.42/0.196 £ 0.013  96.58 + 0.18 / 0.121 + 0.002

WRN16-8 / complete  95.81 £0.25/0.157 £0.007  96.25 + 0.34/ 0.122 + 0.004
CIFAR-10 exp 95.67+0.11/0.162 +£0.008 96.27 + 0.18 / 0.118 + 0.007
ring 95.86 £0.31/0.161 £0.003  96.19 + 0.02/0.119 + 0.003

Table 7: Results with 16 workers after tuning the start epoch.

Algorithm
Model / Dataset  Topology DSGD DSGD-AC

WRN28-10 / complete  79.90 £0.51/1.046 £0.045 82.01 + 0.21/ 0.744 + 0.007
CIFAR-100 exp 80.38 £0.28/0.980 + 0.056  82.36 + 0.45/0.732 + 0.007
ring 80.52+£0.45/0.948 +0.042 81.64 + 0.06/ 0.843 + 0.016

WRN28-10 / complete  95.87 +£0.31/0.200 £ 0.013  96.43 + 0.24 / 0.135 + 0.001
CIFAR-10 exp 95.88+£0.09/0.194 £ 0.008  96.43 + 0.05/ 0.130 + 0.003
ring 96.16 £0.10/0.180 £ 0.002  96.23 + 0.18 / 0.134 + 0.006

WRN16-8 / complete 95.77 +0.16/0.172 £ 0.002  96.01 + 0.29 / 0.120 + 0.004
CIFAR-10 exp 95.76 £0.09/0.159 £ 0.011  96.05 + 0.10/ 0.131 + 0.006
ring 95.65+0.30/0.163 £0.012  96.10 + 0.38 / 0.130 + 0.006

Table 8: Results with 32 workers after tuning the start epoch.
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Figure 9: WRN28-10 on CIFARI100. Figures from top to bottom correspond to complete, expo-
nential graph, and one-peer ring, respectively. The best test accuracy and the best test loss are

highlighted by red marks.
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Figure 11: WRN16-8 on CIFAR10. Figures from top to bottom correspond to complete, exponential
graph, and one-peer ring, respectively. The best test accuracy and the best test loss are highlighted

by red marks.
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A.5.4 SENSITIVITY ANALYSIS OF THE HYPERPARAMETER IN DSGD-AC

In all experiments, we use p = 3 for DSGD-AC, which is based on experiment tuning. The test
results with p = {0, 1,2,3,4,5} are presented in Figure [I2|and TableEl The tracked average norm
of consensus errors with varying p is shown in Figure|13|

Note that DSGD-AC with p = 0 is equivalent to DSGD. The results demonstrate the effectiveness
of introducing p and DSGD-AC, and p = 3 brings the best performance.

Test accuracy over epochs with varying p

Test accuracy
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Figure 12: DSGD(-AC) on WRN28-10 on CIFAR-10 with varying p. Left: Test accuracy on test set.
For decentralized training, the accuracy is evaluated on the global average model. Right: Training

and test losses.
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Figure 13: Average norm of consensus errors over epochs with varying p.

p Test Accuracy (%) 1  Train Loss | Test Loss J.

0 96.07 +0.13 0.002 £ 0.000 0.176 £ 0.005
1 96.26 +0.14 0.002 £+ 0.000 0.159 + 0.003
2 96.58 +£0.18 0.003 £0.000 0.141 £ 0.006
3 96.77 £ 0.11 0.012 £0.000 0.128 4+ 0.003
4 96.53 +£0.13 0.024 £0.001 0.127 £ 0.004
5 96.37 + 0.04 0.032 £0.001  0.130 £+ 0.002

Table 9: Sensitivity analysis of parameter p in the WRN28-10 on CIFAR10 experiment. The best
value is bold, and the second best is underlined.
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A.6 DISCUSSION

Future improvement directions The practicality in the adaptive consensus mechanism motivates
the following future directions:

* Compression for communication—alignment tradeoffs. While communication compression
in decentralized training has been widely studied (Koloskova et al., 2019} [Vogels et all
2020; [Huang & Pul 2024), most methods aim to approximate centralized training. DSGD-
AC suggests a different view: small v(*) and the alignment in Proposition [2| may benefit
generalization. This opens the possibility of designing compressors that (i) spend more
communication budget early in training when alignment forms, or (ii) implicitly maintain
updates along high-curvature directions to further strengthen the alignment of disagreement
with the dominant Hessian subspace.

* Decentralized mixing for better alignment. Current decentralized mixing relies on simple
weighted averaging. Under DSGD-AC, one may interpret the disagreement as a curvature-
related perturbation around the global model. This motivates exploring new mixing rules
that selectively damp low-curvature disagreement while keeping high-curvature compo-
nents active, thereby enhancing the “curvature tilt” observed in the algorithm. Such rules
would be complementary to the compressors described above.

¢ Model fusion. Model fusion (Singh & Jaggil, 2020} Imfeld et al, [2023) combines models
trained along different trajectories. For standard DSGD, their impact is limited because
consensus errors quickly vanish, and the matching among parameters from local models is
trivial. In DSGD-AC, however, the disagreement remains non-negligible, making model
fusion a potential alternative to simple averaging, possibly improving performance.

AC combined with adaptive optimizers In adaptive optimizers like Adam, the update is scaled
by the inverse of the moving average of the componentwise square of the gradients. The scaling in
each gradient coordinate eliminates the anisotropic structure in gradient noise 2010),
which conflicts with the purpose of the AC mechanism which instead tends to enhance the structure.
Since consensus errors are the accumulated updates after the scaling, the analysis in this paper may
not directly work on the case that directly combines AC with adaptive optimizers. It can be an
interesting direction for future work to find better ways for AC to co-exist with adaptive optimizers,
possibly by recovering/extracting noise structure from the consensus errors. For example, designing
the AC with variants like Adam-mini (Zhang et al.}, [2024) can be a practical idea for efficiently
recovering the noise structure in the consensus errors.

A.7 USE OF LARGE LANGUAGE MODELS

During the development of the paper, we used LLMs to polish the text without changing its original
meaning.
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