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Abstract

Monocular depth estimation is a dense prediction task that001
infers per-pixel depth from a single image, fundamental to002
3D perception and robotics. Although real-world scenes ex-003
hibit strong structure, most methods treat it as an indepen-004
dent pixel-wise regression problem, often resulting in struc-005
tural inconsistencies in depth maps, such as ambiguous ob-006
ject shapes. We propose SHED, a novel encoder-decoder007
architecture that incorporates segmentation into dense pre-008
diction. Inspired by the bidirectional hierarchical reasoning009
in human perception, SHED improves upon DPT by replac-010
ing fixed patch tokens with segment tokens, which are hi-011
erarchically pooled in the encoder and unpooled in the de-012
coder to reverse the hierarchy. The model is supervised only013
at the final output, and the intermediate segment hierarchy014
emerges naturally without explicit supervision. SHED of-015
fers three key advantages over DPT. First, it improves depth016
boundaries and segment coherence while reducing compu-017
tational cost. Second, it enables features and segments to018
better capture global scene layout. Third, it enhances 3D019
reconstruction and reveals part structures that conventional020
pixel-wise methods fail to capture.021

1. Introduction022

Images are 2D projections of the 3D world, where surfaces,023
regions, and boundaries form a coherent structure. Many024
vision tasks aim to recover this structure by predicting se-025
mantic or geometric values at each pixel, a process known026
as dense prediction [20]. Among them, monocular depth027
estimation is one of the most studied, inferring depth from028
a single RGB image [70]. Despite the inherent structure of029
real-world scenes, most models, including the Dense Pre-030
diction Transformer (DPT) [60], treat the task as indepen-031
dent pixel-wise regression. Although their outputs may ap-032
pear plausible, they often lack structural consistency, result-033
ing in ambiguous object shapes (Fig. 1, row 1).034

This limitation stems from a disconnect between depth035
estimation and scene organization. Depth encodes geomet-036
ric structure, while segmentation captures semantically co-037

herent regions. Though serving different purposes, the two 038
are closely related: segment boundaries align with depth 039
discontinuities, and depth gradients with semantic bound- 040
aries. This relationship has long been recognized in classi- 041
cal vision literature [48], yet recent models such as Depth 042
Anything [77] and Segment Anything [61] treat them as in- 043
dependent tasks, largely overlooking their connection. 044

In contrast, the human visual system integrates depth 045
and segmentation through a bidirectional hierarchical pro- 046
cess [28], where part-whole segmentation informs depth 047
estimation, and depth in turn guides segmentation. It first 048
infers a global layout by grouping segments from fine to 049
coarse, then refines depth from coarse to fine, adding detail 050
within smaller regions while preserving the overall struc- 051
ture. This organization supports part-whole reasoning and 052
yields depth maps with sharp boundaries and smooth intra- 053
object variations (Fig. 1, row 2). 054

To realize this idea, we propose a novel architecture 055
called SHED, which performs dense prediction using a bidi- 056
rectional segment hierarchy. SHED follows the design of 057
DPT [60], an encoder-decoder framework built on the Vi- 058
sion Transformer (ViT) [13], but replaces fixed-size patch 059
tokens with hierarchical segment tokens. These tokens are 060
organized from fine to coarse and learned in an unsuper- 061
vised manner, guided solely by dense prediction objectives. 062

Our encoder builds on CAST [37], a ViT-based model 063
for hierarchical segmentation in recognition tasks. It re- 064
places patch tokens with superpixel tokens and merges them 065
iteratively based on feature similarity to construct a hierar- 066
chy of segment tokens. The decoder inverts this hierarchy 067
to produce dense predictions, leveraging both the segment 068
maps and their features. It unpools finer segments from 069
coarser ones using soft assignments computed in the en- 070
coder, and concatenates them with tokens from the corre- 071
sponding encoder layer. Each segment token is projected 072
into a spatial map by distributing its features over the asso- 073
ciated region, producing sharp boundaries and smooth tran- 074
sitions. The resulting features from multiple segment levels 075
are fused with pixel-level features from a convolutional en- 076
coder to produce outputs that preserve global layout while 077
capturing fine detail. 078
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Figure 1. Segment hierarchy for estimating depth (SHED). Conventional methods such as DPT [60] perform pixel-wise prediction
without considering structure, often resulting in blurry object shapes. SHED addresses this by leveraging a hierarchy of segment tokens to
guide prediction. Unlike DPT, which uses fixed grid tokens across all layers, we adapt its ViT [13] blocks into two stages: the encoder pools
superpixel tokens into coarser segment tokens, and the decoder progressively refines predictions from coarse to fine segments, producing
depth maps with structural coherence.

We highlight the main differences between SHED and079
CAST [37]. First, while CAST is encoder-only, SHED ex-080
tends it to an encoder-decoder for dense prediction. Sec-081
ond, CAST treats segmentations solely as outputs, whereas082
SHED also uses segment-associated features as decoder in-083
puts to produce dense representations. Third, CAST re-084
lies on image-level supervision and produces segmentations085
guided by visual cues, while SHED is trained with dense086
supervision (e.g., depth), resulting in segmentations guided087
by geometric cues. Finally, CAST links reorganization to088
recognition in the “3Rs” [48], whereas SHED links reorga-089
nization to reconstruction.090

By looping hierarchical segmentation into dense predic-091
tion, SHED offers three key advantages over DPT. 1) Seg-092
mentation enhances depth estimation by enforcing object-093
level structure, yielding sharper boundaries and coherence094
within segments. SHED reduces the boundary error by 54%095
(1.64→0.76). It also improves efficiency through coarse-to-096
fine decoding, lowering GFLOPs by 26%. 2) Depth super-097
vision leads to structured representations that better capture098
scene layout. As a result, SHED retrieves layout-similar099
images more accurately, increasing top-1 recall by 34%100
(45.2→60.5). 3) Accurate depth maps from SHED improve101
3D reconstruction, producing smooth surfaces aligned with102
the ground truth. Its hierarchy also enables unsupervised103
3D part discovery, which DPT cannot achieve as it predicts104
depth holistically without structural understanding.105

2. Related Work106

Dense prediction is a core problem in computer vision,107
aiming to assign pixel-level outputs across an image [20].108
It includes tasks such as semantic segmentation [47], depth109
estimation [16], optical flow [69], and image editing [32].110

Modern approaches typically adopt encoder-decoder archi- 111
tectures, such as U-Net [62] and DPT [60], trained us- 112
ing task-specific supervision. These models perform well 113
on benchmarks focused on per-pixel accuracy, as demon- 114
strated by large-scale systems like Segment Anything [61] 115
and Depth Anything [77]. However, recent studies show 116
that even top-performing models often lack structural con- 117
sistency [17, 49]. We argue that dense prediction should 118
move beyond local estimation toward structured reasoning 119
guided by region-level abstraction. 120

Monocular depth estimation is a representative dense pre- 121
diction task, that infers per-pixel depth from a single image. 122
It is widely used in 3D reconstruction [67], autonomous 123
driving [22], and robotic perception [68]. Early approaches 124
relied on hand-engineered features [64, 70], while deep 125
learning methods later became dominant [16, 23, 24, 30, 126
42, 43, 59, 83]. Recent ViT [13]-based models such as 127
DPT [60] have shown strong performance, leveraging foun- 128
dation models pretrained on diverse data [4, 35, 76]. How- 129
ever, these models still struggle with structural consistency 130
in complex scenes. 131

Structural cues in depth estimation have been extensively 132
explored to enhance geometric coherence. Existing ap- 133
proaches can be broadly categorized into four types: 1) 134
Representation approaches modify how depth is encoded, 135
such as by discretizing depth values [3, 21, 44] or mod- 136
eling spatial dependencies [10, 45, 81]. 2) Regulariza- 137
tion imposes geometric constraints through loss functions 138
that promote smooth surfaces [5, 23, 82], consistent nor- 139
mals [78], or planar regions [72, 79]. 3) Multi-task learn- 140
ing jointly estimates depth with auxiliary signals, such as 141
scene geometry [15, 80] or semantics [7, 25, 38, 54, 84]. 4) 142
Post-processing refines predictions using off-the-shelf tech- 143
niques [8, 41]. 144
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Figure 2. SHED integrates a forward and reverse segment hierarchy into the ViT blocks of DPT. While following the overall archi-
tecture of DPT, including convolutional layers, we adapt the ViT into two stages. 1) The encoder converts the input image into superpixel
tokens and applies graph pooling to form coarser segments, following the hierarchical clustering strategy of CAST [37]. 2) The decoder
reverses this hierarchy by unpooling segment tokens from coarse to fine and fusing them with encoder features at corresponding levels via
skip connections. The tokens are projected into 2D maps according to their regions. These multi-level maps are fused with pixel-level
features from early convolutional layers to recover fine details and produce the final depth map.

Several multi-task approaches have explored segmen-145
tation as an auxiliary signal to improve depth estimation.146
Early works used segmentation as an additional supervi-147
sion signal [38, 54], while more recent ones leveraged148
segment regions or boundaries to guide depth discontinu-149
ities [7, 25, 84]. SHED follows this principle but integrates150
segmentation and depth estimation into a unified process,151
enabling them to benefit from each other. Moreover, it dis-152
covers hierarchical segmentation in an unsupervised man-153
ner, eliminating the need for costly human annotations.154

Although structural cues offer clear benefits, most ex-155
isting methods do not scale well to modern architectures.156
Representation-based approaches often require architec-157
tural changes that are incompatible with transformers, while158
regularization and multi-task methods rely on additional159
annotations, limiting scalability. In contrast, SHED inte-160
grates seamlessly into ViT-based models such as DPT and161
learns structural segmentation solely from depth supervi-162
sion. By design, it inherently produces sharp, segment-163
aligned boundaries, reducing the need for post-processing.164

Perceptual grouping is a key mechanism in human vision165
that organizes low-level elements into coherent global struc-166
tures [50, 73]. This principle has inspired a broad range167
of computer vision research, including perception [12, 33,168

46, 53, 58], segmentation [2, 31, 36, 75], and genera- 169
tion [27, 29, 52]. In particular, CAST [37] recently ap- 170
plied it to ViTs for concurrent segmentation and recogni- 171
tion. While most of these methods, including CAST, con- 172
sider only a forward hierarchy, constructing representations 173
and segmentations in a bottom-up manner, we adopt the 174
complementary concept of a reverse hierarchy [28], where 175
global structures guide and refine local parts through top- 176
down feedback. We leverage this principle to design an 177
encoder-decoder that accounts for both hierarchies. 178

While some prior works [1, 14, 66] have explored re- 179
verse hierarchies for recognition, they do not address dense 180
prediction. Other studies [18, 63, 65] apply similar ideas to 181
encoder-decoder architectures, but focus on object-centric 182
representations, lacking the ability to model segment hierar- 183
chies and often producing blurry outputs. To the best of our 184
knowledge, this is the first work to leverage bidirectional 185
segment hierarchies to enhance dense prediction within a 186
modern ViT framework. 187

3. Method 188

We propose SHED, which integrates a bidirectional seg- 189
ment hierarchy into the ViT blocks of DPT [60]. While 190
retaining DPT’s overall architecture, we modify only the 191
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ViT blocks between the convolutional encoder and decoder.192
Unlike DPT, which uses fixed-size patch tokens across all193
layers, our model constructs a hierarchy of segment tokens:194
the encoder builds a forward hierarchy by grouping features195
from fine to coarse, while the decoder applies a reverse hier-196
archy to refine predictions from coarse to fine, guided by the197
learned segment tokens. This design, illustrated in Fig. 2,198
enables the model to progressively reorganize and recon-199
struct structured scene information.200

3.1. Grouping segments via forward hierarchy201

Our encoder builds on CAST [37], which 1) replaces square202
patch tokens with superpixel tokens, and 2) progressively203
clusters them into coarser segment tokens by token sim-204
ilarity. This process produces a fine-to-coarse hierarchy205
of segment tokens. CAST was originally developed as an206
encoder-only model for image-level recognition. We ex-207
tend it into an encoder-decoder, where the segment hier-208
archy not only guides dense prediction but is also refined209
through dense supervision.210

Tokenization. Given an input image X ∈ Rh×w×c, the en-211
coder produces hierarchical segmentations S0, S1, . . . and212
corresponding embeddings Z0, Z1, . . . , ordered from fine213
to coarse. This process begins by dividing the image into n0214
superpixels (e.g., using the SEEDS algorithm [71]), which215
yields a one-hot assignment matrix S0 ∈ R(h×w)×n0 that216
maps each pixel to a superpixel.217

We extract a convolutional feature map Fconv ∈218
R(h0·w0)×d with spatial stride 8 (h0 = h/8, w0 = w/8),219
add fixed sinusoidal positional embeddings, and average-220
pool features within each superpixel to obtain initial em-221
beddings Z0 ∈ Rn0×d. To enable global context modeling,222
we append a class token to form Z̄0 ∈ R(n0+1)×d, which is223
passed to the first ViT block.224

Hierarchical clustering. We construct coarser segment to-225
kens by alternating ViT blocks with graph pooling [37]. At226
each level l, given Zl−1 and Sl−1 from the previous layer,227
we append a class token to form Z̄l−1, apply ViT blocks,228
and obtain updated features, excluding the class token.229

To form coarser tokens Zl ∈ Rnl×d, we compute a soft230
assignment matrix Pl ∈ Rnl−1×nl based on cosine similar-231
ity between fine- and coarse-level tokens:232

Pl(i→ j) ∝ sim(Zl−1[i], Zl[j]), for i ∈ [nl−1], j ∈ [nl],233

where [n] := {0, . . . , n−1}. The coarse tokens Zl are ini-234
tialized via farthest point sampling [56] from Zl−1, and re-235
fined by aggregating fine-level features weighted by Pl, fol-236
lowed by an MLP and a residual connection:237

Zl ← Zl + MLP(P⊤
l Zl−1 ⊘ P⊤

l 1),238

where ⊘ denotes element-wise division for normalization.239

To propagate segmentation labels through the hierarchy, 240
we compute coarser segmentations by composing the as- 241
signment matrices: 242

Sl = Sl−1 P̄l, l = 1, 2, . . . , lmax, 243

where P̄l is a hard assignment matrix obtained by taking the 244
argmax over each row of Pl. 245

3.2. Predicting outputs via reverse hierarchy 246

The decoder reconstructs spatial feature maps by reversing 247
the encoder’s segment hierarchy, progressively unpooling 248
segment tokens Zlmax , . . . , Z0. This involves two steps: 1) 249
computing decoder features Z ′

l by unpooling from Z ′
l+1 and 250

fusing them with encoder features Zl via skip connections; 251
and 2) projecting Z ′

l to the image space to obtain a spatial 252
feature map Fl of size (hl, wl). 253
Unpooling segment tokens. We reverse the encoder’s 254
clustering in a coarse-to-fine manner. At each level l = 255
lmax − 1, . . . , 0, we compute 256

Z ′
l ← P⊤

l+1 Z
′
l+1, 257

which distributes coarse features to finer segments. We then 258
concatenate the unpooled features with the corresponding 259
encoder output: 260

Z ′
l ← MLP(Concat(Z ′

l , Zl)), 261

followed by ViT blocks with class tokens. 262
Unpooling spatial features. We convert the segment to- 263
kens Z ′

l into spatial feature maps by composing the soft as- 264
signment matrices: 265

P0→l = P1 · · ·Pl ∈ Rn0×nl , 266

and applying them to the initial superpixel-to-pixel map S0 267
to obtain soft segmentations S0→l = S0P0→l. The spatial 268
feature map is then reconstructed as 269

Fl = S0→l Z
′
l , Fl ∈ R(hl·wl)×d. 270

The set of spatial maps {Fl}lmax
l=1 is fused using convolutional 271

layers, combined with Fconv, and further refined through fi- 272
nal convolution and upsampling to produce the final dense 273
prediction. DPT reduces the spatial resolution of feature 274
maps Fl at each level by a factor of 2l, with hl = h0/2

l, 275
wl = w0/2

l, producing coarse maps in early ViT layers 276
that are progressively refined. This forms a spatial hier- 277
archy similar to U-Net [62], improving global coherence 278
and reducing computation. However, it relies on local ag- 279
gregation, which lacks fine-grained structure, and reduces 280
computation only in the final decoder, not in the ViT blocks 281
where most of the cost arises. 282

In contrast, our segment hierarchy groups segment re- 283
gions, providing a stronger inductive bias that promotes 284
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Image Superpixel Segments (fine-to-coarse) Prediction GT

Figure 3. SHED produces consistent and continuous structures across segmentation and depth. We visualize the fine-to-coarse seg-
ments and corresponding depth maps from SHED, along with ground truth (GT) depth for comparison. Examples are from the NYUv2 [55]
test set. SHED captures fine structures through its segments, such as desks in a classroom, which allow the depth map to clearly separate
them from the background (row 1). It also decomposes large objects, such as a table, into multiple parts, leading to smooth depth variations
toward the back (row 2).

Image DPT [60] SHED (ours) GT DPT [60] SHED (ours) GT

Figure 4. SHED generates sharper object contours, clearer occlusion boundaries, and more coherent values within segments. We
compare depth maps (cols 2-4) and occlusion boundaries (cols 5-7) from DPT, SHED, and the ground truth (GT) on the NYUv2-OC++
dataset [57]. Boundaries are extracted using a Canny edge detector [6] and evaluated against GT, with correct edges shown in green and
errors in red. SHED more accurately captures object edges and produces smoother depth within segments. Its predicted boundaries also
align more closely with the ground truth.

structural consistency and reducing computation in the ViT285
blocks. As a result, applying spatial downsampling in286
SHED was not beneficial: it yielded minimal efficiency287
gains in the decoder while degrading boundary quality288
by projecting coarse segments onto low-resolution maps.289
Therefore, we omit spatial reduction in SHED and simply290
set hl = h0, wl = w0.291

4. Experiments292

We demonstrate the benefits of SHED by integrating seg-293
mentation into the loop for dense prediction: 1) Segment-294
consistent depth estimation that preserves occlusion bound-295
aries and intra-segment coherence, leading to improved ac-296
curacy and efficiency; 2) Structure-aware representation297
learning through dense supervision, enabling layout-aware298
features and segmentations; 3) 3D scene reconstruction299
from predicted depth maps, yielding globally coherent and300
part-aware structures.301

Table 1. SHED improves boundary accuracy and intra-
segment coherence. We evaluate the structural quality of SHED
depth maps using two metrics: 1) Occlusion boundary accu-
racy [40], evaluated on the NYUv2-OC++ dataset [57]. Occlu-
sion boundaries are extracted using a Canny edge detector, and the
average Chamfer distance is computed in both directions: from
prediction to ground truth and vice versa. SHED significantly im-
proves over DPT, reducing recall error by 54% (1.64→0.73). 2)
Intra-segment coherence, computed on the NYUv2 dataset [55].
This metric measures how well the predicted depth values within
each object segment align with the ground-truth distribution. We
compute the average Wasserstein-1 distance using object-level an-
notations, evaluating both precision and recall. SHED outperforms
DPT on both metrics.

Method OBs (ϵa / ϵc) ↓ Intra-segment coherence ↓

DPT [60] 6.429 / 1.637 0.631 / 0.664
SHED (ours) 5.875 / 0.732 0.614 / 0.614
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Table 2. SHED improves computational efficiency while matching per-pixel metrics. We evaluate standard depth accuracy and error
metrics, along with GFLOPs, on the NYUv2 [55] test set. SHED reduces GFLOPS by 26% (302→223) by predicting depth at the segment
level, avoiding redundant processing of similar pixels and reducing token counts in internal layers. Its per-pixel metrics are similar to DPT,
which is not surprising since these metrics reflect only local plausibility and ignore structural quality. Both models are trained with the
same supervision, resulting in similar losses despite clear differences in visual fidelity, especially in fine details.

Efficiency Depth Accuracy Depth Error

Method GFLOPs ↓ δ>1.25 ↑ δ>1.252 ↑ δ>1.253 ↑ AbsRel ↓ RMSE ↓ log10 ↓

DPT [60] 302.0 0.664 0.886 0.954 1.011 0.731 0.100
SHED (ours) 223.1 0.674 0.890 0.955 0.991 0.720 0.097

4.1. Setup302

We implement SHED on top of DPT [60], adopting its over-303
all training setup. Specifically, we use the DPT-Hybrid vari-304
ant, which combines ResNet-50 [26] and ViT-Base [13],305
and refer to it simply as DPT throughout the paper. We pri-306
marily train and evaluate on NYUv2 [55], a standard bench-307
mark for indoor depth estimation.308
Tokenization. Input images of size 640×480 are randomly309
cropped to 416×416 during preprocessing. We generate310
676 superpixels using the SEEDS algorithm [71], match-311
ing the 26×26 token grid of DPT, which corresponds to312
16×16 patches. Features are extracted from intermediate313
ResNet-50 blocks at 1/4 and 1/8 of the input resolution; the314
latter initializes segment token embeddings, while both are315
passed to the final decoder via skip connections.316
Architecture. We modify the ViT encoder-decoder in DPT317
by inserting graph pooling and unpooling layers. The en-318
coder consists of three stages, each with two ViT blocks fol-319
lowed by graph pooling, progressively reducing the number320
of segment tokens to 256, 128, and 64. The decoder mir-321
rors this structure with graph unpooling and receives skip322
connections from the corresponding encoder stages.323
Training. We train both SHED and DPT from scratch on324
NYUv2 for a fair comparison, using a batch size of 16 for 50325
epochs with the Adam optimizer [39] and a learning rate of326
5e-5. Both models could be further improved by using pre-327
trained ResNet and ViT backbones, as done in the original328
DPT. We follow DPT’s default training recipe, including the329
scale-invariant logarithmic loss computed against ground-330
truth depth. At inference time, predicted depth maps at331
416×416 resolution are bilinearly upsampled to 640×480332
to match the ground-truth size.333

4.2. Segment-consistent depth estimation334

SHED generates structured depth maps by leveraging a335
learned segment hierarchy. We begin by visualizing the336
hierarchy and predicted depth to illustrate their structural337
alignment. Next, we evaluate quality in terms of bound-338
ary accuracy and intra-segment coherence. Finally, we339
show that hierarchical decoding improves efficiency with-340
out compromising pixel-wise accuracy.341

Fig. 3 shows that the segment hierarchy in SHED yields 342
depth maps with coherent object geometry. The learned 343
segments capture contours of objects, such as desks in a 344
classroom, allowing the depth to clearly separate them from 345
the floor. They also decompose larger structures, like tables, 346
into parts, enabling smooth depth transitions from front to 347
back. This suggests that structure guides depth prediction 348
toward more accurate and interpretable results. 349

Boundary accuracy. We assess the structural quality of 350
SHED comparing its boundary predictions to those of DPT. 351
Fig. 4 shows predicted depth maps and their occlusion 352
boundaries, extracted using a Canny edge detector [6], on 353
samples from the NYUv2-OC++ dataset [57]. For quan- 354
titative evaluation, we follow the standard protocol [40] 355
and compute the average Chamfer distance [19] in two di- 356
rections: from prediction to ground truth, and vice versa. 357
SHED produces sharper contours and outperforms DPT on 358
both metrics, with particularly large gains in recall, likely 359
due to its fine-grained segmentation. However, overseg- 360
mentation may introduce spurious edges that reduce preci- 361
sion, highlighting the importance of accurate segmentation. 362

Intra-segment coherence. Beyond boundary, we evaluate 363
how coherently depth values vary within each segment. We 364
use a metric called intra-segment coherence, which mea- 365
sures the similarity between the predicted and ground-truth 366
depth distributions within each segment, treating the lat- 367
ter as structural references. It is computed as the aver- 368
age Wasserstein-1 distance [34], using ground-truth seg- 369
mentations from the NYUv2 dataset [55]. As shown in 370
Fig. 4, SHED produces smoother depth variations within 371
segments. This is reflected quantitatively in Tab. 1, where it 372
outperforms DPT in both precision and recall. 373

Per-pixel metrics and efficiency. Beyond structure-aware 374
metrics, we compare SHED and DPT using standard per- 375
pixel depth metrics and computational cost, as shown in 376
Tab. 2. SHED achieves comparable accuracy with signif- 377
icantly lower cost by predicting at the segment level, which 378
reduces token count and avoids redundant computation. Al- 379
though both models perform similarly on these metrics, this 380
is expected, as they capture only local plausibility. This 381
highlights the need for structure-aware evaluation to assess 382
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a) Top-5 retrieval examples

D
PT

[60]

0.713 0.638 0.624 0.621 0.617 SH
E

D
(ours)

Query 0.885 0.844 0.812 0.792 0.787

b) Top-K retrieval accuracy (%)

Method Top-1 Top-3 Top-5

Scene retrieval
DPT [60] 45.2 69.7 77.2
SHED (ours) 60.5 78.7 87.0

Frame retrieval (k=5)
DPT [60] 18.5 31.0 38.3
SHED (ours) 30.5 42.3 48.3

Figure 5. SHED learns layout-aware representations through depth supervision. We evaluate image retrieval on NYUv2 [55] based
on cosine similarity between class tokens from the final ViT block. a) Top-5 results (ranked left to right), with similarity scores shown
below. SHED retrieves images with similar layouts, such as a central desk and a rear bookshelf, while DPT retrieves unrelated scenes. b)
Top-K accuracy at the scene and frame level (k = 5), where the targets are different views from the same scene or nearby frames. SHED
significantly outperforms DPT in all settings, indicating that our depth-guided segmentation effectively encodes spatial layout.

Image Segment Depth SHED: 64, 32, 16 segments CAST: 64, 32, 16 segments

Figure 6. SHED learns depth-aware segment hierarchies, while CAST relies on visual cues. We compare segmentations from SHED
and CAST [37] at the same hierarchy levels: 64, 32, and 16 segments. SHED captures meaningful part structures, such as separating the
blanket and pillow from the bed (row 1). It also decomposes large structures like the floor based on depth, grouping nearby regions into
a single large segment while dividing distant areas into smaller ones (row 2). In contrast, CAST relies on appearance cues and fails to
capture geometric structure. For instance, it groups white floor regions by color but divides them arbitrarily, ignoring depth. These results
highlight the value of depth supervision in learning 3D-aware segmentations.

depth more comprehensively.383

4.3. Structure-aware representation learning384

Our structured architecture not only improves depth predic-385
tion but also facilitates structure-aware representation learn-386
ing. First, SHED learns features that reflect scene layout,387
enabling more accurate layout-aware image retrieval than388
DPT [60]. Second, its segment hierarchy captures geomet-389
ric cues informed by depth supervision, whereas CAST [37]390
relies on visual cues.391
Layout-aware image retrieval. We assess the structural392
understanding of learned representations by performing393
layout-aware image retrieval on the NYUv2 dataset [55],394
using 120K video frames collected from 206 scenes. These395
frames serve as queries, and we define two retrieval settings.396
In scene retrieval, all frames from the same sequence are397
valid targets. For finer-grained evaluation, we also consider398
frame-k retrieval, where only frames within k time steps of399
the query are included. Given a query image, we rank other400
images by the cosine similarity of their class tokens from401
the final ViT decoder block. Fig. 5 presents both qualita-402

tive and quantitative results. The left side shows that SHED 403
retrieves images with similar spatial layouts, such as a cen- 404
tral desk and a rear bookshelf, while DPT returns unrelated 405
scenes. The right side shows that SHED significantly out- 406
performs DPT in both scene- and frame-level metrics, im- 407
proving Top-1 recall in scene retrieval from 45.2 to 60.5. 408
Additional analysis, including trends across varying values 409
of k, is provided in supplementary. 410
Depth-aware image segmentation. We analyze the seg- 411
ment hierarchy learned by SHED by comparing it to 412
CAST, an encoder trained for image recognition using 413
segment-based representations. We use CAST-B, trained 414
on ImageNet [11] with the MoCo-v3 objective [9], a self- 415
supervised learning method based on instance discrimina- 416
tion [74] that clusters visually similar images. Following 417
CAST’s setup, we use 224×224 images and extract 196 418
superpixels, clustered into 64, 32, and 16 segments. For 419
comparison, we adapt the graph pooling layers of our pre- 420
trained SHED to produce the same number of segments, 421
while keeping the original input resolution and superpixels. 422
Despite the shift in token configurations, SHED produces 423
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Image DPT [60] SHED (ours) GT DPT [60] SHED (ours) GT

Figure 7. SHED produces more accurate and structured 3D reconstructions. We visualize 3D point clouds reconstructed from single-
view depth maps, following the semantic scene completion protocol [67], using predictions from DPT, SHED, and the ground truth on
NYUv2 [55] examples. Frontal views (cols 2-4) show that DPT fails to preserve planar structures, producing curved wall boundaries,
whereas SHED more accurately recovers straight lines. This difference is even more apparent in the bird’s-eye views (cols 5-7): DPT
yields warped surfaces, while SHED produces flatter layouts that better match the ground truth.

consistent and meaningful segmentations.424
Fig. 6 shows qualitative results. SHED learns hierarchi-425

cal structures that align with scene geometry: it separates426
objects like blankets and decomposes large structures such427
as floors into segments that reflect their spatial extent. In428
contrast, CAST groups regions based on appearance. For429
example, it clusters white floor areas by color but fails to ac-430
count for geometric cues. We attribute this difference to the431
training objective: CAST learns segments through image-432
level recognition, while SHED is guided by dense predic-433
tion. Although our focus here is depth, the ability to learn434
segment hierarchies grounded in 3D structure opens possi-435
bilities for other dense prediction tasks as well.436

4.4. 3D scene reconstruction with part structures437

We conclude by demonstrating SHED’s capability for 3D438
scene understanding. While plausible pixel values may suf-439
fice for 2D depth estimation, accurate and structured depth440
is particularly critical when projected into 3D space. Ac-441
cordingly, SHED enables high-quality 3D reconstruction442
and supports unsupervised 3D part discovery through con-443
current segmentation.444
3D scene reconstruction. To evaluate the structural qual-445
ity of predicted depth maps, we project them into 3D point446
clouds on the NYUv2 dataset [55], following the semantic447
scene completion protocol [67] and using NYUv2 camera448
intrinsics. For interpretability, all depth values are scaled449
by 1/1000. Fig. 7 shows that SHED produces cleaner re-450
constructions with sharper boundaries and flatter surfaces451
that better align with ground truth geometry, whereas DPT452
yields curvier, less faithful shapes. We quantify recon-453
struction accuracy using the average Chamfer distance [19]454
in both directions. Tab. 3 shows that SHED consistently455
achieves lower distances than DPT, confirming its advan-456
tage in structured 3D prediction.457
3D part discovery. By jointly predicting segmentation and458
depth, SHED lifts 2D parts into 3D space, enabling part-459
level decomposition of scenes. Tab. 4 shows an example460
from NYUv2 [55], where segments corresponding to ob-461
jects like beds and carpets form coherent 3D structures in462

Table 3. SHED improves 3D alignment. We compute the av-
erage Chamfer distance [19] between point clouds reconstructed
from the predicted and ground-truth depths. SHED achieves lower
errors than DPT.

Method Precision / Recall ↓

DPT [60] 0.171 / 0.251
SHED (ours) 0.158 / 0.244

Image Segment 3D Parts

Table 4. SHED discovers 3D part structures. Concurrent seg-
mentation and depth estimation enable part-level decomposition
of the reconstructed 3D point clouds.

the point cloud. This demonstrates SHED’s potential for 463
unsupervised 3D part reasoning, a key capability for inter- 464
active and dynamic scene understanding [51]. 465

5. Conclusion 466

We shed light on the role of segmentation in depth estima- 467
tion. SHED learns a segment hierarchy in the encoder and 468
reverses it in the decoder to predict dense maps. This results 469
in depth maps with segment-consistent structure, layout- 470
aware representations, and coherent 3D scenes with inter- 471
pretable parts. Our principle of unifying reconstruction 472
and reorganization offers a new direction for 3D vision and 473
robotics, particularly for tasks that require fine-grained in- 474
teraction with physical components. 475
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