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Spatial-Temporal Context Model for Remote Sensing Imagery
Compression
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ABSTRACT
With the increasing spatial and temporal resolutions of obtained
remote sensing (RS) images, effective compression becomes critical
for storage, transmission, and large-scale in-memory processing.
Although image compression methods achieve a series of break-
throughs for daily images, a straightforward application of these
methods to RS domain underutilizes the properties of the RS im-
ages, such as content duplication, homogeneity, and temporal re-
dundancy. This paper proposes a Spatial-Temporal Context model
(STCM) for RS image compression, jointly leveraging context from
a broader spatial scope and across different temporal images. Specif-
ically, we propose a stacked diagonal masked module to expand
the contextual reference scope, which is stackable and maintains
its parallel capability. Furthermore, we propose spatial-temporal
contextual adaptive coding to enable the entropy estimation to ref-
erence context across different temporal RS images at the same ge-
ographic location. Experiments show that our method outperforms
previous state-of-the-art compression methods on rate-distortion
(RD) performance. For downstream tasks validation, our method
reduces the bitrate by 52 times for single temporal images in the
scene classification task while maintaining accuracy.

CCS CONCEPTS
• Computing methodologies→ Image compression.

KEYWORDS
Remote Sensing Imagery, Compression, Context Model

1 INTRODUCTION
Remote sensing (RS) images play an important role in resource
surveying, urban planning, agricultural development, national se-
curity, and other related areas. With the continuous advancement
of satellite RS imaging and processing technologies, we can acquire
a large number of RS images with various spatial, temporal, and
spectral resolutions. For example, the total volume of RS images pro-
duced by satellites can reach the petabyte (PB) scale in a single day.
However, managing, transmitting, and using these vast amounts
of RS images requires significant energy consumption, making it
challenging for users to access and store these data. Therefore, ex-
ploring effective compression methods for RS imagery is vital for
sustainable development and reducing data acquisition barriers.
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Compared to traditional codec methods, learning-based neural
methods have demonstrated superior rate-distortion (RD) perfor-
mance in the field of image compression[20, 38, 43, 47, 48]. The
development of these methods falls into two main categories: (1)
more powerful transform and (2) more accurate entropy estimation.
The former [8, 14, 18, 31, 32] improves the compression performance
by providing more efficient latent representation and usually relies
on complex models with large capacity backbone. The latter di-
rectly determines the length of the codec bitstream by providing an
estimation of the probability distribution. Entropy model enhances
compression performance mainly by incorporating hyper-prior
references, sophisticated probability models, and contextual predic-
tion. The hyper-prior requires extra bits to save the information and
focus on further removing the spatial correlation in latent repre-
sentation. More sophisticated probability models like the Gaussian
Mixture Model (GMM) improve the estimation accuracy by intro-
ducing more complex and large probability models to describe data
distributions. The context model utilizes previously decoded data
as priors to provide contextual references for undecoded data, en-
hancing RD performance without requiring additional bit storage
for the prior information.

With the Earth as the sole observation target, RS images exhibit
more consistent spatial and temporal redundancy and repetitive
patterns than daily images. When applying existing computer vi-
sion (CV) methods to RS imagery in a straightforward way, the
compression tends to be sub-optimal due to a lack of consideration
of these characteristics. Therefore, in the field of learned RS image
compression, some works incorporate edge information [16, 19] to
guide compression, while others [13, 26, 44] introduce additional
branches to handle different modalities of RS data to enhance the RD
performance. These innovations mainly focus on adjusting and im-
proving the main transformation part of the compression network
for RS images, making it challenging to migrate these dedicated
methods to the latest compression architectures. Alternatively, the
context model leverages previously decoded information as pri-
ors and can be conveniently integrated into various compression
frameworks based on entropy models. Although various context
models achieve great progress in enhancing the reconstructed im-
age quality and saving bitrates, two major challenges remain to be
solved for RS scenarios.

Based on the above considerations, in this work, we employ the
context model as our major approach, and propose methods that
can better utilize the inherent features of RS images to achieve
better compression. By designing methods for such more specific
scenarios, we also hope to derive insights and techniques that can
benefit compression method in general.

Compared to daily images, the first issue to consider is that RS im-
ages, due to patterns either formed by human beings or the nature,
contain more consistent content duplication, such as intersecting
farmland and sparse residential areas, or exhibit homogeneity, such

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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as vast expanses of bare land and forest areas. Given that commonly
utilized context models rely on previously decoded elements as pri-
ors to enhance distribution estimation, expanding the receptive field
during contextual referencing can help guide the entropy model to
produce more precise estimations. However, existing approaches
with context prior in a larger range are unable to be parallelized [25]
because of the inherent limitation of auto-regressive prior[34], mak-
ing the decoding process extremely time-consuming. Meanwhile,
some of the parallelized methods[20, 21, 24] sacrifice the utilization
of partial contextual prior, limiting the performance improvement
brought by the extension of the context-aware field.

The second issue is that remote sensing images often exhibit
temporal characteristics. Satellite revisits capture multiple images
of the same location at different time, resulting in significant re-
dundancy across temporal views. Though many video compression
studies consider temporal inter-frame redundancy, the assumptions
underlying these studies do not hold for remote sensing images.
For example, the content changes in temporal RS images often man-
ifest as abrupt transitions rather than smooth, continuous changes
in videos. Therefore, exploring cross-image correlations among
temporal images is also crucial in RS imagery compression models.

These limitations restrict the compression efficiency on RS data,
hindering the future application of large-scale RS data. To solve
these issues, we propose a spatial-temporal context model that
jointly explores the correlation between spatial contents and tem-
poral views of RS images. Specifically, we propose a stacked diag-
onal masked module for better spatial contextual prediction and
entropy estimation. This method enables the expansion of infor-
mation references by layer stacking while maintaining algorithmic
parallelism. Besides, we design a mechanism incorporating latent
context from different temporal images at the same geographic
location within the entropy model. The temporal context reference
empowers the model to leverage correlations across images, enhanc-
ing compression efficiency. Owing to the flexibility of the context
model, we embed our spatial-temporal context model (STCM) into
SOTA compression architectures. The experiments demonstrate
that our STCM improves the performance of these architectures on
RS data. When validating the quality of reconstructed images based
on downstream task accuracy, our method achieves a compression
ratio of 52x for single-temporal remote sensing images in scene
classification without compromising accuracy. Our contributions
can be summarized as follows:

• We propose a spatial-temporal context model for RS image
compression, leveraging both spatial and temporal correla-
tion to improve the compression performance.

• We propose a stacked diagonal masked module to utilize
more contextual prior with larger receptive fields and main-
tain its parallel capability.

• The proposed STCM improves the BD-rate on RS data when
compared to the SOTA methods in terms of PSNR and MS-
SSIM.

2 RELATEDWORKS
2.1 Learned Image Compression
Learned image compression aims to optimize the trade-off between
bit-rate and distortion. Since Ballé et al.[2] introduced an end-to-end

compression model by replacing the non-differentiable quantizer
with an additive uniform noise, the field of learned image com-
pression model has experienced rapid development. The learned
compression model is based on approximating the distribution of
discrete quantized latent representations, called the entropy model.
Ballé et al.[3] further proposed an input-adaptive entropy model,
which extracts the redundancy in adjacent area by introducing
extra latent variables as side-information, also call hyper-priors.
After that, numerous works design various entropy estimation
models[17, 30, 36, 39, 46] to improve image compression perfor-
mance. Many of these investigations explore different paramet-
ric models based on different distribution assumptions, including
Gaussian[34], Gaussian mixture[8], and asymmetric Gaussian[11].
In this paper, we adopt the most commonly used Gaussian distribu-
tion following the previous work[20, 21, 34].

The context model, serving as an optional but effective com-
ponent within the entropy estimation module, utilizes decoded
contents to provide supplementary priors. It can complement hyper-
priors effectively, thereby assisting the entropy model in achieving
precise probability estimation[27, 34]. Inspired by Pixel-CNN[41],
Minnen et al.[34] introduced the auto-regressive component into
the entropy model. Later, a series of studies proved that compres-
sion performance greatly benefits from using more context. Ma
et al.[33] and He et al. [20] captured local spatial and channel-
wise context. Liu et al.[31] introduced 3D convolution into the
context model to extract channel-wise correlations. Besides, many
studies[22, 24, 25, 38] have demonstrated the effectiveness of cap-
turing long-range content dependencies as hyper-priors or context
priors via mechanisms including attention[42]. However, the qua-
dratic computational complexity of global spatial context capturing
makes it hard to be employed for large-resolution image coding.

Additionally, the models with serial dependencies along the
spatial dimension significantly break the parallelism, making the
decoding process extremely time-consuming. To address this is-
sue, Minnen et al.[35] further proposed a channel-wise context
model to improve the parallelism degree. He et al.[21] adopted a
checkerboard pattern for the context reference, significantly im-
proving the spatial decoding efficiency. Based on the above opti-
mizations, the ELIC[20] model is proposed to combine channel-wise
and checkerboard spatial context jointly in a parallel way. Due to
the checkerboard method achieving parallelism by using contextual
reference for half of the content, the utilization of contextual priors
is constrained compared to the serial context model. Additionally,
the checkerboard mask pattern restricts contextual information
reference to odd-numbered stacking exclusively[24], and simple
nonlinear stacking exhibits performance degradation in practice,
making it hard to leverage a broader receptive field. To solve this
issue, we propose a stacked diagonal masked module for contextual
reference, which is stacked with a residual block to prevent stacking
degradation, achieving a larger receptive field and maintaining the
algorithmic parallelism.

2.2 Remote Sensing Imagery Compression
The compression of RS imagery is primarily categorized into two
types: on-board and on-ground. In the context of onboard com-
pression, the Consultative Committee for Space Data Systems rec-
ommends the standard named CCSDS 122.0-B with orthogonal
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wavelet transform. On-board compression methods must consider
the limitation of computational resources due to the hardware
and energy consumption constraints. Some learning-based meth-
ods with reduced-complexity framework are proposed[1] recently,
which integrated compression and denoising in a potentially on-
orbit way. Since the on-board compression aims to achieve a good
trade-off between energy consumption and compression ratio[28],
the performance is satisfying enough for on-ground applications.

The most preferred traditional coding technology for on-ground
compression is JPEG2000[40]. With the continuous success of deep
learning technology in various RS imagery vision tasks, many
works have proposed specific models tailored for compressing re-
mote sensing images.

Based on the structure of [3], Xiang et al.[44] utilized separate
branches for the low-frequency and high-frequency features of
RS imagery by discrete wavelet transformation (DWT) to divide
features. Han et al.[19] enhanced the compression performance of
RS images by focusing on the boundary information with a VAE-
based compression architecture. Guo et al.[16] presented the CENet,
which incorporates an edge extractor neural network into the com-
pression architecture to guide compression optimization by the
edge-guided loss. Fu et al.[13] chose to improve the peak signal-to-
noise ratio (PSNR) performance by combining transformer-based
hyper-priors and CNN-based hyper-priors. Besides, GAN-based
compression methods are also a trend to achieve high-fidelity com-
pression at extremely low bit-rates[7, 37, 45]. For the considera-
tion of efficiency, Chong et al.[9] proposed the high-order Markov
random field (MRF) attention network to accelerate the conver-
gence during training. Regarding the consideration ofmulti-spectral
bands, Li et al.[29] utilized CNNs in conjunction with Nonnega-
tive Tucker Decomposition (NTD) to improve reconstructed image
quality and compression efficiency. Kong et al.[26] designed a multi-
scale spatial-spectral attention network based on 7-band Landsat-8
and 8-band WorldView-3 satellites.

Existing literature provides valuable insight into learned RS im-
age compression. However, few studies have investigated the tem-
poral redundancy between temporal views of the same location.
To complement existing methods, we further include the correla-
tion extraction between temporal RS images in a context model to
enhance the RD performance.

3 METHODS
3.1 Overview
Our codec is built on an entropy model with adaptive spatial-
temporal contextual (STC) coding to achieve better rate-distortion
performance on RS imagery. Following the previously learned im-
age compression works, the target of our STCM is to optimize the
compression ratio and the image quality metric jointly, and the
overall architecture is shown in Fig 1(a).

Given an input image 𝑥𝑖 with temporal index 𝑖 , it is transformed
to latent representation 𝑦𝑖 via an encoder network 𝑔𝑎 , also called
analysis network in previous works. Then, the spatial dependencies
of 𝑦𝑖 are captured into the hyper-priors 𝑧𝑖 via a hyper encoder ℎ𝑎 .
The latent 𝑦𝑖 and hyper latent 𝑧𝑖 are quantized to 𝑦𝑖 and 𝑧𝑖 respec-
tively by the quantization operator. After that, the quantized latents

𝑦𝑖 and 𝑧𝑖 are compressed into bit-streams using the arithmetic en-
coder (AE) [12] blocks based on the mean and scale parameters
given by the entropy model. The bit-streams are saved in a file as
the final compressed representation of the input image 𝑥𝑖 .

For decoding, the arithmetic decoder (AD) are used to decom-
press the saved bit-streams. In the AE and AD processes, a non-
parametric entropy model is used for hyper latents 𝑧𝑖 , and the
learned entropy model is responsible for providing a more accurate
probabilistic estimation over the quantized latents 𝑦𝑖 . Note that
the AE and AD blocks are lossless compression, and the arithmetic
coding algorithm assigns fewer bits for the symbol with more oc-
currence frequency. Therefore, the accuracy of the entropy model
directly determines the length of saved bit-streams. Following pre-
vious works [20, 34], the entropy model combines the hyper-priors
and context models. For hyper-priors, the quantized hyper latents
𝑧𝑖 are decoded with the AD first. After that, the hyper decoder ℎ𝑠
in the hyper-prior model is applied to 𝑧𝑖 to generate the hyper-
prior Ψ, which will be used for distribution estimation with context
prior Φ later. The hyper-prior model needs extra bits to save the
hyper-prior information, while the context model utilizes the prior
information from previously decoded latent. The partially decoded
latents are denoted as ⟨𝑦𝑖 ⟩, which gives the context-based predic-
tions Φ. Specifically, for the single image compression, the context
prior Φ contains previously decoded spatial and channel latents of
the input image. For the temporal image compression, we further
include the decoded latents 𝑦𝑖−1 of previous image 𝑥𝑖−1 as tempo-
ral context prior into Φ for the distribution estimation of 𝑥𝑖 . The
temporal context prior is set to zero to deal with the first image in
the temporal image compression. We exclude the temporal context
module for single-temporal images and rely on the other prior in-
formation modules within the context model. A detailed illustration
of the context model is shown in Figure 1(b) and Section 3.3. After
that, the hyper-prior Ψ acts as a correctness and complement for
context priors Φ. Here, Φ in conjunction with Ψ forms the condition
of the predicted Gaussian model. They are aggregated inside the
parameter distribution estimator, generating the final estimated
distribution parameters (mean 𝜇 and scale 𝜎) for the conditional
Gaussian entropy model. After the AD block decodes the bit-stream
step by step, the decoded latent 𝑦𝑖 is fed into the decoder 𝑔𝑠 and is
transformed back to the reconstructed image 𝑥𝑖 .

The loss function for training is to minimize the expectation of
rate-distortion (RD), which is defined in Equation (1).

L = 𝑅 + 𝜆 · 𝐷
= E𝒙∼𝑝𝒙

[
− log2 𝑝�̂� (�̂� )

]︸                        ︷︷                        ︸
rate (latents)

+E𝒙∼𝑝𝒙
[
− log2 𝑝�̂� (�̂� )

]︸                       ︷︷                       ︸
rate (hyper-latents)

+𝜆 · E𝒙∼𝑝𝒙 ∥𝒙 − �̂� ∥22︸               ︷︷               ︸
distortion

(1)

where 𝜆 is the Lagrange multiplier that determines the trade-off
between the rate 𝑅 and the distortion 𝐷 . 𝑝𝑥 is the distribution
of the original images and 𝑝∗̂ is the discrete entropy estimation
model. Here, the rate term corresponds to the cross entropy between
the latent marginal distribution and the learned entropy model,
which will be minimized when these distributions are identical.
Mean square error (MSE) is used as the distortion metric during
the training stage.

Since we mainly focus on the adaptive spatial-temporal contex-
tual model for RS imagery, we keep the network architecture of
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Figure 1: The overall RS image compression architecture of this work and the proposed Spatial-Temporal Contextual Model
(STCM).

the main transform the same as the previous works [20, 44], includ-
ing the encoder, decoder, hyper-encoder, hyper-decoder, and the
factorized entropy model for hyper-prior latents.

3.2 Spatial Contextual Usage with Stacked
Diagonal Masked Module

RS imagery exhibits more content duplication than daily images
since it usually contains more repeated instances in a single image.
Pixels in a bigger neighboring area are likely to have stronger
correlations than daily images. This implies that the larger receptive
field has more chance to capture more mutual information between
current decoding pixel and previously decoded ones, enabling the
model to achieve better bit saving in RS images.

Figure 2 shows two commonly used mask patterns and the pro-
posed diagonal masked pattern. The serial pattern[25, 34], shown
in Figure 2(a), utilizes most contextual prior information among
current learning-based context models but suffers from the serial
decoding constraints (i.e., in raster scan order), making the de-
coding process very time-consuming and unacceptable for prac-
tice. To deploy the context model in real-world applications, the
checkerboard-shaped mask strategy[20, 21], shown in Figure 2(b),
enables efficient parallelism during decoding by making half of
the pixels use no contextual information. However, the checker-
board method limits the neighbors used for context prediction and
entropy modeling compared to the serial mask. The experimental
result in Table 3 shows that the contextual information discarding
in the checkerboard method limits the achievable compression ratio
when satisfying the RS downstream analytic task requirements.

Therefore, we propose the diagonal pattern mask in the context
model and enlarge the receptive field by stacking such masked
layers with residual bottleneck blocks, which maintains the algo-
rithmic parallelism. As shown in Figure 2(b) and Figure 2(c), we
illustrate the receptive field enlargement by stacking masked layers.
The checkerboard masked layer has to be stacked an odd number
of times to maintain the information utilization pattern because a
valid context model can only access the latents that have already

been decoded. When stacking two times, the receptive field based
on checkerboard-masked convolution layers remains unexpanded
because the increased reference positions have not been decoded.
When stacking three layers of mask convolutional layers, the recep-
tive field of the checkerboard expands accordingly. However, only
half of the pixels can utilize the contextual information within this
receptive field. Decoded pixels (blue cells) cannot use any contextual
information, limiting overall contextual usage. Our proposed diag-
onal masked module increases the order of parallelism compared
to the serial masked model by decoding the pixels diagonally in
parallel from top left to bottom right and can enlarge the receptive
field flexibly by enabling arbitrary times of layer stacking.

Meanwhile, although the serial mask can theoretically refer-
ence all previous latents, in practice, the context usage is limited
with a single layer of 5 × 5 masked convolution[34]. This is be-
cause the original network based on serial mask context lacks a
design to prevent degradation caused by layer stacking, which lim-
its further bit-saving with the larger receptive field for context
reference. Therefore, we introduce masked residual blocks between
the masked stacked convolution layers to avoid degradation caused
by layer stacking. This enables a larger receptive field and enhances
the non-linearity for context modeling.

3.3 STCM: Spatial-Temporal Context Model
The context model leverages previously decoded information to
help estimate the distribution of the current decoding area. Con-
sequently, the compression performance enhancement brought by
the context model improves with the increasing correlations be-
tween the referenced contents and the current decoding contents.
RS images typically exhibit stable landscapes, resulting in strong
correlations between images captured at the same location but at dif-
ferent times. Therefore, incorporating temporal context references
in the context model can reduce temporal information redundancy,
improving the RD performance of compression methods.

The context prediction in our method includes the spatial, chan-
nel, and temporal redundancy elimination, shown in Figure 1(b).
We follow the previous ELIC [20] for the channel-wise context
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(a) Serial
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(c) Diagonal (Ours)

Figure 2: Receptive field comparison with different masked
pattern stacking in context modeling (using 5×5 masked
convolutions as example).
model to recognize channel-wise redundancy by the uneven group-
ing strategy. For the spatial context model, we use the proposed
stacked diagonal masked module for spatial contextual reference
inside each channel group, which can be parallelized. Additionally,
we introduce the previously decoded temporal image latents as tem-
poral context for denser referring. Since the referenced temporal
image has already been fully decoded before processing the current
image, this temporal context can also act as a complement to the
limited neighbor utilization [21, 34, 35] for entropy modeling. The
output of each context branch is concatenated with the decoded
hyper-prior Ψ. Then, all priors are fed into the final distribution es-
timation module to aggregate all these priors parameters, providing
the entropy parameters 𝜇 and 𝜎 of current decoding contents.

3.4 Inference-Stage Extension for RS imagery
Due to the variations in satellite revisiting intervals and weather
conditions, the quantity of temporal RS images remains uncertain.
Additionally, the varied types and quantities of sensors on satellites
lead to differences in both the resolution and band numbers of RS
images. This diversity makes it challenging to train models based
on multi-source RS data. We cope with this issue from the inference
side by training a compression model that can be used for RS image
groups with varying temporal views and different band numbers.

We utilized three bands (randomly selected from multi-spectral
data) for the multi-spectral, enabling the model to handle different

spectral distributions. During the inference process, multi-spectral
images are divided into multiple sub-images composed of three
bands in the pre-processing stage. Subsequently, the model trained
based on three bands is sequentially applied to these sub-images.

We only consider collaborative compression between two tem-
poral images during training for the different number of temporal
views. During the inference stage, to enhance computational ef-
ficiency, we consistently place only the first image latents of the
temporal sequence into the temporal prior buffer to avoid redundant
calculations. Subsequently, we sequentially input other temporal
images into the model for compression and decompression.

In this way, we avoid training separate models for remote sensing
images with different bands and time sequences, allowing ourmodel
to apply to data from various satellites.

4 EXPERIMENTAL RESULTS
4.1 Experimental Settings
All experiments are conducted based on an open-source library
named CompressAI[4], which is widely used for developing and
evaluating learning-based image compression methods.

Datasets.We train and evaluate the compression methods on
images from fMoW-full [10], a widely used RS dataset for various
tasks. The fMoW dataset consists of more than 1 million images
from over 200 countries, with different number of temporal views
ranging from 1 to 39. The band number in this dataset varies from
3 to 8, and the ground sample distance (GSD) resolutions are in
the range from 0.3m to 3.7m. Following the dataset volume used
in the previous compression framework training, we randomly
select images larger than 384×384 from fMoW-full to construct
two subsets, fMoW-S1 and fMoW-S2, one for training the model
with spatial context model and the other for the temporal context
model. The subset fMoW-S1, used for the spatial model, consists of
randomly selected 11.5K single temporal images. In the meantime,
we build fMow-S2 for the temporal context model, where 11.5K
image pairs are randomly chosen from images with more than
two temporal views. We apply the trained compression models to
the UC Merced (UCM) Land Use Dataset for downstream analytic
tasks to further evaluate compression quality. Specifically, we use
this dataset to assess the reconstructed image quality for the scene
classification task. Detailed information about these datasets used
in this paper can be found in Table 1. We include more datasets and
corresponding experiments in our supplementary material.

Implementation Details. We train our context model with
main transform architectures in ELIC [20] and HL-RSCompNet [44].
For each architecture, we follow the same training settings (e.g.,
optimizer, learning rate, batch size, training iterations) provided in
their paper, respectively, for equivalent comparisons. Due to the
higher reconstruction quality requirements for RS images, we intro-
duce a larger range of Lagrange multiplier 𝜆 settings for more dif-
ferent quality presets. For the context model training with ELIC[20]
transform architecture, we set 𝜆 ∈ {0.004, 0.15, 0.45, 0.55, 0.75},
achieving average bits-per-pixel (bpp) ranging from 0.12 to 9.13 and
peak signal-to-noise ratio (PSNR) from 28.36dB to 46.00dB. For HL-
RSCompNet architecture, we set 𝜆 ∈ {0.01, 0.1, 0.3, 1.5, 3.0, 10.0},
achieving average bpp ranging from 0.08 to 3.25 and PSNR from
27.19dB to 43.38dB. During training, we randomly crop images to



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Datasets Details for compression models and downstream application validation.

Datasets Band Num GSD(m) Resolution Train/Val/Test Num Temporal Num Source

fMoW-S1 3-8 0.3-3.7 >384×384 10000/1000/500 1 WordView-2, WordView-3, QuickBird-2
fMoW-S2 3-8 0.3-3.7 >384×384 10000/1000/500 2 WordView-2, WordView-3, QuickBird-2
UCM 3 0.3 256×256 2100 1 Aerial

Figure 3: Rate-distortion curve comparison for different
methods based on PSRN and MS-SSIM.
256 × 256 patches, and all architectures are trained with the joint
optimization of the bpp and MSE. We train our model on a single
NVIDIA A800 GPU. Please refer to the supplementary material
for detailed training and evaluation settings, data acquisition and
pre-processing methods, and the detailed model architecture of
main transform networks for each experiment.

Evaluation. The compression efficiency is assessed with the
bpp, and the quality of reconstructed images is evaluated using the
PSNR and the multi-scale mean structural similarity index measure
(MS-SSIM). To evaluate the rate-distortion (RD) performance of
models, we adopt the Bjøntegaard-delta rate (BD-rate) [5] as the
metric, which is computed according to the bpp and a distortion
metric (PSNR or MS-SSIM). For the downstream RS task, we use
accuracy as the metric for scene classification.

4.2 Performance Comparisons
The proposed method is compared with the best traditional codec
standard VTM-23.1[6] and existing learned image compression
methods, including ELIC[20],MLIC++[23], andHL-RSCompNet[44].
ELIC andMLIC++ are learned image compression methods for daily
images, while HL-RSCompNet is designed for RS images. We eval-
uate the performance improvement of our proposed context model
by integrating it into two popular learning-based models designed
for daily image compression (ELIC[20]) and RS image compres-
sion (HL-RSCompNet[44]), respectively. ELIC+Our-SM represents
a model with the same transform architect as ELIC but embedded
with our spatial context model, and ELIC+Our-STM represents the
model integrated with our spatial-temporal context model. Sim-
ilarly, HL-RSCompNet+Our-SM and HL-RSCompNet+Our-STM
denote themodels with the samemain transform architecture as HL-
RSCompNet with our spatial and spatial-temporal context model,
respectively. We assess our models on rate-distortion performance
and their impacts on the accuracy of downstream tasks. The anchor
rate-distortion performance is set to VVC (VTM-23.11) [6], whose
BD-rate will be 0%. Besides, for different compression methods, we
further compare the quality of reconstructed images by evaluating
1Official implementation: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-
/releases/VTM-23.1

the decreased ratio of downstream scene classification tasks based
on the UC Merced Land Use Dataset.

Rate-distortion (RD) performance. Figure 3 shows the RD
performance of our proposed spatial-temporal context model and
other existing learning-based approaches on the test set of fMoW-
S2. In Table 2, we report the detailed BD-rate and codec time for
each method. Our context model achieves the best performance on
the RS images compared with the competing methods. Our spatial-
temporal context model reduces BD-rate by 61.155% with the same
main transform architecture in ELIC over VTM-23.1. In contrast,
the original ELIC method performs worse than VTM-23.1 on RS
images, necessitating an additional 12.523% of bits to achieve similar
PSNR quality. For HL-RSCompNet, which is specifically designed
for remote sensing image compression, our context model further
achieves an additional 11.79% bit savings. Compared with MLIC++,
our temporal-context model with ELIC backbone can reduce BD-
rate by up to 24.32% over MLIC++[23]. Our context model also
achieves a significant BD-rate improvement in the evaluation based
on MS-SSIM as the quality metric.

Figure 4 illustrates two examples of the visual comparison on the
fMoW-S1 dataset. In each case, the first column denotes the original
image (Ground truth). For every image, the top row displays the
reconstructed image, with quantitative metrics below showing the
bpp of each compressed image, MSE between the reconstructed and
original images, PSNR, and MS-SSIM of the reconstructed image.
To provide a more intuitive representation of reconstruction errors,
the second row of each image displays the residuals between the
reconstructed image and the original. Brighter areas in the residual
image indicate greater information loss in those regions. Figure 4(a)
shows an example with homogeneous content in a cropland area,
and Figure 4(b) presents an image containing more complicated
elements. Our method achieves the best results in both scenarios
due to the expanded receptive field and stacked mask convolutions,
which effectively extract spatial correlations. Notably, the VVC and
ELIC methods suffer significant losses in boundary information,
such as roads and buildings. A comparison of quantification metrics
reveals that our context model effectively reduces information loss.
The PSNR value of our reconstructed images is 6dB higher than the
image reconstructed by VTM-23.1, and our reconstructed images
retain more details with lower bpp. In terms of visual quality, our
context model also provides significant improvements.

Downstream tasks validation.Daily image compressionmainly
focuses on reducing transmission and storage costs for visual appli-
cations. Remote sensing images, in addition to visual applications,
are primarily used for automatic downstream tasks such as scene
classification. It is essential to consider the negative impact on
downstream tasks resulting from lossy compression.

We choose scene classification task for evaluation, as it is one
of the most common downstream applications in RS. We train the

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-23.1
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-23.1
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Figure 4: Visual comparison results of two examples on fMoW-S1 dataset. The top row of each image displays the reconstructed
image. To further represent reconstruction errors, the second row displays the residuals between the reconstructed image and
the original image. Brighter areas in the residual image indicate more significant information loss in those regions.

Table 2: Comparisons of BD-Rate and codec time of different models. The Enc. and Dec. time refer to average encoding and
decoding time, including arithmetic coding time. All evaluated methods take VVC as an anchor to calculate the BD-rate.

Model BD-Rate for PSNR(%)↓ BD-Rate for MS-SSIM(%)↓ Enc. Time(s) Dec. Time(s)

VVC(VTM-23.1) 0 0 6.482 0.056

MLIC++[23] -36.834 -78.940 0.089 0.129

ELIC+Chkb-CM(Original) 12.523 -58.762 3.41 3.001
ELIC+Our-SM -55.831 -81.917 1.892 2.010
ELIC+Our-STM -61.155 -84.893 3.353 2.971

HL-RSCompNet+Chkb-CM(Original) -40.682 -81.034 0.038 0.014
HL-RSCompNet+Our-SM -44.076 -81.654 0.032 0.571
HL-RSCompNet+Our-STM -52.480 -87.999 0.034 0.617

MSMatch [15] network on the UC Merced Land dataset, which is
one of the widely accepted SOTA methods. We follow all MSMatch
settings to acquire the trained classification model.

To compare the effects of compressed images on downstream
tasks, we conduct inference with the trained classification model
on both the original images in the UCM test set and the recon-
structed images using different compression models. The results
are shown in Table 3. Our method achieves the lowest bitrate with

a compression ratio of 52x without compromising scene classifica-
tion accuracy. In comparison, the ELIC method requires over 20
times more bits than ours to achieve similar results, while MLIC++
requires nearly four times the bits of our method.

We provide additional results and analysis on other downstream
tasks and datasets in our supplementary material.
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Table 3: Downstream scene classification task accuracy comparisons based on reconstructed images from various methods and
quality settings (i.e., bpp). The highlighted blue data indicates that the accuracy of the downstream tasks remain unaffected.

No Comp VVC ELIC(Ori) MLIC++ Ours+HL_RSCompNet Ours+ELIC

bpp - 0.49 1.43 4.18 0.17 2.18 9.51 0.26 0.58 1.81 0.1 0.56 1.08 0.46 2.25 3.12
Acc 0.991 0.705 0.891 0.952 0.871 0.981 0.991 0.976 0.981 0.991 0.895 0.991 0.991 0.991 0.991 0.991

Table 4: Ablation study of spatial context model on fMoW-S1.

Context Model Layer Num Stack BD-rate
Serial Chkb Diag 1layer 3layers Res block (%)

(a) ✔ ✔ ✔ 0
(b) ✔ ✔ ✔ +6.889
(c) ✔ ✔ - +21.183
(d) ✔ ✔ - +177.659
(e) ✔ ✔ - +7.908
(f) ✔ ✔ ✘ +597.104

4.3 Ablation Study
We conduct ablation experiments on the mask pattern and stacking
manner of the context model. All experiments are based on the ELIC
main transform architecture for fair comparison. Table 4 shows the
results evaluated on the fMoW-S1 test set. Anchor performance,
denoted as experiment (a) in Table 4, is set to our stacked diagonal
masked context model, which is stacked three times with residual
block. The increase in BD-rate implies the additional bits required
to achieve comparable image quality (i.e., PSNR).

For the masked pattern in the context model, we evaluate the
impact of three patterns on the performance of the compression
model, including serial (Figure 2(a)), checkerboard (Figure 2(b)),
and diagonal (Figure 2(c)) patterns. The results of experiments (c),
(d), and (e) demonstrate that, when all patterns use a single-layer
masked convolution, the serial mask pattern outperforms the di-
agonal pattern, which in turn surpasses the checkerboard pattern.
The reason is that the checkerboard mode discards half of the spa-
tial context utilization by skipping every other position during the
decoding process, while for serial and diagonal modes, all pixels
utilize spatial context information during decoding. Specifically,
serial mode utilizes slightly more spatial context during each con-
volution than diagonal mode. All these results suggest that spatial
contextual information utilization plays a crucial role in accurately
reconstructing intricate details within the RS images.

Additionally, we conduct experiments on different stacking man-
ners of the contextmodel, comparing the single-layer contextmodel,
the simple nonlinear three-times stacking context model, and our
three-times stacking context model with residual blocks. According
to the experimental results comparisons between experiments (a)
and (c), as well as between experiments (b) and (d) in Table 4, it
can be concluded that incorporating residual blocks in the con-
textual layer stacking enhances the compression performance of
both checkerboard and diagonal masked convolution. Besides, sim-
ply stacking with nonlinear layers has a significantly detrimental
impact on compression performance, as evidenced in the results
of experiments (a) and (f). This underscores the effectiveness of
residual blocks in mitigating performance degradation induced

by convolution layer stacking in the context model. We excluded
stacking experiments for serial masked convolution due to its serial
dependencies. The inability for parallel decoding processes results
in significant time overheads for the algorithm. Stacking would sub-
stantially prolong its decoding time, severely limiting the practical
applicability of the algorithm.

4.4 Discussion of Critical Factors for RS Image
Compression

Wediscuss critical factors influencing RS image compression. Firstly,
expanding the receptive field is crucial for acquiring more relevant
contextual information for RS images. As shown in Table 2 and
Table 4(a-b), methods with larger receptive fields, whether achieved
by attention mechanisms like MLIC++ or convolution stacking like
experiments (a) and (b) in Table 4, can achieve better compression
performance on RS data. Secondly, the quantity of contextual refer-
ences plays a vital role in RS image compression. Results in Table 2
and Table 4(e) demonstrate that the serial method and our context
model method outperform the original checkerboard method. The
result confirms that the effectiveness of the checkerboard-shaped
contextual mask is limited for RS images, as it discards half of the
contextual reference. Thirdly, separating high and low-frequency
information enhances the performance of RS image compression.
HL-RSCompNet performs well on RS data, even though the main
transform network of thismodel is relatively simple and lightweight.
We attribute this to the strategy proposed in this method, which
deals with high and low-frequency information separately. This
helps the model integrate multimodal information from different
sensors, and the high-frequency information process branch can
assist the preserving of more critical details in RS images.

5 CONCLUSION
This paper proposes a spatial-temporal context model (STCM) for
remote sensing imagery compression, which can take advantage
of spatial and temporal redundancies in RS imagery jointly. Based
on our STCM, we further improve the performance of the state-of-
the-art models for RS imagery. The significance of our work lies in
leveraging the characteristics of redundancy for RS data within the
context model, which enhances the performance of compression
methods on RS images. We validate the compression models by
assessing their impacts on RS downstream tasks, such as scene clas-
sification. This evaluation helps ensure the usability of compressed
data in practical scenarios. Our STCM achieves up to 52x com-
pression ratio for single temporal images without decreasing the
accuracy of the scene classification task. Our compression model
reduces the data storage and retrieval costs associated with such
applications, thereby enabling their scalability to larger scales.
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