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Abstract

Monocular depth estimation is a dense prediction task that
infers per-pixel depth from a single image, fundamental to
3D perception and robotics. There are extensively strong
depth foundation models, supported by a backbone pre-
trained with a massive scale of data. However, do these
depth foundation models really understand the structure?
Although real-world scenes exhibit strong structure, these
methods treat it as an independent pixel-wise regression
problem, often resulting in structural inconsistencies in
depth maps, such as ambiguous object shapes. We propose
SHED, a novel encoder-decoder architecture that enforces
geometric prior explicitly from spatio-layout by incorpo-
rating segmentation into depth estimation. Inspired by the
bidirectional hierarchical reasoning in human perception,
SHED redesigns the vision transformer by replacing fixed
patch tokens with segment tokens, which are hierarchically
pooled in the encoder and unpooled in the decoder to re-
verse the hierarchy. The model is supervised only at the fi-
nal output, and the intermediate segment hierarchy emerges
naturally without explicit supervision. SHED offers three
key advantages. First, it improves depth boundaries and
segment coherence, and demonstrates robust cross-domain
generalization. Second, it enables features and segments
to better capture global scene layout. Third, it enhances 3D
reconstruction and reveals part structures that conventional
pixel-wise methods fail to capture.

1. Introduction

Images are 2D projections of the 3D world, where surfaces,
regions, and boundaries form a coherent structure. Many
vision tasks aim to recover this structure by predicting se-
mantic or geometric values at each pixel, a process known
as dense prediction [19]. Among them, monocular depth
estimation is one of the most studied, inferring depth from
a single RGB image [66]. Despite the inherent structure of
real-world scenes, most models, including the Dense Pre-
diction Transformer (DPT) [56], treat the task as indepen-
dent pixel-wise regression. Although their outputs may ap-
pear plausible, they often lack structural consistency, result-

ing in ambiguous object shapes (Fig. 1, row 1).

This limitation stems from a disconnect between depth
estimation and scene organization. Depth encodes geomet-
ric structure, while segmentation captures semantically co-
herent regions. Though serving different purposes, the two
are closely related: segment boundaries align with depth
discontinuities, and depth gradients with semantic bound-
aries. This relationship has long been recognized in classi-
cal vision literature [44], yet recent models such as Depth
Anything [73] and Segment Anything [57] treat them as in-
dependent tasks, largely overlooking their connection.

In contrast, the human visual system integrates depth
and segmentation through a bidirectional hierarchical pro-
cess [27], where part-whole segmentation informs depth
estimation, and depth in turn guides segmentation. It first
infers a global layout by grouping segments from fine to
coarse, then refines depth from coarse to fine, adding detail
within smaller regions while preserving the overall struc-
ture. This organization supports part-whole reasoning and
yields depth maps with sharp boundaries and smooth intra-
object variations (Fig. 1, row 2).

To realize this idea, we propose a novel architecture
called SHED, which performs monocular depth estimation
using a bidirectional segment hierarchy. With the design of
DPT [56], a standard encoder-decoder framework built on
the Vision Transformer (ViT) [13], but replaces fixed-size
patch tokens with hierarchical segment tokens to produce
a structured depth. These tokens are organized from fine
to coarse and learned in an unsupervised manner, guided
solely by pixel-wise regression objectives.

SHED uses a hierarchical segmentation process to de-
fine structural conditions. The encoder, which builds on the
CAST [34], a ViT-based model for hierarchical segmenta-
tion in recognition tasks, starts by representing the image as
superpixels instead of standard patches. It then iteratively
merges these superpixel tokens based on feature similarity,
creating a multi-level hierarchy of segment tokens. To pro-
duce a structured depth, the decoder inverts this hierarchy,
leveraging both the segment maps and their features. It un-
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Figure 1. Segment hierarchy for estimating depth (SHED). Conventional methods such as DPT [56] perform pixel-wise prediction
without considering structure, often resulting in blurry object shapes. SHED addresses this by leveraging a hierarchy of segment tokens to
guide prediction. Unlike DPT, which uses fixed grid tokens across all layers, we adapt its ViT [13] blocks into two stages: the encoder pools
superpixel tokens into coarser segment tokens, and the decoder progressively refines predictions from coarse to fine segments, producing

depth maps with structural coherence.

pools finer segments from coarser ones using soft assign-
ments computed in the encoder, and adds them with tokens
from the corresponding encoder layer. Each segment to-
ken is projected into a spatial map by distributing its fea-
tures over the associated region, producing sharp bound-
aries across different objects and smooth transitions within
the same object. The features from multiple segment levels
are fused with pixel-level features from a convolutional en-
coder to produce outputs that preserve global layout while
capturing fine detail.

We highlight the main differences between SHED and
CAST [34]. First, while CAST is encoder-only, SHED ex-
tends it to an encoder-decoder for dense prediction. Sec-
ond, CAST treats segmentations solely as outputs, whereas
SHED also uses segment-associated features as decoder in-
puts to produce dense representations. Third, CAST re-
lies on image-level supervision and produces segmentations
guided by visual cues, while SHED is trained with dense
supervision (e.g., depth), resulting in segmentations guided
by geometric cues. Finally, CAST links reorganization to
recognition in the “3Rs” [44], whereas SHED links reorga-
nization to reconstruction.

By looping hierarchical segmentation into dense pre-
diction, SHED offers three key advantages. 1) Segmen-
tation enhances depth estimation by enforcing object-level
structure, yielding sharper boundaries and coherence within
segments. It also achieves robust generalization in cross-
domain transfer settings. 2) Depth supervision leads to
structured representations that better capture scene layout.
As aresult, SHED retrieves layout-similar images more ac-
curately, increasing top-1 recall by 34% (45.2—60.5). 3)
Accurate depth maps from SHED improve 3D reconstruc-
tion, producing smooth surfaces aligned with the ground
truth. Its hierarchy also enables unsupervised 3D part dis-

covery, which DPT cannot achieve as it predicts depth holis-
tically without structural understanding.

2. Related Work

Monocular depth estimation is a representative dense pre-
diction task, that infers per-pixel depth from a single image.
It is widely used in 3D reconstruction [64], autonomous
driving [21], and robotic perception [65]. Early approaches
relied on hand-engineered features [61, 66], while deep
learning methods later became dominant [16, 22, 23, 29,
39, 40, 55, 79]. Recent ViT [13]-based models such as
DPT [56] have shown strong performance, leveraging foun-
dation models pretrained on diverse data [4, 32, 72]. How-
ever, these models still struggle with structural consistency
in complex scenes.

Structural cues in depth estimation have been extensively
explored to enhance geometric coherence. Existing ap-
proaches can be broadly categorized into four types: 1)
Representation approaches modify how depth is encoded,
such as by discretizing depth values [3, 20, 41] or mod-
eling spatial dependencies [10, 42, 77]. 2) Regulariza-
tion imposes geometric constraints through loss functions
that promote smooth surfaces [5, 22, 78], consistent nor-
mals [74], or planar regions [68, 75]. 3) Multi-task learn-
ing jointly estimates depth with auxiliary signals, such as
scene geometry [15, 76] or semantics [7, 24, 35, 49, 80]. 4)
Post-processing refines predictions using off-the-shelf tech-
niques [8, 38].

Several multi-task approaches have explored segmen-
tation as an auxiliary signal to improve depth estimation.
Early works used segmentation as an additional supervi-
sion signal [35, 49], while more recent ones leveraged
segment regions or boundaries to guide depth discontinu-



ities [7, 24, 80]. SHED follows this principle but integrates
segmentation and depth estimation into a unified process,
enabling them to benefit from each other. Moreover, it dis-
covers hierarchical segmentation in an unsupervised man-
ner, eliminating the need for costly human annotations.

Although structural cues offer clear benefits, most ex-
isting methods do not scale well to modern architectures.
Representation-based approaches often require architec-
tural changes that are incompatible with transformers, while
regularization and multi-task methods rely on additional
annotations, limiting scalability. In contrast, SHED inte-
grates seamlessly into ViT-based models such as DPT and
learns structural segmentation solely from depth supervi-
sion. By design, it inherently produces sharp, segment-
aligned boundaries, reducing the need for post-processing.

Perceptual grouping is a key mechanism in human vision
that organizes low-level elements into coherent global struc-
tures [45, 69]. This principle has inspired a broad range
of computer vision research, including perception [12, 31,
43, 48, 54], segmentation [2, 30, 33, 71], and genera-
tion [26, 28, 47]. In particular, CAST [34] recently ap-
plied it to ViTs for concurrent segmentation and recogni-
tion. While most of these methods, including CAST, con-
sider only a forward hierarchy, constructing representations
and segmentations in a bottom-up manner, we adopt the
complementary concept of a reverse hierarchy [27], where
global structures guide and refine local parts through top-
down feedback. We leverage this principle to design an
encoder-decoder that accounts for both hierarchies.

While some prior works [1, 14, 63] have explored re-
verse hierarchies for recognition, they do not address dense
prediction. Other studies [17, 60, 62] apply similar ideas to
encoder-decoder architectures, but focus on object-centric
representations, lacking the ability to model segment hierar-
chies and often producing blurry outputs. To the best of our
knowledge, this is the first work to leverage bidirectional
segment hierarchies to enhance dense prediction within a
modern ViT framework.

3. Method

We propose SHED, which integrates a bidirectional seg-
ment hierarchy into the ViT blocks of DPT [56]. Unlike
DPT, which uses fixed-size patch tokens across all layers,
our model constructs a hierarchy of segment tokens: the en-
coder builds a forward hierarchy by grouping features from
fine to coarse, while the decoder applies a reverse hierar-
chy to refine predictions from coarse to fine, guided by the
learned segment tokens. This design, illustrated in Fig. 2,
enables the model to progressively reorganize and recon-
struct structured scene information.

3.1. Grouping segments via forward hierarchy

Our encoder builds on CAST [34], which 1) replaces square
patch tokens with superpixel tokens, and 2) progressively
clusters them into coarser segment tokens by token sim-
ilarity. This process produces a fine-to-coarse hierarchy
of segment tokens. CAST was originally developed as an
encoder-only model for image-level recognition. We ex-
tend it into an encoder-decoder, where the segment hier-
archy not only guides dense prediction but is also refined
through dense supervision.

Tokenization. Given an input image X € R"***¢ the en-
coder produces hierarchical segmentations Sg, S, ... and
corresponding embeddings Zy, Z1, ..., ordered from fine
to coarse. This process begins by dividing the image into
ng superpixels, which yields a one-hot assignment matrix
S € R(w)xno that maps each pixel to a superpixel.

We extract a convolutional feature map Fiony €

R(Po-wo)xd ith spatial stride 8 (hg = h/8, wo = w/8),
add fixed sinusoidal positional embeddings, and average-
pool features within each superpixel to obtain initial em-
beddings Z, € R"0*?, To enable global context modeling,
we append a class token to form Z, € R(®0+1)xd which is
passed to the first ViT block.
Hierarchical clustering. We construct coarser segment to-
kens by alternating ViT blocks with graph pooling [34]. At
each level [, given Z;_; and S;_; from the previous layer,
we append a class token to form Z;_1, apply ViT blocks,
and obtain updated features, excluding the class token.

To form coarser tokens Z; € R™"*% we compute a soft

assignment matrix P, € R™-1*™ based on cosine similar-
ity between fine- and coarse-level tokens:
P(i — j) o< sim(Z;—1[i], Zi[]), fori € [my—1], J € [mu],
where [n] := {0,...,n—1}. The coarse tokens Z; are ini-
tialized via farthest point sampling [52] from Z;_;, and re-
fined by aggregating fine-level features weighted by P, fol-
lowed by an MLP and a residual connection:

Z) <+ Z+MLP(P Z,_, © P,' 1),

where © denotes element-wise division for normalization.
To propagate segmentation labels through the hierarchy,
we compute coarser segmentations by composing the as-
signment matrices:
SlZSl_lpl, 1=1,2,..., lnax,
where P, is a hard assignment matrix obtained by taking the
argmax over each row of Pj.

3.2. Predicting outputs via reverse hierarchy

The decoder reconstructs spatial feature maps by reversing
the encoder’s segment hierarchy, progressively unpooling



Input image

hXwXc) Long skip connection

Forward hierarchy

Reverse hierarchy

(Encoder) (Decoder)
Skip connection
Superpixel. Superpixel token o Superpixel token
(h X w X no) (no X d) (no X d)
ViT Blocks & Soft-unpooling &

ViT Blocks
Skip connection

Graph Pooling

Fine segment Fine-level token Fine-level token

]_____

]

(no X n1) (n1 X d) (n1Xd)
ViT Blocks & Soft-unpooling &
Graph Pooling ViT Blocks
Skip connection
Mid segment Mid-level token 5 Mid-level token
(ni X nz) (n2 X d) (n2Xd)
ViT Blocks &

Graph Pooling

Soft-unpooling &
Coarse segment| ViT Blocks

(nz X ns)

Coarse-level token
(n: X d)

Spatial feature Depth map

Spatial Feature 2

Conv

Upoolin;
Spatial features

°
@

Spatial Feature 1

Upooling
Spatial features

Conv

Unpooling spatial features
(h/8 X w/8 X no)

Spatial Feature 2
(h/8 X w/8 X d)

Spatial Feature 1
(h/8 X w/8 X d)

Figure 2. SHED integrates a forward and reverse segment hierarchy into the ViT blocks of DPT. Following the overall architecture
of DPT [56] which uses a standard decoder design choice of depth foundation models including convolutional layers for monocular depth
estimation, we adapt the ViT into two stages. 1) The encoder converts the input image into superpixel tokens and applies graph pooling to
form coarser segments, following the hierarchical clustering strategy of CAST [34]. 2) The decoder reverses this hierarchy by unpooling
segment tokens from coarse to fine and fusing them with encoder features at corresponding levels via skip connections. The tokens are
projected into 2D maps according to their regions. These multi-level maps are fused with pixel-level features from early convolutional

layers to recover fine details and produce the final depth map.

segment tokens Z;, ..., Zp. This involves two steps: 1)
computing decoder features Z; by unpooling from Z; , and
fusing them with encoder features Z; via skip connections;
and 2) projecting Z; to the image space to obtain a spatial
feature map F of size (hy, w;).

Unpooling segment tokens. We reverse the encoder’s
clustering in a coarse-to-fine manner. At each level | =

lmax — 1,...,0, we compute

! T !
Zy Py Zpgy,

which distributes coarse features to finer segments. We then
add the unpooled features with the corresponding encoder
output:

Z] < MLP(Z + Z;),

followed by ViT blocks with class tokens.
Unpooling spatial features. We convert the segment to-
kens Z] into spatial feature maps by composing the soft as-
signment matrices:

Posy=P P €RM™OX™

and applying them to the initial superpixel-to-pixel map Sy
to obtain soft segmentations Sy_,; = SoPy—;. The spatial

feature map is then reconstructed as

Fi =S80 7, FeRMwxd

The set of spatial maps { F} }E':*l is fused using convolutional
layers, combined with Fi,y, and further refined through fi-
nal convolution and upsampling to produce the final dense
prediction.

DPT reduces the spatial resolution of feature maps Fj at
each level by a factor of 2!, with h; = ho /2!, w; = wg/2',
producing coarse maps in early ViT layers that are progres-
sively refined. This forms a spatial hierarchy similar to U-
Net [59], improving global coherence and reducing compu-
tation. However, it relies on local aggregation, which lacks
fine-grained structure, and reduces computation only in the
final decoder. In contrast, our segment hierarchy groups
segment regions, providing a stronger inductive bias that
promotes structural consistency and reducing computation
in the ViT blocks. As a result, applying spatial downsam-
pling in SHED was not beneficial: it yielded minimal effi-
ciency gains in the decoder while degrading boundary qual-
ity by projecting coarse segments onto low-resolution maps.
Therefore, we omit spatial reduction in SHED and simply
set h; = hg, w; = wo.



4. Experiments

We demonstrate the benefits of SHED by integrating seg-
mentation into the loop for dense prediction: 1) Segment-
consistent depth estimation that preserves occlusion bound-
aries and intra-segment coherence, leading to improved ac-
curacy and efficiency; 2) Structure-aware representation
learning through dense supervision, enabling layout-aware
features and segmentations; 3) 3D scene reconstruction
from predicted depth maps, yielding globally coherent and
part-aware structures.

4.1. Setup

We implement SHED on top of DPT [56], adopting its over-
all training setup. Specifically, we use the DPT-Hybrid vari-
ant, which combines ResNet-50 [25] and ViT-Small [13],
and refer to it simply as DPT throughout the paper. For
in-domain evaluation, we primarily train and evaluate on
NYUv2 [50], a standard benchmark for indoor depth es-
timation. For cross-domain transfer, we train SHED on
HyperSim [58] and evaluate its zero-shot performance on
NYUv2. We compare our method against DPT with much
stronger prior, named Depth Anything v2 [73] fine-tuned on
HyperSim, using an identical amount of metric supervision.
Tokenization. Input images of size 640x480 are randomly
cropped to 384x384 during preprocessing. We generate
576 superpixels using the SEEDS algorithm [67], match-
ing the 24x24 token grid of DPT, which corresponds to
16x 16 patches. Features are extracted from intermediate
ResNet-50 blocks at 1/4 and 1/8 of the input resolution; the
latter initializes segment token embeddings, while both are
passed to the final decoder via skip connections. This entire
preprocessing and tokenization pipeline is applied consis-
tently in all experiments.

Architecture. We modify the ViT encoder-decoder in DPT
by inserting graph pooling and unpooling layers. The en-
coder consists of three stages, each with two ViT blocks fol-
lowed by graph pooling, progressively reducing the number
of segment tokens to 256, 128, and 64. The decoder mirrors
this with unpooling and receives skip connections from the
corresponding encoder stages.

Training. We train SHED and DPT on NYUv2, using a
batch size of 16 for 50 epochs with the Adam optimizer [36]
and a learning rate of Se-5. With pretrained ResNet and ViT
backbones, we follow DPT’s default training recipe, includ-
ing the scale-invariant logarithmic loss computed against
ground-truth depth. At inference time, predicted depth
maps at 384 x384 resolution are bilinearly upsampled to
640x480 to match the ground-truth size.

4.2. Segment-consistent depth estimation

SHED generates structured depth maps by leveraging a
learned segment hierarchy. We begin by visualizing the
hierarchy and predicted depth to illustrate their structural

alignment. Next, we evaluate quality in terms of bound-
ary accuracy and intra-segment coherence. Finally, we
show that hierarchical decoding improves efficiency with-
out compromising pixel-wise accuracy.

Fig. 3 shows that the segment hierarchy in SHED yields
depth maps with coherent object geometry. The learned
segments capture contours of objects, such as desks in a
classroom, allowing the depth to clearly separate them from
the floor. They also decompose larger structures, like tables,
into parts, enabling smooth depth transitions from front to
back. This suggests that structure guides depth prediction
toward more accurate and interpretable results.

Boundary accuracy. We assess the structural quality of
SHED by comparing its boundary predictions to those of
DPT for in-domain evalution. Fig. 4 shows predicted depth
maps and their occlusion boundaries, extracted using a
Canny edge detector [6], on samples from the NYUv2-
OC++ dataset [53]. For quantitative evaluation, we fol-
low the standard protocol [37] and compute the average
Chamfer distance [18] in two directions: from prediction
to ground truth, and vice versa. SHED produces sharper
contours and outperforms DPT on both metrics, with par-
ticularly large gains in recall, likely due to its fine-grained
segmentation. However, oversegmentation may introduce
spurious edges that reduce precision, highlighting the im-
portance of accurate segmentation.

Intra-segment coherence. Beyond boundary, we eval-
uate how coherently depth values vary within each seg-
ment. Object-wise depth accuracy and error measure the
pixel-wise depth accuracy and error between the predicted
and ground-truth depth depth maps within each segment,
treating the latter as structural references. As shown in
Fig. 4, SHED produces smoother depth variations within
segments. This is reflected quantitatively in Tab. 1.
Per-pixel metrics. We compare SHED with DPT for the
evaluation of the in-domain and Depth Anything v2 [73]
for cross-domain transfer using standard depth metrics per
pixel, as shown in Tab. 2. In in-domain evaluation, SHED
shows competitive per-pixel performance compared to DPT.
In cross-domain evaluation, although Depth Anything v2
uses the strong encoder named DINOv2 [51], which is pre-
trained with over 100 million images, SHED outperforms
Depth Anything v2 in most metrics.

4.3. Structure-aware representation learning

Our architecture not only improves depth prediction but also
facilitates structure-aware representation learning. First,
SHED learns features that reflect scene layout, enabling
more accurate layout-aware image retrieval than DPT [56].
Second, its segment hierarchy captures geometric cues in-
formed by depth supervision, whereas CAST [34] relies on
visual cues.

Layout-aware image retrieval. We assess the structural
understanding of learned representations by performing
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Figure 3. SHED produces consistent structures in predicted depth map with spatio-layout. We visualize the fine-to-coarse segments
and corresponding depth maps from SHED, along with ground truth (GT) depth for comparison. Examples are from the NYUv2 test set.
SHED captures fine structures through its segments, such as desks in a classroom, which allow the depth map to clearly separate them from
the background (row 1). It also decomposes large objects, such as a table, into multiple parts, leading to smooth depth variations toward

the back (row 2).

SHED (ours)

SHED (ours)

Figure 4. SHED generates sharper object contours, clearer occlusion boundaries, and more coherent values within segments. We
compare depth maps (cols 2-4) and occlusion boundaries (cols 5, 6) from DPT, SHED on the NYUv2-OC++ dataset [53]. Boundaries are
extracted using a Canny edge detector and evaluated against GT, with GT edges shown in yellow, true positive in green and false positive
in red. SHED more accurately captures object edges and produces smoother depth within segments. Its predicted boundaries also align

more closely with the ground truth.

layout-aware image retrieval on the NYUv2 dataset, us-
ing 120K video frames collected from 206 scenes. These
frames serve as queries, and we define two retrieval set-
tings. In scene retrieval, all frames from the same sequence
are valid targets. For finer-grained evaluation, we also con-
sider frame-k retrieval, where only frames within £k time
steps of the query are included. Given a query image, we
rank other images by the cosine similarity of their class to-
kens from the final ViT decoder block. Fig. 5 presents both
qualitative and quantitative results. The left side shows that
SHED retrieves images with similar spatial layouts, such as
a central desk and a rear bookshelf, while DPT returns unre-

lated scenes. The right side shows that SHED significantly
outperforms DPT in both scene- and frame-level metrics,
improving Top-1 recall in scene retrieval from 45.2 to 60.5.

Depth-aware image segmentation. We analyze the seg-
ment hierarchy learned by SHED by comparing it to
CAST, an encoder trained for image recognition using
segment-based representations. We use CAST-B, trained
on ImageNet [11] with the MoCo-v3 objective [9], a self-
supervised learning by instance discrimination [70] that
clusters visually similar images. Following CAST’s setup,
we use 224 x224 images and extract 196 superpixels, clus-
tered into 64, 32, and 16 segments. For fairness, we produce



Table 1. SHED improves boundary accuracy and object-wise depth accuracy and error. We evaluate the structural quality of depth
maps using two metrics: 1) Occlusion boundary error [37], evaluated on the NYUv2-OC++ dataset [53]. Occlusion boundaries are extracted
using a Canny edge detector [6], and the Chamfer distance is computed in both directions: from prediction to ground truth and vice versa.
2) Intra-segment coherence measures how well the predicted depth values within each object align with the ground-truth. We compute this
with object-level annotations.

Boundary Error || Object-wise Depth Accuracy 1  Object-wise Depth Error |

Method

€a € 6 >1.25 AbsRel RMSE log10
DPT [56] 6.395 1.438 0.802 0.144 0.500 0.061
SHED (ours) 5.713 0.608 0.814 0.142 0.496 0.060

Table 2. SHED improves both in-domain and cross-domain depth estimation. We evaluate standard depth accuracy and error metrics
on the NYUv2 test set. SHED delivers competitive per-pixel depth estimation performance comparable to DPT when trained in-domain.
In cross-domain zero-shot evaluation, it shows superior generalization compared to Depth Anything v2 in most metrics.

Method Pre-training Training Depth Accuracy : Depth Error
§>1.2517 §>1.25%1 §>1.25°1 AbsRel] RMSE| logl0]
DPT [56] IN-1K [11] NYUv2 [50] 0.839 0.971 0.992 0.132 0.457 0.055
SHED (ours) IN-1K [11] NYUv2 [50] 0.846 0.972 0.992 0.130 0.451 0.054
Depth Anything v2 [73] LVM-142M [51]  HyperSim [58] 0.592 0.902 0.960 0.749 0.808 0.110
SHED (ours) IN-1K [11] HyperSim [58] 0.632 0.892 0.960 0.583 0.740 0.102
a) Top-5 retrieval examples b) Top-K retrieval accuracy (%)

Method Top-1 Top-3 Top-5

1dd

Scene retrieval

DPT [56] 452 69.7 772
SHED (ours) 60.5 787  87.0

Frame retrieval (k=5)

DPT [56] 18.5 31.0 383
SHED (ours) 30.5 423 483

(sino) q9HS

[ N k- 2
Query 0.885 0.844 . 0.787

Figure 5. SHED learns layout-aware representations through depth supervision. We evaluate image retrieval on NYUv2 based on
cosine similarity between class tokens from the final ViT block. a) Top-5 results (ranked left to right), with similarity scores shown below.
SHED retrieves images with similar layouts, such as a central desk and a rear bookshelf, while DPT retrieves unrelated scenes. b) Top-
K accuracy at the scene and frame level (k = 5), where the targets are different views from the same scene or nearby frames. SHED
significantly outperforms DPT [56] in all settings, indicating that our depth-guided segmentation effectively encodes spatial layout.

the same number of Segments by adapting the graph pool_ Table 3. SHED imprOVeS 3D alignment. We Compute the av-

ing layers of SHED, keeping the original input resolution erage Chamfer distance [18] between point clouds reconstructed
and superpixels from the predicted and ground-truth depths. SHED achieves lower

errors than DPT [56].
Fig. 6 shows qualitative results. SHED learns hierarchi-
cal structures that align with scene geometry: it separates Method Precision / Recall |
objects like blankets and decomposes large structures such
as floors into segments that reflect their spatial extent. In
contrast, CAST groups regions based on appearance. For
example, it clusters white floor areas by color but fails to ac-
count for geometric cues. We attribute this difference to the
training objective: CAST learns segments through image-

DPT [56] 0.171/0.251
SHED (ours) 0.158 / 0.244

4.4. 3D scene reconstruction with part structures

level recognition, while SHED is guided by dense predic- We demonstrate SHED’s capability for 3D scene under-
tion. Although our focus here is depth, the ability to learn standing. While plausible pixel values may suffice for 2D
segment hierarchies grounded in 3D structure opens possi- depth estimation, structured depth is particularly critical

bilities for other dense prediction tasks as well. when projected into 3D space. Accordingly, SHED enables
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Figure 6. SHED learns depth-aware segment hierarchies, while CAST relies on visual cues. We compare segmentations from SHED
and CAST [34] at the same hierarchy levels: 64, 32, and 16 segments. SHED captures meaningful part structures, such as separating the
blanket and pillow from the bed (row 1). It also decomposes large structures like the floor based on depth, grouping nearby regions into
a single large segment while dividing distant areas into smaller ones (row 2). In contrast, CAST relies on appearance cues and fails to
capture geometric structure. For instance, it groups white floor regions by color but divides them arbitrarily, ignoring depth. These results
highlight the value of depth supervision in learning 3D-aware segmentations.

Image DPT [56] SHED (ours) DPT [56] SHED (ours) GT

Figure 7. SHED produces more accurate and structured 3D reconstructions. We visualize 3D point clouds reconstructed from single-
view depth maps, following the semantic scene completion protocol [64], using predictions from DPT, SHED, and the ground truth on
NYUv2 [50] examples. Frontal views (cols 2-4) show that DPT fails to preserve planar structures, producing curved wall boundaries,
whereas SHED more accurately recovers straight lines. This difference is even more apparent in the bird’s-eye views (cols 5-7): DPT

yields warped surfaces, while SHED produces flatter layouts that better match the ground truth.

3D Parts

Table 4. SHED discovers 3D part structures. Concurrent seg-
mentation and depth estimation enable part-level decomposition
of the reconstructed 3D point clouds.

high-quality 3D reconstruction and supports unsupervised
3D part discovery through concurrent segmentation.

To evaluate the structural quality of predicted depth
maps, we project them into 3D point clouds on the NYUv2
dataset [50], following the semantic scene completion pro-
tocol [64] and using NYUvV2 camera intrinsics. For inter-
pretability, all depth values are scaled by 1/1000. Fig. 7
shows that SHED produces cleaner reconstructions with
sharper boundaries and flatter surfaces that better align with
ground truth geometry, whereas DPT yields curvier, less

faithful shapes. We quantify reconstruction performance
with the Chamfer distance [18] in both directions. Tab. 3
shows that SHED consistently achieves lower distances
than DPT, confirming its advantage in structured 3D predic-
tion. By jointly predicting segmentation and depth, SHED
lifts 2D parts into 3D space, enabling part-level decompo-
sition of scenes. Tab. 4 shows an example from NYUv2,
where segments corresponding to objects form coherent 3D
structures in point clouds. This demonstrates SHED’s po-
tential for unsupervised 3D part reasoning, a key capability
for interactive and dynamic scene understanding [46].

5. Conclusion

We shed light on the role of segmentation in depth estima-
tion. SHED learns a segment hierarchy in the encoder and
reverses it in the decoder to predict dense maps. This results
in depth maps with segment-consistent structure, layout-
aware representations, and coherent 3D scenes with inter-
pretable parts. Our principle of unifying reconstruction
and reorganization offers a new direction for 3D vision and
robotics, particularly for tasks that require fine-grained in-
teraction with physical components.
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