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Abstract

Due to the lack of labeled data in many real-
istic scenarios, a number of few-shot learning
methods for text classification have been pro-
posed, among which the meta learning based
ones have recently attracted much attention.
Such methods usually consist of a learner as the
classifier and a meta learner for specializing the
learner to tasks. For the learner, learning rate is
crucial to its performance. However, existing
methods treat it as a hyper parameter and ad-
just it manually, which is time-consuming and
laborious. Intuitively, for different tasks and
neural network layers, the learning rates should
be different and self-adaptive. For the meta
learner, it requires a good generalization ability
so as to quickly adapt to new tasks. Therefore,
we propose a novel meta learning framework,
called MetaCLSLR, for few-shot text classifi-
cation. Specifically, we present a novel meta
learning mechanism to obtain different learning
rates for different tasks and neural network lay-
ers so as to enable the learner to quickly adapt
to new training data. Moreover, we propose a
task-oriented curriculum learning mechanism
to help the meta learner achieve a better gener-
alization ability by learning from different tasks
with increasing difficulties. Extensive experi-
ments on three benchmark datasets demonstrate
the effectiveness of MetaCLSLR.

1 Introduction

Text classification is important and concerned in
Natural Language Processing (NLP), as many re-
alistic problems can be transformed into it. At
present, most text classification methods are based
on supervised learning with a large amount of la-
beled data. But there is not so much labeled data,
even source data, in many specific scenarios. Some
distant supervision methods (Mintz et al., 2009)
have thus been proposed to handle this problem.
However, this kind of approaches may add a large
proportion of noisy data (Zeng et al., 2014). Be-
cause of this, it is a big challenge for traditional

supervised learning methods to work well with
very limited training data. As a result, few-shot
text classification has attracted much attention in
recent years, where there are only a few (e.g., 1
or 5) labeled instances available for each class as
the support set and some unlabeled instances as the
query set, as shown in Figure 1.

The concept of few-shot learning was formally
put forward by (Li et al., 2003). They presented a
method for learning from classes with few data, by
incorporating generic knowledge which may be ob-
tained from previously learned models of unrelated
classes. The existing few-shot learning methods
are divided into three categories (Gao et al., 2019),
namely, model fine-tuning based (e.g., (Howard
and Ruder, 2018; Nakamura and Harada, 2019)),
metric learning based (e.g., (Snell et al., 2017;
Vinyals et al., 2016)), and meta learning based
methods (e.g., (Finn et al., 2017; Munkhdalai and
Yu, 2017)). In recent years, meta learning based
methods have attracted lots of interests. However,
they still suffer from some challenges.

A meta learning method is composed of a learner
and a meta learner. It is acknowledged that for a
learner, learning rate is crucial to its performance.
Nevertheless, in existing methods, it is treated as a
hyper parameter and needs to be adjusted manually,
which is time-consuming and laborious. Intuitively,
for different tasks and different neural network lay-
ers, their learning rates should be different. On
the other hand, a good generalization ability to
a new task is necessary for a meta learner. And
curriculum learning can help models obtain better
generalization performance by guiding the train-
ing process towards better regions in the parameter
space, i.e., into local minima of the descent proce-
dure associated with better generalization (Bengio
et al., 2009).

For the above reasons, we propose a novel meta
learning framework, called MetaCLSLR, for few-
shot text classification. There are two main mecha-
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Figure 1: An example of few-shot text classification.

nisms in MetaCLSLR, i.e., Self-adaptive Learning
Rates for the learner and a task-oriented Curricu-
lum Learning mechanism for the meta learner. Our
general contributions are three-fold.

* We present a novel meta learning mechanism
with self-adaptive learning rates, which en-
ables different tasks and neural network layers
to obtain different learning rates.

* We introduce curriculum learning for the
first time, to the best of our knowledge,
into few-shot learning. Unlike traditional
instance-oriented curriculum learning, the pro-
posed curriculum learning mechanism gradu-
ally learns from different tasks with increasing
difficulties.

* MetaCLSLR is evaluated with three typical
categories of text classification, i.e., relation
classification, news classification and topic
classification, on three benchmark datasets,
namely, FewRel80, 20Newsgroup and DB-
Pedia Ontology, respectively. Experimental
results demonstrate superior performance of
MetaCLSLR on all datasets.

2 Related Works

2.1 Few-shot Learning

Few-shot learning is to learn how to solve problems
from few data. As aforesaid, the existing main-
stream methods can be divided into three types.
The model fine-tuning based methods learn how
to fine-tune general-purpose models to specialized
tasks (Howard and Ruder, 2018; Nakamura and
Harada, 2019). The metric learning based meth-
ods learn a semantic embedding space upon a dis-
tance loss function (Snell et al., 2017; Vinyals et al.,
2016). The meta learning based methods learn a
learning strategy to make them well adapt to new
tasks (Finn et al., 2017; Munkhdalai and Yu, 2017).
Furthermore, according to the different kinds of
meta knowledge the meta learner learns, the meta
learning based methods can be subdivided into

three types, i.e., initial parameter (Finn et al., 2017;
Raghu et al., 2019; Jamal and Qi, 2019), hyper
parameter (Wu et al., 2019) and optimizer based
methods (Santoro et al., 2016; Munkhdalai and Yu,
2017). The initial parameter based methods learn
parameter initialization for fast adaptation; The hy-
per parameter based methods learn a good hyper
parameter setting of a learner; And, the optimizer
based methods learn a meta-policy to update the
parameters of a learner. In this paper, we propose a
novel meta learning mechanism to self-adaptively
obtain the hyper parameter, i.e., the learning rate,
of the learner, which allocates different learning
rates for different tasks and neural network layers.

2.2 Curriculum Learning

Compared with the general paradigm of machine
learning without distinction, curriculum learning is
proposed to imitate the process of human learning
(Bengio et al., 2009). It advocates that the model
should start learning from easy instances and grad-
ually advance to complex instances and knowledge.
Curriculum learning has been widely applied in
many fields, e.g., computer vision (Guo et al., 2018;
Jiang et al., 2014) and NLP (Platanios et al., 2019;
Tay et al., 2019). Furthermore, curriculum learn-
ing can also be applied in some other technical
frameworks, e.g., reinforcement learning (Florensa
etal., 2017; Narvekar et al., 2017; Ren et al., 2018),
graph learning (Gong et al., 2019; Qu et al., 2018)
and continual learning (Wu et al., 2021). In this
paper, we extend the traditional instance-oriented
curriculum learning to a task-oriented one, which
gradually learns from different tasks with increas-
ing difficulties.

3 Methodology

3.1 Notations

In meta learning based few-shot text classification,
two datasets are given: Dy qin and Dyegs, Which
have disjoint label sets. 7" tasks are sampled from
Diyain, and the t-th task (¢ € [1,T]), Task;, con-
sists of a support set .S; and a query set ;. Fol-
lowing the setting (Gao et al., 2019), we adopt
C-way K-shot (hereinafter denoted as CwKs) for
few-shot text classification, meaning .S; contains
C classes and each class has K labeled instances.
Thus, S; can be formulated as Sy = {(x, y})} %5,
where 2% denotes the i-th piece of text in Task; and
yi is its class label. Furthermore, z} contains M}
words (hereinafter simplified as M if not causing



X: Ir-m_ X0 ;§.|
2 1 1
s (@O,
Task, XK 1T — L dis! dis?
1 i o is] dis{
Cwks Q9
[P | )
4 AN g (0 Oy dify
o A
&
x
) Fspp——
2 5
2 1 1
| o
=3 Task, e — dist dis?
2 i a1 is; disy
Cwks Q9
O [P 1 :
g & QO [ Ndif
3 =—=22
2 oo “ e
Z I S o
3 5 [GIoL]
x2 Encoder| 1 ] Task-level
s @O+
: T .
- Task, £ (O —> B GIOF ™ Learning Rate
B (C+X)WKs =zl
3 a Module e Modul
=i 3 (C+X)U {3 odule
=) N S i I
. LI )
pp—
x [ 1
s (© O
1
Tasky e @0 : | A dish dist
(C+2X)wKs [ I— _:
-
v O cinu (O O™ Ndify
,,,,,,,,,,,,,,, ==L

lrbl
Meta Learner

.
Iry

b =2 H@L YD)

Iry

e
u &%
Learner

(]

-

Meta Learner

’

Iry

[+%3 : "
Ir, i &e
Learner

o

Loss
Layer-level

Pt
Learning Rate * * * T |

Module
..
Meta Learner

,
Iry
ar

Figure 2: The diagram of the MetaCLSLR framework.

any confusion) and the m-th word (m € [1, M]) in
% denotes as wy,, for simplicity. Thus, ¢ is formu-
lated as #} = {wy, }}_;. «} additionally includes
a head entity h; and a tail entity o} in relation clas-
sification. Moreover, the query set ); contains U
unlabeled instances for each class in S;. Q)+ can be

formulated as Q; = {q; ZC:XlU

3.2 The MetaCLSLR Framework

MetaCLSLR is a generic framework, where dif-
ferent few-shot learning models of different cate-
gories (i.e., model fine-tuning based, metric learn-
ing based, and meta learning based) can act as the
learner. As shown in Figure 2, MetaCLSLR con-
sists of three modules coupled with a task-oriented
curriculum learning mechanism:

The Encoder Module. In this module, the in-
stances are mapped into the semantic space as em-
beddings by the encoder network.

The Task-level Learning Rate Module. In this
module, the task-level learning rate is calculated
by the number of training classes and the distance
between different instances in the support set.

The Layer-level Learning Rate Module. In
this module, the layer-level learning rate is self-
adaptively obtained based on the meta learning
mechanism. This module contains two main parts:
the learner as the classifier and the meta learner
above the learner, which allocates the learning rates
for different network layers of the learner.

The Task-oriented Curriculum Learning
Mechanism. This mechanism gradually learns

from different tasks with increasing difficulties by
adding more classes to a task, to make the meta
learner achieve a better generalization ability.

3.3 The Encoder Module

The encoder module maps ¢ into the instance em-
bedding x;, which consists of two parts, namely,
the embedding part and the encoding part.

3.3.1 Embedding

The word embeddings {w,, }*!_, are obtained by
looking up table for vector representation of words
{wm }M_,, to express their semantic meanings. In
this paper, we employ GloVe (Pennington et al.,
2014) to obtain the word embeddings for fast train-
ing and good performance even with small corpus.

3.3.2 Encoding

The CNN encoder is employed because of its satis-
fied performance and time efficiency to derive the
final instance embedding z! of B dimension of z%
based on the word embeddings {w,, }}_,. CNN
slides a conventional kernel whose window size
is k, over the input embeddings to get the output
hidden embeddings,

h.,, = Con (wmi%,...,wwﬁ%) , 1)

where Con (-) is a conventional operation.

A max pooling operation is then applied over
these hidden embeddings to output the final in-
stance embedding ! as follows:

[mi]b :maa:{[hﬂb,...,[hM]b}, (2)



where [-], is the b-th value of a vector (b € [1, B]).

3.4 The Task-level Learning Rate Module

This module is designed to self-adaptively get dif-
ferent learning rates for different tasks. In the con-
text of few-shot learning, it is necessary for a model
to converge in a few steps, even one (Finn et al.,
2017). Intuitively, for easier tasks, a larger learning
rate enables the model to converge fast. However,
for more difficult tasks, a relatively smaller learning
rate is preferred so as to help the model to carefully
search for the optimal parameters in the complex
search space. In this module, the difficulty of a task
is defined as the learning difficulty, and the num-
ber of training classes and the distance between
different instances in the support set are utilized to
measure it.

In more detail, the learning difficulty of a task
is related to the number of classes in meta training
in a way. If the number of training classes, C, of
Task; is equal to that of its meta test classes, C’/, its
difficulty coefficient di f; is set to 1. If C' is larger
than C', indicating that it is a relatively difficult
task, dif; is increased. Otherwise, it is reduced.
di fy can be formally calculated as follows:

dift:1+'y(0—0'), 3)

where 7y is an increment coefficient of difficulty.

The distance between different instances can be
measured from two aspects, namely, the average
intra-class distance dis; and the average inter-class
distance dis?. The closer the intra-class distance
and the farther the inter-class distance, the easier
the task. Both of them are measured by the Eu-
clidean distance function d(-, -). Specifically, dis;
is calculated by

o}
dist = = >~ d (i), @
Dt v=1

where ! and ! (i # j) belong to the same class;
D} = % denoting the number of pairs

(i, 2]). dis? is calculated as follows:

D2
. 1 «— i
dis? = D—? Ugld (mt,mi) , 5)

where i and :vi belong to different classes and
D? = w Therefore, the difficulty o, of
Task; can be calculated as

/ dis?

YT dif, - dist

Q)

As aforesaid, larger learning rates are preferred for
easier tasks. Therefore, Equation (6) means a larger
o is obtained with dis? increasing, as well as di f;
and dis; decreasing, which presents an easier task.
Otherwise, a smaller a; presents a more difficult
task.

As the task-level learning rate is required to mul-
tiply the layer-level one in Equation (12), it should
be larger than 1 for easier tasks and smaller than 1
for more difficult tasks. Therefore, we formulate
the weight a,€[3, 1 4 (] by function g (-) as

ar=g (a;) = nor (a;) + 8, @)

where nor (+) is the min-max normalization func-
tion. In this paper, the bias 3 is set to 0.5.

3.5 The Layer-level Learning Rate Module

As mentioned earlier, this module contains a learner
and a meta learner.

3.5.1 The Learner

In text classification, the learner is actually a clas-
sifier. Existing models of different types can be
employed as the learner, e.g., BERT (Kenton and
Toutanova, 2019), PN (Snell et al., 2017) and ML-
MAN (Ye and Ling, 2019), which are pre-trained.
By inputting the embedding ! , the learner with
the learning rate Ir, , which is obtained by Equa-
tion (12), outputs the predicted probability distri-
bution, pi, to different classes. Formally, p¢ is
calculated as follows:

pi = Learner (mi, l’r't) . (3

The loss of the learner is defined as [;, which is
calculated by the cross entropy function H (-, -) as

CxK

=3 H(pivi), ©
1=1
where y! is the ground truth distribution of ! to
different classes.

3.5.2 The Meta Learner

The meta learner allocates different learning rates
for different network layers. Let 6 be its parameters.
Given the layer-level learning rate lr;_l of N di-
mension corresponding to T'ask;_; of the learner,
the hidden state hs; of the meta learner to T'ask;
is calculated upon lr;,l and its last hidden state
hs;_1 as

hsiy = MetaLearnerg (hst_l,l'r;,l) . (10)



Algorithm 1 The Meta Learning Training Process.
1 Given a set of labeled training data Dyrqin

2 Init parameters of the meta leaner as 6

3 Given the initial learning rate lré)

4 For e—1to E do: ,

5 Given a pre-trained learner with I7g

6 For t—1 to T do:
7
8

Given a task T'ask; sampled from Di¢yqin
hsi«MetaLearnerg (hstfl, lr;_ 1)

9 lry«o (Whs, + b)
10 lT‘t %atlr;
11 Train the learner with I7; on T'ask; in one step

12 Compute the loss I+
13 If t =T, calculate the loss Loss. by summing up l;
14 Update 0 using Lossc—1- Losse

Then, the layer-level learning rate lr; corre-
sponding to T'ask; is obtained upon the state hs;
as

lr; = o0 (Whs, +b), (11)

where W and b are parameters of a fully-connected
layer in the meta learner and o is the Sigmoid func-
tion.

By multiplying the task-level learning rate o,
the final learning rate is obtained as

l'l”t = Oétl’l";. (]2)

The loss of the meta-learner, Loss,, is calculated
by summing up all the losses from the learner in
the e-th iteration (e € [1, E), namely,

T
Losse = Y 1. 13)
t=1

Finally, 6 is updated by minimizing the differ-
ence between the loss in the last iteration and the
current loss, which makes the meta learner con-
verge faster, through applying gradient-based opti-
mization. The training process of meta learning is
shown in Algorithm 1.

3.6 The Task-oriented Curriculum Learning
Mechanism

To get better generalization performance to a new
task, MetaCLSLR introduces a task-oriented cur-
riculum learning mechanism to the meta training
period. The original curriculum learning mecha-
nism learns from instances with gradually increas-
ing difficulties in a step-by-step manner. However,
in the context of meta learning, we need to pay
more attention to tasks with different difficulties. It
is acknowledged that when the number of classes in
a task increases, its difficulty accordingly increases.
For example, a 10w1s task is more difficult than

a Swls one. In few-shot learning, the difficulty
of a CwKs task is increased by giving a larger C.
Therefore, a three-stage process with increasing
difficulties is completed with the number of classes
from C to C+X to C+2X (hereinafter denoted as
C-(C+X)-(C+2X)), making the meta learner train
tasks from easy to difficult. Besides, a previous
study (Munkhdalai and Yu, 2017) found that the
models trained on harder tasks may achieve better
performance than using the same configurations at
both training and test periods. Thus, in this paper
we set that the average difficulty of tasks in the
meta training period is always larger than that in
the meta-test period to get better performance in
test tasks.

4 Experiments

4.1 Datasets and Evaluation Metrics

Parameters Value
v 0.1

B 0.5

k 3
word emb. dim. 50
max sentence length | 40
hidden layer dim. 230

LSTM hidden size 100
initial learning rate [7e™3, 673, 573, 4e 73]

batch size 1

T 600
E 50
dropout 0.2

Table 1: The parameter setting in MetaCLSLR.

To verify the effectiveness of the MetaCLSLR
framework on different datasets, we conduct exper-
iments on three types of text classification, i.e., re-
lation classification, news classification, and topic
classification, among which the first one is more
complicated and challenging than the others. For
relation classification, we choose a typical few-
shot learning dataset, FewRel! (Han et al., 2018).
It should be mentioned that the FewRel dataset
used in this paper has only 80 classes, thus marked
as FewRel80, because 20 classes of the original
FewRel dataset for test are unavailable. We ran-
domly divide FewRel80 into three subsets con-
taining 50, 10 and 20 classes for training, vali-
dation and test, respectively. For news classifica-
tion, we choose the representative dataset, 20News-
group? (Dadgar et al., 2016) with 20 news classes.

'https://github.com/ProKil/FewRel/tree/master/data
Zhttp://qwone.com/~jason/20Newsgroups/


https://github.com/ProKil/FewRel/tree/master/data
http://qwone.com/~jason/20Newsgroups/

Dataset: FewRel80

Method Swls Sw5s 10wls | 10w5s
model fine-tuning based BERT 0.5762 | 0.7109 | 0.5233 | 0.5480
MetaCLSLR+BERT 0.6347 | 0.7601 | 0.5672 | 0.5993
metric learning based PN-HATT 0.7319 | 0.8703 | 0.6114 | 0.7632
MetaCLSLR+PN-HATT | 0.7675 | 0.8929 | 0.6507 | 0.8067
meta learning based MLMAN 0.7957 | 0.9119 | 0.6903 | 0.8516
MetaCLSLR+MLMAN | 0.8182 | 0.9161 | 0.7084 | 0.8530

Dataset: 20Newsgroup

Method 3wls 3w5s 6wls 6w5s
model fine-tuning based BERT 0.7417 | 0.8198 | 0.5876 | 0.7107
MetaCLSLR+BERT 0.7689 | 0.8497 | 0.6195 | 0.7446

meta learning based MAML 0.7612 | 0.8405 | 0.6143 | 0.7451
MetaCLSLR+MAML 0.7824 | 0.8599 | 0.6479 | 0.7762
metric learning based PN 0.8463 | 0.9614 | 0.7052 | 0.8887
MetaCLSLR+PN 0.8680 | 0.9843 | 0.7233 | 0.9291

Dataset: DBPedia Ontology

Method 3wls 3wS5s 6wls 6w5s
model fine-tuning based BERT 0.7609 | 0.8256 | 0.6118 | 0.7589
MetaCLSLR+BERT 0.7944 | 0.8598 | 0.6540 | 0.7990

meta learning based MAML 0.7778 | 0.8571 | 0.6434 | 0.8093
MetaCLSLR+MAML 0.8163 | 0.8911 | 0.6814 | 0.8372
metric learning based PN 0.8428 | 0.9520 | 0.7070 | 0.8896
MetaCLSLR+PN 0.8683 | 0.9799 | 0.7301 | 0.9104

Table 2: The overall results on three benchmark datasets: FewRel80, 20Newsgroup and BDPedia Ontology.

As 20Newsgroup lacks the standard splits in few-
shot learning, we randomly divide it into subsets
with 14 and 6 classes for training and test, respec-
tively. For topic classification, the DBPedia Ontol-
ogy> (Zhang et al., 2015) dataset is a classic one
with 14 topic classes. We randomly partition it
into 8 classes and 6 classes for training and test,
respectively, for the same reason.

We set up four configurations, namely, S5wls,
Sw5s, 10wls and 1w5s, on FewRel80. Four set-
tings are considered for the 20Newsgroup and DB-
Pedia Ontology datasets, i.e., 3wls, 3wS5s, 6wls
and 6wS5s. Following the previous study in (Oba-
muyide and Vlachos, 2019), average accuracy upon
5 runs is adopted as the evaluation metric.

4.2 Implementation Details and Parameters
Setting

Table 1 presents the parameter setting of Meta-
CLSLR. For the encoder module, CNN is em-
ployed as the encoder and the word embeddings
pre-trained in GloVe (Pennington et al., 2014) are
adopted as the initial embeddings. In practice, we
choose the embedding set, Wikipedia 2014 + Giga-
word 5, which contains 6B tokens and 400K words.
The word embeddings are of 50 dimensions. For

3https://s3.amazonaws.com/fast-ai-nlp/dbpedia_csv.tgz

the parameters of CNN, we follow the settings used
in (Zeng et al., 2014). For the layer-level learning
rate module, LSTM is selected as the meta learner,
because of its simple implementation, fast training
speed and satisfying performance. Furthermore,
for the curriculum learning, we choose two set-
tings on each dataset, i.e., 10-15-20 and 15-20-25
on FewRel80, 5-7-9 and 7-9-11 on 20Newsgroup
and 4-5-6 and 5-6-7 on DBPedia Ontology, respec-
tively. The detailed setting of curriculum learning
is described in Section 4.5.3.

4.3 Baseline Models

As MetaCLSLR is a generic framework, it can
employ different types of models as its learner. We
choose some typical or the state-of-the-art (SOTA)
models of three categories (i.e., model fine-tuning
based, metric learning based and meta learning
based) as the learner in MetaCLSLR, to verify the
effectiveness of MetaCLSLR with different types
of models. All baseline models are retrained on our
re-divided datasets.

1. Model fine-tuning based:

 BERT (Kenton and Toutanova, 2019)-
base-uncased, a widely adopted model
of this category in few-shot text classifi-
cation.


https://s3.amazonaws.com/fast-ai-nlp/dbpedia_csv.tgz

Method Swls 5w5s 10wls | 10w5s

SLR+BERT 0.6174 | 0.7456 | 0.5532 | 0.5851

model fine-tuning based CL+BERT 0.5904 | 0.7263 | 0.5370 | 0.5615
MetaCLSLR+BERT 0.6347 | 0.7601 | 0.5672 | 0.5993

SLR+PN-HATT 0.7592 | 0.8831 | 0.6435 | 0.7982

metric learning based CL+PN-HATT 0.7380 | 0.8719 | 0.6152 | 0.7792
MetaCLSLR+PN-HATT | 0.7675 | 0.8929 | 0.6507 | 0.8067

SLR+MLMAN 0.8103 | 0.9145 | 0.7059 | 0.8541

meta learning based CL+MLMAN 0.8167 | 0.9136 | 0.7042 | 0.8507
MetaCLSLR+MLMAN | 0.8182 | 0.9161 | 0.7084 | 0.8550

Table 3: The results of the ablation study on SLR and CL on FewRelS80.

Method Swls SwS5s
Adadelta+BERT 0.5825 | 0.7232
RMSProp+BERT 0.5887 | 0.7203

Adam+BERT 0.5943 | 0.7261
SLR+BERT 0.6174 | 0.7456
Adadelta+PN-HATT | 0.7386 | 0.8612
RMSProp+PN-HATT | 0.7327 | 0.8446
Adam+PN-HATT 0.7101 | 0.8300
SLR+PN-HATT 0.7592 | 0.8831
Adadelta+MLMAN | 0.7995 | 0.9063
RMSProp+MLMAN | 0.8007 | 0.9087
Adam+MLMAN 0.8027 | 0.9108
SLR+MLMAN 0.8103 | 0.9145

Table 4: The results of different models with SLR
and other self-adaptive learning rate mechanisms on
FewRel80.

2. Metric learning based:

* PN (Snell et al., 2017), a widely adopted
model of this category.

¢ PN-HATT (Gao et al., 2019), the SOTA
model of this category on FewRel80.

3. Meta learning based:

* MAML (Finn et al., 2017), a widely
adopted model of this category.

e MLMAN (Ye and Ling, 2019), the
SOTA model having open source code
on FewRel80.

4.4 Experimental Results

Table 2 presents the overall experimental results,
where we can see all of the MetaCLSLR models
with BERT, PN-HATT, MLMAN, PN and MAML
as their learners consistently outperform those
baselines on all datasets. The accuracy of the
model fine-tuning based and metric learning based
MetaCLSLR models increases by 4-6% and 2-4%
on FewRel80, respectively. However, for Meta-
CLSLR+MLMAN, its performance is improved
less than those of the former two categories; But it

still achieves the best results. Moreover, all kinds
of MetaCLSLR models are observed an accuracy
promotion by 2-4% compared to the baselines on
the majority of few-shot tasks on 20Newsgroup and
DBPedia Ontology. The overall experimental re-
sults clearly prove that MetaCLSLR is effective on
different datasets and with different models. The
consistent improvements well justify that Meta-
CLSLR may also work even when employing other
related models as its learner. However, it may work
as expected.

4.5 Ablation Studies

In this subsection, we conduct ablation studies to
investigate the effectiveness and impact of, both
Self-adaptive Learning Rate (SLR) and Curricu-
lum Learning (CL), as well as their impacts on the
performance of MetaCLSLR. The experimental re-
sults are shown in Tables 3-6. For the sake of space
limitation, only the results on FewRel80 are pre-
sented. Please see the Appendix for more results.
As shown in Table 3, the performance of all ablated
models without SLR and CL consistently falls. It
is indicated that both SLR and CL contribute to
the effectiveness of MetaCLSLR. Besides, it can
be observed that SLR is more important to Meta-
CLSLR than CL, for the larger performance im-
provement. Actually, except Swls for MLMAN,
the others get better results with SLR. The same
conclusion is observed on 20Newsgroup and DBPe-
dia Ontology, except the model MAML in 3w5s. In
what follows, more results and analysis are given to
provide deeper insights into the effectiveness and
importance of SLR and CL.

4.5.1 SLRs for Different Tasks and Network
Layers

SLRs consists of two subsets: the Self-adaptive
Learning rates for different Tasks (SLR-T) and dif-
ferent neural network Layers (SLR-L). As shown



Method Swls Sw5s 10wls | 10wS5s

SLR-L+BERT 0.6145 | 0.7412 | 0.5509 | 0.5823

model fine-tuning based SLR-T+BERT 0.5771 | 0.7148 | 0.5261 | 0.5502
SLR+BERT 0.6174 | 0.7456 | 0.5532 | 0.5851

SLR-L+PN-HATT | 0.7578 | 0.8811 | 0.6414 | 0.7956

metric learning based SLR-T+PN-HATT | 0.7354 | 0.8723 | 0.6137 | 0.7648
SLR+PN-HATT | 0.7592 | 0.8831 | 0.6435 | 0.7982

SLR-L+MLMAN | 0.8095 | 0.9139 | 0.7051 | 0.8537

meta learning based SLR-T+MLMAN | 0.7982 | 0.9125 | 0.6931 | 0.8522
SLR+MLMAN 0.8103 | 0.9145 | 0.7059 | 0.8541

Table 5: The results of the ablation study on SLRs on FewRel80.

Method Swls Sw5s

SLR+5-10-15+BERT 0.6285 | 0.7498
SLR+10-15-20+BERT 0.6347 | 0.7601
SLR+15-20-25+BERT 0.6315 | 0.7581
SLR+20-25-30+BERT 0.6239 | 0.7475
SLR+5-10-15+PN-HATT | 0.7562 | 0.8836
SLR+10-15-20+PN-HATT | 0.7565 | 0.8929
SLR+15-20-25+PN-HATT | 0.7675 | 0.8877
SLR+20-25-30+PN-HATT | 0.7645 | 0.8926
SLR+5-10-15+MLMAN 0.8102 | 0.9135
SLR+10-15-20+MLMAN | 0.8182 | 0.9150
SLR+15-20-25+MLMAN | 0.8133 | 0.9161
SLR+20-25-30+MLMAN | 0.8046 | 0.9146

Table 6: The results of different CL settings on
FewRel80.

in Table 5, the performance of all models without
SLR-T and SLR-L consistently decreases, indicat-
ing that both SLR-T and SLR-L contribute to the
effectiveness of SLR. However, the models with
SLR-L outperform those with SLR-T. That means,
although both task-level and layer-level learning
rates work, the layer-level ones are more important
and effective to the performance of models than
their counterparts.

4.5.2 SLR Comparing to Other Self-Adaptive
Learning Rate Methods

Furthermore, some experimental results for com-
paring our SLR with other self-adaptive learn-
ing rate mechanisms with tuned parameters, i.e.,
Adadelta (Zeiler, 2012), RMSProp (Hinton et al.,
2012) and Adam (Kingma and Ba, 2014), are
shown in Table 4. As we can see, the models with
our SLR outperform the others, which proves the
better effectiveness of our SLR. Moreover, the per-
formance even gets a large demotion for PN-HATT
with RMSProp and Adam, indicating that our SLR
is more robust to different kinds of models than the
others.

4.5.3 Different CL Settings

Based on the CL. mechanism, we set up four train-
ing configurations for each task on FewRel80,
namely, 5-10-15, 10-15-20, 15-20-25 and 20-25-
30. For the sake of space limitation, only results
on Swls and 5w5s are shown in Table 6, which
demonstrate that all the best results are obtained at
two settings, 10-15-20 and 15-20-25. This may be
due to the following reason: the 5-10-15 configura-
tion is the simplest one, which does not reach the
difficulty to get the best performance of a model,
whilst the 20-25-30 configuration is too hard and
the learner cannot be well trained at the training
period and thus cannot work well at the test period.

Furthermore, four training configurations,
namely, 3-5-7, 5-7-9, 7-9-11 and 9-11-13 are ex-
amined on 20Newsgroup. Four training configu-
rations, i.e., 3-4-5, 4-5-6, 5-6-7 and 6-7-8 are also
studied on DBPedia Ontology. Similar conclusions
are observed on these datasets. The results are not
presented due to space limitation.

5 Conclusion and Future Work

In this paper, we proposed a novel meta learning
framework, called MetaCLSLR, for few-shot text
classification. MetaCLSLR can self-adaptively ob-
tain different learning rates for different tasks and
different network layers. Moreover, a task-oriented
curriculum learning mechanism is introduced into
few-shot learning so as to achieve a better general-
ization ability for the meta learner. MetaCLSLR is
evaluated with three typical types of text classifica-
tion, relation classification, news classification and
topic classification, on three benchmark datasets:
FewRel80, 20Newsgroup and DBPedia Ontology,
respectively. Experimental results demonstrate su-
perior performance of MetaCLSLR on all datasets.
In the future, we will explore few-shot learning un-
der the unbalance learning scenarios because they
are ubiquitous in the real world.
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A Ablation Study

In this section, we conduct ablation studies to
investigate the effectiveness and impact of, both
Self-adaptive Learning Rate (SLR) and Curricu-
lum Learning (CL), as well as their impacts on
the performance of MetaCLSLR. The experimen-
tal results are shown in Tables 7-10. As shown
in Table 7 on 20Newsgroup and DBPedia Ontol-
ogy, the performance of all ablated models without
SLR and CL consistently falls. It is indicated that
both SLR and CL contribute to the effectiveness of
MetaCLSLR. Besides, it can be observed that SLR
is more important to MetaCLSLR than CL, for the
larger performance improvement. Actually, except
3wS5s for MAML, the others get better results with
SLR. In what follows, more results and analysis
are given so as to provide deeper insights into the
effectiveness and importance of SLR and CL.

A.1 SLRs for Different Tasks and Network
Layers

SLRs consists of two subsets: the Self-adaptive
Learning rates for different Tasks (SLR-T) and dif-
ferent neural network Layers (SLR-L). As shown
in Table 8, the performance of all models without
SLR-T and SLR-L consistently decreases, indicat-
ing that both SLR-T and SLR-L contribute to the
effectiveness of SLR. However, the models with
SLR-L outperform those with SLR-T. That means,
although both task-level and layer-level learning
rates work, the layer-level ones are more important
and effective to the performance of models than
their counterparts.

A.2 Different CL Settings

The task-oriented CL is another major contribution
of MetaCLSLR. Based on the CL mechanism, we
set up four training configurations for each task on
FewRel80, namely, 5-10-15, 10-15-20, 15-20-25
and 20-25-30. The results are shown in Table 9,
which demonstrate that all the best results are ob-
tained at two settings, 10-15-20 and 15-20-25. This
may be due to the following reason: the 5-10-15
configuration is the simplest one, which does not



Dataset: 20Newsgroup

Method 3wls 3wSs 6wls 6wS5s
SLR+BERT 0.7661 | 0.8445 | 0.6154 | 0.7379
model fine-tuning based CL+BERT 0.7523 | 0.8251 | 0.5977 | 0.7209
MetaCLSLR+BERT | 0.7689 | 0.8497 | 0.6195 | 0.7446
SLR+MAML 0.7709 | 0.8418 | 0.6355 | 0.7604
meta learning based CL+MAML 0.7680 | 0.8422 | 0.6245 | 0.7539
MetaCLSLR+MAML | 0.7824 | 0.8599 | 0.6479 | 0.7762
SLR+PN 0.8626 | 0.9765 | 0.7116 | 0.9148
metric learning based CL+PN 0.8523 | 0.9677 | 0.7098 | 0.8963

MetaCLSLR+PN 0.8680 | 0.9843 | 0.7233 | 0.9291

Dataset: DBPedia Ontology

Method 3wls 3wSs 6wls 6wS5s
SLR+BERT 0.7879 | 0.8550 | 0.6394 | 0.7850
model fine-tuning based CL+BERT 0.7769 | 0.8346 | 0.6208 | 0.7651
MetaCLSLR+BERT | 0.7944 | 0.8598 | 0.6540 | 0.7990
SLR+MAML 0.8076 | 0.8881 | 0.6745 | 0.8334
meta learning based CL+MAML 0.7892 | 0.8687 | 0.6601 | 0.8180
MetaCLSLR+MAML | 0.8163 | 0.8911 | 0.6814 | 0.8372
SLR+PN 0.8657 | 0.9706 | 0.7254 | 0.9041
metric learning based CL+PN 0.8532 | 0.9648 | 0.7123 | 0.8957

MetaCLSLR+PN 0.8683 | 0.9799 | 0.7301 | 0.9104

Table 7: The results of the ablation study on SLR and CL on 20Newsgroup and DBPedia Ontology.

reach the difficulty to get the best performance of
a model, whilst the 20-25-30 configuration is too
hard and the learner cannot be well trained at the
training period and thus cannot work well at the
test period. Furthermore, four training configura-
tions, namely, 3-5-7, 5-7-9, 7-9-11 and 9-11-13 are
examined on 20Newsgroup. Four training configu-
rations, i.e., 3-4-5, 4-5-6, 5-6-7 and 6-7-8 are also
studied on DBPedia Ontology. Similar conclusions
are observed on these datasets and the results are
shown in Table 10.
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Dataset: 20Newsgroup

Method 3wls 3w5s 6wls 6w5s
SLR-L+BERT | 0.7658 | 0.8408 | 0.6080 | 0.7295
model fine-tuning based | SLR-T+BERT | 0.7504 | 0.8262 | 0.5890 | 0.7160
SLR+BERT 0.7661 | 0.8445 | 0.6154 | 0.7379
SLR-L+MAML | 0.7699 | 0.8413 | 0.6334 | 0.7598
meta learning based SLR-T+MAML | 0.7619 | 0.8409 | 0.6228 | 0.7461
SLR+MAML | 0.7709 | 0.8418 | 0.6355 | 0.7604
SLR-L+PN 0.8615 | 0.9811 | 0.7093 | 0.9120
metric learning based SLR-T+PN 0.8476 | 0.9642 | 0.7064 | 0.8960
SLR+PN 0.8626 | 0.9765 | 0.7116 | 0.9148

Dataset: DBPedia Ontology

Method 3wls 3wSs 6wls 6w5s
SLR-L+BERT | 0.7822 | 0.8473 | 0.6353 | 0.7806
model fine-tuning based | SLR-T+BERT | 0.7615 | 0.8286 | 0.6179 | 0.7603
SLR+BERT 0.7879 | 0.8550 | 0.6394 | 0.7850
SLR-L+MAML | 0.8046 | 0.8724 | 0.6742 | 0.8264
meta learning based SLR-T+MAML | 0.7828 | 0.8640 | 0.6534 | 0.8127
SLR+MAML 0.8076 | 0.8881 | 0.6745 | 0.8334
SLR-L+PN 0.8572 | 0.9686 | 0.7229 | 0.9021
metric learning based SLR-T+PN 0.8449 | 0.9552 | 0.7160 | 0.8947
SLR+PN 0.8657 | 0.9706 | 0.7254 | 0.9041

Table 8: The results of the ablation study on SLRs on 20Newsgroup and DBPedia Ontology.

Method Swls SwS5s 10wls | 10wS5s
SLR+5-10-15+BERT 0.6285 | 0.7498 | 0.5590 | 0.5907
SLR+10-15-20+BERT 0.6347 | 0.7601 | 0.5672 | 0.5988
SLR+15-20-2+5BERT 0.6315 | 0.7581 | 0.5663 | 0.5993
SLR+20-25-30+BERT 0.6239 | 0.7475 | 0.5552 | 0.5874
SLR+5-10-15+PN-HATT | 0.7562 | 0.8836 | 0.6417 | 0.8023
SLR+10-15-20+PN-HATT | 0.7565 | 0.8929 | 0.6507 | 0.8067
SLR+15-20-25+PN-HATT | 0.7675 | 0.8877 | 0.6418 | 0.7932
SLR+20-25-30+PN-HATT | 0.7645 | 0.8926 | 0.6337 | 0.7925
SLR+5-10-15+MLMAN 0.8102 | 0.9135 | 0.7080 | 0.8473
SLR+10-15-20+MLMAN | 0.8182 | 0.9150 | 0.7084 | 0.8519
SLR+15-20-25+MLMAN | 0.8133 | 0.9161 | 0.7041 | 0.8530
SLR+20-25-30+MLMAN | 0.8046 | 0.9146 | 0.6998 | 0.8477

Table 9: The results of different CL settings on FewRel80.
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Dataset: 20Newsgroup

Method 3wls 3wSs 6wls 6w5s
SLR+3-5-7+BERT 0.7663 | 0.8474 | 0.6153 | 0.7383
SLR+5-7-9+BERT 0.7688 | 0.8497 | 0.6195 | 0.7446
SLR+7-9-11+BERT 0.7689 | 0.8476 | 0.6187 | 0.7426
SLR+9-11-134BERT | 0.7613 | 0.8396 | 0.6090 | 0.7284
SLR+3-5-7+MAML 0.7780 | 0.8481 | 0.6442 | 0.7657
SLR+5-7-9+MAML 0.7786 | 0.8544 | 0.6479 | 0.7762
SLR+7-9-114MAML | 0.7824 | 0.8599 | 0.6465 | 0.7738
SLR+9-11-13+MAML | 0.7794 | 0.8421 | 0.6400 | 0.7677
SLR+3-5-7+PN 0.8637 | 0.9824 | 0.7178 | 0.9269
SLR+5-7-9+PN 0.8661 | 0.9775 | 0.7233 | 0.9291
SLR+7-9-114PN 0.8680 | 0.9843 | 0.7217 | 0.9264
SLR+9-11-13+PN 0.8585 | 0.9783 | 0.7200 | 0.9257

Dataset: DBPedia Ontology
Method 3wls 3wSs 6wls 6w5s
SLR+3-5-7+BERT 0.7897 | 0.8585 | 0.6477 | 0.7933
SLR+5-7-9+BERT 0.7944 | 0.8658 | 0.6509 | 0.7968
SLR+7-9-11+BERT 0.7928 | 0.8598 | 0.6540 | 0.7990
SLR+9-11-13+4BERT | 0.7842 | 0.8557 | 0.6429 | 0.7859
SLR+3-5-7+MAML 0.8141 | 0.8904 | 0.6752 | 0.8348
SLR+5-7-9+MAML 0.8163 | 0.8893 | 0.6814 | 0.8372
SLR+7-9-11+4MAML | 0.8110 | 0.8911 | 0.6786 | 0.8359
SLR+9-11-13+MAML | 0.8111 | 0.8838 | 0.6742 | 0.8350
SLR+3-5-7+PN 0.8664 | 0.9745 | 0.7268 | 0.9088
SLR+5-7-9+PN 0.8665 | 0.9792 | 0.7277 | 0.9089
SLR+7-9-11+PN 0.8683 | 0.9799 | 0.7301 | 0.9104
SLR+9-11-13+PN 0.8666 | 0.9774 | 0.7276 | 0.9101

model fine-tuning based

meta learning based

metric learning based

model fine-tuning based

meta learning based

metric learning based

Table 10: The results of different CL settings on 20Newsgroup and DBPedia Ontology.
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