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Abstract

The recent large-scale vision-language pre-001
training (VLP) of dual-stream architectures002
(e.g., CLIP) with a tremendous amount of003
image-text pair data, has shown its superiority004
on various multimodal alignment tasks. De-005
spite its success, the resulting models are not006
capable of generative multimodal tasks due to007
the weak text encoder. To tackle this prob-008
lem, we propose to augment the dual-stream009
VLP model with a textual pre-trained language010
model (PLM) via vision-language knowledge011
distillation (VLKD), enabling the capability012
for multimodal generation. VLKD is pretty013
data- and computation-efficient compared to014
the pre-training from scratch. Experimental re-015
sults show that the resulting model has strong016
zero-shot performance on multimodal genera-017
tion tasks, such as open-ended visual question018
answering and image captioning. For example,019
it achieves 39.7% zero-shot accuracy on the020
VQA 2.0 dataset, surpassing the previous state-021
of-the-art zero-shot model with 14× fewer pa-022
rameters. Furthermore, the original text pro-023
cessing ability of the PLM is maintained after024
VLKD, which makes our model versatile for025
both multimodal and unimodal tasks.026

1 Introduction027

Recent large-scale dual-stream Vision-Language028

Pre-training (VLP) models like CLIP (Radford029

et al., 2021) and ALIGN (Jia et al., 2021), have030

shown remarkable performance on various down-031

stream multimodal alignment tasks, e.g., image-032

text retrieval and image classification. These mod-033

els are pre-trained using cross-modal contrastive034

learning on tremendous image-text pairs and learn035

strong multimodal representations. Despite their036

success, as mentioned by Radford et al. (2021),037

their text encoder is relatively weak by only having038

a discriminative multimodal pre-training objective,039

which makes them incompetent on generative mul-040

𝑉𝐿𝑃𝐼𝑚𝑔 𝑉𝐿𝑃𝑇𝑒𝑥𝑡 𝑁𝐿𝑃𝐸𝑛𝑐 𝑁𝐿𝑃𝐷𝑒𝑐

Knowledge

Distillation

Training Phase (VLKD)

Zero-Shot Inference

𝑉𝐿𝑃𝐼𝑚𝑔

What small cloth is used 

to wipe the face or eating 

this meal? Answer: [mask].

... ? Answer: A napkin.𝑁𝐿𝑃𝐸𝑛𝑐 𝑁𝐿𝑃𝐷𝑒𝑐

𝑉𝐿𝑃𝐼𝑚𝑔

A picture of [mask].

A picture of a bouquet 
of white flowers in a 
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𝑁𝐿𝑃𝐸𝑛𝑐 𝑁𝐿𝑃𝐷𝑒𝑐
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Visual Question Answering

Image Captioning

Figure 1: Intuition of our proposed approach. After
VLKD, the model can fill in the masked locations with
meaningful words to describe the image without further
finetuning. Moreover, it can answer questions with
proper reasoning over the pre-trained knowledge inside
PLMs, e.g., a napkin is for wiping the face at meals.

timodal tasks such as image captioning and open- 041

ended visual question answering (VQA). 042

Meanwhile, the Transformer-based (Vaswani 043

et al., 2017) auto-regressive large-scale pre-trained 044

language models (PLMs), such as GPT (Radford 045

and Narasimhan, 2018; Brown et al., 2020), have 046

been dominating in natural language generation 047

(NLG) tasks. These models are usually trained 048

with causal self-attention, which only allows the 049

model to attend to past outputs (unidirectional) 050

to satisfy their generative nature. More recently, 051

BART (Lewis et al., 2020) and T5 (Raffel et al., 052

2020) propose to augment the auto-regressive de- 053

coder with a bidirectional Transformer encoder to 054

further capture bidirectional information of the in- 055

put. These encoder-decoder architectures excel on 056

not only NLG but also understanding (NLU) tasks. 057
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To tackle the aforementioned limitations of dual-058

stream VLP models and fully utilize PLMs, in this059

paper, we present Vision-Language Knowledge060

Distillation (VLKD), a simple yet effective ap-061

proach to enable CLIP to perform generative multi-062

modal tasks through knowledge distillation. Specif-063

ically, we align the BART encoder to CLIP’s joint064

multimodal embedding space to gain the under-065

standing of multimodal knowledge, along with an066

image-conditioned language modeling loss to con-067

sort BART encoder and decoder. During training,068

we freeze the CLIP weights to keep its learned069

multimodal space. For inference, the CLIP text070

encoder is discarded, which can be interpreted as071

being replaced by the distilled BART. Therefore,072

we leverage the strengths from both sides, the ex-073

pressive multimodal representation space of CLIP074

and the strong text generation capability of BART.075

Compared to VLP from scratch, VLKD uses sev-076

eral magnitudes fewer image-text pairs and compu-077

tational resources. As depicted in Figure 1, after078

VLKD, the model exhibits strong zero-shot perfor-079

mance on generative multimodal tasks, including080

open-ended VQA and image captioning. Without081

finetuning, it has the ability to generate answers082

by reasoning over the question, the visual informa-083

tion, and the textual knowledge embedded in the084

pre-trained BART. Furthermore, it can also directly085

generate plausible captions given an image. Em-086

pirical results show that our model achieves 39.7%087

accuracy on the VQA 2.0 dataset and 61.1 CIDEr088

on COCO image caption dataset in a zero-shot man-089

ner. Moreover, the original NLU and NLG ability090

of BART is maintained, which makes the model091

versatile for both multimodal and unimodal tasks.092

To summarize, our contributions are: 1) We in-093

troduce an efficient approach to distill knowledge094

from the dual-stream VLP model CLIP to BART095

The resulting model shows strong zero-shot perfor-096

mance on generative multimodal tasks, as well as097

pure NLP tasks; 2) We exhaustively quantify these098

capabilities on six benchmarks under various set-099

tings; and 3) We conduct comprehensive analysis100

and ablation study to provide insights and grease101

future work on this direction.102

2 Related Work103

2.1 Vision-language Pre-training104

Based on how the two modalities interact, recent105

VLP models mainly fall into two categories: single-106

stream and dual-stream models. Single-stream107

models (Chen et al., 2020; Li et al., 2019; Ramesh 108

et al., 2021; Lin et al., 2021; Kim et al., 2021a) 109

concatenate the patch-wise or regional visual fea- 110

tures and textual embeddings and feed them into a 111

single model. Dual-stream models (Lu et al., 2019; 112

Radford et al., 2021; Jia et al., 2021) use separate 113

encoders for images and texts, allowing efficient 114

inference for downstream multimodal alignment 115

tasks like image-text retrieval, by pre-computing 116

image/text features offline. However, these models 117

can not be directly used for multimodal genera- 118

tion tasks. In this paper, we propose an efficient 119

method to align the dual-stream VLP model CLIP’s 120

multimodal embedding space with a powerful PLM 121

model BART to gain multimodal generation ability. 122

There are also VLP models that can perform 123

multimodal generation tasks, by expensive pre- 124

training with objective of image-conditioned auto- 125

regressive language modeling (Lin et al., 2021; 126

Wang et al., 2021; Cho et al., 2021). However, 127

the pre-training of these models requires a large 128

number of image-text pairs and numerous compu- 129

tation resources. Other models like (Agrawal et al., 130

2019; Li et al., 2019, 2020, 2021b) rely on an extra 131

pre-trained object detector such as Faster-RCNN 132

with labeled bounding-box data to extract image 133

regional features offline and are less scalable. 134

2.2 Knowledge Distillation 135

Knowledge distillation (KD) is first proposed 136

in (Hinton et al., 2015), which transfers knowledge 137

embedded in the logits learned in a cumbersome 138

teacher model to a smaller student model without 139

sacrificing too much performance. Besides logits, 140

other forms of knowledge like the intermediate rep- 141

resentations and attentions (Jiao et al., 2019; Hou 142

et al., 2020) have also been used in transferring the 143

knowledge embedded in Transformer-based mod- 144

els. Recently, contrastive representation distillation 145

(Tian et al., 2019) distills the knowledge from the 146

teacher network to the student network by max- 147

imizing the mutual information between the two 148

networks, and is recently extended to transfer the 149

knowledge from the pre-trained multimodal model 150

CLIP for zero-shot detection (Gu et al., 2021) and 151

multilingual setting (Jain et al., 2021). In this paper, 152

we apply conventional KD as well as contrastive 153

KD to transfer the knowledge from the pre-trained 154

CLIP to BART. Besides, we also propose to trans- 155

fer the knowledge in CLIP image encoder to BART 156

decoder through the cross-attention. 157
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(b) The ICTI loss.

Figure 2: Architecture of the proposed VLKD method to distill multimodal knowledge from CLIP to BART. (a)
shows the TTDM and ITCL losses between the dual-stream CLIP encoders and BART encoder. (b) illustrates the
ICTI loss for image-conditioned language modeling. SG denotes the stop gradient operation, indicating that no
gradients will be back-propagated through that part of model parameters.

3 Proposed Method158

We propose to distill multimodal knowledge from159

CLIP to BART for generative multimodal tasks,160

which takes the strengths from both sides (power-161

ful multimodal representations of CLIP and text162

generation ability of BART). To this end, we pro-163

pose three objectives (Section 3.2). The overall164

architecture is illustrated in Figure 2.165

3.1 Model Architecture166

CLIP. CLIP (Radford et al., 2021) is a dual-167

stream VLP model pre-trained with a contrastive168

loss on 400 million image-text pairs. It consists169

of a text encoder which is a GPT (Radford et al.,170

2019) style Transformer model, and an image en-171

coder which can be either a Vision Transformer172

(ViT) (Dosovitskiy et al., 2020) or Residual Convo-173

lutional Neural Network (ResNet) (He et al., 2016).174

CLIP learns a joint multimodal embedding space175

with its text encoder and image encoder aligned.176

Given an input image-text pair, the image encoder177

first reshapes the image into a sequence of 2D178

patches and then maps them into 1D embeddings179

with a prepended [CLS] token using a trainable180

linear projection. These embeddings are fed into181

the CLIP image encoder together with positional182

encodings. The output embedding of the [CLS]183

token can represent the whole image. For the text184

sentence, it is bracketed with [SOS] and [EOS]185

tokens, and the output embedding of the latter is186

used as the sentence-level representation.187

BART. BART is a Transformer-based (Vaswani188

et al., 2017) sequence-to-sequence model that has189

a bi-directional encoder and a uni-directional (left- 190

to-right) decoder, which can be seen as a gener- 191

alization of the BERT (Devlin et al., 2019) and 192

GPT (Radford and Narasimhan, 2018). It is pre- 193

trained on 160GB text data in a self-supervised way 194

by performing the text span infilling task with the 195

input sentences corrupted and shuffled. Similar to 196

the CLIP text encoder, BART also tokenizes and 197

converts the input text into a sequence of embed- 198

dings, which are then fed into the BART encoder. 199

BART excels at both NLG (e.g., abstractive sum- 200

marization) and NLU tasks. 201

3.2 Training Objectives 202

To distill multimodal knowledge from CLIP to 203

BART, we propose three objective functions: 204

1) Text-Text Distance Minimization (TTDM); 2) 205

Image-Text Contrastive Learning (ITCL); and 3) 206

Image-Conditioned Text Infilling (ICTI). Dur- 207

ing training, the model parameters of CLIP are 208

frozen constantly, i.e. no gradients will be back- 209

propagated through them (marked as SG in Fig- 210

ure 2), to ensure its two encoders are still aligned 211

and the multimodal knowledge is not forgotten. 212

For each training batch with B image-text pairs, 213

denote the k-th image-text pair as xk = {xk
I ,x

k
T }, 214

and the output of multimodal encoders of CLIP and 215

BART encoder as 216

CLIPI(xk
I ) → Vk = [vk

cls,v
k
1 , . . . ,v

k
n1

], 217

CLIPT (xk
T ) → Tk = [tksos, t

k
1, . . . , t

k
n2
, tkeos], 218

BARTenc(x
k
T ) → Ek = [ekbos, e

k
1, . . . , e

k
n3
, ekeos]. 219

Here, n1 is the number of image patches, n2 and n3 220

denote the sequence lengths of the text encoder of 221
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CLIP and BART, respectively. vk
∗ , t

k
∗ ∈ Rd1 repre-222

sents the `2-normalized output embedding from the223

CLIP image and text encoder at a certain position.224

ek∗ is the unnormalized raw output embedding from225

the BART encoder. In the following, we elaborate226

on the three distillation objectives.227

3.2.1 Text-Text Distance Minimization228

To align the CLIP text encoder and BART encoder,229

i.e. making their output representations close given230

the same input text, we propose to minimize the231

`2 distance between their sequence-level output232

representations. Specifically, for the k-th input text,233

it can be formulated as234

ēknorm = Weē
k/‖Weē

k‖2,235

LTTDM =
1

B

B∑
k=1

‖tkeos − ēknorm‖2,236

where ēk ∈ Rd2 is the average of all output embed-237

dings from the BART encoder, and We ∈ Rd1×d2238

is a weight matrix to linearly project the output of239

BART encoder to CLIP’s multimodal space.240

3.2.2 Image-Text Contrastive Learning241

Contrastive training has been shown to be very ef-242

fective in cross-modal representation learning (Tian243

et al., 2020; Sigurdsson et al., 2020; Zhang et al.,244

2020; Radford et al., 2021). To further adapt the245

BART encoder to CLIP’s multimodal space, we246

optimize a symmetric InfoNCE loss between the247

output representations of the BART encoder and248

CLIP image encoder. The image-to-text contrastive249

loss Li2t is formulated as250

Li2t = − 1

B

B∑
k=1

log
exp
(
vk>
cls ē

k
norm/τ

)∑
j exp

Ä
vk>
cls ē

j
norm/τ

ä ,251

where τ is a learnable temperature parameter. Sim-252

ilarly, the text-to-image contrastive loss Lt2i is253

Lt2i = − 1

B

B∑
k=1

log
exp
(
vk>
cls ē

k
norm/τ

)∑
j exp

Ä
vj>
cls ē

k
norm/τ

ä .254

Then, the ITCL loss can be calculated as255

LITCL =
1

2
(Li2t + Lt2i).256

Note that when computing the ITCL and TTDM257

losses, we do not introduce any new linear projec-258

tions to the CLIP output features to avoid destroy-259

ing the pre-trained alignment between its image260

and text encoders. Instead, we add one linear layer 261

(parameterized by We) to project the BART en- 262

coder to CLIP’s representation space and match 263

their feature dimension. 264

3.2.3 Image-Conditioned Text Infilling 265

With only TTDM and ITCL, the BART decoder 266

is not updated at all. To consort BART encoder 267

and decoder, we propose to perform the text span 268

infilling task conditioned on the corresponding im- 269

age features. As depicted in Figure 2b, for the 270

k-th image-text pair, following Lewis et al. (2020), 271

we corrupt the input text by masking 15% of the 272

tokens with span lengths drawn from a Poisson 273

Distribution with λ = 3. 274

Considering that Vk and WeE
k are already 275

aligned in the CLIP’s multimodal space through 276

TTDM and ITCL, and having a different feature di- 277

mension with the BART decoder, we further project 278

them to the BART decoder dimension with Wi and 279

W′
e. Then, we concatenate them together as Ck 280

before feeding into the BART decoder as shown 281

in Eq.(1). As mentioned in Section 3.1, we ex- 282

plore two variants of CLIP. With a slight abuse of 283

notation, for the RN50×16, Vk is composed of rep- 284

resentations of all image patches {vk
i }

n1
i=1, while 285

for ViT-B/16, Vk consists of the representation of 286

the [CLS] token vk
cls only. 287

Note that the weight matrix W′
e is initialized to 288

be the pseudo-inverse of We, such that text rep- 289

resentations after the two projections W′
eWeE

k 290

are the closest to the original pre-trained BART en- 291

coder space at initialization1. The BART decoder 292

then interacts with Ck through standard Trans- 293

former cross-attention layers. We optimize a lan- 294

guage modeling loss LICTI by minimizing the neg- 295

ative log-likelihood in Eq.(2), in which wj denotes 296

the token to be predicted at each decoding step. 297

Ck = concat(WiV
k,W′

eWeE
k), (1) 298

LICTI = − 1

B

B∑
k=1

∑
j

logP (wk
j |wk

<j ,C
k). (2) 299

The ICTI loss is crutial for for our methodol- 300

ogy to work, as it not only coordinates the BART 301

encoder and decoder, but also enables the BART 302

decoder to understand the multimodal information 303

by recovering texts with visual clues. 304

1The pseudo inverse matrix W′
e satisfies W′

e =
argminX ‖WeX− I‖2F , where I is the identity matrix and
‖ · ‖F denotes the Frobenius Norm.
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Finally, we simultaneously optimize the summa-305

tion of three losses L as306

L = γLTTDM + LITCL + LICTI ,307

where γ is set to 103 by default, as LITCL,LICTI308

are about three magnitudes larger than LTTDM .309

3.3 Datasets for VLKD310

Our model is trained on the Conceptual Captions311

(CC3M) (Sharma et al., 2018) dataset, which con-312

tains 3.3 million image-text pairs crawled from the313

Internet. Compared to previous VLP work (Rad-314

ford et al., 2021; Jia et al., 2021; Wang et al., 2021),315

VLKD is much cheaper by leveraging several mag-316

nitudes less data. Furthermore, we experiment with317

even smaller data (1M, 100K) by uniformly sam-318

pling a subset of CC3M to test the limit of dataset319

size of VLKD, with results discussed in Section 5.320

4 Experiments321

To demonstrate the effectiveness of VLKD, we322

evaluate it on generative multimodal tasks for both323

zero-shot and finetuning. Specifically, we test the324

image captioning task, and also the VQA task under325

the open-ended scenario. Furthermore, we also run326

the model on NLU and NLG tasks to investigate the327

influence of VLKD on the text processing ability328

of the original pre-trained BART.329

4.1 Finetuning Datasets330

Image Captioning. Image captioning requires331

the model to generate a relevant description given332

an image. We use the COCO image caption333

dataset (Lin et al., 2014) with the Karpathy334

split (Karpathy and Fei-Fei, 2017). Additionally,335

we use the NoCaps (Agrawal et al., 2019) dataset336

to test the model performance when there are out-337

of-domain objects.338

Open-Ended VQA. Unlike previous works (An-339

derson et al., 2018; Chen et al., 2020; Li et al.,340

2020; Yu et al., 2021; Zhang et al., 2021; Kim341

et al., 2021b; Li et al., 2021a) that treat the VQA342

task as a discriminative problem, we let the model343

generate answers freely, which is more aligned344

with the real-world scenario of this task. We use345

the standard VQA 2.0 (Goyal et al., 2017), and346

also OK-VQA (Marino et al., 2019) which requires347

knowledge to answer questions correctly.348

NLU and NLG. For NLU, we test our model on 349

the GLUE benchmark (Wang et al., 2019), which 350

consists of nine text classification tasks. We ex- 351

clude the WNLI task as it is problematic2. For 352

NLG, we test the abstractive summarization task 353

on XSUM (Narayan et al., 2018) dataset, which 354

requires the model to comprehend long texts and 355

generate short summaries with key information. 356

4.2 Implementation Details 357

We use BART-large as the pre-trained backbone 358

NLP model, which contains 12 encoder and 12 359

decoder layers with a hidden size of 1024 and 16 360

heads in each multi-head attention (MHA) layer. In 361

total, it contains 406M parameters. As mentioned 362

in Section 3.1, we explore two variants of CLIP. 363

The RN50×16 image encoder is a ResNet-50 (He 364

et al., 2016) scaled up 16 times (Tan and Le, 2019) 365

with 146M parameters. The ViT-B/16 image en- 366

coder is a standard ViT (Dosovitskiy et al., 2020) 367

base model with 16×16 input patch size with 86M 368

parameters. For both variants, the text encoder is a 369

12-layer GPT-style Transformer with hidden size 370

512, and 8 heads in each MHA layer. 371

We use 8 Nvidia V100 GPUs for both VLKD and 372

downstream task finetuning. For VLKD, we train 373

with the AdamW (Loshchilov and Hutter, 2019) 374

optimizer and batch size 512 for 200K steps. The 375

learning rate warms up to 5e−5 within the first 6% 376

steps and then linearly decay to 0. Detailed hyper- 377

parameters for each downstream task can be found 378

in Appendix A. 379

4.3 Multimodal Zero-Shot Evaluation 380

Benefit from the knowledge distillation, especially 381

the ICTI loss, our model can perform various down- 382

stream multimodal tasks in a zero-shot manner. 383

4.3.1 Zero-Shot Image Captioning 384

During knowledge distillation, the ICTI loss can be 385

seen as an easier version of the image captioning 386

task, which asks the model to fill in the corrupted 387

locations of image descriptions. If the masking 388

ratio increases to 100%, it reduces to the image 389

captioning task. Therefore, it is intuitive to test the 390

zero-shot performance of our model. 391

Following Radford et al. (2021) and Wang 392

et al. (2021), we compose the input with a text 393

prompt and m mask tokens, i.e., “A picture of 394

[MASK]×m.” for the model to generate the cap- 395

2https://gluebenchmark.com/faq
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On what holiday do people traditionally 
eat this bird? Answer: [MASK].

Generated answer: 
Thanksgiving.

What retractable appendage could this 
animal use to destroy the chair? Answer: 
[MASK].

Generated answer: 
Claw.

What area of a school might this be? 
Answer: [MASK].

Generated answer: 
Library.

Reference caption: 
Two people sit on the beach with 
surfboards at their sides.

Generated caption: 
A couple sitting on the beach with their
surfboards in the background.

Reference caption:
A cat is laying next to a blue book.

Generated caption:
A cat reading a book on a couch in the li
ving room.

Reference caption:
A woman sitting on a bench with a dog.

Generated caption:
A young woman sitting on a bench with
her dog in the background.

(a) Zero-shot VQA.

On what holiday do people 
traditionally eat this bird? 
Answer: [MASK].

Generated answer: 
Thanksgiving.

What retractable appendage 
could this animal use to destroy 
the chair? Answer: [MASK].

Generated answer: 
Claw.

What area of a school might this 
be? Answer: [MASK].

Generated answer: 
Library.

Reference caption: 
Two people sit on the beach with 
surfboards at their sides.

Generated caption: 
A couple sitting on the beach with their
surfboards in the background.

Reference caption:
A cat is laying next to a blue book.

Generated caption:
A cat reading a book on a couch in the li
ving room.

Reference caption:
A woman sitting on a bench with a dog.

Generated caption:
A young woman sitting on a bench with
her dog in the background.

(b) Zero-shot image captioning.

Figure 3: Examples of (a) zero-shot VQA and (b) image captioning. Our model shows the ability to recognize
visual objects and generate appropriate sentences based on their properties. Furthermore, the model can bind image
objects to conceptual knowledge that is learned in the PLMs when answering questions.

OD OT B4 C M S

BUTD 3 3 36.2 113.5 27.0 20.3
w/ SCST 3 3 36.3 120.1 27.7 21.4

OSCARLARGE 3 3 37.4 127.8 30.7 23.5
w/ SCST 3 3 41.7 140.0 30.6 24.5

VL-T5 3 7 34.6 116.1 28.8 21.9
VL-BART 3 7 34.2 114.1 28.4 21.3

ViT-B/16
VLKDZERO-SHOT 7 7 16.7 58.3 19.7 13.4
VLKDFINETUNED 7 7 34.1 114.3 27.5 21.0

RN50×16
VLKDZERO-SHOT 7 7 18.2 61.1 20.8 14.5
VLKDFINETUNED 7 7 36.5 117.1 29.1 21.8

w/ SCST 7 7 38.9 131.1 29.6 23.9

Table 1: Results on the test set of the COCO image cap-
tion dataset. B4, C, M, and S denote BLEU-4, CIDEr,
METEOR, and SPICE, respectively. OD and OT indi-
cate whether extra object detectors and object tags are
used. SCST (Rennie et al., 2017) is a reinforcement
learning algorithm to further boost the performance.

tion for the image. The zero-shot results are in-396

cluded in Table 1 and 2. Note that we do not di-397

rectly compare with Wang et al. (2021) as it is pre-398

trained with the exact image captioning loss, on399

1.8 billion image-text pairs. Our zero-shot model400

achieves comparable overall performance to the401

finetuned UpDown (Agrawal et al., 2019) model402

on NoCaps dataset. As shown in Figure 3b, the403

zero-shot generated captions are plausible with cor-404

rect objects, relationships, and actions. However,405

sometimes details like colors could be omitted.406

In our experiments, we use m = 6, although407

Model
In Near Out Overall

C S C S C S C S

UpDown 78.1 11.6 57.7 10.3 31.3 8.3 55.3 10.1
w/ CBS 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1

OSCARLARGE 79.9 12.4 68.2 11.8 45.1 9.4 65.2 11.4
w/ SCST+CBS 85.4 11.9 84.0 11.7 80.3 10.0 83.4 11.4

VLKDZERO-SHOT 52.6 9.7 52.9 9.6 58.6 9.3 54.0 9.6
VLKDFINETUNED 85.0 12.4 74.2 11.3 67.6 10.4 74.4 11.3

w/ SCST 92.3 12.6 82.0 11.8 70.3 10.4 81.1 11.7

Table 2: Results on the NoCaps validation set. The
models are finetuned on the COCO training split.

it could potentially limit the length of generation, 408

we find that it has negligible influence as for each 409

[MASK] token, the model is learned to fill one to 410

three tokens depending on the context. See Sec- 411

tion 5 for a more detailed discussion about the 412

effects of number of the masks. 413

4.3.2 Zero-Shot VQA 414

Zero-shot VQA is more challenging than image 415

captioning as it requires reasoning over both the 416

image and question. As illustrated in Figure 1, 417

we construct the input by appending a text prompt 418

“Answer: [MASK].” to the question. Given the 419

context (image+question+prompt), the model is 420

required to predict the answer by recovering the 421

textual token in the [MASK] position. 422

From Table 3, compared to the strong base- 423

line Frozen (Tsimpoukelli et al., 2021), our model 424

achieves much better zero-shot VQA performance 425

on two open-ended VQA datasets with 14× fewer 426

parameters, indicating the efficiency and effective- 427
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Model #Params
VQA 2.0

val / test-dev
OK-VQA

test

Generative

FrozenZERO-SHOT ∼7B
29.5 / - 5.9

FrozenFINETUNED 48.4 / - 19.6

RN50×16

∼0.5B

VLKDZERO-SHOT 37.4 / 38.2 9.9
VLKDFINETUNED 67.4 / 68.8 36.2

ViT-B/16
VLKDZERO-SHOT 38.6 / 39.7 10.5
VLKD1%-SHOT 50.6 / 50.7 19.8
VLKDFINETUNED 69.3 / 69.8 36.3

Discriminative

UNITERLARGE - - / 73.8 -
OSCARLARGE - - / 73.6 -

Table 3: Accuracies(%) on VQA 2.0 and OK-VQA.
We categorize models into two parts: generative and
discriminative. FINETUNED means trained with VQA 2.0
data. Models are never trained on OK-VQA.

ness of VLKD. Furthermore, as shown in Figure 3a,428

our model can bind visual objects to conceptual429

knowledge embedded in the PLM to answer ques-430

tions. For example, it connects the visual object431

Turkey with the traditional food people usually eat432

at the Thanksgiving festival.433

4.4 Multimodal Finetuning Evaluation434

When finetuning VLKD on downstream multi-435

modal tasks, we keep the same input format as436

zero-shot to obtain outputs in a generative way.437

The CLIP model parameters are still frozen during438

finetuning.439

4.4.1 Finetuning Image Captioning440

In Table 1, we demonstrate that our model can441

achieve decent performance when finetuned on442

the COCO dataset. Our model outperforms VL-443

T5/BART (Cho et al., 2021) without using an extra444

object detector, which is fairly time-consuming as445

explained by Kim et al. (2021b). Compared to prior446

state-of-the-art models (E.g. OSCAR), however,447

there is still a performance gap, which we conjec-448

ture is mainly due to their usage of object tags and449

more image caption training data. Moreover, we450

also experiment on the NoCaps benchmark (Ta-451

ble 2), which limits the legal training data to only452

COCO training split. Our model achieves compa-453

rable results to OSCAR without using constrained454

beam search (CBS) (Anderson et al., 2017).455

Model In-domain Out-of-domain

UNITER 74.4 10.0

VL-T5 71.4 13.1
VL-BART 72.1 13.2
VLKD 69.2 18.6

Table 4: Accuracies(%) on VQA 2.0 Karpathy test-split.

4.4.2 Finetuning VQA 456

From Table 3, the best performance of VQA 2.0 457

is achieved by VLP models that tackle this task 458

in a discriminative way with a set of pre-defined 459

answers. However, this approach does not general- 460

ize to real-world scenarios and cannot be directly 461

applied to more diverse datasets (e.g., OK-VQA). 462

Differently, Frozen (Tsimpoukelli et al., 2021) 463

and our proposed VLKD generate answers in an 464

open-ended manner and can perform zero-shot 465

inference. Based on the zero-shot performance, 466

VLKD shows fast adaptation ability to surpass the 467

fully-finetuned Frozen with only 1% training data 468

and 14× fewer parameters. 469

Furthermore, following (Cho et al., 2021), we 470

test the performance on out-of-domain questions 471

with rare answers using Karpathy test-split (Ta- 472

ble 4). Our method shows a salient advantage on 473

out-of-domain questions due to the benefit from 474

VLKD and its generative nature. 475

4.5 Evaluation of NLU and NLG 476

Table 5 shows results on the GLUE benchmark. 477

Although prior VLP models are either initialized 478

from the pre-trained BERT model, or trained by a 479

text-only language modeling loss together with the 480

vision-language (VL) losses, they generally suffer 481

from the weakened performance of NLU. For ex- 482

ample, SIMVLM performs significantly worse than 483

BART, though trained with five times more textual 484

data. We speculate that the weakened NLU ability 485

of these models is caused by the catastrophic for- 486

getting of the pre-trained BERT weights during the 487

multimodal pre-training. Moreover, simultaneous 488

optimization of multimodal and text-only objec- 489

tives potentially shifts the latter to be an auxiliary 490

loss, making the NLP ability not as effective. 491

On the other hand, the resulting model of VLKD 492

performs only slightly worse than the original 493

BART and significantly outperforms BERT, as the 494

original knowledge embedded in BART is well 495

maintained. 496

Additionally, as presented in Table 6, we also 497
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Model CoLA SST-2 RTE MRPC QQP MNLI QNLI Avg.

BERT�LARGE (Devlin et al., 2019) 60.6 93.2 70.4 82.9/88.0 91.3/87.9 86.4 92.3 82.6
BART�LARGE (Lewis et al., 2020) 62.8 96.6 87.0 86.7/90.4 92.5/89.3 90.0 94.9 87.2

VisualBERT† (Li et al., 2019) 38.6 89.4 56.6 71.9/82.1 89.4/86.0 81.6 87.0 74.0
UNITER† (Chen et al., 2020) 37.4 89.7 55.6 69.3/80.3 89.2/85.7 80.9 86.0 73.1
VL-BERT† (Su et al., 2020) 38.7 89.8 55.7 70.6/81.8 89.0/85.4 81.2 86.3 73.6
VilBERT† (Lu et al., 2019) 36.1 90.4 53.7 69.0/79.4 88.6/85.0 79.9 83.8 72.1
LXMERT† (Tan and Bansal, 2019) 39.0 90.2 57.2 69.8/80.4 75.3/75.3 80.4 84.2 71.6
SIMVLM‡ (Wang et al., 2021) 46.7 90.9 63.9 75.2/84.4 90.4/87.2 83.4 88.6 77.4

VLKD 59.1 95.5 81.2 87.5/91.1 92.1/89.2 89.6 94.3 85.7

Table 5: Results on the GLUE development set (single task single models). We report the Matthews correlation for
CoLA, accuracy/F1 for MRPC and QQP, and accuracy for the rest of the tasks. The performance of models that are
marked by � are taken from (Lewis et al., 2020), † are from (Iki and Aizawa, 2021), and ‡ are from (Wang et al.,
2021). Compared to other VLP models, our VLKD model has a great advantage in text-only NLP tasks.

run VLKD on the abstractive summarization task498

to evaluate its NLG performance. The gap between499

VLKD and its backbone BART is negligible. Over-500

all, we empirically demonstrate that VLKD enables501

the backbone PLM to perform multimodal tasks502

without hurting its original NLP ability.503

Model ROUGE-1 ROUGE-2 ROUGE-L

BARTLARGE 45.14 22.27 37.25
VLKD 44.86 22.06 36.95

Table 6: Abstractive summarization on XSUM. We use
the best performing checkpoint of the RN50×16 variant.

5 Ablation Study504

Knowledge Distillation Objectives. Table 7505

shows the ablation on the knowledge distillation506

objectives, except the ICTI loss which is necessary507

for our method to work. Without TTDM or ITCL,508

we observe a clear degradation of zero-shot perfor-509

mance on both VQA 2.0 and COCO image caption510

datasets. It is worth noting that ITCL contributes511

more to the image captioning task, which requires512

a deeper perception of visual features to generate513

captions. Oppositely, TTDM helps more for the514

VQA task, which involves reasoning over the ques-515

tion and image features. Removing both of them516

incurs a large performance drop, which demon-517

strates the importance of aligning the embedding518

space between CLIP and BART.

Model VQA 2.0 (val) COCO Caption (test)

VLKDViT-B/16
ZERO-SHOT 38.6 58.3

w/o TTDM 35.5 55.7
w/o ITCL 36.3 54.1
w/o Both 30.1 48.6

Table 7: Ablation study on three distillation objectives.
519

Number of Masks. Furthermore, we also test 520

the influence of the number of masks for zero-shot 521

image captioning in Table 8. As discussed in Sec- 522

tion 4.3.1, it has a trivial influence and we achieve 523

performance when m = 6.

#masks 5 6 7 8

CIDEr 59.7 61.1 60.6 59.6

Table 8: Zero-shot image captioning on COCO test set
using VLKDRN50×16, with varying number of masks.

524

Dataset Size of Distillation. In Table 9, we vary 525

the size of dataset used for knowledge distillation. 526

VLKD only has a slight performance drop when 527

the size is reduced from 3M to 1M, and a sharp 528

drop when further reduced to 100K.

VQA 2.0 (val) COCO Caption (test)

VLKD3M 38.6 58.3
VLKD1M 38.3 56.2
VLKD100K 33.8 45.1

Table 9: Zero-shot performance of VLKDViT-B/16 on two
datasets, with varying dataset size for distillation.

529

6 Conclusion 530

Recent dual-stream VLP models are powerful in 531

various multimodal classification/retrieval tasks, 532

but their ability of multimodal generation or NLP 533

tasks is restricted. In this paper, we propose a novel 534

distillation method to align CLIP’s multimodal en- 535

coders and BART textual encoder to the same space 536

efficiently, which allows multimodal generation un- 537

der zero-shot and fully finetuned setting without 538

losing the original BART’s NLP ability. Empirical 539

results on various NLP and multimodal tasks verify 540

the efficacy of the proposed method. 541
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Hyper-paramters ViT-B/16 RN50×16

CLIP image features CLS All tokens
Batch size 576 512
Optimizer AdamW, β = (0.99, 0.999)
Learning rate 5e-5
Weight decay 0.01
Eps 1e-6
Temperature τ Initialized to 0.07
Warmup steps 12K
Total steps 200K
Gradient accumulation 2
Gradient clipping 5.0

Table 10: Hyper-parameters of VLKD.

Hyper-paramters VQA
Image

captioning

Batch size 32 40
Total epochs 10 20
#Masks m 2 6
Beam search size 1 6
Optimizer AdamW, β = (0.99, 0.999)
Learning rate 6e-5
Weight decay 0.01
Eps 1e-8
LR warmup First epoch
Gradient clipping 5.0

Table 11: Hyper-parameters for two multimodal tasks.

A Hyper-parameters788

In this section, we show the hyper-parameters of789

vision-language knowledge distillation (VLKD), as790

well as downstream task finetuning.791

For VLKD, the hyper-parameters are shown792

in Table 10, for both two CLIP variants we ex-793

plored. For finetuning multimodal downstream794

tasks, we use the hyper-parameters shown in Ta-795

ble 11. Within each task, we use the same setting796

for multiple datasets.797

For the GLUE benchmark, we use the LAMB op-798

timizer (You et al., 2020) to train for 10 epochs. We799

conduct a hyper-parameter grid search with batch800

size={16, 32, 64}, lr={1e-4, 5e-4, 1e-3}, weight801

decay={1e-4, 1e-3}. We warm up the learning rate802

in the first epoch, then linearly decay it to zero.803

For XSUM, we directly follow the hyper-804

parameters used in Lewis et al. (2020).805

B More Examples of Zero-shot Inference806

In Figure 4, we show more examples of zero-shot807

image captioning. In Figure 5, we depict more808

Reference caption: 
A big cat laying down in a chair on a porch.

Generated caption: 

A cat lounging on a chair in a hammock.

Reference caption: 
A little girl holding up a pink umbrella.

Generated caption: 

A girl holding a pink umbrella in the rain.

Reference caption: 
A white boat out in the middle of the 
ocean.

Generated caption: 

A small fishing boat in the middle of the 
ocean.

Reference caption: 
A small herd of elephants standing in the 
grass.

Generated caption: 

A herd of elephants in a field of grasses.

Figure 4: More examples of zero-shot image captioning.

cases of the results of zero-shot open-ended VQA. 809
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What fruit is present on 3 items?
Candidate answer(s):
Apple.

Generated answer: 
Apple.

Where is the cell phone?
Candidate answer(s):
On table; In bowl; Yes.

Generated answer: 
On table.

What are the people doing?
Candidate answer(s):
Standing; Playing; Talking.

Generated answer: 
Playing.

What type of fabric is the hat made of? 
Candidate answer(s):
Cotton; Wool; Denim.

Generated answer: 
Cotton.

What's reflecting from the mirror?
Candidate answer(s):
Light; Wall; Shower.

Generated answer: 
Light.

Is the zebra in it's natural habitat?
Candidate answer(s):
Yes.

Generated answer: 
Yes.

What is the animal on top of? 
Candidate answer(s):
Laptop; Cat; Computer.

Generated answer: 
Computer.

Why is there a line? 
Candidate answer(s):
No parking; Parking; Caution; Curb.

Generated answer: 
Parking.

Figure 5: More examples of zero-shot VQA.
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