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Abstract

Current state-of-the-art spatial reasoning-enhanced VLMs are trained to excel at
spatial visual question answering (VQA). However, we believe that higher-level
3D-aware tasks, such as articulating dynamic scene changes and motion planning,
require a fundamental and explicit 3D understanding beyond current spatial VQA
datasets. In this work, we present SpatialPIN, a framework designed to enhance
the spatial reasoning capabilities of VLMs through prompting and interacting
with priors from multiple 3D foundation models in a zero-shot, training-free
manner. Extensive experiments demonstrate that our spatial reasoning-imbued
VLM performs well on various forms of spatial VQA and can extend to help in
various downstream robotics tasks such as pick and stack and trajectory planning.

1 Introduction

Equipping vision-language models (VLMs) the capacities of spatial reasoning unlocks exciting
applications, such as general-purpose reward annotation [52], robotic data generation [61], and
grounding 3D object affordances [26, 38]. However, the spatial reasoning capabilities of VLMs
on fine-grained spatial understanding tasks are somewhat limited. Current state-of-the-art (SOTA)
spatial reasoning-enhanced VLM [12] is mostly tested on spatial visual question answering (VQA),
such as determining objects’ relative positions and orientations; experiments on higher-level tasks,
such as scene comparisons and trajectory planning, which require more nuanced comprehension, are
underexplored.

Many works enhance the spatial reasoning capabilities of VLMs by training/fine-tuning them on
standard spatial VQA datasets [12]. As a result, VLMs primarily learn surface-level associations
between image-text-data triplets. Given the scarcity and difficulty of obtaining spatially rich embodied
data or high-quality human annotations for 3D-aware queries, we hypothesize that these VLMs may
not generalize to questions outside their dataset distribution or adapt to more challenging tasks that
require an advanced level of spatial understanding.

Recent studies [73, 7, 65, 69] in image space understanding show that VLMs, equipped with internet-
scale language knowledge, and multimodal foundation models capture complementary knowledge
that can be combined to conduct new tasks spanning both modalities without additional training.
Given the recent advancements in 3D foundation models [4, 41, 29], this work explores whether there
exists an alternative approach to enhance VLMs with higher-level spatial-awareness by incorporating
3D priors from these models.

To this end, we propose SpatialPIN, a framework that utilizes progressive prompting and interactions
between VLMs and 2D/3D foundation models as “free lunch” to enhance spatial reasoning capabilities
in a zero-shot, training-free manner. By using these foundation models to decompose, comprehend,
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and reconstruct an explicit 3D representation, SpatialPIN grasps the core understanding of the 3D
space presented by the 2D image. This allows generalizations to various 3D-aware tasks, from VQAs
to 3D trajectory planning.

1 2 3 4

The task is to pick up 
the plastic bottle and 
place it inside the 
trash can. Plan for it. 

User

SpatialPIN
First, align the plastic bottle with the trash can by rotating the bottle approximately 23.1 
degrees around its local z-axis. This adjustment aligns the bottle's x-axis (0.9254, -
0.3781, 0.0246) with the trash can's x-axis (0.9982, 0.0398, -0.0447). Next, move the 
bottle by [0, 0, 5] cm relative to the trash can's 3D center to place it securely inside the 
trash can. Using RRT*, the planned 3D trajectory is ...”

You are a robotic grasper. The 
task is to grasp the carrot. 
Determine your goal location and 
closing distance in centimeters to 
ensure a firm grip on the carrot.

To ensure a firm grip, the grasper should target the center of the carrot at coordinates 
(0.7399, 0.5185, 0.1503). This midpoint takes into account the carrot's width of 5.44 cm. 
The grasper should close to approximately 5.3 cm, just less than the carrot's width, for an 
optimal grasp.

User

SpatialPIN

Figure 1: We present SpatialPIN, a framework to
enhance the spatial reasoning capabilities of VLMs
through prompting and interacting with 3D priors in
a zero-shot, training-free manner.

We provide an extensive empirical study com-
bining multiple off-the-shelf and handcrafted
datasets, ranging from fundamental spatial ques-
tions regarding relative positions and orienta-
tions to providing fine-grained 3D information
on objects’ locations, sizes, inclinations, and
dynamic changes, and plan for robotics tasks
with full 3D trajectories. Results show that this
straightforward approach significantly outper-
forms SOTA VLMs trained from extensive spa-
tial VQAs (see SpatialPIN examples in Figure
1), consolidating our belief that a truly 3D-aware
VLM can actually be imbued by simply inject-
ing explicit, fundamental knowledge of the 3D
scene. With the entire framework being fully
modularized, each component can be easily re-
placed with the latest improvements within its
specific domain.

In summary, our main contributions are threefold:

• We investigate the problem of equipping VLMs with 3D reasoning capabilities without
fine-tuning on large spatial VQA datasets.

• We propose SpatialPIN, a modular plug-and-play framework that progressively enhances
VLM’s 3D reasoning capabilities by prompting and interacting with 3D foundational models.

• We show that SpatialPIN unlocks 3D-aware applications including spatial VQA and both
classic and novel robotics tasks, supported by extensive experiments.

2 Related Work

VLM Grounding With the recent birth of powerful LLMs and VLMs [8, 40, 2], the task of VLM
grounding, or combining generative language models with real-world data to adapt to specific cases,
has gained significant popularity. Several recent works focused on fine-tuning these LLMs for a wide
range of downstream applications, such as interactive decision making [34], multi-task agents [62],
or even tasks in interactive environments [67, 11]. A close work to ours is Socratic Model [73], a
framework of combining multiple foundation models to unleash LLMs in downstream tasks. However,
this work still focuses on tasks in 2D pixel space understanding of images. There remains many
challenges in the 3D world to combine information for full scene understanding, which we hope to
tackle in our paper.

VLM Spatial Understanding Many VLMs encompass the ability of image-space reasoning and
understanding [13, 33, 40]. There are even efforts in incorporating these understandings into image
space manipulations and editting [7, 65]. However, the current ability of VLMs to fully understand a
3D scene and the potential interactions within this scene is still rather limited. Several works build
from this foundation and establish datasets to help with spatial reasoning/understanding [30, 39, 45].
Recently, SpatialVLM [12] proposed fine-tuning a VLM on 3D-VQA datasets to enhance the precision
of VLMs on 3D understanding tasks. Nevertheless, using a 3D-VQA dataset only provides a partial
picture to the complete 3D understanding of an image, and could lead to suboptimal performances
under out-of-distribution tasks. In this work, we hope to introduce holistic 3D information from
multiple 3D foundation models via prompting and interactions as a way to enhance VLMs with a
comprehensive 3D understanding given RGB inputs.

3 Method
Given an RGB image I ∈ RH×W×3 of a scene with K unknown objects and a spatial task Q, our goal
is to inspire VLMs with spatial reasoning capabilities and solve Q with fine-grained 3D understanding.
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B) Understanding 3D Scene

Language-Guided
Segmentation 

Zero-Shot 3D Scene 
Reconstruction

Perspective fields & metric depth 

A) Understanding 2D Scene

“Object 0: laptop of color rose 
gold, texture metallic at 
location left-center.
...”

Understanding 
Objects by 
ConstrainingVLM

Fine-Grained 3D 
UnderstandingVLM

“Visual cues reasoning ...
Spatial data reasoning ...
Conclusion: horizontal.”

“w.r.t. your info, I understand:
Obj 0 spatial context ...
Obj 0 size ... 
Obj 0 - Closest per direction ...
...”

Object spatial 
information

Camera, Depth & 
Scene Size Estimation 

Inpainted objects & background

Coarse 3D 
UnderstandingVLM

Scene size 
information

Reconstructed 3D scene

Q: What is the distance between the 
laptop and the camera?

Q: How do I stack the can on the 
bowl?

Input RGB Image & Spatial Tasks

1) Spatial VQA
A: The distance between the laptop 
and the camera is 29.16 cm.

2) Planning with External Tool
A: To stack the can on the bowl, the 
3D trajectory is ...

Solving with Spatial Reasoning

Scene 
perspective

Figure 2: SpatialPIN. Our plug-and-play framework is fully modularized and designed for zero-shot deployment.
Each module can be easily replaced with the latest updates. Exact prompts for VLMs are in Appendix.

To prevent the models from overfitting to the standard problems from spatial VQA datasets [12], we
hope to derive a method that utilizes fundamental 3D foundation models to provide explicit scene
understandings, then leverage the generalization capabilities of VLMs to tackle unforeseen tasks—all
within a zero-shot, training-free manner.

Our modular pipeline, SpatialPIN, enhances VLMs’ spatial understanding of an image through
progressive interactions with the scene decomposition, comprehension, and reconstruction processes
with prompting. For image scene understanding (Sec. 3.1), we use VLM to describe objects by
appearance and 2D location, complemented by language-guided segmentation and repainting models
to obtain occlusion-free object masks. Elevating 2D understanding to coarse 3D (Sec. 3.2), we use
metric depth estimation and perspective fields to estimate the 3D scene size and conduct perspective
canonicalization with VLM. For fine-grained 3D understanding (Sec. 3.3), we partially reconstruct
the 3D scene, with the full 3D representation of foreground objects and the background as a plane.
With the reconstructed 3D scene, we summarize spatial information and prompt it to the VLM for
various downstream tasks.

3.1 2D Image Scene Understanding
Prompting: Objects Understanding by Constraining We start with querying VLM to identify and
understand objects given I . We explicitly ask VLM to describe the objects by precise color, texture,
and 2D spatial locations. This step is vital for two reasons: 1) enhance VLM’s understanding of the
objects, 2) differentiate between items of similar or identical categories and appearances.

As a concrete example, given the left image of Fig. 2, VLM outputs: “

object 0: laptop of color rose gold, texture metallic at location left-center.

object 1: camera of color black, texture smooth at location center-right. ...”

2D Representations Refinement The concise descriptions of identified objects are used as input
text prompts for a language-guided segmentation model, enabling the acquisition of K segmentation
masks {Mocc

k }Kk=1, with each mask corresponding to a unique object.

However, an object i ∈ [1,K] may be occluded by other object(s), leading to an incomplete mask
Mocc

i , which may be burdensome when we elevate the image to a 3D representation in the later stage.
To resolve this, we create an inpainting mask, M inp

i , for each object, in which all objects except
the one itself are removed and replaced with white pixels. The inpainted masks are again fed to the
language-guided segmentation model along with input text prompts such that occlusion-free object
masks, {Mof

k }Kk=1, are obtained. This two-step segmentation process for object i is formulated as:

Mocc
i = seg(I, τi), Mof

i = seg(inpaint(M inp
i ), τi), (1)

where seg denotes the language-guided segmentation and τi denotes the description of object i. In
practice, to cleanly remove objects without residual fragments for inpainting, we apply dilation to
and expand the white areas. Inpainted background Ibg is acquired by removing and replacing all
objects with dilated white pixels.
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3.2 Coarse 3D Scene Understanding

Scene Size Estimation Using the estimated metric depth [29] and estimated camera intrinsic matrix
by finding field of view (FOV) through perspective fields [29], we backproject to determine the
dimensions of the 3D spatial scene.

Prompting: Perspective Canonicalization 3D information without any knowledge regarding the
camera perspectives lead to ambiguities [12]. Consider a question “What is the orientation of the
bowl relative to the laptop?” with the input scene in Fig. 2, but taken from a top-down perspective.
VLMs may output “downward to the left”, but the correct answer should be "front-left" because
humans perceive orientation from a horizontal angle. To address this, we provide the VLM with I ,
estimated scene size, and maximum and minimum dimensions, allowing it to reason about the camera
shot angle (horizontal/top-down/bottom-up). Scene size information helps differentiate shot angles
by providing clues about spatial layout and object proportions. For instance, if the depth variation is
small, the VLM can infer a top-down or bottom-up angle along with visual cues.

As a concrete example, given the left image of Fig. 2, VLM outputs:
“Visual cues reasoning: Objects are viewed from the side, indicating the camera is positioned horizontally

with a slight elevation.

Spatial data reasoning: The depth varies significantly from 57.50 cm to 115.00 cm, indicating the camera

captures the scene across different distances, supporting a horizontal perspective.

Conclusion: horizontal.”

3.3 Fine-Grained 3D Scene Understanding

(a) Side View (b) Active Camera View (c) Original Input Image 

camera

Figure 3: Our method of partial 3D scene reconstruc-
tion (a). The reconstructed scene (b) and the input image
(c) show high alignment.

We partially reconstruct the 3D scene with full
representation of foreground objects while sim-
plifying the inpainted background as a plane,
as shown in Fig. 3(a). We summarize spatial
information from the reconstructed scene and
prompt it to the VLM. Please see our Appendix
for implementation details about reconstruction.

Scene Initialization Given the occlusion-free
object masks, {Mof

k }Kk=1, we use single-view 3D reconstruction model [41] to acquire object 3D
models, {Ok}Kk=1, with canonical poses determined during reconstruction. Pinhole camera is set
at the origin, looking at positive depth-axis. With the estimated background plane size (Sec. 3.2),
we move the background plane, Obg (visually identical to Ibg), along the depth-axis to fit precisely
within the camera.

Scene Reconstruction To resolve the imprecision of backprojection, our goal is to position object
3D models into the reconstructed 3D scene without visual discrepancies and ensure accurate depth.
Instead of using naive backprojection, for an object i ∈ [1,K], we perform raycasting from object
3D center tci on the camera plane to object 3D center tbgi on the background plane with metric depth
di. The 3D coordinate ti of object i is:

di =
∣∣∣Idep(center(Mof

i )
∣∣∣ , ti = tc +

di∣∣∣tbgi − tci

∣∣∣ × (tbgi − tc). (2)

The rotation Ri of the 6D pose of object i, Pi = [Ri | ti] is explained previously. After integrating
all 3D object models into the 3D scene, we refine each object’s scale to accurately reflect depth
variations by rendering binary masks and evaluate the length of their contour lines relative to their
occlusion-free masks, through the lens of the pinhole camera, tc.

We determine the principal axes (x-axis, y-axis, and z-axis) of each object using the minimal oriented
bounding box (OBB), which is essential for unlock novel applications.

Prompting: Objects and Spatial Context Understanding The reconstructed 3D scene from I
with accurate object poses and scales is denoted as V0. As the final step of progressive prompting,
we feed VLM the fine-grained 3D information derived from V0, grounding on the canonicalized
perspective (Sec. 3.2). For example, with the input image in Fig. 2 and a horizontal camera shot
angle, depth corresponds to the positive y-axis (similarly, in a top-down/bottom-up view, depth is
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SpatialPIN (Ours)User

Is the laptop further to camera compared 
to the mug?

Measure the height difference between two 
white bowls.

The laptop is 75.0 cm from the camera, 
while the mug is 54.7 cm from the camera, 
making the laptop further.

The height difference between bowl 1 
(12.0 cm) and bowl 2 (9.4 cm) is 
approximately 2.6 cm.

Along which axis (W, D, H) is the box 
more tilted?

What is the relative angle between the 
box and the bottle?

The tilt along the z-axis (Height) is the 
largest (about 0.798), indicating the box 
is more tilted along the Height (H) axis.

Using the dot product formula, the 
relative angle between the box and the 
bottle is approximately 47.41 degrees.

Which objects rotate across the images?

How far does the milk box move?

By object principle x-axes, both the 
knife and the milk rotate around their 
vertical axes, presenting a different 
face.

By observing the change in the 3D center, 
the milk box moves a distance of 
approximately 22.26 cm. 

SpatialVLM

Yes, the laptop is further away from the 
camera compared to the mug.

The two white bowls on the table have 
different heights, with one being taller 
than the other.

The box is more tilted along the 
horizontal axis, as it is leaning on the 
table and appears to be at a slight angle.

The box is positioned at a diagonal angle 
to the bottle on the table.

The knife and the cutting board rotate 
across the image, while the box of apples 
remains stationary.

The milk box moves from the counter to 
the stove, indicating that it is being 
used for cooking or heating.

IaAD-VQA

IaOR-VQA

IrSD-VQA

Figure 4: Qualitative examples of spatial VQA. SpatialPIN outputs answers with fine-grained 3D reasoning.
Zoom in for better view.

the negative/positive z-axis) in a right-handed coordinate system. The width and height axes can be
determined accordingly, aligning each axis’s orientation with human perception.

We feed VLM a paragraph describing the objects’ poses, sizes, and principal axes in physical units,
alongside their spatial relationships. To augment VLM’s understanding, we also feed V0 with
visualized object axes (see Fig. 2B). Visualizing 3D spatial information is pivotal in improving VLMs’
understanding of 3D spatial contexts derived from 2D images, validated by 3DAxiesPrompts [37].
Yet, we want to emphasize that we do not feed hardcoded information, such as objects’ relative
distances and inclinations, to VLMs. Instead, we aim for the summarized 3D information to enhance
VLMs’ general spatial understanding.

As a concrete example for the left image on Fig. 2:
“Obj 1 spatial context: 3D center: [7.0, 100.0, 9.0] cm; X-axis (right): [0.9529, -0.2456, 0.1779];

Y-axis (back): [-0.3528, 0.8746, 0.3327]; Z-axis (up): [-0.1761, -0.3285, 0.9279]

Obj 1 size: 13.54 cm x 9.37 cm x 9.50 cm (WxDxH)

Obj 1 closest per direction: left: Obj 0; right: Obj 2 ...”

3.4 Combining External Tools for Downstream Tasks
By partially reconstructing the 3D scene with visual alignments, our framework enables VLMs to use
tools like rapidly-exploring random tree star (RRT*) [31] to generate accurate, collision-free paths
based on task specifications (more details in Appendix). This capability unlocks novel and interesting
applications when combined with task-specific prompting techniques, shown in Experiments (Sec.4).

4 Experiments

We conduct experiments to answer the following questions: 1) Does our framework enhance the
general spatial reasoning capabilities of VLMs, and how well does it perform? 2) What novel
applications does our framework unlock for VLMs, and how well do we perform in these applications?
3) How effective is each module in our framework?

Since we evaluate our approach on a wide range of tasks to test VLMs’ higher-level spatial awareness,
some tasks are novel and lack existing/open source datasets. Therefore, for all our experiments, we
use a combination of 4 existing datasets and 2 hand-crafted datasets.

Implementations The language-guided segmentation model is Language Segment-Anything [44]
and the repainting model is LaMa [55]. We use One-2-3-45++ [41] for single-view 3D reconstruction,
perspective fields [29] for camera intrinsic estimation, and ZoeDepth [4] for depth estimation. For
partial 3D scene reconstruction, we use Blender [17] as the 3D software. All inference is run on 1
NVIDIA A10 GPU with 24GB RAM.

4.1 Spatial Visual Question Answering

We experiment on the basic form of spatial VQA introduced by SpatialVLM (IaOR-VQA), and two
new forms introducted by us (IaAD- & IrSD-VQA). For IaOR-VQA, please check SpatialVLM [12]
for details. For IaAD- & IrSD-VQA, please see our Appendix.
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Intra-Image Object Relations VQA (IaOR-VQA) As the basic form of spatial VQA, it involves
spatial reasoning about object relative orientations and sizes. This is divided into qualitative (e.g., “is
[A] in front of [B]”, “is [A] smaller than [B]”) and quantitative (e.g., “how far apart are [A] and [B]”,
“measure the width of [A]”) questions.

We follow the evaluation method of SpatialVLM [12]. Since SpatialVLM did not release their
evaluation dataset, we reproduce one using RGBD images from NOCS [57] (object dataset), RT-1 [6],
and BridgeData V2 [56] (robotics manipulation datasets). We sample 13, 20, and 20 distinct scenes
from each. We generate QA pairs using the SpatialVLM data generation pipeline [51], followed
by manual refinement. We check correctness for qualitative questions and calculate distances
for quantitative questions. We annotate 300 qualitative and 200 quantitative spatial VQA pairs
(SpatialVLM has 331 and 215 for each).

Intra-Image Angular Discrepancies VQA (IaAD-VQA) We propose a new form of Spatial VQA
that needs spatial reasoning about objects’ inclinations. It includes qualitative (e.g., “is [A] tilted”, “is
[A] more tilted than [B]”) and quantitative questions (e.g., “how many degrees is [A] tilted vertically”,
“measure the angle between [A] and [B]”).

Since this form of Spatial VQA involves out-of-plane rotations, YCBInEOAT [64] (object tracking
dataset) is a suitable choice. We sample 30 scenes from it and annotate 50 questions each for
qualitative and quantitative spatial VQA pairs.

Inter-Image Spatial Dynamics VQA (IrSD-VQA) We further propose a more challenging form of
Spatial VQA. Given two images with multiple objects, the objects in the second image may move,
rotate, incline, or the image may have a change in camera angle. The VLM needs to reason about
these changes. Example qualitative questions include “does [A] move, rotate, or incline”, “does [A]
incline along the y-axis” while quantitative questions include “how far does [A] move”, “how many
degrees does [A] rotate horizontally”.

As it is difficult to find a dataset that meets these requirements, we craft our own. We capture 20
image pairs using an iPhone 12 Pro Max, with each image containing 1− 5 objects, and annotate 50
questions each for qualitative and quantitative spatial VQA pairs.

Results The results in Tables 1 and 2 on qualitative and quantitative IaOR-VQA demonstrate that
providing various VLMs fine-grained 3D information enhances their spatial reasoning capacities by
a large margin. Surprisingly, VLMs with math and geometry reasoning capacities (e.g., GPT-4V,
GPT-4o) show substantial improvements with this information.

Table 1: Qualitative IaOR-VQA. We exclude comparisons to PaLI [14], PaLM-E [20], and PaLM 2-E [3] as
they are not open source, and include experiments with GPT-4o [1] in addition to GPT-4V [47], LLaVA-1.5 [40],
and InstructBLIP [18]. We use the HF version of SpatialVLM [51].

GPT-4V GPT-4o LLaVA-1.5 InstructBLIP SpatialVLM
w/o ours w ours w/o ours w ours w/o ours w ours w/o ours w ours

Accuracy % 70.7 86.3 69.0 87.3 70.0 83.0 62.3 79.3 76.7

Table 2: Quantitative IaOR-VQA. SpatialVLM measures the accuracy by the percentage of answers that fall
within 0.5x to 2.0x of the ground truth value. We also evaluate within narrower ranges of 0.75x to 1.33x and
0.9x to 1.11x. “Output number” means VLMs produce number in the response instead of vague descriptions.

GPT-4V GPT-4o LLaVA-1.5 InstructBLIP SpatialVLM
w/o ours w ours w/o ours w ours w/o ours w ours w/o ours w ours

Output numbers % 0.8 98.5 31.5 99.5 23.5 97.0 28.5 98.5 91.0

In range [50, 200] % 0.0 73.5 14.0 74.5 16.5 43.0 8.0 31.5 33.5

In range [75, 133] % 0.0 69.5 8.5 70.5 6.0 29.0 2.5 22.0 20.5

In range [90, 111] % 0.0 54.5 3.0 55.0 2.0 14.5 0.0 11.5 7.5

The results in Tables 3 and 4 demonstrate the effectiveness of our approach on both qualitative and
quantitative IaOR-VQA and IrSD-VQA tasks. Notably, the performance on quantitative IaOR-VQA
is suboptimal compared to quantitative IrSD-VQA, despite the latter being more challenging. We
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Table 3: Qualitative IaAD-VQA & IrSD-VQA. Since we test SpatialPIN on one VLM backbone for our
proposed spatial VQA, for fair comparison, we should use SpatialVLM backbone (PaLM 2-E [3]). However,
since it is not open source, we use GPT-4o as our backbone, as it shows the most improvement with our
framework.

IaAD-VQA IrSD-VQA

GPT-4o GPT-4o + ours SpatialVLM GPT-4o GPT-4o + ours SpatialVLM

Accuracy % 68 84 62 64 82 54

Table 4: Quantitative IaAD-VQA & IrSD-VQA.
IaAD-VQA IrSD-VQA

GPT-4o GPT-4o + ours SpatialVLM GPT-4o GPT-4o + ours SpatialVLM

Output numbers % 38 100 66 30 100 78

In range [50, 200] % 8 64 12 10 68 26

In range [75, 133] % 2 42 6 4 54 12

In range [90, 111] % 0 30 2 2 38 4

believe this is because, for quantitative IrSD-VQA, the VLM sometimes confuses the camera and
world coordinate frames, comparing the object’s principal axes with the world axes to reason about
changes in angles.

Fig. 4 presents qualitative examples on all forms of spatial VLM.

4.2 Robotics Pick and Stack

Pick and stack is a classic robotics task. Given a robot’s egocentric observation of a scene with
multiple objects and a task description, our pipeline uses traditional planning to solve the problem.
This task demands advanced spatial reasoning, as the model must comprehend 3D locations, sizes,
and physical properties of the objects (i.e., how much to grasp and how high to drop? Is the object
deformable or articulated so the robotic grasper needs to grasp more firmly?). For instance, grasping
and stacking a soft toy bear on a cube is significantly different from stacking a solid apple on a mug.
The model reasons about grasping and stacking policies, directly outputting 3D trajectories for the
robot’s end effector using traditional path planning algorithm as external tool.

Set-Up We set up the pick-and-stack problem in the ManiSkill [22] simulator, applying real-world
physics properties. Rigid and articulated objects are chosen from the YCB dataset [10] and are
randomly allocated on the table within the robotic arm’s reach, with observations from different
perspectives. We create 50 scenes. Since robot observations from simulated scenes suffer from
sim2real gap and consider that most real-world robots have depth sensors, we use ground truth camera
matrix and depth.

We compare our method to the following baselines: 1) direct 3D information output from our
framework without GPT-4o [1] reasoning about physics and object properties and 2) SpatialVLM
with our RRT* trajectory generation module.

Results Table 5 shows the results, with a qualitative example demonstrated in Fig. 5. The results
indicate that using precise 3D information from our framework significantly improves the success
rate, and incorporating VLM reasoning further enhances performance.

4.3 Discovering and Planning for Robotics Tasks from a Single Image

We present a novel task that requires advanced spatial reasoning capacities of VLMs. Given a single
RGB image of any scene comprising unknown environments and objects, the VLM discovers potential
tasks and plans their execution with full 3D trajectories, with the motivation that it can be used for
robot learning in future research. To solve this complex task and visualize the execution using our
framework, we introduce: 1) a task proposal approach using VLM, 2) a novel axes-constrained 3D
planning approach that enables spatial reasoning-imbued VLM to plan the object motion based on
the proposed tasks by specifying waypoints. Please see Appendix for the pipeline and details.

Dataset We create a diverse evaluation dataset by combining self-captured photos (38) using an
iPhone 12 Pro Max and scenes (13) from NOCS [57]. Our dataset covers diverse scenes (e.g., office,
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1 2 3 4

“The robot should grasp the banana at its thinnest side with a width of approximately 3.5 cm (just less than the 
banana's 3.66 cm) for a firm grip. It should then lift the banana to 22.26 cm (cracker box height of 17.6 cm plus 
banana height of 3.66 cm plus a 1 cm margin) and drop it from 22.16 cm to stack it securely on the cracker box. Using 
RRT*, the planned 3D trajectory is ...”SpatialPIN

User

“Banana size: 19.8 cm x 6.9 cm x 3.66 cm (WxDxH). Cracker box size: 9.21 cm x 4.51 cm x 17.6 cm (WxDxH). Task: grasp 
and stack the banana on the cracker box. Determine the grasper's closing distance and the optimal drop height in cm, 
using the image and spatial information.”

Input

“The knife is used to slice the orange into halves or wedges on the cutting board.”

Planned Task Trajectories

Figure 5: Qualitative examples of pick and stack (top) and task trajectory planning (bottom). SpatialPIN
successfully outputs picking and stacking policies using spatial reasoning and plans 3D trajectories with
geometric awareness to align with task descriptions.

Table 5: Pick and stack. We classify the success rates into: 1) successfully picked, 2) successfully picked and
contacted the target object but slipped/collided, and 3) successfully picked and stacked.

GPT-4o + ours Our Direct 3D Info SpatialVLM + RRT*
Picked % 44 28 16

Picked & contacted % 8 12 6

Picked & stacked % 36 16 10

kitchen, bathroom), and features a rich diversity of object categories (116) and quantities (185), with
each image containing 1 − 7 objects and 1 − 3 tasks proposed for each object (278 tasks/planned
trajectories in total). The dataset’s diversity is further enhanced by the variety of perspectives (e.g.,
frontal, top-down, side views). This deliberate choice of diverse angles, both in our own image
capturing process and through the random extraction of frames from NOCS, aims to simulate a
realistic and challenging array of scenes for evaluation. See Appendix for statistics and visuals.

Qualitative Demonstration We present a qualitative example in Fig. 5. Additional examples in
Appendix shows our framework’s capability to produce diverse and accurate task trajectories spanning
various scenes and tasks.

Table 6: User study.
Ratings (scale 1−5) are
averaged.

Rating ↑
Rotation 4.58
Translation 4.43
Manipulation 4.29

Human Evaluation: User Study We rely on human preference evaluation
as one of our quantitative metrics. We ask 25 users to rate 5 translation and
5 rotation task executions in terms of task description alignment. For these
complex context-dependent manipulation tasks, we instead ask users to judge
10 executions relative to human action, and to encapsulate their perception of
the action in our with a single sentence. These sentence description will be
used to test human understanding of our planned trajectories (please see Ap-
pendix). Note that our user study size is similar to those representative works
such as ControlNet [74] and Prompt-to-Prompt [24]. Results in Table. 6.

Machine Understanding We assess the interpretability of our generated task executions from a
machine’s perspective using SOTA video understanding model, Video-LLaVA-7B [35]. We use two
approaches: binary classification and descriptive generation. For classification, we feed the model
with the task descriptions generated by VLM and ask question (is the video doing. . .?). In generation,
we prompt Video-LLaVA-7B to articulate its interpretation of our task executions. To quantify the
correspondence between the model’s perception and the tasks, we use OpenCLIP cosine similarity
score [15].

8



Table 8: Ablation study. For quantitative IaOR-VQA, the accuracy is measured by the answers that fall within
0.75x to 1.33x of the ground truth value.

Overall Design 2D Understanding 3D Understanding Ours
ShAPO SAM-6D + 3D models SpatialVLM w/o objects w/o coarse w/o fine-grained w/o both

Qualitative 36.7 48.0 81.3 68.3 76.0 63.3 61.7 87.3
Quantitative 29.5 37.0 62.5 54.5 64.5 50.5 58.0 70.5

Table 7: Results for
machine understanding
(classification and gen-
eration) on 278 task ex-
ecutions.

Machine

Raw Acc ↑ 0.974
Fal-Pos Rate ↓ 0.363
True Acc ↑ 0.611

OpenCLIP ↑ 0.636

However, we find that even SOTA video understanding model shows limited
performance. To assess false positive rate in classification, we deliberately
misalign the sequence of generated task executions with their corresponding
task descriptions, expecting a theoretical accuracy of 0%. Contrary to expec-
tations, Video-LLaVA-7B reports a false positive rate of 36.3%. To adjust
for this anomaly, we subtract this rate from the model’s raw accuracy for
correctly aligned video-task pairs. This method, while unconventional, pro-
vides a more fair and reasonable evaluation of machine video understanding,
underscoring the current challenges faced by video understanding models in
accurately interpreting complex video content. Results in Table. 7.

4.4 Ablation Study
We evaluate the effectiveness of each module in our framework on IaOR-VQA by 1) seeking
alternative designs of the overall pipeline and 2) removing each component in our ablations.

Overall Design To demonstrate our framework’s generalization across a wide range of objects, We
replace our 2D + 3D pipeline with: 1) SOTA mesh-free single image object pose and size estimation
model, ShAPO [27], 2) SOTA mesh-based single image object pose and size estimation model,
SAM-6D [36], and feeds it with the object 3D model reconstructed by One-2-3-45++ [41], and 3)
the data generation backbone of SpatialVLM [12]. Since models 1) and 2) do not provide language
annotations for their outputs, we first summarize the numerical outputs using our approach in Sec. 3.3.
Then, GPT-4V identifies QA pairs.

Removing 2D Understanding Module In this case, the VLM no longer examines the objects
through prompting, and only the object name is input into the language-guided segmentation model.

Removing 3D Understanding Modules This means there is no scene size estimation, and the VLM
does not conduct perspective canonicalization. During 3D scene reconstruction, we assume the image
plane width to be 1 meter.

To validate the fine-grained 3D scene understanding module, we replace object mask raycasting with
backprojection using the object’s 2D center and remove the object scale calibration.

To demonstrate the overall effectiveness of our 3D understanding modules, we simply backproject
the input image with the estimated metric depth.

Results Table 8 demonstrates the effectiveness of each module in our framework. The results also
highlight the limitations of using off-the-shelf SOTA mesh-free and mesh-based single-image object
pose and size estimation methods as our backbone. These methods are not language-driven and may
struggle to generalize to novel objects in diverse input scenes.

5 Discussion and Conclusion
We present SpatialPIN, a framework designed to enhance the spatial reasoning capabilities of VLMs
through prompting and interacting with 3D priors in a zero-shot, training-free manner. We see
our work as a step towards equipping VLMs with more generalized spatial reasoning capacities,
demonstrated through applications in various forms of spatial VQA and both traditional and novel
robotics tasks.

Limitations Readers may be curious about the inference speed of our framework. The bottleneck
is the 3D object reconstruction process and the API call to closed-source VLMs (∼ 20 seconds per
image). However, we want to highlight that this process runs only once per image, and the speed is
expected to improve with future versions of 3D foundation models.
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Appendix for SpatialPIN

A Overview

This Appendix includes: 1) more technical details about our partial 3D scene reconstruction, 2)
additional details, templates, and visualizations of our proposed two forms of SpatialVQA, 3)
implementation details on our proposed application: discovering and planning for robotics tasks from
a single image (task proposal, axes-constrained motion planning through waypoints, and trajectory
generation and smoothing), 4) more experiments on our proposed application (dataset statistics,
additional qualitative demonstrations, human understanding, and task diversity), and 5) prompt details
for VLMs.

B Partial 3D Scene Reconstruction Details

Metric Depth Estimation Because a significant portion of depth estimation model [70, 50, 4, 5, 68]
is trained on depth datasets with depth data determined by sensors [21, 53] and stereo matching [71,
16, 58, 59, 66], we assume that the predicted normalized depth is the perpendicular distance to the
camera plane, instead of a straight line from the object to the camera lens [32].

Camera Intrinsic Estimation Given an RGB image, With the estimated vertical field of view
(FOV), θv , through perspective fields [29], the camera focal length f can be found by:

f =
H

2 tan
(
θv
2

) , (3)

where H is the image height in pixels.

Object 6D Pose Estimation Single-view 3D reconstruction model reconstructs mesh Oi of object i
at the 3D origin, in the coordinate frame set by the input mask Mof

i , and captures Oi by a pinhole
camera. This camera, with 6D pose Pc = [Rc | toriginc ], captures Oi’s canonical pose within the
image. Thus, we can restore all objects’ canonical poses across all images by identifying Pc.

We use One-2-3-45++ [41], which provides the camera pose. For models without this information,
we develop an efficient method to determine the pose by comparing object masks with rendered 3D
model templates, inspired from matching-based 6D pose estimation works [36, 46, 9, 42].

We generate a set of object templates, denoted as {T i
j}Jj=1, each rendered from the object’s 3D model

Oi. These templates are created by positioning the camera at various locations on an icosphere
surrounding the object in SE(3) space, which simulates a spherical coverage around the object to
capture its geometry from all angles uniformly. For each template T i

j , we compute a matching score
against the occlusion-free object mask Mof

i .

We propose a simple yet effective score matching method. We draw a bounding rectangle around
the segmented object inside Mof

i and across all {T i
j}Jj=1, and crop the bounding rectangle. We then

calculate the shape similarity between the contour line of cropped Mof
i and that of each cropped

T i
j using Hu moments [25]. Additionally, we crop and resize the bounding rectangle to the same

dimension, and evaluate the similarity based on the pixel area of the cropped and resized masks. Our
score matching method can be formulated as:

mA,h
i = Hu(findContour(crop(Mof

i ))), paAi = sum(resize(crop(Mof
i ))),

mB,h
i,j = Hu(findContour(crop(T i

j ))), paBi,j = sum(resize(crop(T i
j ))),

L(Mof
i , T i

j ) = α

∣∣∣∣∣1− min(paAi , pa
B
i,j)

max(paAi , pa
B
i,j)

∣∣∣∣∣+ β

7∑
h=1

∣∣∣∣∣ 1

sgn(mA,h
i ) · log(mA,h

i )
− 1

sgn(mB,h
i,j ) · log(mB,h

i,j )

∣∣∣∣∣ .
(4)

This dual approach allows for a comprehensive comparison that incorporates both the geometric
configuration and the scale of the object representations. The best-matched template can be found by
argminJj=1 L(M

of
i , T i

j ).
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Intra-Image Object Relations VQA

Intra-Image Angular Discrepancies VQA

Inter-Image Spatial Dynamics VQA

Figure 6: Example input images of all forms of spatial VQA.

Object Scale Calibration After integrating all 3D object models {Ok}Kk=1 into the 3D scene,
each with a pose {Pk = [Rk | tk]}Kk=1 and an initial scale {Sinit

k }Kk=1 set by the single-view 3D
reconstruction model, we refine their scales to accurately reflect depth variations (e.g., moving an
apple from close to the camera to a distant corner reduces its apparent size). Through the lens of
the pinhole camera with pose Pc, we render binary masks for each object and evaluate the length of
their contour lines relative to their occlusion-free masks. The adjusted, final scale of object i can be
expressed as:

Sadj
i = Sinit

i × arcLength(findContour(Mof
i ))

arcLength(findContour(Mrend
i ))

, (5)

where Mrend
i is the rendered mask of object i.

C Additional Experiments and Details

C.1 Spatial Visual Question Answering

Intra-Image Angular Discrepancies VQA (IaAD-VQA) For annotation, since YCBInEOAT [64]
offers ground truth object 6D poses, we first determine the table/ground plane using the principal
axes of objects resting on it (if present). Then, we calculate the angles between the principal axes of
different objects to annotate a list of qualitative and quantitative QA pairs. We provide a subset of the
question template below.

Qualitative questions:
Is [A] tilted?

Is [A] tilted to the left?

Is [A] inclined to the back?

Is [A] more tilted than [B]?

Is [A] more tilted than [B] to the back?

Is [A] more inclined than [B] to the right?

Is [A] leaning towards [B] vertically?

Is [A] straighter than [B]?

Along which axis (W, D, H) is [A] more tilted?

Which object(s) are not upright?

How many object(s) are not upright?

Quantitative questions:
What is the inclination angle of [A] along the vertical axis?

How many degrees is [A] tilted horizontally?

Calculate the angle of tilt for [A] towards back.
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Measure the tilt of [A] relative to the front.

What is the relative angle between [A] and [B]?

Measure the angle between [A] and [B].

What is the angle between the horizontal axis of [A] and [B]?

How much is [A] inclined along the depth axis compared to [B]?

Measure the inclination difference along the vertical axis for [A] and [B].

Measure the angular deviation of [A] and [B] along the vertical axis.

Determine the angular difference between the depth axes of [A] and [B].

Determine the tilt difference between [A] and [B] along the horizontal axis.

Compare the angles of tilt for [A] and [B] along the vertical axis.

Inter-Image Spatial Dynamics VQA (IrSD-VQA) For annotation, we manually measure the
changes in objects’ locations and angles between two photos. To measure the change in camera shot
angle, we record the change in the angle of the tripod to which the iPhone 12 Pro Max is attached.
We provide a subset of the question template below.

Qualitative questions:
Does [A] move?

Does [A] rotate?

Does [A] rotate clockwise?

Does [A] incline?

Does [A] move to the right?

Does [A] move closer to [B]?

Does [A] become more upright?

Does [A] incline more to the back?

Does the angle between [A] and [B] become smaller?

Along which direction does [A] move?

Along which axis (W, D, H) does [A] rotate?

Which object(s) move?

How many object(s) rotate?

How many object(s) become more tilted to the back?

Does the camera shot angle change?

Along which axis (W, D, H) does the camera shot angle change?

Quantitative questions:
How far does [A] move vertically?

How far does [A] move horizontally?

How far does [A] move towards the back?

How many degrees does [A] rotate clockwise?

How many degrees does [A] rotate counterclockwise?

What is the total distance [A] moves from its original position?

Calculate the angle of inclination of [A] in the second image.

Measure the tilt of [A] relative to the first image.

What is the change in height of [A] from the first to the second image?

How much does the distance between [A] and [B] change?

How much does [A] incline towards the left compared to the first image?

What is the angular displacement of [A] towards the right?

Measure the rotation angle of [A] about its own axis.

What is the new distance between [A] and [B] in the second image?

Calculate the difference in the inclination angle of [A] between the two images.

Determine the change in angle of [A] relative to the ground plane.

What is the relative movement of [A] with respect to [B]?

Measure the angular deviation of [A] and [B] along the vertical axis.

By how many degrees has the camera shot angle changed?

Along which axis/axes has the camera shot angle changed?

How does [A] appear to move if we do not account for the camera shot angle change?

What is the perceived change in orientation of [A] due to the camera angle change?
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Zero-Shot 3D Scene 
Reconstruction

Reconstructed 3D scene

A) Understanding 2D Scene B) Understanding 3D Scene C) Planning & Executing Tasks

“Object 0: laptop of color rose 
gold, texture metallic at 
location left-center.
...”

Object 3D models

Trajectory Generation 
& Smoothing

Generated, smoothed trajectory 

Understanding 
Objects by 
ConstrainingVLM

Task Proposal
VLM

Coarse-Fine 3D 
UnderstandingVLM

Motion Planning
VLM

“Task name: Can to Bowl Transfer
Description: Pick up the can and 
pour its contents into the bowl.
...”

“w.r.t. your info, I understand:
Obj 0 spatial context ...
Obj 0 size ... 
Obj 0 - Closest per direction ...
...”

“Task Name: Can to Bowl Transfer
1. Move Manipulating Obj [3] to 
[6, 0, 7] cm relative to Target 
Obj [4]'s local [x, y, z] axes.
...”

All spatial 
information

Single-View 3D Object 
Reconstruction

Generated Task 
Execution

Sparse 
waypoints

Inpainted objects & background

Figure 7: Pipeline for discovering and planning for robotics tasks from a single image. It incorporate the
task proposal and motion planning modules based on SpatialPIN.

How does the position of [A] change relative to the camera angle difference?

What is the actual move distance of [A] when accounting for the camera shot angle change?

Dataset Examples We illustrate example input images of all forms of spatial VQA in Fig. 6.

C.2 Discovering and Planning for Robotics Tasks from a Single Image

Given a single RGB image of a scene with unknown environments and objects, the VLM identifies
potential tasks and plans their execution using full 3D trajectories, complete with visualization.
Figure 7 shows the pipeline, which incorporates task proposal and axes-constrained motion planning
modules into SpatialPIN’s pipeline from our main paper (Fig. 2).

Task Proposal We query VLM to propose meaningful, diverse tasks, each with a one-sentence task
description. Instead of directly querying VLM for task proposal, we employ a hybrid approach that
integrates role-play and object-based initialization. In the role-play scenario, we prompt VLM to
envision itself as a robotic/human hand working in the scene to perform household tasks. For the
object-based initialization, we guide VLM to sequentially focus on each identified object within the
scene. When the scene contains more than one identified objects, VLM is instructed to suggest two
tasks emphasizing interactions between the manipulating object and any of the detected objects, and
an additional task focused solely on the manipulating object. If only one object is detected, VLM is
directed to propose a task involving just that object. This strategy guarantees a broad spectrum of
task suggestions, ensuring comprehensive object engagement.

To further tailor the task proposals, we impose specific constraints, directing VLM to consider the
practical affordances of objects while encouraging creative assumptions (e.g., a bowl’s capacity to
hold water) and potential interactions (e.g., transferring water from a cup into a bowl). Additionally,
we delineate clear boundaries by excluding tasks that entail the disassembly of objects, functionality
tests, or the involvement of imaginary objects, thereby focusing on feasible and meaningful tasks.

As a concrete example, given the image on the left of Fig. 2, with the manipulating object to be the
red can, VLM will propose the following tasks:
“Task name: Can to Bowl Transfer

Description: Pick up the can and pour its contents into the bowl.

Task name: Can Relocation

Description: Pick up the can and place it inside the bowl.

Task name: Can Rotation

Description: Rotate the can 90 degrees on its vertical axis. ...”

Axes-Constrained Motion Planning through Waypoint We introduce a novel method to guide
VLM to conduct motion planning within a 3D scene based on a proposed task by planning motion
waypoints along the manipulating object’s principal axes. More specifically, we define four types of
manipulations that VLM can use:
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Diverse scenes

Rich diversity of object categories and quantities per scene 

High variety of perspectives 

Figure 8: Dataset statistics. Our dataset presents 51 scenes—13 from NOCS and 38 captured from varied
perspectives—featuring a wide range of object categories, quantities, and a diverse set of tasks and planned
trajectories.

Rotation type 1: Axial rotation. The object rotates around its principle axes.

Rotation type 2: Rotation relative to the target object.
- pitch: Tilt similar to pouring water, around a horizontal axis formed by the cross product of the
connecting directional vector and the target’s vertical axis.
- yaw: Horizontal rotation, like a camera panning, around a vertical axis formed by the cross product
of the connecting directional vector and the pitch axis.
- roll: Rotation like drilling a surface, around the connecting directional vector.

Translation type 1: Defines the goal relative to the target object’s principle axes, with translation
values for its [x, y, z] axes in centimeters. [0, 0, 0] cm indicates the goal is the center of the target
object.

Translation type 2: Sets the goal relative to a directional vector between two reference objects,
specifying how far (in cm) object 1 should move towards or away from object 2 along this vector.

Since VLM inherently lacks the capability to provide 3D coordinates and low-level actions di-
rectly [60, 19], our method offers a practical workaround by translating natural language instructions
into precise motion waypoints. This approach significantly enhances VLM’s utility in spatial rea-
soning and manipulation tasks without requiring direct 3D coordinate generation capabilities. Also,
the four types of manipulations we defined are both simple and comprehensive, covering a broad
spectrum of manipulation tasks.

As a concrete example, given the image on the left of Fig. 7, with “Task name: Can to Bowl
Transfer”, VLM will plan as follows:
“Task Name: Can to Bowl Transfer

Manipulating obj idx: 3

Interacting obj idx: 4

1. Move Manipulating Obj [3] to [6, 0, 7] cm relative to Target Obj [4]’s local [x, y, z] axes.

2. rotate_wref: Rotate Manipulating Obj [3] relative to Target Obj [4] around [pitch] axis by [75]

degrees.”

In practice, the quality of motion planning by VLMs can be enhanced using various prompting
techniques. One such technique is chain-of-thought (CoT) [63], where another LLM guides the VLM
to plan each axes-constrained sparse waypoint step by step.

Dataset Statistics See Fig. 8 for statistics and visuals. We standardize all image dimensions by
resizing all to 640× 480.

More Qualitative Demonstration We present more qualitative examples spanning various scenes
and tasks, as shown in Fig. 9.
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Input Planned Task Trajectories

“Insert the toilet brush into the toilet bowl and scrub for cleaning.”

“Cover the pot with the pot lid.”

“The cup is repositioned under the coffee dispenser to prepare for coffee pouring.”

“Lift the milk container and deposit it into the trash bin.”

“Move the red eraser to the left of the blue eraser and erase letters.”

Figure 9: More qualitative examples. With diverse input scenes and proposed tasks, our framework produces
3D trajectories with geometric awareness that aligns with the task descriptions. Zoom in for better view.

Table 10: Comparison of task diversity. We sample 106 proposed tasks for fair comparison with RoboGen and
previous RL benchmarks.

Ours RoboGen [61] Behavior-100 [54] RLbench [28] MetaWorld [72] Maniskill2 [23]

Number of Tasks 106 106 100 106 50 20
Self-BLEU ↓ 0.269 0.284 0.299 0.317 0.322 0.674

Embedding Similarity ↓ 0.154 0.165 0.210 0.200 0.263 0.194

Experiment on Human Understanding

Table 9: Results for machine un-
derstanding (generation) on 278
task executions and human under-
standing, where 25 users write de-
scriptions for 10 tasks.

Machine Human

OpenCLIP ↑ 0.636 0.823

We aim to understand human perception of our generated task
executions by asking participants to provide a one-sentence descrip-
tion. We then evaluate the alignment between these descriptions
and the ground truth task descriptions proposed by VLM, using
OpenCLIP [15, 43]. Table. 9 reveals a high degree of alignment.
Intriguingly, it appears humans understand our task executions more
accurately than machines do (Table. 7). We hypothesize this dis-
crepancy stems from the limitations of current video understanding
models, whereas humans draw on their prior experiences for a
deeper comprehension.

Experiment on Task Diversity We evaluate the diversity of the proposed tasks in terms of semantic
meaning using Self-BLEU and the embedding similarity [75, 48, 49] following RoboGen [61], where
lower scores mean higher diversity. We also compare with previous reinforcement learning (RL)
benchmarks. From Table. 10, ours method generates most diverse tasks as it is open to all scenes
with no constraint.
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C.3 Trajectory Generation Implementation Details

Trajectory Generation With the waypoints planned by VLM, we generate the manipulating object’s
trajectory using path planning algorithm, specifically rapidly-exploring random tree star (RRT*) [31].
To generate accurate collision-free path, we perform K-means clustering on the point clouds of object
3D model with a high number of clusters, segmenting the object mesh into discrete voxels and treating
each voxel as an obstacle. Then, to accurately consider the manipulating object’s dimensions, we
grow the size of each voxel by its dimensions.

Handling VLM Planning Discrepancies The waypoints generated by VLM are typically accurate
and practical. Nonetheless, there are instances where the waypoints suggested by VLM lead to
collisions as determined by the RRT* planner. This discrepancy is less about VLM’s misunderstanding
of the objects’ sizes and their spatial relationship and more about the precision level of the waypoints,
which may not match the exacting standards of the RRT* planner’s outcomes. To resolve this, we
implement Gaussian sampling around the initially planned waypoints whenever a collision is detected.
The sampling strategy is guided by a predefined set of geometric rules. In our 3D coordinate system,
positive x-axis [1, 0, 0] points right, positive y-axis [0, 1, 0] is away from viewer, positive z-axis [0, 0,
1] is up. For translation type 1, we denote the goal pose relative to the target object’s principle axes as
[dx, dy, dz]. For translation type 2, we denote the distance that object 1 moves towards object 2 as
dD. The set of geometric rules are as follows:

if type 1 & [dx, dy, dz] = [0, 0, 0]: sample along [x, y, z] axes
elif type 1 & dx = 0 & dy = 0 & dz != 0: sample along [z] axis, zsampled· dz > 1
elif type 1 & dz = 0: sample along [x, y] axes
elif type 1 & dz != 0: sample along [x, y, z] axes, zsampled· dz > 1

if type 2: sample along the connecting directional vector, Dsampled· dD > 1

Trajectory Smoothing Finally, to ensure our trajectory is natural and smooth, we linearly interpolate
rotation and interpolate translation using cubic spline.

D Prompt Details

We show exact prompts for VLMs for our proposed application: discovering and planning for robotics
tasks from a single image.

Understanding Objects by Constraining Prompt.

Input:

RGB image (640, 480) = (width, height) with multiple objects.

Your task is to identify and objects by precise color, texture, and 2D spatial locations (in words).

Do not use vague phrase like multi-colored.

Please write in the following format. Do not output anything else:

Object idx (actual integer, start from 0): x of color y, texture z at location w.

Task Proposal Prompt.

Input:

1. RGB image (640, 480) = (width, height) with multiple objects.

2. Detected objects with index.

You are a single robot hand working in this image scene to perform simple household tasks. Tasks must

be discovered from the image. Consider objects’ affordances and feel free to make assumptions (e.g., a

bowl can contain water) and interactions with other objects (e.g., pouring water from a cup into a bowl).

Task types:

1. Interaction between the manipulating object and one of the detected objects (involve translation, or
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translation + rotation).

2. Rotate manipulating object (involve rotation).

Strictly follow constraints:

1. Exclude tasks involving disassembly of objects.

2. Exclude tasks involving cleaning or functionality testing.

3. Exclude tasks involving imaginary objects.

4. Manipulating object moves; interacting object static.

5. Assume all objects are rigid, without joints or moveable parts (i.e., cannot deform, disassemble,

transform). This applies even to objects that are typically articulated (e.g., laptop).

Propose 3 tasks (2 interaction, 1 rotation) for manipulating Object 5. Write in the following format.

Do not output anything else:

Task Name: xxx

Manipulating obj idx: 5

Interacting obj idx: obj_idx (actual integer, or manipulating obj idx)

Description: basic descriptions.

Coarse 3D Understanding Prompt.

Inputs:

1. RGB image (640, 480) = (width, height) with multiple objects

2. Detected objects with index.

3. Image scene size.

4. Maximum and minimum width, depth, and height.

Your task is to identify the camera shot angle (horizontal, top-down, bottom-up). Reason with respect to

the visual cues, the image scene size, and maximums and minimums along each dimension. Choose horizontal

if not severely angled.

Please write in the following format. Be concise. Do not output anything else:

Visual cues reasoning: ...

Spatial data reasoning: ...

Conclusion: horizontal/top-down/bottom-up.

Image and Spatial Context Understanding Prompt.

Inputs:

1. RGB image (640, 480) = (width, height) with multiple objects and their visualized local axes (x red, y

green, z blue).

2. Detected objects with index.

3. For each detected object, its 3D center, local xyz-axes, size, and spatial relationship relative to

other objects.

The 3D coordinate system of the image is in centimeters and follows Blender. Positive x-axis [1, 0,

0] right, positive y-axis [0, 1, 0] away from viewer, positive z-axis [0, 0, 1] up. Positive rotation is

counter-clockwise around all axes.

Your task is to learn the spatial context. Do not output.

Motion Planning Prompt.

Inputs:

1. RGB image (640, 480) = (width, height) with multiple objects and their visualized local axes (x red, y

green, z blue).

2. Detected objects with index.

3. Simple household tasks and descriptions to be performed by a single robot hand.

22



Your goal is to plan fine-grained motions for the manipulating object to complete the tasks using four

manipulations, explained as follows:

Rotation:

rotate_self: Axial rotation. The object rotates around its local [x/y/z] axis by [degrees].

rotate_wref: Rotation relative to the target object:

- pitch: Tilt similar to pouring water, around a horizontal axis formed by the cross product of the

connecting directional vector and the target’s z-axis.

- yaw: Horizontal rotation, like a camera panning, around a vertical axis formed by the cross product of

the connecting directional vector and the pitch axis.

- roll: Rotation like a drill entering a surface, around the connecting directional vector.

The degrees can be specified in two ways:

- Exact [degrees]. Positive values rotate the manipulating object towards the target object.

- Fixed_towards/fixed_back. ’fixed_towards’ orients the object towards the target, mimicking actions

like pouring (pitch), facing (yaw), or drilling into (yaw+roll) the target. ’fixed_back’ reverses this

alignment.

Translation:

translate_tar_obj: Defines the goal relative to the target object’s local axes, with translation values

for its [local_x, local_y, local_z] axes in centimeters. [0, 0, 0] cm indicates the goal is the center of

the target object.

translate_direc_axis: Sets the goal relative to a directional vector between two reference objects,

specifying how far (in cm) object 1 should move towards or away from object 2 along this vector (positive

closer, negative away). Object indices must differ, and if one reference object is the manipulating

object, its current location is used.

Strictly follow caveats:

1. Apply rotate_wref thoughtfully and sequentially around different axes as needed.

2. Use the provided spatial information and image effectively for understanding and planning within the

3D scene.

3. Combine common physical understanding with the scene’s spatial details (like relative positions and

sizes of objects) for strategic planning.

4. Remember that objects’ local axes’ positive directions might require using negative values in rotation

and translation for authentic motion planning.

Plan as below. Fill in obj_idx based on the tasks.

rotate_self: Rotate Manipulating Object [obj_idx] around its local axis [x/y/z] by [degrees].

rotate_wref: Rotate Manipulating Object [obj_idx] relative to Target Object [target_obj_idx] around

[pitch/yaw/roll] axis by [degrees/fixed_towards/fixed_back].

translate_tar_obj: Move Manipulating Object [obj_idx] to [a, b, c] cm relative to Target Object

[target_obj_idx]’s local [x, y, z] axes.

translate_direc_axis: Move Manipulating Object [obj_idx] [a] cm along the directional vector from

Reference Object [ref_obj_1_idx] to Reference Object [ref_obj_2_idx].

Here are some full examples. Please write in the following format. Do not output anything else:

Task Category: Bear rotation

Description: Rotate the toy bear 90 degrees on its vertical axis.

Motion Planning:

Manipulating obj idx: bear_idx (actual integer)

Interacting obj idx: bear_idx (actual integer)

1. rotate_self: Rotate Manipulating Object [bear_idx] around its local axis [z] by [90] degrees.

Task Name: Cup content transfer

Description: Pick up the mug and pour its contents into the bowl.

Motion Planning:

Manipulating obj idx: cup_idx (actual integer)

Interacting obj idx: bowl_idx (actual integer)

1. translate_tar_obj: Move Manipulating Object [cup_idx] to [5, -7, 5] cm relative to Target Object

[bowl_idx]’s local [x, y, z] axes.
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2. rotate_wref: Rotate Manipulating Object [obj_idx] relative to Target Object [bowl_obj_idx] around

[pitch] axis by [fixed_towards].

Task Name: Screwdriver penetration

Description: Use a screwdriver to penetrate an avocado.

Motion Planning:

Manipulating obj idx: screw_idx (actual integer)

Interacting obj idx: avocado_idx (actual integer)

1. translate_tar_obj: Move Manipulating Object [screw_idx] to [-5, -5, 0] cm relative to Target Object

[avocado_idx]’s local [x, y, z] axes.

2. rotate_wref: Rotate Manipulating Object [screw_idx] relative to Target Object [avocado_idx] around

[yaw] axis by [fixed_towards].

3. rotate_wref: Rotate Manipulating Object [screw_idx] relative to Target Object [avocado_idx] around

[roll] axis by [360] degrees.

24



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We conducted extensive empirical experiments to demonstrate it.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed limitations in the Discussion and Conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We did not have theoretical assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have thoroughly discussed implementations details in the main paper and
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have created our project page and Github repo. These will be updated
soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discussed these in the Experiments and Appendix with a lot of details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: In our experiments, large time cost is needed to do this.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discussed it in the Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have broader social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such concern.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not have such.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not have such.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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