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ABSTRACT

Decentralized training is often regarded as inferior to centralized training be-
cause the consensus errors between workers are thought to undermine conver-
gence and generalization, even with homogeneous data distributions. This work
challenges this view by introducing decentralized SGD with Adaptive Consen-
sus (DSGD-AC), which intentionally preserves non-vanishing consensus errors
through a time-dependent scaling mechanism. We prove that these errors are not
random noise but systematically align with the dominant Hessian subspace, acting
as structured perturbations that guide optimization toward flatter minima. Across
image classification and machine translation benchmarks, DSGD-AC consistently
surpasses both standard DSGD and centralized SGD in test accuracy and solu-
tion flatness. Together, these results establish consensus errors as a useful implicit
regularizer and open a new perspective on the design of decentralized learning
algorithms.

1 INTRODUCTION

In large-scale deep learning, decentralized optimization, where workers exchange model parameters
only with neighbors, reduces the overhead of global synchronization and avoids costly all-reduce
communication (Abadi et al., 2016; Li et al., 2020). This neighbor-only exchange can substan-
tially reduce communication overhead, latency, and single points of failure, making decentralized
approaches attractive for geographically distributed systems (Dhasade et al., 2023; Gholami & Se-
feroglu, 2024) and even GPU clusters (Lian et al., 2017; Assran et al., 2019; Wang et al., 2025).

Despite its practical appeal in runtime efficiency, decentralized training methods such as Decen-
tralized Stochastic Gradient Descent (DSGD) are conventionally viewed as suboptimal compared to
centralized/synchronous SGD in terms of convergence and, importantly, generalization performance
even with i.i.d. data distributions among workers. This gap is largely attributed to consensus errors
— persistent discrepancies in the model parameters maintained by different workers (Alghunaim &
Yuan, 2022; Zhu et al., 2022). Prior work has focused heavily on minimizing these consensus errors
to close the gap. Massive efforts have been made to reduce consensus errors, which involve commu-
nication topologies (Ying et al., 2021; Takezawa et al., 2023) and algorithm designs (Pu & Nedić,
2021; Wang et al., 2019; Lin et al., 2021) to ensure decentralized training closely approximates
centralized training.

However, the conventional perspective neglects the potential constructive role of consensus errors.
Rather than detrimental noise, these discrepancies may serve as structured perturbations that facili-
tate exploration of flatter minima in the loss landscape — solutions known to correlate with superior
generalization (Jiang et al., 2019). This insight draws inspiration from sharpness-aware minimiza-
tion strategies (Foret et al., 2020; Bisla et al., 2022; Li et al., 2024b), which explicitly introduce
curvature-aware perturbations to enhance model robustness and performance.

In this study, we challenge the conventional view by introducing Decentralized SGD with Adaptive
Consensus (DSGD-AC), an algorithm that strategically preserves non-vanishing consensus errors
through an adaptive, time-dependent scaling mechanism. We provide a theoretical analysis demon-
strating that consensus errors align with the dominant subspace of the Hessian matrix, thereby induc-
ing beneficial curvature-related perturbations from the global average. Notably, DSGD-AC incurs
negligible additional computational overhead relative to standard SGD or DSGD and enjoys the
superior runtime efficiency over SGD at the same time.
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Comprehensive experiments reveal that DSGD-AC consistently surpasses both DSGD and central-
ized SGD in terms of test accuracy and the flatness of the attained minima. To the best of our
knowledge, this work constitutes the first demonstration of decentralized training outperforming
centralized approaches under optimal conditions by a clear margin.

The main contributions of this work are: (1) the proposal of DSGD-AC, an adaptive consensus
algorithm that maintains theoretically-justified non-vanishing consensus errors at minimal compu-
tational expense, (2) a theoretical characterization of consensus error and its alignment with the
dominant Hessian subspace, and (3) empirical validation of the superior generalization performance
of DSGD-AC on typical deep learning tasks.

1.1 RELATED WORKS

Canonical view about consensus errors The prevailing perspective on decentralized training is
that it should approximate synchronous/centralized training as closely as possible. To mitigate dis-
crepancies among local models caused by weakly connected networks, prior work has focused on
tracking global information (Wang et al., 2019; Pu & Nedić, 2021; Yuan et al., 2021; Takezawa
et al., 2022), enhancing communication topologies to improve convergence rates (Ying et al., 2021;
Zhu et al., 2022; Takezawa et al., 2023), and more. In addition, several theoretical studies (Zhu
et al., 2022; Alghunaim & Yuan, 2022) establish a theoretical connection between the connectivity
of decentralized communication topologies and both convergence and generalization, demonstrating
that weaker connectivity results in poorer outcomes on both fronts. In contrast, we demonstrate the
potential advantages of the consensus error by identifying its correlation with the dominant Hessian
subspace, and we propose DSGD-AC in which consensus errors can, in practice, outperform SGD
in deep learning tasks.

Explorations beyond the canonical view As the canonical perspective dominates, the effort that
has been made towards suggesting potential benefits of consensus errors is limited. Kong et al.
(2021) conducts empirical studies aimed at identifying thresholds of consensus errors. Although
they highlight advantages of consensus errors in certain phases, the regime where consensus er-
rors exceed those of DSGD with a ring topology remains unexplored, and the consensus control
scheme proposed in the work does not yield clear performance improvements. Zhu et al. (2023)
offers a novel interpretation, framing consensus errors in DSGD as random perturbations around the
global average, which are asymptotically equivalent to average-direction SAM (Bisla et al., 2022).
Our work further identifies the intrinsic curvature-related property of the consensus errors, and, by
proposing DSGD-AC, empirically demonstrates the superior potential of decentralized training over
centralized training without being limited to the large-batch setting.

Explicit curvature-related perturbations improve generalization but are costly With the idea
of taking the global average as the deployed model (Zhu et al., 2023), decentralized learning can be
interpreted as the learning on the (virtual) global average with the workers as the perturbed global
average. Sharpness-aware minimization (SAM) was first proposed by Foret et al. (2020) to improve
the generalization of deep neural networks, and many variants (Kwon et al., 2021; Bisla et al.,
2022; Liu et al., 2022; Li et al., 2024a; Luo et al., 2024) were developed to further improve SAM.
However, to achieve the best performance, the algorithms typically require one or more additional
rounds of gradient evaluations, which significantly increase the computational costs. Our work
utilizes the potential of the consensus errors as free perturbations to enhance the generalization
without introducing extra computation.

2 PROBLEM SETTINGS AND NOTATIONS

Practical remarks on data distributions and the distributed data sampler Our work focuses
on decentralized training in GPU clusters where the whole dataset can be easily accessed by all
workers. This scenario is also widely studied in many other literature (Assran et al., 2019; Ying
et al., 2021; Kong et al., 2021; Wang et al., 2025), and is important for improving the efficiency
of large-scale distributed training. The common practice for the distributed data sampler (also used
in our experiments) is to reshuffle the full dataset at the start of each epoch and partition it evenly
across workers. The strategy ensures, in expectation, i.i.d. data distributions among workers.
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Decentralized Optimization We denote the set of integers {1, 2, · · · , k} by [k], the number of
workers by n ∈ N+, and the dimension of model parameters by d ∈ N+. In the standard decentral-
ized optimization setup with n workers, each worker i ∈ [n] holds a local objective determined by
its local dataset Di:

fi(x) = Es∼Di
[fi(x; s)], (1)

and the optimization problem is the local losses evaluated on the local models with a hard consensus
constraint:

minimize
{x1,x2,··· ,xn}

F (x1, · · · , xn) =
1

n

n∑
i=1

fi(xi), subject to xi = xj , ∀i, j ∈ [n] (2)

In the i.i.d. data distribution setting, we have fi = fj = F for all i, j ∈ [n].

Decentralized SGD (DSGD) The update of DSGD (Lian et al., 2017) on worker i is:

x
(t)
i = x

(t−1)
i − α(t)∇f(x

(t−1)
i ; s

(t)
i ) +

∑
j∈N (i)

Wij(x
(t−1)
j − x

(t)
i ) (3)

where N (i) is the set of neighbors of worker i (including itself), W is a symmetric, non-negative,
and doubly stochastic matrix defining the weights of the edges (Wij = 0 if worker i is not a neighbor
of worker j), and s

(t)
i denotes the stochastic mini-batch sampled by worker i at iteration t.

Following the common notations in decentralized optimization, we denote the global average by
x̄(t) :=

∑n
i=1 x

(t)
i , the consensus error of worker i by e

(t)
i := x

(t)
i − x̄(t), the matrix form of all

local models by X(t) := [x
(t)
1 , · · · , x(t)

n ] ∈ Rd×n, the matrix form of all local stochastic gradients
by G(t) := [∇f1(x

(t−1)
1 ; s

(t)
1 ), · · · ,∇fn(x

(t−1)
n ; s

(t)
n )], the matrix form of all consensus errors as

∆(t) = [e
(t)
1 , · · · , e(t)n ], and the matrix X̄ by X̄(t) = [x̄(t), · · · , x̄(t)].

Note that there is another variant of DSGD that performs the local update before communication.
We focus on the variant in Eq. (3) as it is shown to be more efficient (Lian et al., 2017; Wang et al.,
2025), and two variants are proven to have the same generalization bound (Bellet et al., 2023).

3 DSGD-AC: DECENTRALIZED SGD WITH ADAPTIVE CONSENSUS

In this section, we use the experiment of training a wide ResNet (WRN28-10) (Zagoruyko & Ko-
modakis, 2016) on CIFAR-10 (Krizhevsky et al., 2009) as a showcase to demonstrate the limitation
of DSGD and the improvement brought by our proposed algorithm. In the experiment, we em-
ploy the standard cosine annealing learning rate schedule (Loshchilov & Hutter, 2016) with a linear
warm-up during the first 10 epochs (Figure 1, left). This learning rate schedule is commonly used
in practice and can strike a balance between the training stability and generalization Gotmare et al.
(2018); Kalra & Barkeshli (2024). For decentralized training, we use 8 workers and the one-peer
ring as the decentralized communication topology.

3.1 FINDING: VANISHING CONSENSUS ERROR IN DSGD

We start by empirically investigating the dynamics of consensus errors when trained with DSGD.
We track the average norm of the consensus errors during the training. We observe that, for DSGD,
the consensus errors gradually vanish as the learning rate decreases (Figure 1, right).

From the theoretical perspective, by interpreting the mixing step as a gradient step on a quadratic
consensus penalty, one obtains the per-step surrogate

J (t)(x1, · · · , xn)

=

n∑
i=1

fi(x
(t)
i ) +

1

2α(t)

∑
i,j∈[n]

Wij∥x(t)
i − x

(t)
j ∥2

=

n∑
i=1

fi(x̄
(t))︸ ︷︷ ︸

objective on deployed model

+

n∑
i=1

[fi(x
(t)
i )− fi(x̄

(t))]︸ ︷︷ ︸
sharpness

+
1

2α(t)

∑
i,j∈[n]

Wij∥x(t)
i − x

(t)
j ∥2

︸ ︷︷ ︸
consensus regularizer

(4)
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Figure 1: Decentralized training of WRN28-10 on CIFAR-10 (3 random runs for each algorithm)
with 8 workers, and the communication topology is the one-peer ring topology. Left: Learning rate
schedule (same for both algorithms). Right: Average norm of consensus errors evaluated at the end
of every epoch ( 1

N

∑N
i=1 ∥x

(eT )
i − x̄(eT )∥). p is set to 3 for DSGD-AC.

With symmetric mixing weights and no momentum or adaptivity, each DSGD step is exactly a
(stochastic) gradient on J . Thus, when α(t) goes to 0, the consensus regularizer dominates the
objective function, which minimizes the consensus errors. If considering this surrogate function,
the empirical observation is not surprising because it reflects the hard constraint in the optimization
problem in Eq. (2). However, the vanishing consensus errors void the sharpness term in Eq. (4)
because the sharpness term because fi(x

(t)
i ) ≈ fi(x̄

(t)) as x(t)
i − x̄ → 0. The only term left that is

relevant to the deployed model x̄(t) is the first term, which is the same objective as in synchronous
SGD. Therefore, to maintain the potential benefits of free sharpness-aware regularization (Zhu et al.,
2023) by the consensus errors, we need to maintain a non-vanishing radius throughout the training.

3.2 ALGORITHM: DECENTRALIZED SGD WITH ADAPTIVE CONSENSUS

The proposed algorithm is shown in Algorithm 1. The difference from DSGD is highlighted, and,
compared with DSGD, the proposed variant includes an adaptive factor to maintain non-diminishing
consensus errors intentionally. At the end of training, the algorithm takes the global average of all
local models as the deployed model.

Algorithm 1: Decentralized SGD with adaptive consensus (DSGD-AC) on worker i
Data: Dataset (D), the number of workers (N ), the number of epoch (E), the number of

batches per epoch (T ), intialization (x(0)), and a hyperparameter (p ∈ R+) .

Result: Deployed model x̄ = 1
n

∑n
j=1 x

(TE)
j

x
(0)
1 = x

(0)
2 = · · · = x

(0)
n = x(0)

for t = 1 to TE do
g
(t)
i = ∇f(x

(t−1)
i ; s

(t)
i )

γ(t) =
[
α(t)/αmax

]p
x
(t)
i = x

(t−1)
i − α(t)g

(t)
i + γ(t)

∑
j∈N (i) Wij(x

(t−1)
j − x

(t−1)
i )

end

Note that α(t) is determined by the learning rate scheduler like cosine annealing (Loshchilov &
Hutter, 2016), and αmax is the maximal learning rate throughout the training, which ensures γ(t) is
in the range [0, 1].

We evaluate the performance of DSGD-AC on classical deep learning tasks in Section 4. In the
numerical experiments, the results demonstrate the superior generalization performance of DSGD-
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AC over DSGD and centralized SGD. We will analyze the reasons behind this by showing that
DSGD-AC maintains non-diminishing and useful consensus errors in the following sections.

3.3 CONTROLLED CONSENSUS ERRORS IN DSGD-AC

The motivation of DSGD-AC is to maintain non-diminishing consensus errors. Therefore, we mul-
tiply the weight of the consensus regularizer in Eq. (4) by an adaptive γ, which directly leads to the
DSGD-AC algorithm. The per-step surrogate function of DSGD-AC is mostly the same as that of
DSGD. Only the weight of the consensus regularizer becomes γ(t)/(2Nα(t)).

In this section, we investigate the impact of p on the magnitude of consensus errors. First, we can
rewrite the update of DSGD-AC in matrix form,

X(t) = X(t−1) − α(t)G(t) − γ(t)X(t−1)(I −W ) = X(t−1)(I − γ(t)L)− α(t)G(t) (5)
where we denote the Laplacian matrix L by L = I −W .

By subtracting X̄(t) on both sides of Eq. (5) and using the fact that ∆(t) = (I − 1
n11

⊤)X(t), the
dynamics of consensus errors ∆(t) can be derived as

∆(t) = X(t−1)(I − γ(t)L)− α(t)G(t) − X̄(t)

= X(t−1)(I − γ(t)L)− α(t)G(t) − X̄(t−1) + α(t)G(t) · 1
n
11⊤

= ∆(t−1)(I − γ(t)L)− α(t)G(t)(I − 1

n
11⊤)

(6)

Next, we denote P = I − 1
n11

⊤, perform an eigen-decomposition of L = UΛU⊤, and multiply
Eq. (6) by U from the right to obtain

∆(t)U = ∆(t−1)(I − γ(t)UΛU⊤)U − α(t)G(t)PU

= ∆(t−1)U(I − γ(t)Λ)− α(t)G(t)PU
(7)

By introducing Z(t) = ∆(t)U and G̃(t) = G(t)PU , we can re-write the update as

Z(t) = Z(t−1)(I − γ(t)Λ)− α(t)G̃(t−1) (8)

Here, Z(t) represents the consensus error projected onto the eigen-basis of the Laplacian. Each
component of Z(t) quantifies the magnitude of consensus errors along a distinct network mode,
capturing how different patterns of agent disagreement evolve and persist according to the network
topology and communication structure. By analyzing the dynamics of Z(t) we derive the following
proposition with the proof deferred to Section A.1 in the appendix.

Proposition 1 (p for non-vanishing consensus errors) In a quasi-stationary regime where the ex-
pectations and variances of the columns of G̃(t) remain constant, DSGD-AC with p ≥ 2 ensures that
the expected Frobenius norm of ∆(t) does not vanish even as α(t) → 0.

The proposition establishes that DSGD-AC maintains a nontrivial level of consensus errors through-
out iterations. In fact, the proof of the proposition shows that the effective disagreement radius
r2t = E[∥∆(t)∥2F ] is on the order of (α(t))2/γ(t). Since it has been empirically observed (see, e.g.,
Bisla et al. (2022); Li et al. (2024a)) that it is advantageous to increase the radius slightly towards
the end of the training, we chose γ(t) = g0(α

(t))p with p = 3. Under cosine learning rate sched-
ules, this choice induces a mild uptick in the radius toward the final stages of training, as illustrated
in Figure 1 (right). A detailed sensitivity analysis in Appendix A.4.2 further supports the theory,
demonstrating radius shrinkage for p < 2 and growth for p > 2 as α(t) → 0 (see Figure 10).

3.4 CONSENSUS ERRORS ALIGN WITH DOMINANT SUBSPACE OF HESSIAN

Even though DSGD-AC maintains non-vanishing consensus errors, its role in leading to flatter min-
ima and better generalization remains underexplored. In (Zhu et al., 2023, Theorem 1), consensus

5
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Figure 2: Left: Losses on the whole training dataset at local workers and global average. The losses
are evaluated every 10 epochs. Right: Training loss at epoch 180 along: (1) worker i: lines
connecting global average and worker i, (2) gradient: the line that aligns with the full-batch
gradient at the global average and crosses the global average, and (3) random: 500 lines that cross
the global average and follow random directions generated as in (Bisla et al., 2022). The x-axis
means the directional magnitude of the perturbation along these directions. The red dots represent
the losses at the local models. The losses are computed on ∼ 1/4 of the training dataset due to
computation complexity.

errors are interpreted as random perturbations within the subspace defined by the weight diversity
matrix, and the resulting (asymptotically equivalent) average-direction SAM effect is shown to im-
prove generalization. While this connection is insightful, the intrinsic structure of consensus errors
(or the weight diversity matrix) has not been examined in detail.

To study this structure, we compare the training losses at local models with those at their global
average. As shown in Figure 2 (left), the global average consistently achieves lower training loss
than any individual worker. To further distinguish consensus errors from random perturbations,
we evaluate the training losses along the directions of consensus errors and compare them against
losses along sufficiently many random directions. Figure 2 (right) shows that the random directions
are almost flat, which is expected given the large parameter space (∼36M in WRN28-10) and the
low-rank structure of the Hessian (Gur-Ari et al., 2018; Song et al., 2024). It is also consistent with
empirical observations in (Keskar et al., 2016).

In contrast, directions induced by consensus errors yield significant increases in training loss, high-
lighting that these errors are not random but aligned with directions of higher curvature. This phe-
nomenon suggests a correlation between consensus errors and the dominant subspace of the Hessian
(or directions with larger curvature). Motivated by this observation, we formalize it in the following
proposition, with the proof deferred to Appendix A.2.

Proposition 2 (Consensus error aligns with dominant Hessian subspace) Let x∗ be a locally
strongly convex minimizer of F , with Hessian H = UΛU⊤ and eigenvalues 0 < λ1 ≤ · · · ≤ λd.
Consider the linearized DSGD-AC dynamics around x∗ under i.i.d. local data distributions
(fi = f ), a symmetric doubly stochastic communication matrix W , and non-increasing stepsizes
α(t) > 0. For each Hessian eigenvector uk (k ∈ [d]), the norm of the projected consensus error
∆

(t)
k := u⊤

k ∆
(t) evolves as a linear system with stability condition

α(t) <
2 + (λW

min − 1)γ(t)

λk
.

Therefore, modes with smaller λk stabilize earlier, while modes with larger λk retain higher steady-
state variance. As a result, the consensus error energy concentrates on the subspace spanned by the
top eigenvectors of H , i.e., the dominant Hessian subspace.

Given the alignment between the consensus errors and the dominant subspace, DSGD-AC can be
interpreted as optimization over x̄ with curvature-correlated noises, which has been both empiri-
cally and theoretically studied by many works (Foret et al., 2020; Zhang et al., 2023; Luo et al.,
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2024; Benedetti & Ventura, 2024). By maintaining non-vanishing consensus errors along with its
regularization effect on the curvature of the loss landscape, DSGD-AC is expected to achieve better
generalization performance than DSGD and SGD.

While the alignment exists and can be shown theoretically, the alignment is noisy and spans on
less-sharp directions when compared with the gradient direction. As shown in Figure 2 (right),
the gradient computed on the corresponding dataset leads to a sharper increase than the consensus
errors. An interesting direction for future work could be an improved algorithm based on DSGD-
AC that can utilize the gradient information to promote the concentration of consensus errors on the
dominant Hessian subspace with small computational overhead.

4 NUMERICAL EXPERIMENTS

In this section, we present the results of the numerical experiments on image classification with wide
ResNet (Zagoruyko & Komodakis, 2016) and on machine translation with transformers (Vaswani
et al., 2017). In the experiments, we follow hyperparameters in the corresponding original papers,
and we reproduce the same baseline performance for a fair comparison. For DSGD-AC, we use
p = 3 in all experiments. We defer the other hyperparameter details to Appendix A.3 and the
sensitivity analysis on p to Appendix A.4.2.

Each set of experiments consists of three random runs with fixed random seeds. We report 1×
standard deviation in all tables, and the shaded areas in plots correspond to the 95% confidence
interval.

4.1 IMAGE CLASSIFICATION WITH WIDE RESNET

We train two variants of Wide ResNets (WRN28-10 and WRN16-8) (Zagoruyko & Komodakis,
2016) on two datasets, CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), and we present the
curves of the classification accuracies on the test set and training/test losses of WRN28-10 on
CIFAR-10 in Figure 3. The test performance and the flatness of the solutions are reported in Ta-
ble 4.1. The curves and statistics of the remaining experiments are deferred to Appendix A.4.1.

Since finding the best sharpness metric that always reflects the potential generalization is still an
open question, we use the top-1 eigenvalue as a surrogate, which is widely used in other literature
and proven to have a strong correlation (Bisla et al., 2022; Luo et al., 2024).

Model Dataset Algorithm Test Acc. (%) ↑ Test Loss ↓ Top-1 Eigenvalue ↓

WRN28-10

CIFAR-10
DSGD 96.07 ± 0.13 0.176 ± 0.005 22.43 ± 3.99
SGD 95.96 ± 0.14 0.182 ± 0.004 16.84 ± 0.32

DSGD-AC 96.77 ± 0.11 0.128 ± 0.003 8.96 ± 0.35

CIFAR-100
DSGD 79.86 ± 0.22 0.899 ± 0.008 49.57 ± 4.80
SGD 80.15 ± 0.42 0.878 ± 0.020 37.37 ± 2.88

DSGD-AC 82.38 ± 0.09 0.755 ± 0.008 19.80 ± 0.66

WRN16-8

CIFAR-10
DSGD 95.94 ± 0.11 0.152 ± 0.001 18.19 ± 0.64
SGD 95.81 ± 0.13 0.153 ± 0.003 17.49 ± 1.61

DSGD-AC 96.17 ± 0.04 0.129 ± 0.003 11.82 ± 0.48

CIFAR-100
DSGD 79.25 ± 0.26 0.854 ± 0.016 36.19 ± 3.80
SGD 79.42 ± 0.18 0.849 ± 0.015 33.77 ± 0.78

DSGD-AC 80.67 ± 0.11 0.771 ± 0.005 19.81 ± 0.16

Table 1: Performance comparison of DSGD, SGD, and DSGD-AC on image classification with
wide ResNet. The top-1 eigenvalue is computed on the whole training set and approximated using
the power iteration.
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Figure 3: WRN28-10 on CIFAR-10. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training losses (evaluated on the workers
for decentralized training, and evaluated on perturbed points for SAM) and test losses (evaluated on
the global average model for decentralized training). The curves for each algorithm are based on 3
runs with the same set of random seeds.

In the experiment results, DSGD-AC outperforms DSGD and SGD in test accuracy, test losses, and
solution flatness by a clear margin. Moreover, it can also be seen that DSGD can not outperform
SGD with its best performance.

4.2 MACHINE TRANSLATION WITH TRANSFORMERS

We also validate the idea of controlling consensus errors on transformer models by simply replacing
the local update with the Adam optimizer (Adam et al., 2014). DSGD-AC is then adapted to DAdam-
AC. We train Transformer (the big variant, ∼213M parameters) (Vaswani et al., 2017) on WMT14
(English-to-German) (Bojar et al., 2014) and present the curves of training losses and BLEU scores
on the test set. The BLEU scores (Papineni et al., 2002) (which is used to evaluate the translation
quality in the original paper) and the losses on the test set and the training set are reported in Table 2.

Figure 4: Transformer (big) on WMT14 English-to-German. Left: Losses on training set. Right:
BLEU scores on the test set.

Algorithm BLEU score ↑ Test loss ↓ Train loss ↓
Adam 28.68 ± 0.07 2.9290 ± 0.0026 2.8310 ± 0.0019

DAdam 28.38 ± 0.22 2.9258 ± 0.0018 2.8195 ± 0.0008
DAdam-AC 28.85 ± 0.18 2.9338 ± 0.0017 2.8909 ± 0.0012

Table 2: Performance comparison of DAdam, Adam, and DAdam-AC on neural machine translation
with the transformer model.
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The results demonstrate that DAdam-AC can outperform other baselines on the translation quality
metric. The adaptive consensus brings substantial improvement compared with DAdam. We believe
further improvement is possible if we take the adaptive consensus into account when designing the
optimizer.

5 CONCLUSION

This work challenges the long-standing perception that decentralized training inevitably sacrifices
generalization for communication efficiency. Through DSGD-AC, we demonstrate that maintain-
ing controlled consensus errors improves robustness and solution flatness, offering both practical
scalability and superior model performance. The method introduces negligible computational over-
head and integrates seamlessly with existing decentralized frameworks. Our experiments on CIFAR
benchmarks and WMT14 confirm the broad applicability of this approach. These results suggest a
paradigm shift: consensus errors should no longer be minimized at all costs but strategically man-
aged as a form of implicit regularization. Beyond immediate applications to deep learning clusters,
we envision that the principle of adaptive consensus could inform the design of future large-scale,
resource-efficient, and generalizable learning systems.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Recall that
P = I − 1

n11
⊤

L = I −W = UΛU⊤

G̃(t) = G(t)PU

Z(t) = Z(t−1)(I − γ(t)Λ)− α(t)G̃(t)

(9)

where Z(t) describes the consensus error projected onto the eigenbasis of the Laplacian.

Each column z
(t)
k of Z(t) evolves as

z
(t)
k = (1− γ(t)λk)z

(t−1)
k − α(t)g̃

(t)
k (10)

where λk is the k-th eigenvalue of L.

To quantify the dynamics of ∥z(t)k ∥22, consider a quasi-stationary regime where

E[g̃(t)i ] = µi, E[∥g̃(t)i − µi∥22] = σ2
i (11)

Then, by taking the expectation on Eq. (10) and letting mi = E[zi], we have

mi = (1− γ(t)λi)mi − α(t)µi (12)

from which we find (for all modes i ≥ 2)

mi = − 1

λi

α(t)

γ(t)
µi (13)

Next, we define z̃
(t)
i = z

(t)
i −mi so that

z̃
(t)
i = (1− γ(t)λi)z̃

(t−1)
i − α(t)(g̃

(t−1)
i − µi)

where we have subtracted mi from both sides and used the expression for mi just derived. Letting
Vk = E[∥z̃(t)k ∥22] and assuming that the innovation η(t−1) = g̃

(t−1)
i −µi is conditionally independent

given all events generated up until iteration t− 1, we find

Vi = (1− γ(t)λi)
2Vi + (α(t))2σ2

i

which implies that

Vi =

(
α(t)

)2
2λiγ(t) − λ2

i (γ
(t))2

σ2
i ≥ (α(t))2

2λiγ(t)
σ2
i .

Now, putting the two expression together yields

E[∥z(t)i ∥22] = Vi + ∥mi∥22 ≥ 1

λ2
i

(
α(t)

γ(t)

)2

∥µi∥22 +
1

2λi

(α(t))2

γ(t)
σ2
i

Hence, with γ(t) = g0(α
(t))p, we have

E[∥z(t)i ∥22] ≥
1

λ2
i g

2
0

(α(t))2−2p +
1

2λig0
(α(t))2−p

The result indicates that to maintain a non-diminishing ∥zi∥22 in this quasi-stationary regime, we
should choose p ≥ 2. Finally, since ∥Z(t)∥2F = Tr((∆(t)U)⊤∆(t)U) = Tr((∆(t))⊤∆(t)) =

∥∆(t)∥2F , a non-diminishing ∥Z(t)∥2F implies that ∥∆(t)∥2F is non-diminishing.
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A.2 PROOF OF PROPOSITION 2

In this proof, we focus on a local minima x∗ of F (x) that is locally strongly convex, and we denote
X∗ = [x∗, · · · , x∗] ∈ Rd×n.

Rewrite the update of DSGD-AC by replacing the stochastic gradient with its expectation and a
noise matrix,

X(t) = X(t−1)(I − γ(t)L)− α(t)(∇F (X(t−1)) + Ξ(t)) (14)
where

∇F (X(t−1)) := [∇f1(x1), · · · ,∇fn(xn)]

Ξ(t) := G(t) −∇F (X(t−1))
(15)

Then, in a similar way as in Section 3.3, we can rewrite the update of ∆(t) as

∆(t) = ∆(t−1)(I − γ(t)L)− α(t)∇F (X(t−1))P − α(t)Ξ(t)P (16)

By further assuming the local data distributions are i.i.d., we have fi = F and Hi = H for all
i ∈ [n]. By doing Taylor’s expansion on x∗ and ignoring the higher-order terms, we have

∇fi(x
(t−1)
i ) ≈ ∇fi(x

∗) +Hi(x
(t−1)
i − x∗) = H(x

(t−1)
i − x∗) (17)

then we have

∇F (X(t−1)) ≈ H(X(t−1) −X∗) ⇒ ∇F (X(t−1))P ≈ H∆(t−1) (18)

Therefore, by plugging Eq. (18) back to Eq. (16), we have

∆(t) ≈ ∆(t−1)(I − γ(t)L)− α(t)H∆(t−1) − α(t)Ξ(t)P (19)

Take the eigen decomposition of H , we have H = UΛU⊤. We denote the k-th eigenvector of H by
uk, the projection of consensus error on uk by ∆

(t)
k := u⊤

k ∆
(t), and the projection of gradient noise

by ξ
(t)
k = u⊤

k Ξ
(t)P .

By multiplying u⊤
k on both sides of Eq. (19) from the left, we have the dynamics of the projection

of the consensus errors on uk as

∆
(t)
k ≈ ∆

(t−1)
k (I − γ(t)L)− α(t)λk∆

(t−1)
k − α(t)Ξ

(t)
k

= ∆
(t−1)
k (I − γ(t)L− α(t)λkI)− α(t)Ξ

(t)
k

(20)

which is a linear system of ∆(t)
k driven by noise ξk.

Now we focus on the steady-state covariance of ∆(t)
t ,

Sk := lim
t→∞

E[∆(t)
k

⊤
∆

(t)
k ] (21)

which satisfies the discrete Lyapunov equation

Sk = AkSkA
⊤
k + [α(t)]2Σk (22)

where Ak = I − γ(t)L− α(t)λkI and Σk is the covariance matrix of the projected noise.

We denote the eigenvalues of W by {λW
1 , · · · , λW

n }. The system is stable only if the eigenvalues of
Ak are all in (−1, 1), from which we can derive the condition on α(t) by

−1 < 1− γ(t) + γ(t)λW
j − α(t)λk < 1 ∀j ∈ [n] (23)

By using the fact that W is a non-negative and doubly stochastic matrix which defines a communi-
cation topology, we have λW

j ∈ (−1, 1] for all j ∈ [n]. Recall that x∗ is a local minima of F (x) that
is locally strongly convex, we have λk > 0. Then we can derive the condition on α(t) that makes
the system stable, which is

α(t) <
2 + (λW

min − 1)γ(t)

λk
(24)
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From Eq. (24), we can derive that, for the same set of α and γ, the condition is easier to fulfill with
smaller λk. Therefore, the system is stable, or the contraction of Sk happens earlier, with a smaller
eigenvalue λk and with non-increasing step sizes.

With the contractions happening on the subspace spanned by eigenvectors with small eigenvalues,
the consensus errors align with the eigenvectors that have larger eigenvalues, which is the dominant
subspace of the Hessian.

A.3 EXPERIMENT DETAILS

A.3.1 IMAGE CLASSIFICATION EXPERIMENTS ON CIFAR10

The selection of hyperparameters follows the original paper (Zagoruyko & Komodakis, 2016), and
our baseline implementation perfectly matches its performance.

Category Setting
General
Number of epochs 200
Global batch size 128
Learning rate scheduler Linear warm-up to 0.1 in the first 10 epochs, followed by cosine anneal-

ing until the end
Base optimizer SGD with momentum (0.9), weight decay = 5× 10−4

Data shuffle Randomly shuffled and split into N local datasets each epoch

Decentralized training
Number of workers 8
Communication topology One-peer ring (alternating between neighbors i − 1 and i + 1 across

iterations)
DSGD-AC parameters Exponent p = 3 (tuned based on experiments); γ = 1 during warm-up
BatchNorm calibration Similar to the case in (Defazio et al., 2024), a calibration on the Batch-

Norm statistics is needed because there is a mismatch between the local
models and the global average. To calibrate mismatched statistics, a full
pass over the training set is conducted before validation. Only one cali-
bration should be done if intermediate checkpoints are not evaluated.

A.3.2 TRANSFORMER ON WMT14

The selection of hyperparameters follows the original paper (Vaswani et al., 2017), and our baseline
implementation perfectly matches its performance.

Category Setting
General
Number of epochs 20
Global batch size ∼25k tokens
Learning rate scheduler Linear warm-up to 5 × 10−4 over the first 4000 iterations, then decay

as 5× 10−4 · (4000/t)0.5 (t = iteration index)
Base optimizer Adam (β1 = 0.9, β2 = 0.98)
Data shuffle Randomly shuffled and split into N local datasets each epoch

Decentralized training
Number of workers 8
Communication topology One-peer ring (alternating between neighbors i − 1 and i + 1 across

iterations)
DSGD-AC parameters Exponent p = 3 (tuned based on experiments); γ = 1 during warm-up
Normalization Only layer normalization is used; no calibration needed

15
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A.4 EXPERIMENT RESULTS

A.4.1 IMAGE CLASSIFICATION WITH WIDE RESNET

The complete statistics of the image classification task are deferred to this section due to the space
limit. Even though comparing DSGD-AC with SAM-like methods is not our emphasis, we imple-
ment SAM (Foret et al., 2020) and the average-direction SAM (Bisla et al., 2022) and report their
results for reference. We follow Foret et al. (2020) to use ρ = 0.05 in all the experiments, and use
the same schedule of the variance of the random perturbations as described in the official GitHub
repository1 (Bisla et al., 2022).

Figures 5, 6, 7, and 8 and Table 3 present all the results on the image classification task. We summary
the results as

• SAM always outperforms other methods at the cost of 2× computation.

• DSGD-AC always achieves the best test loss among the methods with 1× computation.

• AD-SAM outperforms DSGD-AC in the solution flatness only on experiments with
WRN16-8, which is relatively smaller than WRN28-10.

Note that (1) for training loss, it is evaluated on the workers for decentralized training, and evaluated
on perturbed points for SAM, (2) for test loss, it’s evaluated on the global average model for decen-
tralized training, (3) each curve for each algorithm is based on 3 runs with the same set of random
seeds, and (4) the shaded parts correspond to the 95% confidence interval.

Figure 5: WRN28-10 on CIFAR-10. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training and test losses.

Figure 6: WRN28-10 on CIFAR-100. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training and test losses.

1https://github.com/devansh20la/LPF-SGD/blob/master/codes/README.md
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Figure 7: WRN16-8 on CIFAR-10. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training and test losses.

Figure 8: WRN16-8 on CIFAR-100. Left: Test accuracy on test set. For decentralized training, the
accuracy is evaluated on the global average model. Right: Training and test losses.

Model Dataset Algorithm Test Acc. (%) ↑ Test Loss ↓ Mean Top-1 Eigenvalue ↓ Computation ↓

WRN28-10

CIFAR-10

DSGD 96.07 ± 0.13 0.176 ± 0.005 22.4360 ± 3.9916 1x
SGD 95.96 ± 0.14 0.182 ± 0.004 16.8485 ± 0.3251 1x

DSGD-AC 96.77 ± 0.11 0.128 ± 0.003 8.9693 ± 0.3514 1x
AD-SAM 96.37 ± 0.11 0.168 ± 0.002 24.9059 ± 1.6212 1x

SAM 97.33 ± 0.04 0.100 ± 0.002 0.3523 ± 0.0312 2x

CIFAR-100

DSGD 79.86 ± 0.22 0.899 ± 0.008 49.5719 ± 4.8022 1x
SGD 80.15 ± 0.42 0.878 ± 0.020 37.3799 ± 2.8886 1x

DSGD-AC 82.38 ± 0.09 0.755 ± 0.008 19.8061 ± 0.6653 1x
AD-SAM 82.57 ± 0.31 0.891 ± 0.007 32.6371 ± 2.3362 1x

SAM 83.79 ± 0.25 0.618 ± 0.003 1.7295 ± 0.0385 2x

WRN16-8

CIFAR-10

DSGD 95.94 ± 0.11 0.152 ± 0.001 18.1998 ± 0.6427 1x
SGD 95.81 ± 0.13 0.153 ± 0.003 17.4934 ± 1.6191 1x

DSGD-AC 96.17 ± 0.04 0.129 ± 0.003 11.8250 ± 0.4883 1x
AD-SAM 96.25 ± 0.12 0.152 ± 0.002 8.5178 ± 0.5453 1x

SAM 96.81 ± 0.08 0.102 ± 0.003 1.3928 ± 0.0586 2x

CIFAR-100

DSGD 79.25 ± 0.26 0.854 ± 0.016 36.1998 ± 3.8028 1x
SGD 79.42 ± 0.18 0.849 ± 0.015 33.7733 ± 0.7897 1x

DSGD-AC 80.67 ± 0.11 0.771 ± 0.005 19.8032 ± 0.1652 1x
AD-SAM 81.36 ± 0.06 0.858 ± 0.004 17.5450 ± 1.2583 1x

SAM 81.51 ± 0.08 0.677 ± 0.003 4.7932 ± 0.1957 2x

Table 3: Algorithm comparison on image classification including SAM (Foret et al., 2020) and
average-direction SAM (Bisla et al., 2022).
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A.4.2 SENSITIVITY ANALYSIS OF THE HYPERPARAMETER IN DSGD-AC

In all experiments, we use p = 3 for DSGD-AC, which is based on experiment tuning. The test
results with p = {0, 1, 2, 3, 4, 5} are presented in Figure 9 and Table 4. The tracked average norm
of consensus errors with varying p is shown in Figure 10.

Note that DSGD-AC with p = 0 is equivalent to DSGD. The results demonstrate the effectiveness
of introducing p and DSGD-AC, and p = 3 brings the best performance.

Figure 9: DSGD(-AC) on WRN28-10 on CIFAR-10 with varying p. Left: Test accuracy on test set.
For decentralized training, the accuracy is evaluated on the global average model. Right: Training
and test losses.

Figure 10: Average norm of consensus errors over epochs with varying p.

p Test Accuracy (%) ↑ Train Loss ↓ Test Loss ↓
0 96.07± 0.13 0.002± 0.000 0.176± 0.005
1 96.26± 0.14 0.002± 0.000 0.159± 0.003
2 96.58± 0.18 0.003± 0.000 0.141± 0.006
3 96.77± 0.11 0.012± 0.000 0.128± 0.003
4 96.53± 0.13 0.024± 0.001 0.127± 0.004
5 96.37± 0.04 0.032± 0.001 0.130± 0.002

Table 4: Sensitivity analysis of parameter p in the WRN28-10 on CIFAR10 experiment. The best
value is bold, and the second best is underlined.

A.5 USE OF LARGE LANGUAGE MODELS

During the development of the paper, we used LLMs to polish the text without changing its original
meaning.

18


	Introduction
	Related works

	Problem settings and notations
	DSGD-AC: Decentralized SGD with adaptive consensus
	Finding: vanishing consensus error in DSGD
	Algorithm: Decentralized SGD with adaptive consensus
	Controlled consensus errors in DSGD-AC
	Consensus errors align with dominant subspace of Hessian

	Numerical Experiments
	Image classification with wide ResNet
	Machine translation with transformers

	Conclusion
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Experiment details
	Image Classification Experiments on CIFAR10
	Transformer on WMT14

	Experiment results
	Image classification with wide ResNet
	Sensitivity analysis of the hyperparameter in DSGD-AC

	Use of large language models


