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Abstract—Some models have been used to solve temporally-
variant (as well as time-dependent) quadratic programming
(TVQP) in the last few years. But most of the models contain
inverse matrix and time-invariant sampling gap, which will leads
to computation errors and consumptions that we cannot control
and do not want. Recently, a continuous inverse-free Zhang
neurodynamics (CIFZN) model, also known as zeroing neural
network model, is developed for solving TVQP. A fuzzy system
is designed to adaptively adjust the sampling gap under the
expected precision. Aided with the fuzzy system, an inverse
free discrete model is further proposed and termed the fuzzy
discrete Zhang Neurodynamics (FDZN) model. In this paper,
verification of the efficacy and superiority of the FDZN model and
numerical experiments about four specific TVQP examples are
conducted. Most importantly, simulative is performed to illustrate
the applicability of the FDZN model.

Index Terms—Zhang neurodynamics (ZN), temporally-variant
quadratic programming (TVQP), fuzzy system, adaptive sam-
pling gap, expected precision.

I. INTRODUCTION

Temporally-variant problems are more common in scientific

research than time-invariant problems, which have attracted

much attention of researchers [1]–[5]. As a special type from

neural networks [6]–[9], Zhang neurodynamics (ZN) [10]–[12]

plays an important role in time-dependent problems solving.

In recent years, lots of continuous models and some effective

discrete models have been designed and analyzed for solving

Temporally-Variant Quadratic Programming (TVQP) [13]–

[16]. Continuous models could be divided into two categories:

inverse-free [13], [14] and inverse-need [15], [16]. Those two

categories both have good performance for solving TVQP in

continuous form. But both of them leads to some unexpected

problems. Therefore, developing a model that meets our needs

is important. Fuzzy control [17]–[20] is a typical intelligent

control method to get an adaptive strategy. As for temporally-

variant problems solving, the fuzzy control also shows its

unique advantages [21]–[25]. For solving TVQP, an adaptive

fuzzy control strategy was designed and applied to ZN [23]. In

addition, some ZN models with constant/fuzzy parameters are

developed for solving TVQP [24]. Inspired by the previous

work [21]–[25], the fuzzy control method is utilized in this

paper to develop the adaptively satisfied (as well as adaptive

sampling gap). Verification of a model is absolutely necessary

where it is proposed. So in most of the pages of this paper,

simulative experiments about robot control are performed to

illustrate the applicability of the FDZNN model.

Based on the above discussions, the idea and organizational

structure of this paper are delineated as follows. Section II

introduces the TVQP formulation and presents a continuous

inverse-free ZN (CIFZN) model, which is constructed by the

ZN method in a dual application, laying the groundwork for

the subsequent development of discrete models, applying the

Euler discretization technique to the CIFZN model, resulting



in the formulation of an Inverse-Free Discrete Zeroth-Order

Neural (DZN) model. Moving forward to Section III, a fuzzy

system is designed in detail to develop an adaptive satisfied.

Leveraging this fuzzy system, an advanced FIFDZN model is

proposed. Section IV is dedicated to experimental validations,

where four TVQP case studies, each with unique requirements,

are examined to demonstrate the effectiveness and advantages

of the FIFDZN model over the DZN model. The paper

concludes with a summary in the final section, highlighting

the principal contributions in a clear and concise manner for

enhanced comprehension. For a better understanding, the main

contributions are listed as below.

1) The inverse-free DZN model is displayed for solving

TVQP for the first time on the basis of the CIFZN model

and Euler discretization formula, which is more conve-

nient for computer processing, and program coding.

2) The fuzzy system with two inputs and one output is able

to generate the adaptively satisfied under the expected

precision. Aided with the fuzzy system, the FIFDZN

model is further proposed for solving TVQP, which

is more flexible, stable, and intelligent compared with

existing results.

3) Computer Simulations of FIFZN is conducted in this

paper to validate the effectiveness, superiority, and ap-

plicability of the FIFDZN for solving TVQP.

II. PROBLEM FORMULATION AND ZN MODELS

The problem formulation about TVQP is introduced in this

section. Then, the inverse-free CZN model and DZN model

are developed for solving TVQP.

A. TVQP Formulation and Solution Model

TVQP [15], [16], [26] is formulated as

min
x(t)

{

1

2
xT(t)A(t)x(t) + bT(t)x(t)

}

, (1a)

s.t. C(t)x(t) = d(t), (1b)

where coefficient matrices A(t) ∈ R
n×n (being positive

definite and symmetric) and C(t) ∈ R
m×n (being of full

row rank) are smoothly temporally-variant; coefficient vectors

b(t) ∈ R
n and d(t) ∈ R

m are smoothly temporally-variant;

vector x(t) ∈ R
n is the desired solution to be computed in

real time.

By mathematical calculation, the inverse-free CZN model

is developed as

ż(t) = U(t)
(

− Ṗ (t)z(t)+ q̇(t)−λ(P (t)z(t)−q(t))
)

, (2a)

U̇(t) = −U(t)Ṗ (t)U(t) − λ(U(t)P (t)U(t) − U(t)). (2b)

The effectiveness of (2) is proved in the following theorem

[15], [16], [26]–[28].

Theorem 1: With t ≫ 0, starting from proper initial values

U(0) and z(0), U(t) synthesized by inverse-free CZN model

(2) converges to P−1(t), and z(t) synthesized by inverse-

free CZN model (2) converges to the theoretical augmented

solution z∗(t). That is, the first n elements of z∗(t) converge

to the theoretical solution x∗(t) of TVQP (1).

B. Inverse-Free DZN Algorithm

By utilizing Euler discretization formula [15], [16], [26]

xk+1 = xk + τẋk +O(τ2) (3)

to discretize (2), the inverse-free DZN model for solving

TVQP (1) is developed as

żk
.
= Uk

(

− Ṗkzk + q̇k − λ(Pkzk − qk)
)

, (4a)

U̇k
.
= −UkṖkUk − λ(UkPkUk − Uk), (4b)

zk+1
.
= zk + τ żk, (4c)

Uk+1
.
= Uk + τU̇k, (4d)

in which
.
= denotes the computational assignment operator.

Meanwhile, the symbol O(τ2) is used to denote the error order

[29], which means the error is proportional to τ2. Note that

the sampling gap is invariable in inverse-free DZN model (4),

i.e., τ = tk+1 − tk with k = 0, 1, · · · . Besides, h = λτ is

set to an appropriate constant, e.g., h = 0.2 is set in this

paper. Specifically, the word “inverse-free” may be omitted

for simplicity in the following pages in the explicit situation.

III. INVERSE-FREE FUZZY DZN ALGORITHM

As known, the choice of sampling gap influences the model

performance. In this section, a fuzzy system with two inputs

(error e and error change ec) and one output u is designed to

adaptively adjust the sampling gap. Specifically, e is defined

as

e = lg(ε/ep),

in which ε is the concerned index (e.g., residual error ||Pz−
q||2), and ep denotes the expected precision. The adaptive

sampling gap is designed as

τk = τk−1/2
u. (5)

Accordingly, ZN design parameter is updated as λk = h/τk.

In addition, the value of the sampling gap ranges from

[0.0001, 0.5] s in this paper. The following steps [21]–[25] are

presented to establish the fuzzy system. In the fuzzy control

method, notations NB, NS, ZO, PS, and PB are markers of

fuzzy sets [30], which respectively represent negative big,

negative small, zero, positive small, and positive big.

Step 1 (Defining fuzzy sets): Fuzzy sets of e, ec, and u are

all defined as {NB,NS,ZO, PS, PB}. The values of inputs and

outputs all range from [−1, 1].

Step 2 (Defining membership functions): Similar triangle

membership functions are defined for e, ec, and u. In detail,
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Fig. 1. Results synthesized by inverse-free DZNN algorithm (4) and FDZNN algorithm (6) for solving TVQP in Example 1. (a) Solutions synthesized by
DZNN model (4) with τ = 0.1 s. (b) Residual errors synthesized by DZNN model (4) with τ = 0.1 s. (c) Residual errors synthesized by DZNN model (4)
with τ = 0.01 s. (d) Solutions synthesized by FDZNN model (6) with expected precision ep = 10−4. (e) Sampling gaps computed by FDZNN model (6)
with expected precision ep = 10−4. (f) Residual errors synthesized by FDZNN model (6) with expected precision ep = 10−4.

µe is defined as
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µNB(e) = −2e− 1, − 1 ≤ e ≤ −0.5,

µNS(e) =

{

2e+ 2, − 1 ≤ e ≤ −0.5,

−2e, − 0.5 < e ≤ 0,

µZO(e) =

{

2e+ 1, − 0.5 ≤ e ≤ 0,

−2e+ 1, 0 < e ≤ 0.5,

µPS(e) =

{

2e, 0 ≤ e ≤ 0.5,

−2e+ 2, 0.5 < e ≤ 1,

µPB(e) = 2e− 1, 0.5 ≤ e ≤ 1.

Step 3 (Defining fuzzy rules): On the basis of the expert

experience, 25 fuzzy rules are defined. For instance, Rule1: if

e is NB and ec is NB, then u is NB.

Step 4 (Defuzzifying): MATLAB provides three types of

maximal membership methods for defuzzification [21]–[25]:

middle of maximum (MoM), smallest of maximum (SoM),

and largest of maximum (LoM). In this paper, mom is used

to generate the output u and then update the sampling gap.

The fuzzy system is thus established. Therefore, aided with

the adaptive sampling strategy, as well as adaptively satisfied,

the inverse-free FDZN model is proposed as

żk
.
= Uk

(

− Ṗkzk + q̇k − λk(Pkzk − qk)
)

, (6a)



0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

t (s)

||Pz− q||2

(a)

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

t (s)

τ (s)

(b)

0 10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t (s)

||Pz− q||2

(c)

Fig. 2. Results synthesized by inverse-free DZNN algorithm (4) and FDZNN algorithm (6) for solving TVQP in Example 2. (a) Residual errors obtained
by DZNN model (4) with τ = 0.1 s. (b) Sampling gaps computed by FDZNN model (6) with expected precisions ep = 10−3 during [0, 15) s, ep = 10−4

during [15, 30) s, and ep = 10−5 during [30, 50] s. (c) Residual errors obtained by FDZNN model (6) with expected precisions ep = 10−3 during [0, 15)
s, ep = 10−4 during [15, 30) s, and ep = 10−5 during [30, 50] s.



TABLE I
RESIDUAL ERRORS OBTAINED BY DIFFERENT DISCRETE ALGORITHMS FOR SOLVING TVQP IN EXAMPLE 2

Residual error
Time instants (s)

0 10 20 30 40 50

Adaptive

Inverse-free FDZNN 1.414× 100 1.016× 10−3 9.495× 10−5 7.364× 10−5 1.251× 10−5 1.073× 10−5

models

Inverse-need DZNN♦ 1.414× 100 9.885× 10−4 9.565× 10−5 7.417× 10−5 1.246× 10−5 1.075× 10−5

DGNN♦ 1.414× 100 5.565× 10−2 8.671× 10−3 7.513× 10−3 5.188× 10−2 3.504× 10−3

NI♦ 1.414× 100 1.179× 10−3 4.670× 10−5 4.044× 10−5 1.348× 10−4 6.192× 10−5

Normal

Inverse-

τ = 0.1 s 1.414× 100 3.623× 10−2 6.541× 10−3 2.095× 10−2 3.824× 10−2 1.054× 10−2

model

need

τ = 0.05 s 1.414× 100 1.259× 10−2 1.455× 10−3 4.706× 10−3 1.099× 10−2 2.559× 10−3

DZNN

τ = 0.01 s 1.414× 100 6.434× 10−4 5.453× 10−5 1.712× 10−4 4.810× 10−4 9.931× 10−5

τ = 0.005 s 1.414× 100 1.640× 10−4 1.354× 10−5 4.228× 10−5 1.212× 10−4 2.474× 10−5

τ = 0.001 s 1.414× 100 6.648× 10−6 5.388× 10−7 1.675× 10−6 4.872× 10−6 9.843× 10−7

DGNN

τ = 0.1 s 1.414× 100 1.253× 100 9.008× 10−1 1.331× 100 1.449× 100 1.016× 100

τ = 0.05 s 1.414× 100 1.163× 100 7.900× 10−1 1.291× 100 1.332× 100 1.263× 100

τ = 0.01 s 1.414× 100 1.076× 100 8.497× 10−1 8.346× 10−1 8.662× 10−1 6.922× 10−1

τ = 0.005 s 1.414× 100 9.664× 10−1 8.396× 10−1 7.430× 10−1 6.640× 10−1 2.608× 10−1

τ = 0.001 s 1.414× 100 5.394× 10−1 1.261× 10−1 2.179× 10−1 3.007× 10−1 3.648× 10−2

NI

τ = 0.1 s 1.414× 100 2.993× 10−1 4.696× 10−2 3.934× 10−2 1.292× 10−1 6.356× 10−2

τ = 0.05 s 1.414× 100 1.485× 10−1 2.342× 10−2 1.993× 10−2 6.598× 10−2 3.115× 10−2

τ = 0.01 s 1.414× 100 2.953× 10−2 4.673× 10−3 4.032× 10−3 1.342× 10−2 6.199× 10−3

τ = 0.005 s 1.414× 100 1.475× 10−2 2.336× 10−3 2.019× 10−3 6.726× 10−3 3.100× 10−3

τ = 0.001 s 1.414× 100 2.949× 10−3 4.670× 10−4 4.043× 10−4 1.347× 10−3 6.193× 10−4

The symbol ♦ means that the adaptive sampling strategy is combined with the corresponding discrete algorithm.

U̇k
.
= −UkṖkUk − λk(UkPkUk − Uk), (6b)

zk+1
.
= zk + τkżk, (6c)

Uk+1
.
= Uk + τkU̇k, (6d)

in which τk = tk+1 − tk is temporally-variant, which is

updated on the basis of (5) and the fuzzy system.

Proposition 1: With k ≫ 0, starting from proper initial

values U0 and z0, Uk synthesized by inverse-free FDZN model

(6) converges to P−1
k with expected precision ep, and zk

synthesized by inverse-free FDZN model (6) converges to the

theoretical augmented solution z∗k with expected precision ep.

That is, the first n elements of z∗k converge to the theoretical

solution x∗

k with expected precision ep.

IV. EXPERIMENTAL VERIFICATIONS

In this section, experiments about TVQP solving is con-

ducted.

Four examples are considered during time duration [0, 50]
s to show the efficacy and superiority of the FDZN model (6)

for TVQP solving in different situations. The first example is

presented as follows.

Example 1: Consider a specific TVQP with coefficient

vectors and matrices

A(t) =





sin(ωt) + 3 cos(ωt) cos(ωt)
cos(ωt) sin(ωt) + 3 sin(ωt)
sin(ωt) cos(ωt) sin(ωt) + 3



 ,

b(t) =
[

sin(ωt) cos(ωt) sin(ωt)
]T

,

C(t) =

[

cos(ωt) sin(ωt) + 2 sin(ωt)
sin(ωt) cos(ωt) sin(ωt) + 2

]

,

d(t) =
[

cos(ωt) sin(ωt)
]

,

in which ω = 0.4.

By setting the initial vector x0 = [0; 0; 0], h = 0.2, and

τ = 0.1 s, solution trajectories synthesized by inverse-free

DZN model (4) are presented in Fig. 1(a). The synthesized

solutions converge to the theoretical solutions after about 1 s.

In addition, the convergence performance is not good enough,

e.g., at about 26 s. Specifically, the synthesized residual errors

||Pz − q||2 are presented in Fig. 1(b), which are fluctuate

between 10−1 and 10−2. Meanwhile, if τ = 0.01 s is

set for DZN model (4), the synthesized residual errors are

fluctuating between 10−3 and 10−4, as shown in Fig. 1(c).

On the contrary, by setting the expected precision ep = 10−4,

solution trajectories synthesized by inverse-free FDZN model
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Fig. 3. Results synthesized by inverse-free DZN algorithm (4) and FDZN algorithm (6) for solving TVQP in Example 3. (a) Residual errors obtained by
DZN model (4) with τ = 0.1 s. (b) Sampling gaps computed by FDZN model (6) with expected precision ep = 10−4. (c) Residual errors obtained by FDZN
model (6) with expected precision ep = 10−4.
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Fig. 4. Results synthesized by inverse-free DZN algorithm (4) and FDZN algorithm (6) for solving TVQP in Example 4. (a) Residual errors obtained by
DZN model (4) with τ = 0.1 s. (b) Sampling gaps computed by FDZN model (6) with expected precision ep = 10−4. (c) Residual errors obtained by FDZN
model (6) with expected precision ep = 10−4.



(6) are displayed in Fig. 1(d). Evidently, the convergence time

is about 0.1 s, and the convergence performance at 26 s is

much better. The generated sampling gaps during the solution

process are presented in Fig. 1(e), and the precision is indeed

consistent with the expected precision as shown in 1(f). The

performance of FDZN model (6) is preliminarily substantiated

in this example.

Example 2: Consider a specific TVQP with coefficient

matrix A(t) =

exp(sin(ωt/4)) ·

[

sin(ωt) + 3 cos(ωt) cos(ωt)
cos(ωt) sin(ωt) + 3 sin(ωt)
sin(ωt) cos(ωt) sin(ωt) + 3

]

.

Other coefficient information b(t), C(t), and d(t) are the same

as Example 1 and ω = 0.4. As for the inverse-free FDZN

model (6), the precision is desired to be 10−3 during [0, 15)
s, 10−4 during [15, 30) s, and 10−5 during [30, 50] s. That is,

the precision adjustment of FDZN model (6) is performed in

this example.

In this example, two traditional inverse-need models (i.e.,

inverse-need DZN model and NI model) and an inverse-free

model [i.e., discrete GNN (DGNN) model] are developed

and compared to substantiate the significance of inverse-free

FDZN model (6). Specifically, on the basis of (2), the inverse-

need DZN model could be developed as

żk
.
= P−1

k

(

− Ṗkzk + q̇k − λ(Pkzk − qk)
)

, (7a)

zk+1
.
= zk + τ żk. (7b)

The NI model [29] could be formulated as

zk+1
.
= P−1

k qk. (8)

The DGNN model [13] could be designed as

żk
.
= −γP T

k (Pkzk − qk), (9a)

zk+1
.
= zk + τ żk. (9b)

Not only that, the proposed adaptive sampling strategy (i.e.,

fuzzy control) is performed in the above three discrete models

to show its effectiveness. The corresponding results of inverse-

free DZN model (4) and FDZN model (6) are presented in

Fig. 2. Evidently, the precision of inverse-free DZN model (4)

is determined when τ is set, and DZNN model (4) does not

have the ability of precision adjustment. For example, when

τ = 0.1 s, residual errors synthesized by DZN model (4) are

presented in Fig. 2(a), which are fluctuate between 10−1 and

10−2. On the contrary, FDZN model (6) can adaptively adjust

the sampling gap according to the precision requirement, as

shown in Fig. 2(b). The expected precision is realized by

FDZN model (6) during different intervals, as presented in

Fig. 2(c). The detailed comparative results are summarized

in Table I. The residual errors at t = 0 s, 10 s, 20 s, 30 s,

40 s, and 50 s are listed. Evidently, the adaptive sampling

strategy is successfully applied to two ZN models, and the

expected precision is realized. However, the expected precision

is not realized in DGN model and NI model combined

with adaptive sampling strategy. The main reason is that the

two models do not have good convergence performance. In

addition, residual errors obtained by those normal models

with different sampling gaps are displayed, which fluctuate

a lot. The residual errors obtained by the inverse-free DZN

model are similar to the inverse-need DZN model and thus

are omitted. Although the residual error is relatively small

when the sampling gap is small enough, the small sampling

gap may result in a huge computation increase. The adaptive

sampling strategy guarantees the balance of computation cost

and expected precision.

Example 3: Consider a specific TVQP with coefficient

matrices and vectors being the same as Example 1, but ω = 0.4
during [0, 25) s and ω = 0.8 during [25, 50] s.

By setting τ = 0.1 s, residual errors obtained by inverse-

free DZN model (4) are presented in Fig. 3(a), which are

fluctuating between 10−1 and 10−2 during interval [0, 25) s.

At time instant t = 25 s, the frequency of TVQP is changed.

DZN model (4) returns to the steady state after about 3 s, i.e.,

at about time instant t = 28 s. Not only that, residual errors

become larger during interval [28, 50] s because the frequency

is changed at t = 25 s. On the contrary, inverse-free FDZN

model (6) adaptively adjusts the sampling gap to keep the

expected precision, as presented in Fig. 3(b). Further, Fig.

3(c) presents residual errors obtained by FDZN model (6).

Evidently, at t = 25 s, the residual error becomes larger, and

a small sampling gap is generated by the fuzzy system. As

a result, FDZN model (6) returns to the steady state quickly.

After the steady state, the minor adjustment about the sampling

gap is completed, and residual errors are always about 10−4.

Example 4: Consider a higher-dimension TVQP with ele-

ments of coefficient vectors and matrices being

aij(t) =

{

cos(ωt+ i) + 10, if i = j,

cos(ωt+ i), if i 6= j,

bi(t) = sin(ωt),

clj(t) =

{

sin(ωt+ l) + 8, if l = j − 2,

sin(ωt+ l), if l 6= j,

dl(t) = cos(ωt),

in which ω = 0.4, i, j = 1, 2, · · · , 8, and l = 1, 2, · · · , 6.

In addition, three strong interferences are encountered at time

instants 10 s, 20 s, and 30 s, respectively.

With τ = 0.1 s, residual errors obtained by inverse-free

DZN model (4) are displayed in Fig. 4(a). As shown, DZN

model (4) converges to the steady state after about 2 s. After

interferences, DZN model (4) returns to the steady state after

about 3 s. On the contrary, the convergence speed and restore

speed of inverse-free FDZN model (6) are significantly faster

than DZN model (4). Specifically, Fig. 4(b) shows the adaptive

sampling gap. Fig. 4(c) shows the synthesized residual errors.

V. CONCLUSION

To establish the foundation for developing discrete models,

the CIFZN has been designed for solving TVQP, whose



efficacy has been guaranteed by theoretical analyses. For

convenient operation of the digital computer, the inverse-free

DZN has been developed by using the Euler discretization

formula to discretize the CIFZN. For a better performance,

the fuzzy system has been designed to generate the adaptive

sampling gap under the expected precision. With the help of

the fuzzy system, the FIFDZN with adaptive sampling gap

and expected precision has been proposed for solving TVQP.

Adequate experiments have been conducted to validate the

effectiveness, superiority, and applicability of the FIFDZN for

solving TVQP.
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