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Abstract

Hebbian learning is a key principle underlying learning in biological neural net-
works. We relate a Hebbian spike-timing-dependent plasticity rule to noisy gradient
descent with respect to a non-convex loss function on the probability simplex.
Despite the constant injection of noise and the non-convexity of the underlying op-
timization problem, one can rigorously prove that the considered Hebbian learning
dynamic identifies the presynaptic neuron with the highest activity and that the con-
vergence is exponentially fast in the number of iterations. This is non-standard and
surprising as typically noisy gradient descent with fixed noise level only converges
to a stationary regime where the noise causes the dynamic to fluctuate around a
minimiser.

1 Introduction
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Figure 1: Neural
network with a sin-
gle output neuron

Hebbian learning is a fundamental concept in computational neuroscience,
dating back to Hebb [16]. In this work, we provide a rigorous analysis of a
Hebbian spike-timing-dependent plasticity (STDP) rule. Those are learning
rules for the synaptic strength parameters that only depend on the spike times of
the involved neurons. More precisely, we consider a neural network composed
of d presynaptic/input neurons, which are connected to one postsynaptic/output
neuron. The presynaptic neurons communicate with the postsynaptic neuron by
sending spike sequences, the so-called spike-trains. Reweighted by synaptic
strength parameters w1, . . . , wd ≥ 0, they contribute to the postsynaptic
membrane potential. Whenever the postsynaptic membrane potential exceeds
a threshold, the postsynaptic neuron emits a spike, and the membrane potential
is reset to zero. Experiments have shown the following stylised facts, which
lie at the core of Hebbian learning based on spikes: (1) Locality: The change
of the synaptic weight wi depends only on the spike-train of neuron i and the
postsynaptic spike-train. (2) Spike-timing: The change of the synaptic weight
wi depends on the relative timing of presynaptic spikes of neuron i and of
the postsynaptic neuron. More precisely, a pre-post spike sequence tends to increase wi, whereas a
post-pre sequence tends to decrease wi. We refer to Morrison et al. [27] for a more comprehensive
list of experimental results on STDP rules.

Hebbian learning rules are well-studied if instead of the precise timings of pre- and postsynaptic
spikes, only the mean firing rates are taken into account. These rate-based models exhibit many
desirable properties, including performing streaming PCA [22, 19] and receptive field development
[13, Section 11.1.4]. Much less is known if the precise timing of pre- and postsynaptic spikes is
considered, since the intrinsic randomness of the dynamics complicates the mathematical analysis.
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Our main contribution lies in connecting STDP to noisy gradient descent and providing a rigorous
convergence analysis of the noisy learning scheme. To this end, we introduce a learning rule for
the weights w1, . . . , wd, which captures the locality and spike-time dependence of Hebbian STDP.
We rewrite the learning rule as a noisy gradient descent scheme with respect to a suitable loss
function. The connection to noisy gradient descent and stochastic approximation [23, 33] paves the
way for applying mathematical tools from stochastic process theory to analyse the STDP rule. Our
analysis of STDP is inspired by the work on noisy gradient descent for non-convex loss functions of
Mertikopoulos et al. [26]. By refining their arguments and carefully tracking the error terms, we show
an exponentially fast alignment of the output neuron with the input neuron of the highest mean firing
rate on an event of high probability. The specialisation of the output neuron to the input neuron of the
highest intensity is related to the winner-take-all mechanism in decision making [12, 48, 30, 24, 39].
The competitive nature of Hebbian STDP has been observed by [38, 37, 15] and the specialisation to
few input neurons is important for receptive field development [9]. By connecting Hebbian STDP to
noisy gradient descent, we are able to provide a mathematical analysis beyond ensemble averages
and to quantify the speed of convergence.

Taking into account the intrinsic geometry of the probability simplex, we also relate our learning rule
to noisy mirror descent, more precisely to noisy entropic gradient descent, which has been proposed
for brain-like learning by Neumann et al. [29], Cornford et al. [10].

The key contributions are:

1. STDP as noisy gradient descent. We deduce a new framework, in which Hebbian STDP is
interpreted as noisy gradient descent. This connection allows us to employ powerful tools
from the theory of stochastic processes for analysing Hebbian STDP.

2. Linear convergence. We prove the alignment of the output neuron with the input neuron of
highest intensity at exponential rate on an event of high probability.

3. Connection to noisy mirror descent. We relate our learning rule to noisy mirror descent,
more specifically to entropic gradient descent. This connection facilitates the integration of
techniques from both areas, potentially leading to future synergistic effects.

Related literature

Common approaches to understanding STDP restrict to the mean behaviour after taking the ensemble
average, e.g. [13, 21, 15], or compute the full distribution using the master equation of the Markov
process [13, Section 11.2.4]. Unfortunately, the latter is only feasible in specific scenarios. In [20],
the authors consider a general noisy spike-time dependent dynamic which is transformed into a
deterministic ODE by imposing a slow learning rate and using the self-averaging effect of the system.
A stability analysis reveals structure formation and output stabilisation. One major difference to our
work is the influence of the noise. In [20], the variance of the weights grows linearly and a careful
comparison of time scales is required. In our work, despite a constant injection of noise into the
system, the dynamic for the spike-triggering probabilities converges to a deterministic limit. Secondly,
the use of recent ideas from the analysis of noisy SGD allows us to track the influence of the realised
noise in every step. A considerable number of previous works derived STDP rules based on the
minimisation of a loss function, typically corresponding to the minimization/maximization of some
notion of energy or information, see [8, 6, 7, 43, 41, 31, 42, 35]. While this approach is appealing,
the mathematical analysis of these learning rules is challenging due to the modifications required to
achieve biological plausibility. In contrast, we start with a biologically plausible learning rule and
utilise the arising loss function to derive mathematical convergence guarantees of the learning rule.
The importance of the choice of a suitable metric for the derivation of the learning rule is laid out in
[40]. We refer to [1, 47, 36, 14, 44] and the references therein for further results on STDP.

1.1 Notation

Linear algebra. For a positive integer d, we write [d] := {1, . . . , d} and 1 := (1, . . . , 1)⊤ ∈ Rd.
For i ∈ [d] we denote by ei the ith standard basis vector of Rd. The Hadamard product between
two vectors a,b ∈ Rd is denoted by a⊙ b := (a1b1, . . . , adbd)

⊤ ∈ Rd. We write I ∈ Rd×d for the
identity matrix on Rd and ∥u∥2 =

∑d
i=1 u

2
i for the squared Euclidean norm of a vector u ∈ Rd.
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Probability. M(1,p) denotes the multinomial distribution with one trial (n = 1) and probability
vector p = (p1, . . . , pd)

⊤, that is ξ ∼ M(1,p) if only only if P(ξ = i) = pi for any i ∈ [d]. We
denote by

P :=
{
p ∈ Rd : pi ≥ 0∀i ∈ [d],

d∑
i=1

pi = 1
}

the probability simplex in Rd. We denote by 1A the indicator function of a set A.

1.2 Hebbian inspired learning rule

Inspired by Hebbian learning, we consider an unsupervised learning dynamic with d input (or
presynaptic) neurons and one output (or postsynaptic) neuron. The ith input neuron has a mean firing
rate λi > 0 describing the expected number of spikes per time unit. The vector λ = (λ1, . . . , λd)
contains the d mean firing rates. The strength of the connection between the ith input neuron and the
output neuron is modulated by the weight parameter wi ≥ 0, and changes to encode the information
of the input firing rates.

We introduce a Hebbian STDP rule in Subsection 2.3 and show that, under some assumptions on the
spike-trains, it is equivalent to the following dynamics. If w(0) = (w1(0), . . . , wd(0))

⊤ are the d
weights at initialisation, the updating rule from w(k) to w(k + 1) is given by

w(k + 1) = w(k)⊙
(
1+ α (B(k) + Z(k))

)
, (1)

where α > 0 is the learning rate and k = 0, 1, . . . denotes the postsynaptic spike time. The d-
dimensional vector B(k) is the standard basis vector pointing to the presynaptic neuron, which
triggered the (k+1)st postsynaptic spike. It is given as B(k) =

∑d
i=1 1ζk=iei, the one-hot encoding

of independent multinomial random variables ζk ∼M(1,p(k)), with k-dependent probability vector

p(k) =
λ⊙w(k)

λ⊤w(k)
∈ Rd, k = 0, 1, . . . (2)

Since the probabilities pi(k) model the probability that the (k + 1)st postsynaptic spike is triggered
by neuron i = 1, . . . , d, we call them (postsynaptic) spike-triggering-probabilities. The i.i.d. d-
dimensional vectors Z(k), k = 0, 1, . . . model the contribution of presynaptic spikes, which did
not trigger the (k + 1)st postsynaptic spike, to the weight change. They are modelled to have i.i.d.
components Z1(k), . . . , Zd(k), which are supported in [−(Q− 1), (Q− 1)], for some Q > 1, and
centred such that E[Z(k)] = 0.

In the remainder of the paper, we analyse the long-run behaviour of p(k) as k → ∞ under the
learning rule Eq. (3). We say that the output neuron aligns with the jth input neuron if pj(k)→ 1 as
k →∞. Since the input intensities λ1, . . . , λd > 0 are fixed throughout the dynamic, this condition
is equivalent to wj(k)/

∑d
i=1 wi(k)→ 1 as k →∞. Figure 1 visualises the learning rule Eq. (2).

2 Representation as noisy gradient descent

We continue by relating the learning rule Eq. (1) to noisy gradient descent. For notational simplicity,
define Y(k) := B(k) + Z(k) for k = 0, 1, . . . . Combining the weight updates Eq. (1) with the
formula for the probabilities p from Eq. (2), we find

p(k + 1) =
λ⊙ (w(k)⊙ (1+ αY(k)))

λ⊤ (w(k)⊙ (1+ αY(k)))
=

p(k)⊙ (1+ αY(k))

p(k)⊤ (1+ αY(k))
, k = 0, 1, . . . . (3)

The normalisation in the denominator and the multiplicative nature of the update ensures that the
dynamic of p(k) is restricted to the probability simplex. By a Taylor expansion around α = 0, we
find

p(k + 1) = p(k)⊙
(
1+ α

(
Y(k)− p(k)⊤Y(k)1

) )
+O(α2). (4)

Since
E
[
Y(k)− p(k)⊤Y(k)1 |p(k)

]
= p(k)− ∥p(k)∥21,

the random vectors

ξ(k) := p(k)⊙
(
Y(k)− p(k)⊤Y(k)1− p(k) + ∥p(k)∥21

)
, k = 0, 1, . . . .
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Figure 2: Contour plot of the loss function L from Eq. (6) on the probability simplex P for d = 3
with different overlays. Left: Three sample trajectories of Eq. (3) with different initial configurations
p(0). Middle: Stream plot of the gradient field given by Eq. (7). Right: 100 sample trajectories of
Eq. (3) with p(0) = (0.3, 0.3, 0.4)⊤. All trajectories are simulated with 2000 iteration steps, learning
rate α = 0.01 and Z(k) ∼ Unif([−1, 1]d).

are centred. The distribution of ξ(k) depends on w(k) and p(k). Up to O(α2)-terms, we can write
the learning rule Eq. (3) as a noisy gradient descent scheme

p(k + 1) = p(k)⊙ (1+ α(p(k)− ∥p(k)∥21)) + αξ(k)

= p(k)− α∇L(p(k)) + αξ(k), k = 0, 1, . . . (5)

for the loss function

L(p) := −1

3

d∑
i=1

p3i +
1

4

(
d∑

i=1

p2i

)2

= −1

3
p⊤(p⊙ p) +

1

4
∥p∥4, p ∈ Rd (6)

with gradient
∇L(p) = −p⊙ (p− ∥p∥21) ∈ Rd, p ∈ Rd. (7)

Dropping O(α2) terms is only done for illustrative purposes. Our main result (Theorem 2.2) applies
to the original learning rule Eq. (3). The subsequent lemma summarises the key properties of the loss
function L from Eq. (6). For d = 3, Figure 2 visualises the loss function L and the learning dynamics
Eq. (3).
Lemma 2.1. All critical points of the loss function Eq. (6) can be written as p∗ = 1

|S|
∑

j∈S ej
for some S ⊆ [d]. Every critical point with |S| ≥ 2 is a saddle point. The local minima of the
loss function L from Eq. (6) are the standard basis vectors {e1, . . . , ed}. Furthermore, every local
minimum of L is also a global minimum.

2.1 Linear convergence of the learning rule

We state the convergence guarantee for the learning rule Eq. (3). Renaming the indices, we can
assume that p1(0) is the largest initial probability. Provided that p1(0) is strictly larger than each
other component of p(0), the following theorem shows linear convergence of the first component to 1
on an event Θ in expectation. The probability of Θ can be chosen arbitrarily close to 1 by reducing
the learning rate α.
Theorem 2.2. Given ε ∈ (0, 1), assume

∆ := p1(0)− max
i=2,...,d

pi(0) > 0 and 0 < α ≤ ∆2

16Q2

(
(1−Qα)3∧ 1

256(1− p1(0))

(
4
∆

d
+∆2

)
ε
)
.

Then there exists an event Θ with probability ≥ 1− ε/2 such that

E
[
∥p(k)− e1∥11Θ

]
≤ 2
(
1− p1(0)

)
exp

(
− α

16

(
4
∆

d
+∆2

)
k

)
, for all k = 0, 1, . . .

Consequently, given δ > 0,

P
(
∥p(k)− e1∥1 ≥ δ

)
≤ ε for all k ≥ 16d

α∆(4 + d∆)
log
(4(1− p1(0))

εδ

)
.
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Remark 2.3. If all weights are equal at the starting point of the learning algorithm, the assumption
p1(0)−maxi=2,...,d pi(0) > 0, is equivalent to requiring λ1(0)−maxi=2,...,d λi(0) > 0. In this case,
the convergence of p(k) to e1 corresponds to the network performing a winner-take-all mechanism
[12, 48, 30, 39, 24]. The competitive selection of input neurons in Hebbian STDP has been observed
by [38, 37, 15], among others. Our results extend existing findings by going beyond ensemble
averages and also provide a rate of convergence for the random dynamics.

The convergence on an event of high probability is in line with other recent results on noisy/stochastic
gradient descent for non-convex loss functions, see e.g. [26, 45] or [11, Theorem 2.5]. Contrary to
these results, we can choose a constant learning rate and obtain linear convergence. To illustrate the
reason for this, we give a brief overview of the proof of Theorem 2.2. The full proof can be found in
Section A.1.

1. We restrict the analysis to the event Θ on which

p1(k)− max
i=2,...,d

pi(k) ≥ c > 0,

holds for all iterates k. On this event, the derivative of the first component can be bounded
from below by

p1(k)(p1(k)− ∥p(k)∥2) ≳ 1− p1(k). (8)

2. As described in Eq. (3), we apply a Taylor approximation to the original dynamics. We
bound the error term for the ith component pi(k + 1) by the order α2pi(k)(1− pi(k)). The
approximation error is dominated by the gradient update on Θ, if the learning rate is small
enough (see Eq. (8).

3. Similarly as in Eq. (5), we restate the learning increments of the dynamics as the sum of the
true gradient and a centred noise vector ξ(k). By Eq. (8), this decomposition yields linear
convergence of p1(k)→ 1 on Θ.

4. To find a lower bound for the probability of the chosen event Θ, we employ a similar strategy
as Mertikopoulos et al. [26]. Through the representation Eq. (5), we can show that Θ occurs,
as soon as M(k) := α

∑k
i=1 ξ(i) is uniformly bounded by some sufficiently small constant.

As (M(k))k∈N is a martingale, the probability of the latter event can be controlled through
Doob’s submartingale inequality (see Eq. (27)).

5. To apply Doob’s submartingale inequality, we bound the second moment of M(k). Since
the variance of the components of ξ(k) is also dominated by 1− p1(k), we achieve a bound
of the order α2

∑∞
i=1(1− p1(i))1Θ. This series is summable as we have linear convergence

to 0, which allows us to choose a constant learning rate α.

2.2 Associated gradient flow

In this subsection, we consider the associated gradient flow of probabilities p(t) as a vector-valued
function, which solves the ODE

d

dt
p(t) = p(t)⊙

(
p(t)− ∥p(t)∥21

)
= −∇L

(
p(t)

)
, t ≥ 0 (9)

and is initialized by the probability vector p(0). By definition, d
dt

∑d
i=1 pi(t) = 0, such that∑d

i=1 pi(t) =
∑d

i=1 pi(0) = 1. Since the updating rule is multiplicative, the gradient flow produces
for all t ≥ 0 a probability vector. The gradient flow Eq. (9) also occurs as a specific replicator
equation in evolutionary game theory, see Hofbauer and Sigmund [17, Chapter 7]. Elementary
properties and an explicit solution for the gradient flow with d = 2 are derived in Section 2.2.
Although the loss function L(p) in Eq. (6) does not satisfy a global Polyak-Łojasiewicz condition, in
particular it is not globally convex, we can deduce the following convergence for the ODE Eq. (9).
Theorem 2.4. Assume

p1(0) ≥ max
i=2,...,d

pi(0) + ∆,

for some ∆ > 0. Then

∥e1 − p(t)∥1 ≤ 2
(
1− p1(0)

)
exp

(
− ∆

d
(1 + (d− 1)∆)t

)
,

that is linear convergence of p(t)→ e1 as t→∞.
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2.3 Biological plausibility of the proposed learning rule
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Figure 3: Considered biological neural
network with spike trains and membrane
potential Yt of the postsynaptic neuron.

We study a biological neural network consisting of d in-
put (or presynaptic) neurons, which are connected to one
output (or postsynaptic) neuron. For the subsequent ar-
gument, we assume that the spike times of the d input
neurons are given by the corresponding jump times of d
independent Poisson processes (X(1)

t )t≥0, . . . , (X
(d)
t )t≥0

with respective intensities λ1, . . . , λd. All neurons are
excitatory and each connection between an input neuron
j ∈ [d] and the output neuron has a time varying and non-
negative synaptic strength parameter, which we denote by
wj(t) ≥ 0.

An idealized model is that a spike of the jth input neuron
at time τ causes an exponentially decaying contribution
to the postsynaptic membrane potential of the form t 7→
wj(τ)Ce−c(t−τ)

1t≥τ . We set the parameters c, C > 0 to
one, as this can always be achieved by a time change t 7→
tc and a change of units of the voltage in the membrane
potential.

If Tj denotes the spike times of neuron j ∈ [d], the post-
synaptic membrane potential (Yt)t≥0 is given by Y0 = 0 and Yt =

∑d
j=1

∑
τ∈Tj ,τ≤t wj(τ)e

−(t−τ)

for all t ≥ 0 until Yt ≥ S, where S > 0 is a given threshold value. Once the threshold S is surpassed,
the postsynaptic neuron emits a spike and its membrane potential is reset to its rest value, which
we assume to be 0. Afterwards, the incoming spikes will contribute to rebuilding the postsynaptic
membrane potential. If t0 := 0 < t1 < t2 < . . . denote the postsynaptic spike times, the membrane
potential at arbitrary time is therefore given by

Yt =

d∑
j=1

∑
τ∈Tj∩(tk,t]

wj(τ)e
−(t−τ) for all tk < t ≤ tk+1. (10)

We consider the following pair-based spike-timing-dependent plasticity (STDP) rule ([14, Section
19.2.2]): A spike of the jth presynaptic neuron at time τ causes the weight parameter function
t 7→ wj(t) to decrease at τ by αe−(τ−t−), where t− is the last postsynaptic spike time before τ and
to increase at any postsynaptic spike time tk by α

∑
τ∈Tj∩(tk,tk+1]

e−(τ−tk), with α > 0 the learning
rate. As common in the literature, spike times that occurred before tk only have a minor influence
and are neglected in the updating of the weights after tk. The term

∑
τ∈Tj∩(tk,tk+1]

e−(τ−tk) is then
the trace ([14, Equation (19.12)]) of the jth presynaptic neuron at time tk+1.

For mathematical convenience, we will assume that all weight-updates in (tk, tk+1] are delayed to
the postsynaptic spike times tk in the sense that the learning rule becomes

wj(tk+1) = wj(tk)

(
1 + α

( ∑
τ∈Tj∩(tk,tk+1]

e−(tk+1−τ) − e−(τ−tk)
))

, k = 0, 1, . . . (11)

The postsynaptic spike times tk are the moments at which the postsynaptic membrane potential Yt

reaches the threshold S. They depend on the presynaptic spike times, however, the exact dependence
is hard to characterise in the assumed model. For mathematical tractability, we will instead work
with an adjusted rule to select the postsynaptic spike times t1, t2, . . . Since Yt only increases at the
presynaptic spike times, tk+1 has to happen at a presynaptic spike time. Denote by τj1, τj2, . . . the
spike times of the j-th presynaptic neuron after the previous postsynaptic spike time tk in increasing
order. The distribution of tk+1|tk is completely determined by the probabilities
P
(
tk+1 = τjℓ

)
= P

(
tk+1 = τjℓ

∣∣tk+1 ∈ (τjm)m≥1

)
P
(
tk+1 ∈ (τjm)m≥1

)
, j = 1, . . . , d, ℓ = 1, . . .

Based on probabilistic arguments related to the underlying Poisson processes that we outline in
Section A.3, we replace the probabilities P (tk+1 ∈ (τjm)m≥1) by the probabilities

λjwj(tk)∑d
ℓ=1 λℓwℓ(tk)

. (12)
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Working with Eq. (12) instead of P(tk+1 ∈ (τjm)m≥1) results in an approximation of the distribution
of tk+1. Lemma A.7 describes a setting, where Eq. (12) is exact. If all weights are much larger than
the threshold S, every presynaptic spike causes a postsynaptic spike. The proof of Lemma A.7 can be
adapted to this case to show that the probability that the jth neuron emits the first spike is λj/

∑d
ℓ=1 λℓ.

Since Hebbian learning is intrinsically unstable, we argue that the proposed approximation describes
the dynamic at the beginning of the learning process. This view is corroborated by experimental
results, see point (vi) of Morrison et al. [27, Section 2.1].

Compared to the original definition of tk+1, the proposed sampling scheme has the advantage that
the presynaptic spike times, which were not selected as postsynaptic spike time, add centred noise to
the updates. More precisely, one can show that by the construction of tk and the properties of the
underlying Poisson processes, the conditional distribution τ |{τ ∈ (tk, tk+1)} is uniformly distributed
on (tk, tk+1). By the symmetry relation e−(b−u) − e−(u−a) = −(e−(b−v) − e−(v−a)) ∈ [−1, 1],
which holds for all real numbers a ≤ u ≤ b with v = b+a−u ∈ [a, b], this implies that conditionally
on τ ∈ (tk, tk+1), the random variable e−(tk+1−τ) − e−(τ−tk) is centred and supported on [−1, 1].
The update rule Eq. (11) then becomes

wj(tk+1) = wj(tk)

(
1 + α1{j=j∗(k+1)}

(
1− etk−tk+1

)
+ α

∑
τ∈Tj∩(tk,tk+1)

Z(τ, j)

)
, (13)

with centred random variables Z(τ, j) satisfying |Z(τ, j)| ≤ 1. Assuming that the postsynaptic
firing rate is slow compared to the learning dynamic, we discard the term etk−tk+1 ≪ 1. Since
j∗(k + 1) follows a multinomial distribution with parameters λjwj(tk)/(

∑d
ℓ=1 λℓwℓ(tk)), the term

1{j=j∗(k+1)} corresponds to the jth component of B(k) in Eq. (1). This motivates the learning
rule Eq. (1). Additional details on the derivation are given in Subsection A.3 of the supplementary
material.

3 A mirror descent perspective

In this section, we rewrite the gradient flow Eq. (9) as natural gradient descent on the probability
simplex and relate the discrete-time learning rule Eq. (3) for the probabilities p to noisy mirror
gradient descent.

Recall from Eq. (5) that the learning rule Eq. (3) can be interpreted as noisy gradient descent with
respect to the loss function L from Eq. (6) in the Euclidean geometry. As we consider a flow on
probability vectors, a different perspective is to use the natural geometry of the probability simplex.
To this end, we consider the interior of the probability simplex M := int(P) as a Riemannian
manifold with tangent space TpM = {x ∈ R : 1⊤x = 0} for every p ∈M. A natural metric onM
is given by the Fisher information metric / Shahshahani metric [4, 17], which is induced by the metric
tensor dp : TpM× TpM → R, (u,v) 7→ u⊤ diag(p)−1v at p ∈ M. Here, diag(p) ∈ Rd×d is
the diagonal matrix with diagonal entries given by p. We refer to Figure 1 of Mertikopoulos and
Sandholm [25] for an illustration of unit balls in this metric. The (Riemannian) gradient of the loss
function L̃(p) = −∥p∥2/2 with respect to dp is given by

∇dpL̃(p) = diag(p)∇L̃(p) ∈ TpM,

where we denote by∇L̃ the Euclidean gradient of L̃. The Riemannian gradient flow is called natural
gradient flow in information geometry [3] and Shahshahani gradient flow in evolutionary game theory
[18]. When transforming the Euclidean gradient flow for L to a Riemannian gradient flow on the
probability simplex, the part +∥p∥21 is orthogonal to TpM. Consequently, it does not contribute
a direction on the probability simplex. Consequently, the Riemannian gradient flow of L̃ and the
Euclidean gradient flow of L coincide.

The mirror descent algorithm [28] prescribes the discrete-time optimisation algorithm

p(k + 1) ∈ argmin
p∈M

{
p⊤∇f(p(k)) + 1

α
Φ(p,p(k))

}
, k = 0, 1, . . . , (14)

where f :M→ R is the function to be minimised and Φ:M×M→ R+ is a suitable proximity
function. Euclidean gradient descent is recovered by the choice Φ(p,p(k)) = ∥p − p(k)∥2. It
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is well-known that the natural gradient flow is the continuous-time analogue of the exponentiated
gradient descent or entropic mirror descent, where Φ(p,p(k)) = KL(p∥p(k)) is chosen as the
Kullback–Leibler divergence between p and p(k) [2, 46, 32]. Consequently, the gradient flow Eq. (9)
can also be viewed as continuous-time version of entropic mirror descent with respect to f = L̃. This
connection transfers to the discrete-time and noisy updating rule Eq. (3). An alternative approach for
connecting our proposed discrete-time learning rule Eq. (3) to entropic mirror descent is included in
Subsection A.4 of the supplementary material.

4 Multiple weight vectors

x1

x2

...

xd

y1

y2

...

yd

Input
Neurons

Output
Neurons

Figure 4: Neural
network with d in-
put/output neurons.

The learning rule Eq. (1) aligns the output neuron with the input neuron of
the highest intensity, but no information about the remaining input neurons is
unveiled. As a proof-of-concept, we generalise the learning algorithm Eq. (1)
to estimate the order of the intensities λ1, . . . , λd. To this end, we consider d
different output neurons, which are connected to the d input neurons via the
weight vectors w1, . . . ,wd ∈ Rd. The weights at time k are combined into
the matrix

W(k) = [w1(k) · · · wd(k)] ∈ Rd×d, k = 0, 1, . . .

and the corresponding probabilities p1, . . . ,pd are combined into the matrix
P(k) = [p1(k) · · · pd(k)] ∈ Rd. By reordering the neurons, we can
achieve λ1 ≤ λ2 ≤ · · · ≤ λd. If the intensities are strictly ordered, our goal
is the alignment of the jth output neuron with the jth input neuron, which
amounts to the convergence of P(k) to the identity matrix I ∈ Rd×d as time
increases. If multiple intensities are equal, convergence is up to permutations within the group of
equal intensities. We propose Algorithm 1, which constitutes an STDP rule as lines 3 - 4 can be
implemented using the spike-trains and the learning rule Eq. (11).

Algorithm 1: Aligning multiple output neurons

Input: K ∈ N: number of iterations, W(0) ∈ Rd×d: weight initialisation, α1, . . . , αd:
learning rates of the output neurons.

1 for k = 0, 1, . . . ,K − 1 do
2 for j = 1, . . . , d do
3 Receive Bj(k) ∼M(1,pj(k)) with pj(k)← λ⊙wj(k)/λ

⊤wj(k) and
Zj(k) ∼ Unif([−1, 1]d) from spike trains;

4 Compute the base change ∆wj(k)← αjwj(k)⊙ (Bj(k) + Zj(k));
5 Update

wj(k + 1)← ∆wj(k)−
j−1∑
i=1

(∆wj(k))
⊤wi(k)

∥wi(k)∥2
wi(k);

6 end
7 end

Output: The weight evolution W(k) = [w1(k) · · · wd(k)], k = 0, . . . ,K and probability
evolution P(k) = [p1(k) · · · pd(k)], k = 1, . . . ,K.

Algorithm 1 is inspired by Sanger’s rule [34] for learning d principal components in streaming
PCA. The first weight vector w1(k) aligns with e1 by Theorem 2.2 since its dynamic equals the
learning rule Eq. (1). By removing the components of the change ∆wj(k) in the direction of
w1(k), . . . ,wj−1(k) in line 5 of Algorithm 1, the weight vector wj(k) is forced to converge to ej ,
similarly to the Gram–Schmidt algorithm.

Simulations of the corresponding probability matrix P(k) with varying learning rates and Z drawn
i.i.d. from Unif([−1, 1]d) are included in Figure 5. We choose different learning rates for the d
vectors satisfying α1 > · · · > αd > 0. This ordering ensures fast convergence of the lower order
weight vectors to the correct standard basis vector and counteracts the impact of initial misalignments
of the higher order weight vectors. The simulation of Algorithm 1 shown in Figure 5 displays a
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Figure 5: Probability matrix P(k) arising from the weight dynamic W(k) of Algorithm 1 for
dimensions n = d = 3. The weights are initialised equally, and the intensities are given by λ =
(10, 7.5, 5)⊤. The resulting initial probabilities are p1(0) = p2(0) = p3(0) = (4/9, 1/3, 2/9)⊤.
Left: A single trajectory with learning rates 10−3(1, 0.75, 0.5)⊤ and 4×104 iterations. The markers×
and • correspond to the probabilities at k = 4×103 and k = 104. Middle & right: The Frobenius error
∥P(k)− I∥2/2 of 100 trajectories with learning rates 10−3(1, 0.75, 0.5)⊤ and 10−4(1, 0.75, 0.5)⊤,
respectively.

decrease of the Frobenius error ∥P(k)− I∥2/2 over the iteration index k, when averaged (blue line).
Nevertheless, we observe that for a single trajectory, the error can plateau around 1 and 2. Given that
the probability vectors tend to converge to standard basis vectors {e1, . . . , ed}, a non-vanishing error
is due to an incorrect ordering or duplicates. Consequently, the error ∥P(k)− I∥2/2 corresponds to
the number of output neurons aligning with the incorrect input neuron, and plateaus at 1, 2 and 3 can
arise. Theorem 2.2 shows that this phenomenon can be mitigated by slower learning rates, which is
corroborated by decreasing the base learning rate from 10−3 to 10−4 in the simulation. A rigorous
mathematical analysis of the Algorithm 1 is challenging due to joint updates in all read-out neurons.
In Section A.5 we show that Theorem 2.2 is applicable if the learning is split into disjoint learning
periods, and we derive theoretical convergence guarantees.

5 Extensions, discussion and limitations

Time-inhomogeneous intensities. We considered input spike trains generated from Poisson point
processes with fixed intensity. It is natural to extend this to time-inhomogeneous intensities. Here we
assume that the intensities of the input neurons are constant on the interval (k, k+1] and are stored in
the vector λ(k). The intensities λ(k) and weights w(k) determine the spike-triggering-probabilities
p(k) = λ(k)⊙w(k)/λ(k)⊤w(k) = E[Y(k)] and the update formula Eq. (2) becomes

p(k + 1) =
λ(k + 1)⊙ (w(k)⊙ (1+ αY(k)))

λ(k + 1)⊤ (w(k)⊙ (1+ αY(k)))
=

p̃(k)⊙ (1+ αY(k))

p̃(k)⊤ (1+ αY(k))
, k = 0, 1, . . . , (15)

with p̃(k) := λ(k + 1)⊙w(k)/(λ(k + 1)⊤w(k)). A first order Taylor expansion yields

p(k + 1) = p̃(k)⊙
(
1+ α

(
Y(k)− p̃(k)⊤Y(k)1

))
+O(α2). (16)

Since E[Y(k)] = p(k), this means that

p(k + 1) = p̃(k)⊙
(
1+ α

(
p(k)− p̃(k)⊤p(k)1

))
+ centered noise +O(α2). (17)

Extending the gradient flow derivation to the time-inhomogeneous case, one can identify the ODE

d

dt
p(t) = p(t)⊙

(
d

dt
log
(
λ(t)

)
+ p(t)− p(t)⊤

(
d

dt
log
(
λ(t)

)
+ p(t)

)
1

)
, (18)

where the logarithm is taken componentwise, as corresponding deterministic dynamic in continuous
time, see Section A.6 for a derivation. The ODE can be interpreted as a replicator equation with
(time-varying) fitness d

dt log(λ(t)) + p(t), see e.g. Chapter 7 of [18]. An interesting scenario which
lies beyond our mathematical analysis amounts to considering time-dependent mean firing rates that
are piecewise constant, corresponding to the successive exposition to different input patterns [9].

9



Correlated inputs. Correlated inputs facilitate simultaneous spiking of different input spikes. The
probability that input i and j spike at the same time is denoted by Γij , and naturally Γii := 1,
for all i ∈ [d]. We introduce the d × d random symmetric matrix C(k) = (Ci,j(k))i,j∈[d] with
independently sampled entries

Cj,i(k) := Ci,j(k) ∼ Ber(Γi,j), for all i ≤ j ∈ [d].

C(k) describes the simultaneous spiking of the different inputs at the k-th post-synaptic spike, i.e. if
Ci,j(k) is 1 then inputs i and j both spike at the k-th post-synaptic spike if either i or j caused the
post-synaptic spike. Compared to the original model, the random vector Z(k) remains the same, but
the random vector B(k) = (B1(k), . . . , Bd(k))

⊤ that encapsulates which of the presynaptic neurons
caused the postsynaptic spike is replaced by S(k) = C(k)B(k). S(k) encodes which of the inputs
spike at a post-synaptic spike, and in particular it holds

P
(
Si(k) = 1|p(k)

)
= Γi,·(k)p(k), for all i ∈ [d],

where Γi,·(k) denotes the i-th row of Γ(k). Since the only change in the dynamic of p(k) is replacing
B(k) by S(k) in the definition of Y(k), Eq. (4) still holds true, and we obtain

E
[
p(k + 1)

∣∣p(k)] ≈ E
[
p(k)⊙

(
1+ α

(
Y(k)− (p(k))⊤Y(k)1

) )∣∣∣p(k)]
= p(k)⊙

(
1+ α

(
Γp(k)− (p(k))⊤Γp(k)1

) )
,

which induces the following gradient flow

d

dt
p(t) = p(t)⊙ (Γp(t)− (p(t))⊤Γp(t)1). (19)

This is again a replicator equation with fitness Γp, compare Section 7 of [18]. The associated
Shahshahani-loss is given by x 7→ − 1

2x
⊤Γx. Thus, in the correlated model, the probabilities p

follow a flow restricted to the probability simplex aimed at maximising the quadratic form associated
to the matrix Γ. This property is similar to principal component analysis (PCA), as the goal there
is to recover the eigenvector corresponding to the largest eigenvalue of the underlying covariance
matrix. Thus, the behaviour of the correlated model can be interpreted as a form of PCA restricted to
the probability simplex. Theorem A.13 in the supplementary material generalizes Theorem 2.2 to
weakly correlated input neurons and is accompanied by simulations in Figure 6.

Small biological neural network. In this paper, we mathematically analyse the convergence be-
haviour of a small biological neural network with one layer composed of excitatory presynaptic/input
neurons and multiple postsynaptic/output neurons. It is natural to generalise the setting to account for
inhibitory neurons and more than one layer.

Weight explosion. The learning rule Eq. (1) for the weights w(k) causes them to increase without
bound as the iteration index k increases. When the weights exceed the spike threshold, the model
becomes biologically implausible and the derivation of the probabilities Eq. (12) is no longer valid.
This unstable nature is well-known to be intrinsic to Hebbian learning algorithms and is commonly
countered by soft or hard bounds, or by including mean-reverting terms to the dynamic Gerstner et al.
[14, pages 497-498]. We follow a different route, namely viewing Hebbian learning as a temporal
phase of limited length, which is followed by a stabilising homeostatic learning phase. This view is
corroborated by experimental results, compare Point (vi) in Morrison et al. [27, Section 2.1].

Beyond Pair-based STDP rules. While pair-based learning rules such as Eq. (1) only account for
the relative timing of one pre- and one postsynaptic spike time, also the voltage at the location of the
synapse should be taken into account [36]. A natural generalization of our framework would be to
extend the results to the model proposed in [9].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claim 1 (connection between Hebbian STDP and noisy gradient descent) is
justified in Section 2. Claim 2 (alignment of postsynaptic neuron with input neuron of
highest intensity) is proven in Theorem 2.2. Claim 3 (connection to mirror descent) is
addressed in Section 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations (analysing a small network and weight explosion) of our
analysis are included in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proof of the main result (Theorem 2.2) is outlined in Subsection 2.1. Its
formal proof is carried out in the technical appendix. The remaining results are proven in
the technical appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The results of the paper are of theoretical nature. Figures 2 and 3 serve only as
illustrations. The code used to generate the illustrations in both Figures is included in the
submission and will be made publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The results of the paper are of theoretical nature. Figures 2 and 3 serve only as
illustrations. The code used to generate the illustrations in both Figures is included in the
submission and will be made publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
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A Technical Appendix

We first study the loss landscape

p 7→ L(p) = −1

3

d∑
i=1

p3i +
1

4

( d∑
i=1

p2i

)2
.

Lemma 2.1 identifies the stationary points if we view the landscape as a function on Rd.

Proof of Lemma 2.1. The formula Eq. (7) for the gradient∇L(p) shows that the set of critical points
is given by

Crit := {p ∈ P : ∇L(p) = 0}
= {p ∈ P : pi ∈ {0, ∥p∥2} ∀i ∈ [d]}

=
{
p ∈ P : ∃n ∈ {1, . . . , d}, S ⊂ [d] with #S = n such that p =

1

n

∑
j∈S

ej

}
.

To identify local the extrema, we compute the Hessian matrix

J(p) = 2pp⊤ + ∥p∥2I− 2 diag(p) ∈ Rd×d, p ∈ Rd,

where diag(p) ∈ Rd×d is the diagonal matrix with diagonal entries given by p. Substituting a critical
point p∗ with n ∈ [d] non-zero entries yields (up to permutations of rows and columns)

J(p∗) =
1

n

(
Jn 0
0 Id−n

)
, Jn = −In +

2

n
1n×n, n ∈ [d],

where 1n×n is the n× n matrix consisting of ones. The corresponding eigenvalues are
1
n > 0 with multiplicity 1 and eigenspace En := span(

∑d
i=1 ei),

− 1
n < 0 with multiplicity n− 1 and eigenspace E⊥

n ,
1
n > 0 with multiplicity d− n and eigenspace span(en+1, . . . , ed),

(20)

where E⊥
n is the orthogonal complement of En in span(e1, . . . , en). Consequently, only those

critical points p∗ ∈ Crit are local minima, which have n = 1, i.e. p∗ ∈ {e1, . . . , ed}. Since all local
minima attain the same loss −1/12 and L(p) → ∞ as ∥p∥ → ∞, every local minimum is also a
global minimum.

Remark A.1. The eigenvalues of the Hessian of the loss function computed in Eq. (20) also imply that
if n ≥ 2, then p∗ ∈ Crit is a saddle point in Rd. Interestingly, when restricting to directions within
the probability simplex, the case n = d is not a saddle point, but a maximum, since the direction∑d

i=1 ei is orthogonal to P.

A.1 Proofs for Subsection 2.1

In the following we will always assume that

p1(0) ≥ max
i=2,...,d

pi(0) + ∆, (21)

for some ∆ ∈ (0, 1). This is a deterministic constraint. The randomness occurs because of the noise in
the updates. We assume that all random variables are defined on a filtered probability space (Ω,F ,P),
and denote by Fn, n = 0, 1, . . . , the natural filtration of (B(n),Z(n))n∈N. By a slight abuse of
notation we also introduce F−1 = {∅,Ω}. In particular it then holds that pn is Fn−1-measurable
for n = 0, 1, . . . . The starting point for the proof of the linear convergence of STDP is given by the
following Lemma, which explicitly bounds the error term in the Taylor approximation contained in
Eq. (3). Recall that |Yi(k)| ≤ Q, for all i ∈ [d], k = 0, 1, . . .

Lemma A.2. For i ∈ [d] and k = 0, 1, . . . define

ξi(k) := pi(k)
(
E
[
Yi(k)−

d∑
j=1

pj(k)Yj(k)
∣∣∣Fk−1

]
−
(
Yi(k)−

d∑
j=1

pj(k)Yj(k)
))

, (22)
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and assume α < 1/Q. Then for any i ∈ [d] and k = 0, 1, . . . , there exists a random variable θi(k),
satisfying

|θi(k)| ≤ α2 2Q2

(1−Qα)3
pi(k)

(
1− pi(k)

)
, almost surely,

such that

pi(k + 1) = pi(k) + αpi(k)
(
pi(k)− ∥p(k)∥2

)
− αξi(k)− θi(k).

Proof. By definition

pi(k + 1) = pi(k)
1 + αYi(k)

1 + α
∑d

j=1 pj(k)Yj(k)
, k = 0, 1, . . . , i ∈ [d].

Now, for a, b ∈ [−Q,Q] the first two derivatives of the function

f(x) :
(
0,

1

Q

)
→ R, x 7→ 1 + ax

1 + bx
,

are given by

f ′(x) =
a(1 + bx)− b(1 + ax)

(1 + bx)2
=

a− b

(1 + bx)2

f ′′(x) = −2b a− b

(1 + bx)3
.

Thus, a Taylor expansion around x = 0 gives that there exists some γ ∈ (0, x), such that

f(x) = 1 + (a− b)x− b
a− b

(1 + bγ)3
x2.

Hence we obtain that for some γ ∈ (0, α),

pi(k + 1) = pi(k) + αpi(k)
(
Yi(k)−

d∑
j=1

pj(k)Yj(k)
)

− α2pi(k)

∑d
j=1 pj(k)Yj(k)

(
Yi(k)−

∑d
j=1 pj(k)Yj(k)

)
(
1 + γ

∑d
j=1 pj(k)Yj(k)

)3 .

Using that |Yi(k)| ≤ Q almost surely for all i ∈ [d], k = 0, 1, . . . , the absolute value of the error
term can be bounded as follows∣∣∣∣∣α2pi(k)

∑d
j=1 pj(k)Yj(k)

(
Yi(k)−

∑d
j=1 pj(k)Yj(k)

)
(
1 + γ

∑d
j=1 pj(k)Yj(k)

)3
∣∣∣∣∣

≤ α2pi(k)
Q

(1−Qα)3

∣∣∣Yi(k)−
d∑

j=1

pj(k)Yj(k)
∣∣∣

≤ α2pi(k)
Q

(1−Qα)3

(
(1− pi(k))|Yi(k)|+

d∑
j=1,j ̸=i

pj(k)|Yj(k)|
)

≤ α2 2Q2

(1−Qα)3
pi(k)(1− pi(k)).

Since pi(k) is Fk−1-measurable for any i ∈ [d] and E[Yi(k) | Fk−1] = pi(k), we also obtain

ξi(k) = pi(k)
(
pi(k)− ∥p(k)∥2 − Yi(k) +

d∑
j=1

pj(k)Yj(k)
)
,

which concludes the proof.
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For ∆ given in Eq. (21), we define a sequence of benign events

Ω(k) :=
{
p1(u) ≥ max

i=2,...,d
pi(u) +

∆

2
, ∀u ∈ [k]

}
, k = 1, 2, . . . ,

and due to the assumption Eq. (21) we set Ω(0) = Ω. On the above events, the gradient is bounded
away from zero and

p1(k) =
1

d

d∑
j=1

(
p1(k)− pj(k)

)
+

1

d
≥ (d− 1)∆

2d
+

1

d
. (23)

Using these properties, we can prove a recursive upper bound for 1− p1(k).
Proposition A.3. If

0 < α ≤ (1−Qα)3

8Q2
∆,

then, on the event Ω(k),

1− p1(k + 1) ≤
(
1− α

∆

4d

(
1 +

∆

2
(d− 1)

))(
1− p1(k)

)
+ αξ1(k).

Proof. By definition, we have on the event Ω(k),

p1(k)− ∥p(k)∥2 =

d∑
j=1

pj(k)
(
p1(k)− pj(k)

)
≥ ∆

2

(
1− p1(k)

)
. (24)

The constraint imposed on the learning rate implies that α < 1/Q and Lemma A.2 becomes applicable.
Now, combining the previous inequality with the assumption on α and applying Lemma A.2 with
i = 1, as well as Eq. (23), gives, on the event Ω(k),

1− p1(k + 1)

≤ 1− p1(k)− α
∆

2
p1(k)

(
1− p1(k)

)
+ αξ1(k) + θ1(k)

≤ 1− p1(k)− α
(∆
2
− 2Q2

(1−Qα)3
α
)
p1(k)

(
1− p1(k)

)
+ αξ1(k)

≤ 1− p1(k)−
∆

4
αp1(k)

(
1− p1(k)

)
+ αξ1(k)

≤
(
1− α

∆

4d

(
1 +

∆

2
(d− 1)

))(
1− p1(k)

)
+ αξ1(k).

This concludes the proof.

Having understood the dynamics of p on the favourable event Ω(k), we aim for a lower bound for its
probability. A key step is the following Lemma, which states that Ω(k) is fulfilled as soon as

Mj(k) :=

k∑
ℓ=0

αξj(ℓ)1Ω(ℓ), k = 0, 1, . . . (25)

with ξj(ℓ) defined in Eq. (22), exhibit a uniform concentration behaviour.
Lemma A.4. Define the sets

Ej(k) :=
{
max
u∈[k]

|Mj(u)| ≤
∆

4

}
, E(k) :=

d⋂
j=1

Ej(k), k = 0, 1, . . . .

Then if

0 < α ≤ ∆2 (1−Qα)3

16Q2
,

the following set inclusion holds for any k = 0, 1, . . .

E(k) ⊆ Ω(k + 1).
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Proof. Let u ∈ {2, . . . , d} be arbitrary. It follows by Lemma A.2, that on Ω(k) the bound

pu(k + 1) = pu(k) + αpu(k)
(
pu(k)− ∥p(k)∥2

)
− αξu(k)− θu(k)

≤ pu(k) + αpu(k)
(
p1(k)− ∥p(k)∥2

)
− αξu(k)− θu(k)

holds. Consequently, on Ω(k), we have

p1(k + 1)− pu(k + 1)

= p1(k)− pu(k) + α
(
p1(k)− pu(k)

)(
p1(k)− ∥p(k)∥2

)
+ α

(
ξj(k)− ξ1(k)

)
− θ1(k) + θu(k).

We have pu(k) ≤ 1− p1(k) and thus, on Ω(k),

−θ1(k) + θu(k) ≥ −α2 2Q2

(1−Qα)3

(
p1(k)

(
1− p1(k)

)
+ pu(k)(1− pu(k))

)
≥ −α2 2Q2

(1−Qα)3

(
1− p1(k) + pu(k)

)
≥ −α2 4Q2

(1−Qα)3
(
1− p1(k)

)
≥ −α∆2

4

(
1− p1(k)

)
,

invoking the constraint on the learning rate in the last step. From the assumptions on α we deduce
that on the event Ω(k),

p1(k + 1)− pu(k + 1)− α(ξj(k)− ξ1(k))

≥ p1(k)− pu(k) + α
(
p1(k)− pu(k)

)(
p1(k)− ∥p(k)∥2

)
− α

∆2

4

(
1− p1(k)

)
≥ p1(k)− pu(k) + α

∆

2

(
p1(k)− pu(k)

)(
1− p1(k)

)
− α

∆2

4

(
1− p1(k)

)
≥ p1(k)− pu(k) + α

∆2

4

(
1− p1(k)

)
− α

∆2

4

(
1− p1(k)

)
≥ p1(k)− pu(k),

where we applied Eq. (24) in the third to last inequality. Because of Ω(k) ⊆ Ω(k− 1) it then follows,

(p1(k + 1)− pu(k + 1))1Ω(k) ≥ (p1(k)− pu(k))1Ω(k) + α(ξj(k)− ξ1(k))1Ω(k)

= 1Ω(k)

(
(p1(k)− pu(k))1Ω(k−1) + α(ξj(k)− ξ1(k))1Ω(k)

)
.

This gives

(p1(k + 1)− pu(k + 1))1Ω(k)

≥ 1Ω(k)

(
p1(0)− pu(0) +

k∑
ℓ=0

α(ξjℓ − ξ1ℓ )1Ω(ℓ)

)
≥ ∆1Ω(k) − |Mj(k)| − |M1(k)|.

(26)

We want to prove by induction that E(k) ⊆ Ω(k + 1) for all k = 0, 1, . . .. For k = 0, this directly
follows from Eq. (26), since Ω(0) = Ω due to assumption Eq. (21). Assume the assertion holds for
some k = 0, 1, . . .. Hence, it holds E(k + 1) ⊆ E(k) ⊆ Ω(k + 1), such that for any u ∈ {2, . . . , d}
it holds on E(k + 1) by Eq. (26)

(p1(k + 2)− pu(k + 2)) ≥ ∆− |Mj(k + 1)| − |M1(k + 1)|

≥ ∆

2
,

which proves the assertion.

Having assembled the previous results, we are able to prove the linear convergence of STDP stated
in Theorem 2.2. As Proposition A.3 already suggests the desired behaviour of p on Ω(k), the main
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part of the proof is to show that Ω(k) is satisfied with large probability. For that we deploy Doob’s
submartingale inequality, which states that for a martingale (Xn)n∈N, any p ≥ 1, and any u > 0,

P
(
max
i∈[n]
|Xi| ≥ u

)
≤ E[|Xn|p]

up
. (27)

This will be applied to derive lower bounds for the event E(k) defined in Lemma A.4, which are also
lower bounds for the probability of Ω(k + 1) by the same Lemma. For the reader’s convenience we
restate Theorem 2.2 before giving its proof.

Theorem 2.2. Given ε ∈ (0, 1), assume

∆ := p1(0)− max
i=2,...,d

pi(0) > 0 and 0 < α ≤ ∆2

16Q2

(
(1−Qα)3∧ 1

256(1− p1(0))

(
4
∆

d
+∆2

)
ε
)
.

Then there exists an event Θ with probability ≥ 1− ε/2 such that

E
[
∥p(k)− e1∥11Θ

]
≤ 2(1− p1(0)) exp

(
− α

16

(
4
∆

d
+∆2

)
k

)
, for all k = 0, 1, . . .

Consequently, given δ > 0, it holds

P
(
∥p(k)− e1∥1 ≥ δ

)
≤ ε for all k ≥ 16d

α∆(4 + d∆)
log
(4(1− p1(0))

εδ

)
.

Proof of Theorem 2.2. The recursive definition ensures that p(k) is Fk−1-measurable. Thus, also
Ω(k) ∈ Fk−1 for any k = 0, 1, . . . . One can check that (Mi(k))k=0,1,..., defined in Eq. (25), forms
a martingale for each i ∈ [d]. This allows us to apply Doob’s submartingale inequality. To apply it
with p = 2, we deduce the following bound on the second moment,

E[M1(k)
2]

= α2E
[( k∑

ℓ=0

ξ1(ℓ)1Ω(ℓ)

)2]
= α2

( k∑
ℓ=0

E[(ξ1(ℓ)1Ω(ℓ))
2] +

k∑
i,j=0,i̸=j

E[ξ1(i)1Ω(i)ξ1(j)1Ω(j)]
)

= α2
( k∑

ℓ=0

E[(ξ1(ℓ)1Ω(ℓ))
2] +

k∑
i,j=0,i̸=j

E
[
ξ1(i ∧ j)1Ω(i∧j)E[ξ1(i ∨ j)1Ω(i∨j)|Fi∧j ]

])

= α2
k∑

ℓ=0

E[(ξ1(ℓ)1Ω(ℓ))
2]

= α2
k∑

ℓ=0

E
[
(p1(ℓ))

2
(
E
[
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
∣∣∣Fℓ−1

]
−
(
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
))2

1Ω(ℓ)

]

≤ α2
k∑

ℓ=0

E
[
E
[(

E
[
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
∣∣∣Fℓ−1

]
−
(
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
))2∣∣∣Fℓ−1

]
1Ω(ℓ)

]

= α2
k∑

ℓ=0

E
[
E
[(

Y1(ℓ)−
d∑

j=1

pj(ℓ)Yj(ℓ)
)2∣∣∣Fℓ−1

]
1Ω(ℓ) − E

[
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
∣∣∣Fℓ−1

]2
1Ω(ℓ)

]

≤ α2
k∑

ℓ=0

E
[(

Y1(ℓ)−
d∑

j=1

pj(ℓ)Yj(ℓ)
)2
1Ω(ℓ)

]

= α2
k∑

ℓ=0

E
[(

(1− p1(ℓ))Y1(ℓ)−
d∑

j=2

pj(ℓ)Yj(ℓ)
)2
1Ω(ℓ)

]
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≤ 2α2
k∑

ℓ=0

E
[(

(1− p1(ℓ))Y1(ℓ)
)2
1Ω(ℓ) +

( d∑
j=2

pj(ℓ)Yj(ℓ)
)2
1Ω(ℓ)

]

≤ 2Q2α2
k∑

ℓ=0

E
[(

(1− p1(ℓ))
2 +

( d∑
j=2

pj(ℓ)
)2)

1Ω(ℓ)

]

≤ 4Q2α2
k∑

ℓ=0

E
[
(1− p1(ℓ))1Ω(ℓ)

]
,

where we used that E[ξ1(k2) | Fk1
] = 0, for any k2 > k1 = 0, 1, . . ., together with |Y1(k)| ≤ Q, the

inequality (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R and 1 − p1ℓ ≤ 1. Arguing similarly we obtain for
u ∈ {2, . . . , d},

E[(Mu(k)
2] = α2E

[ k∑
ℓ=0

(ξu(ℓ)1Ω(ℓ))
2
]

≤ α2
k∑

ℓ=0

E
[
(pu(ℓ))

2
(
Yu(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
)2
1Ω(ℓ)

]

≤ 4Q2α2
k∑

ℓ=0

E
[
pu(ℓ)1Ω(ℓ)

]
.

Hence, applying a union bound, Doob’s submartingale inequality Eq. (27) with p = 2 gives for any
k = 0, 1, . . .

P(E(k)) = 1− P
( d⋃

j=1

max
u∈[k]

|Mj(u)| ≥ ∆/4
)

≥ 1−
d∑

j=1

P
(
max
u∈[k]

|Mj(u)| ≥ ∆/4
)

≥ 1− 64Q2 α
2

∆2

( k∑
ℓ=0

E
[
(1− p1(ℓ))1Ω(ℓ)

]
+

d∑
j=2

k∑
ℓ=0

E
[
pj(ℓ)1Ω(ℓ)

]
.
)

= 1− 128Q2 α
2

∆2

k∑
ℓ=0

E
[
(1− p1(ℓ))1Ω(ℓ)

]
.

Proposition A.3 gives for any k = 0, 1, . . . the bound

E[(1− p1(k + 1))1Ω(k+1)] ≤ E[(1− p1(k + 1))1Ω(k)]

≤ E
[(

1− α
∆

4d

(
1 +

∆

2
(d− 1)

))(
1− p1(k)

)
1Ω(k) + αξ1(k)1Ω(k)

]
=
(
1− α

∆

4d

(
1 +

∆

2
(d− 1)

))
E[
(
1− p1(k)

)
1Ω(k)],

which implies

E
[(
1− p1(k)

)
1Ω(k)

]
≤
(
1− p1(0)

)(
1− α

∆

4d

(
1 +

∆

2
(d− 1)

))k
. (28)

We set

Θ :=

∞⋂
k=0

Ω(k) =
{
p1(u) ≥ max

i=2,...,d
pi(u) +

∆

2
,∀u ∈ N

}
.

The continuity of probability measures and Lemma A.4 then imply

P(Θ) = lim
k→∞

P(Ω(k))

≥ lim
k→∞

P(E(k))
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≥ 1− 128Q2 α
2

∆2

∞∑
ℓ=0

E
[
(1− p1(ℓ))1Ω(ℓ)

]
≥ 1− 128Q2(1− p1(0))

α2

∆2

∞∑
ℓ=0

(
1− α

∆

4d

(
1 +

∆

2
(d− 1)

))ℓ
= 1− 1024Q2(1− p1(0))

dα

∆3
(
2 + ∆(d− 1)

)
≥ 1− 2048Q2(1− p1(0))

α

∆3
(

4
d +∆

)
≥ 1− ε

2
,

where we used that we can assume d ≥ 2 without loss of generality. Additionally, Eq. (28) and the
elementary inequality 1− x ≤ exp(−x), which is valid for any real number x, give

E[
(
1− p1(k)

)
1Θ] ≤ E[

(
1− p1(k)

)
1Ω(k)]

≤ (1− p1(0))
(
1− α

∆

4d

(
1 +

∆

2
(d− 1)

))k
≤ (1− p1(0)) exp

(
− α

∆

4d

(
1 +

∆

2
(d− 1)

)
k
)
.

When d = 1, the right hand side of this inequality is 0. For d ≥ 2, we can also use the bound
d− 1 ≥ d/2. Together with

∥p(k)− e1∥1 = 1− p1(k) +

d∑
i=2

pi(k) = 2
(
1− p1(k)

)
,

this concludes the proof of the first statement. For the proof of the second statement, we apply
Markov’s inequality to obtain

P
(
∥p(k)− e1∥1 ≥ δ

)
≤ P(ΘC) + P

(
∥p(k)− e1∥11Θ ≥ δ

)
≤ ε

2
+ 2(1− p1(0)) exp

(
− α

16

(
4
∆

d
+∆2

)
k

)
δ−1.

Hence, if

k ≥

(
α

16

(
4
∆

d
+∆2

))−1

log
(4(1− p1(0))

εδ

)
=

16d

α∆(4 + d∆)
log
(4(1− p1(0))

εδ

)
,

then,

P
(
∥p(k)− e1∥1 ≥ δ

)
≤ ε.

Lemma A.5. Given an initialization of the weights w(0) = (w1(0), . . . , wd(0))
⊤ consider two d-

dimensional intensity vectors λ = (λ1, . . . , λd)
⊤, λ̃ = (λ̃1, . . . , λ̃d)

⊤ with positive entries. Assume
that λ1w1(0) > maxi=2,...,d λiwi(0) and λ̃dwd(0) > maxi=1,...,d−1 λ̃iwi(0). Assume we run the
learning rule Eq. (3) with intensity λ until time K∗ and then, for k > K∗, change the intensity to λ̃
and run the learning dynamic until time k →∞. If K∗ is small, in particular, if K∗ = 0, the above
convergence result can be applied to show that the dynamic converges to the corner ed. However, for
any ε ∈ (0, 1) and all sufficiently large K∗ (depending on ε), the dynamics will converge to e1 with
probability 1− 2ε.
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This result shows that the dynamic can be primed at the beginning to end up in one regime. Despite
the noise and the infinite amount of data, the dynamic is unable to escape this domain of attraction.
From the proof, one can derive quantitative bounds for K∗.

Proof. Given ε ∈ (0, 1), choose δ ∈ (0, 1) such that

max
i ̸=1

λ̃iλ1δ

λiλ̃1(1− δ)
< 1. (29)

Let ∆ = p1(0)−maxi ̸=1 pi(0). Given ε, δ,∆ choose

K∗ ≥ 16d

α∆(4 + d∆)
log
(4(1− p1(0))

εδ

)
.

By Theorem 2.2, this guarantees that

P
(
∥p(K∗)− e1∥1 ≥ δ

)
≤ ε.

On the event ∥p(K∗)− e1∥1 < δ, we have

1− λ1w1(K
∗)

λ⊤w(K∗)
< δ, and max

i̸=1

λiwi(K
∗)

λ⊤w(K∗)
< δ,

which can be combined into

max
i ̸=1

λiwi(K
∗) < δλ⊤w(K∗) <

δ

1− δ
λ1w1(K

∗).

Using the inequality Eq. (29), we obtain

max
i̸=1

λ̃iwi(K
∗) <

λ̃1(1− δ)

λ1δ

δ

1− δ
λ1w1(K

∗) = λ̃1w1(K
∗).

This means that restarting the learning rule Eq. (3) at time K∗ with intensities λ̃1, . . . , λ̃d and weights
w1(K

∗), . . . , wd(K
∗), shows that p1(K∗) > maxi ̸=2 pi(K

∗). Applying Theorem 2.2 again shows
convergence to e1 with probability 1− 2ε.

A.2 Proofs for Subsection 2.2

This section contains additional material on the gradient flow Eq. (9), as well as the proofs for Lemma
A.6 and Theorem 2.4.

For d = 2, the gradient flow admits an explicit solution. In this case, p(t) = (p1(t), p2(t))
⊤. If

p(0) = (1/2, 1/2)⊤, then this is a stationary solution and p(t) = p(0) = (1/2, 1/2)⊤ for all t ≥ 0.
If p1(0) > 1/2, then,

p1(t) =
1

2
+

1

2
√
Ce−t + 1

, with C :=
1

(2p1(0)− 1)2
− 1. (30)

If p1(0) < 1/2, then p2(t) = 1 − p1(t) > 1/2 follows the dynamic in Eq. (30). This formula
immediately implies that p1(t) converges exponentially fast to 1.

Proof of Formula Eq. (30). Throughout the proof we set p(t) := p1(t) and do not use the previous
notation p1(t), p2(t) for the first and second probability. For d = 2, the gradient flow ODE Eq. (9)
becomes

d

dt
p(t) = p(t)2 − p(t)

(
p(t)2 + (1− p(t))2

)
= 3p(t)2 − 2p(t)3 − p(t). (31)

Rewriting this in the variable u(t) = 1− 2p(t) gives the dynamic,

d

dt
u(t) = −2 d

dt
p(t) = −6p(t)2 + 4p(t)3 + 2p(t) =

1

2

(
1− u(t)2

)
u(t).
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This is solved by u(t) = −1/
√
Ce−t + 1 since

− d

dt

1√
Ce−t + 1

= −
(
− 1

2

)
· −Ce−t

(Ce−t + 1)3/2
=

1

2

(
1− u(t)2

)
u(t).

Thus, p(t) = 1
2 (1− u(t)) solves Eq. (31). Finally, C is determined by the initial condition p(0) =

1
2 (1− 1/

√
C + 1).

The following lemma summarises different properties of the gradient flow Eq. (9). In its statement,
differentiable on [0, 1] means differentiable on (0, 1) and continuous on [0, 1].
Lemma A.6. The gradient flow Eq. (9) exhibits the following properties.

(a) If ϕ : [0, 1] → R is a convex and differentiable function, then t 7→
∑d

i=1 ϕ(pi(t)) is monotone
increasing.

(b) Let i, j ∈ [d] with i ̸= j. If pi(0) > pj(0), respectively pi(0) = pj(0), then pi(t) > pj(t),
respectively pi(t) = pj(t), for all t ≥ 0. Moreover, if

∆ := p1(0)− max
i=2,...,d

pi(0) > 0,

then
p1(t) ≥ max

i=2,...,d
pi(t) + ∆ for all t ≥ 0.

Lemma A.6 implies that the q-norm t 7→ |p(t)|q is monotonically increasing whenever 1 ≤ q <∞.
The result also implies that if instead ϕ is concave and differentiable, then t 7→

∑d
i=1 ϕ(pi(t)) is

monotonically decreasing.

Proof of Lemma A.6.

(a) Since ϕ is convex, ϕ′ is monotonically increasing. Thus, for a probability vector q = (q1, . . . , qd),
we have

d∑
i=1

qiϕ
′(qi)

(
qi − ∥q∥22

)
=

d∑
i=1

qiϕ
′(qi)

(
qi

d∑
j=1

qj −
d∑

j=1

q2j

)

=

d∑
i,j=1

qiqjϕ
′(qi)

(
qi − qj

)
=

∑
1≤i<j≤d

qiqj
(
ϕ′(qi)− ϕ′(qj)

)(
qi − qj

)
≥ 0.

(If ϕ is strictly convex, then strict equality holds if and only if q is one of the stationary points
described above.) Using this and the gradient flow formula

d

dt

d∑
i=1

ϕ(pi(t)) =

d∑
i=1

ϕ′(pi(t))
d

dt
pi(t) =

d∑
i=1

pi(t)ϕ
′(pi(t))

(
pi(t)− ∥p(t)∥22

)
≥ 0,

proving the result.

(b) By definition it holds for i, j ∈ [d]

d

dt

(
pi(t)− pj(t)

)
= pi(t)

(
pi(t)− ∥p(t)∥2

)
− pj(t)

(
pj(t)− ∥p(t)∥2

)
=
(
pi(t)− pj(t)

)(
pi(t) + pj(t)− ∥p(t)∥2

)
. (32)

If pi(0) > pj(0), we can apply Grönwall’s inequality together with Eq. (32) to obtain for any
t ≥ 0,

pj(t)− pi(t) ≤ (pj(0)− pi(0)) exp
(∫ t

0

pi(s) + pj(s)− ∥p(s)∥2 ds
)
< 0.
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Similarly, if pi(0) = pj(0), we obtain

pj(t)− pi(t) ≤ (pj(0)− pi(0)) exp
(∫ t

0

pi(s) + pj(s)− ∥p(s)∥2 ds
)
= 0,

and

pi(t)− pj(t) ≤ (pi(0)− pj(0)) exp
(∫ t

0

pi(s) + pj(s)− ∥p(s)∥2 ds
)
= 0,

concluding the proof.

To prove the second statement, we have

p1(t) = p1(0) +

∫ t

0

p1(s)
(
p1(s)− ∥p(s)∥2

)
ds ≥ p1(0)− t,

and similarly, for any i ∈ {2, . . . , d},
pi(t) ≤ pi(0) + t ≤ p1(0) + t−∆.

Hence, whenever t ∈ [0,∆/2], we find
p1(t) ≥ max

i=2,...,d
pi(t),

which also implies
p1(t) ≥ p1(t)

2 + max
i=2,...,d

pi(t)
(
1− p1(t)

)
≥ ∥p(t)∥2,

for all t ∈ [0,∆/2]. Therefore for any t ∈ [0,∆/2], i ∈ [d] it holds
d

dt

(
p1(t)− pi(t)

)
=
(
p1(t)− pi(t)

)(
p1(t) + pi(t)− ∥p(t)∥2

)
≥ 0,

which implies for any i ∈ {2, . . . , d} and t ∈ [0,∆/2],
p1(t)− pi(t) ≥ p1(0)− pi(0) ≥ ∆,

Applying this argument iteratively concludes the proof.

For the reader’s convenience we restate Theorem 2.4 before giving its proof.
Theorem 2.4. Assume

p1(0) ≥ max
i=2,...,d

pi(0) + ∆,

for some ∆ > 0. Then

∥e1 − p(t)∥1 ≤ 2(1− p1(0)) exp
(
− ∆

d
(1 + (d− 1)∆)t

)
,

that is linear convergence of p(t)→ e1 as t→∞.

Proof of Theorem 2.4. Arguing as in Eq. (24) and Eq. (23), Lemma A.6 Eq. (b) implies
d

dt
(1− p1(t)) = −p1(t)(p1(t)− ∥p(t)∥2)

≤ −µ(1− p1(t)),

where
µ :=

∆

d
((d− 1)∆ + 1).

Grönwall’s inequality entails
1− p1(t) ≤ (1− p1(0)) exp(−µt),

which gives

∥p(t)− e1∥1 = 1− p1(t) +

d∑
i=2

pi(t) = 2(1− p1(t)) ≤ 2(1− p1(0)) exp(−µt).
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A.3 Proofs for Subsection 2.3

In this subsection, we heuristically derive the expression for the probabilities

λjwj(tk)∑d
ℓ=1 λℓwℓ(tk)

, j = 1, . . . , d, (33)

in Eq. (12). To this end, we assume that the weights are small compared to the threshold S, that
the weights are only updated at the postsynaptic spike times, and that

∑d
ℓ=1 λℓwℓ(tk) ≫ S. For

convenience, we write wℓ for wℓ(tk) and all ℓ ∈ [d]. The constraint
∑d

ℓ=1 λℓwℓ ≫ S guarantees
that after the postsynaptic spike time tk, the membrane potential Yt will again reach S and thus emit
another spike at time tk+1.

Taking the expectation of the membrane potential Yt =
∑d

j=1

∑
τ∈Tj∩(tk,t]

wje
−(t−τ) with respect

to all except the jth spike-train, gives

Zt :=
∑

τ∈Tj∩(tk,t]

wje
−(t−τ) +

∑
ℓ̸=j

wℓλℓ

∫ t

tk

e−(t−s) ds

=
∑

τ∈Tj∩(tk,t]

wje
−(t−τ) +

∑
ℓ ̸=j

wℓλℓ

(
1− e−(t−tk)

)
,

for all tk ≤ t < tk+1.

Introduce t∗ := inf{t ≥ tk : Zt ≥ S − wj} and write t+ for the first time after t∗ where

t 7→ Zt∗ + e−(t∗−tk)
d∑

ℓ̸=j

wℓλℓ

(
1− e−(t−t∗)

)
︸ ︷︷ ︸

=: Vt

reaches the threshold S. If there are sufficiently many neurons, the probability that the jth presynaptic
neuron spikes at time t∗ is small and will be neglected. We have Zt∗ = S − wj such that Vt+ = wj .
Approximating 1− e−(t+−t∗) ≈ t+ − t∗ gives

t+ − t∗ ≈ et
∗−tk

wj∑
ℓ̸=j wℓλℓ

.

The jth presynaptic neuron causes the next postsynaptic spike if and only if it spikes in the interval
(t∗, t+). The spike times of the jth presynaptic neuron are generated from a Poisson process with
intensity λj . Thus, if U ∼ Poisson(λj(t

+ − t∗)), the probability that the jth presynaptic neuron
spikes in (t∗, t+) is given by

P
(
U ̸= 0

)
= 1− P

(
U = 0

)
= 1− exp

(
− λj(t

+ − t∗)
)
≈ λj(t

+ − t∗) ≈ et
∗−tk

wjλj∑
ℓ̸=j wℓλℓ

.

We can moreover approximate the denominator on the right hand side by the full sum
∑d

ℓ=1 wℓλℓ.
Since the probabilities add up to one, we must have et

∗−tk ≈ 1. This shows that the probability of
the jth presynaptic neuron triggering the first postsynaptic spike after tk is approximately given by
Eq. (33).

Lemma A.7. Consider the setting outlined in Subsection 2.3. If at some time point t > 0, all weights
are the same, then the probability that the jth neuron triggers the next postsynaptic spike after t is
given by

λj∑d
ℓ=1 λℓ

.

Proof. Since all weights are the same, we can denote their value by w. The jth neuron causes a
postsynaptic spike if and only if it is the first one to spike after the postsynaptic membrane potential
Yt has reached a level ≥ S − w. As t∗ = inf{t ≥ t : Yt ≥ S − w} is a jump time and a stopping
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time, we can restart the process at t∗. As the increments of Poisson processes are independent, and
the time between the jumps is exponentially distributed with parameters λj , the probability that the
jth neuron causes the next presynaptic spike is given by

P
(
Xj = min(X1, . . . , Xd)

)
,

where (Xi)i∈[d] are independent random variables satisfying Xi ∼ Exp(λi). If U ∼ Exp(λ) and
V ∼ Exp(λ′) are independent, then, U ∧ V ∼ Exp(λ + λ′) and P(U ≤ V ) = λ/(λ + λ′). Thus,
mini ̸=j Xi ∼ Exp(

∑
i ̸=j λi), and

P
(
Xj = min(X1, . . . , Xd)

)
= P

(
Xj ≤ min

i ̸=j
Xi

)
=

λj∑d
ℓ=1 λℓ

.

The above lemma and the previous discussion give a motivation for the form of the probabilities in
settings, where the weights are small compared to the threshold S or equal. We now give another
heuristic, motivating our modelling choice. Let Y be the postsynaptic membrane potential. Then,
in expectation Y grows linearly with slope λ⊤w. Furthermore, input i causes a postsynaptic spike
if, and only if, it spikes at a time at which Y ≥ S − wi, where S > 0 is the threshold level. As Y ’s
growth is approximately linear, the amount of time in which Y ≥ S − wi, holds is approximately
equal to wi/λ

⊤w. Now the probability that input i jumps in an interval of length wi/λ
⊤w is given

by 1− exp(−λiwi/λ
⊤w) ≈ λiwi/λ

⊤w, which is exactly our modelling choice in the independent
setting.

A.4 On the connection to entropic mirror descent

An alternative approach to connecting our proposed learning rule Eq. (3) for the probabilities p and
the entropic mirror descent in discrete-time is as follows. The entropic mirror descent step Eq. (14)
with Kullback–Leibler divergence and potential f can be solved explicitly and yields

pi(k + 1) =
pi(k) exp(−α(∇f(p(k)))i)∑d

j=1 pj(k) exp(−α(∇f(p(k)))j)
, i ∈ [d], k = 0, 1, . . . , (34)

see Section 5 of Beck and Teboulle [5] for details. With f(p) = L̃(p) = ∥p∥2/2 and the first order
approximation exp(x) ≈ 1 + x for small x we deduce

pi(k + 1) =
pi(k) exp(−α(∇L̃(p(k)))i)∑d

j=1 pj(k) exp(−α(∇L̃(p(k)))j)
=

pi(k) exp(αpi(k))∑d
j=1 pj(k) exp(αpj(k))

=
pi(k) exp(α(pi(k)− ∥p(k)∥2))∑d

j=1 pj(k) exp(α(pj(k)− ∥p(k)∥2))

≈ pi(k)(1 + α(∇L(p(k)))i)∑d
j=1 pj(k)(1 + α(∇L(p(k)))j)

for any i = 1, . . . , d and k = 0, 1, . . . . As our proposed learning rule Eq. (3) is a noisy version of the
last line, it is naturally connected to noisy entropic gradient descent.

A.5 Theoretical results for the alignment of multiple read-out neurons

For a weight vector w ∈ Rd with nonnegative entries let i∗ := argmaxi=1,...,d w
⊤ei =

argmaxi=1,...,d wi and define the cosine-projection

Pw := ∥w∥ei∗ .
Assume that λ1 > · · · > λd and consider first learning the first weight vector w1 using the
learning rule in Eq. (1) while the remaining weight vectors w2, . . . ,wd are fixed. Theorem 2.2
implies that after K iterations, we have w1 ≈ e1. By projecting onto w∗

1 := Pw1(K) and
setting w2(0) ← w2(0) − w∗

1w2(0)
⊤w∗

1/∥w∗
1∥, we ensure that [p2(0)]2 = maxi=1,...,d[p2(0)]i

and Theorem 2.2 applies and yields p2(K) ≈ e2. Proceeding successively, we arrive at Algorithm 2.
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Theorem A.8. Consider Algorithm 2. Assume that λ1 > · · · > λd and the minimal gap ∆ =
mini=1,...,d−1([pi(0)]i −maxj>i[pi(0)]j) > 0 is positive. Then we have

P(P∗ ̸= I)→ 0

as K → ∞. More precisely, let δ < κ/(1 + κ) for κ = mini=1,...,d λi/maxi=1,...,d λi and ε > 0.
Then

P(P∗ = I) ≥ (1− ε)d for K ≥ 16d

α∆(4 + d∆)
log
( 4

εδ

)
.

Algorithm 2: Sequential alignment of multiple output neurons

Input: K ∈ N: number of iterations for each learning period, W(0) ∈ Rd×d: weight
initialisation.

1 for j = 1, . . . , d do
2 if j ≥ 2 then
3 wj(0)← wj(0)−

∑j−1
i=1

wj(0)
⊤w∗

i

∥w∗
i ∥2 w∗

i ;
4 end
5 for k = 0, 1, . . . , d do
6 Receive Bj(k) ∼M(1,pj(k)) with pj(k)← λ⊙wj(k)/λ

⊤wj(k) and
Zj(k) ∼ Unif([−1, 1]d) from spike trains;

7 Update
wj(k + 1)← αwj(k)⊙ (Bj(k) + Zj(k));

Set w∗
j := Pwj(K) to obtain p∗

j = λ⊤w∗
j .

8 end
9 end

Output: The weight evolution W(k) = [w1(k) · · · wd(k)], k = 0, . . . ,K, probability
evolution P(k) = [p1(k) · · · pd(k)], k = 1, . . . ,K and projections
P∗ = [p∗

1 · · · p∗
d].

Before proving Theorem A.8, we start with an auxiliary result on the order of the weights when the
probability vector is close to a standard unit vector.

Lemma A.9. Assume that 0 < λmin = mini=1,...,d λi ≤ λmax = maxi=1,...,d λi < ∞ and
let κ = λmin/λmax. Consider a weight vector w ∈ Rd with corresponding probability vector
p = w ⊙ λ/w⊤λ and let 0 < δ < 1. Then the condition 1− p1 < δ implies that maxi=2,...,d wi ≤
w1κ

−1δ/(1− δ).

Proof. Since 1− p1 ≤ δ we know that
∑d

i=2 λiwi ≤ δ
1−δλ1w1. By bounding the λi from above and

below we find

λmin

d∑
i=2

wi ≤
δ

1− δ
λmaxw1,

such that

max
i=2,...,d

wi ≤
δ

1− δ
κ−1w1.

Proof of Theorem A.8. By Theorem 2.2 we know that P(∥p1(K) − e1∥1 ≤ δ) ≥ 1 − ε for
our choice of K. Note that the projection picks out the direction argmaxi=1,...,d w1(K)⊤ei =
argmaxi=1,...,d[w1(K)]i. Consequently, Lemma A.9 and δ < κ/(1− κ) imply that w1(K) projects
in the direction of e1 with probability at least 1 − ε. We find that P(p∗

1 ̸= e1) ≤ 1 − ε. By the
adjustment of the weight vector w2(0) we remove its first component, such that [p2(0)]1 = 0 and
[p2(0)]2 = maxj=1,...,d[p2(0)]i. By the assumption on [p2(0)]2 −maxj=3,...,d[p2(0)]j ≥ ∆ > 0
we find that P(∥p2(K)− e2∥1 ≤ δ) ≥ 1− ε. By iteration and independence of the training windows
we conclude the proof.
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A.6 Additional material for the extension to time-inhomogeneous intensities

Derivation of Eq. (18): Eq. (17) yields the deterministic update scheme

p(k + 1) = p̃(k)⊙
(
1+ α

(
p(k)− p̃(k)⊤p(k)1

))
+O(α2). (35)

Let T > 0 be the time horizon and assume that the time-inhomogeneous intensities λα change on
the same scale as the weights and are given by λα(k) = λ(kα), k = 0, 1, . . . , ⌊T/α⌋, where λ ∈
C2

b ([0, T ]) is a universal, twice differentiable function with bounded derivatives and λ(t) ≥ λmin > 0,
t ∈ [0, T ], componentwise. For vectors w,λ,λ′ that are of the same length, and ∆ := λ′ − λ, we
have

λ′ ⊙w

λ′⊤w
=

∆⊙w + λ⊙w

∆⊤w + λ⊤w
=

∆⊙w

∆⊤w + λ⊤w
+

λ⊙w

λ⊤w

(
1− ∆⊤w

∆⊤w + λ⊤w

)
.

Applying this with λ′ = λα(k + 1),λ = λα(k),w = w(k), yields

p̃(k) =
λα(k + 1)⊙w(k)

λα(k + 1)⊤w(k)

= p(k) +
∆λα(k)⊙w(k)

∆λα(k)⊤w(k) + λα(k)⊤w(k)
− p(k)

∆λα(k)
⊤w(k)

∆λα(k)⊤w(k) + λα(k)⊤w(k)
.

Our assumptions on λα imply that p̃(k)−p(k) ≲ ∥∆λα(k)∥ ≲ α for all k = 0, 1, . . . , ⌊T/α⌋. This
gives p̃(k)⊙ p(k)− p̃(k)p̃(k)⊤p(k) = p(k)⊙ p(k)− p(k)p(k)⊤p(k) +O(α). In combination
with Eq. (35) we find

p(k + 1)− p(k)

α
=

∆λα(k)

α
⊙ w(k)

∆λα(k)⊤w(k) + λα(k)⊤w(k)

− p(k)

∆λα(k)⊤w(k) + λα(k)⊤w(k)

∆λα(k)
⊤

α
w(k)

+ p̃(k)⊙ p(k)− p̃(k)p̃(k)⊤p(k)

=
∆λα(k)

α
⊙ w(k)

O(α) + λα(k)⊤w(k)

− p(k)

O(α) + λα(k)⊤w(k)

∆λα(k)
⊤

α
w(k)

+ p(k)⊙ p(k)− p(k)p(k)⊤p(k) +O(α).

(36)

Sending α→ 0 and using that ∆λα(k)/α− d
dtλ(kα)→ 0 as α→ 0 we recognize Eq. (36) as an

Euler-type scheme for the ODE

d

dt
p(t) =

d
dt [λ(t)]⊙w(t)

λ⊤(t)w(t)
− p(t)

d
dt [λ(t)]

⊤w(t)

λ⊤(t)w(t)
+ p(t)⊙

(
p(t)− ∥p(t)∥21

)
= p(t)⊙

(
d

dt
log
(
λ(t)

)
− p⊤(t)

d

dt
log
(
λ(t)

)
1

)
+ p(t)⊙

(
p(t)− ∥p(t)∥21

)
= p(t)⊙

(
d

dt
log
(
λ(t)

)
+ p(t)− p(t)⊤

(
d

dt
log
(
λ(t)

)
+ p(t)

)
1

)
,

where the logarithm is taken componentwise.

A.7 Analysis of the correlated model

In the following we always assume that the off-diagonal entries of Γ are strictly smaller than 1, that is,
Γi,j < 1 for all i ̸= j = 1, . . . , d. This assumption is reasonable since a perfect correlation between
input i and input j corresponds to one single input neuron with Poisson process intensity λi + λj .
Under this assumption it is easy to see that the quadratic form associated to Γ is maximised on the
probability simplex by the basis vectors e1, . . . , ed. Thus, the natural question to investigate is the
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Figure 6: Correlated inputs with

Γ =

(
1 1/2 0
1/2 1 1/2
0 1/2 1

)
(top), Γ =

(
1 3/4 0
3/4 1 0
0 0 1

)
(middle),

(
1 1/10 1/10

1/10 1 0
1/10 0 1

)
(bottom).

Contour plot of the Shahshahani loss function L(p) = − 1
2p

⊤Γp on the probability simplex P
for d = 3 with different overlays. Left: Three sample trajectories of Eq. (3) with different initial
configurations p(0). Middle: Stream plot of the gradient field given by Eq. (7). Right: 100 sample
trajectories of Eq. (3) with p(0) = (0.3, 0.3, 0.4)⊤. All trajectories are simulated with 2000 iteration
steps, learning rate α = 0.01 and Z(k) ∼ Unif([−1, 1]d).

same as in the original model: To which basis vector does the model converge? In the following
section we investigate this question and show results for the weakly dependent case.

The analysis of the correlated version of the model follows the same steps as in the independent case.
For this we assume that all random variables are defined on a filtered probability space (Ω,F ,P) and
denote by Fn, n = 1, 2, . . . the natural filtration of (B(n),Z(n),C(n))n∈N, and set F−1 = {∅,Ω}.
The proof follows exactly the same steps as the proof of Theorem 2.2. We start with the following
result, which bounds the error of the Taylor approximation of the random dynamics.
Lemma A.10. For i ∈ [d] and k = 0, 1, . . . define

ξi(k) := pi(k)
(
E
[
Yi(k)−

d∑
j=1

pj(k)Yj(k)
∣∣∣Fk−1

]
−
(
Yi(k)−

d∑
j=1

pj(k)Yj(k)
))

, (37)

and assume α < 1/Q. Then for any i ∈ [d] and k = 0, 1, . . . , there exists a random variable θi(k),
satisfying

|θi(k)| ≤ α2 2Q2

(1−Qα)3
pi(k)

(
1− pi(k)

)
, almost surely,

such that

pi(k + 1) = pi(k) + αpi(k)
(
Γi,·p(k)− (p(k))⊤Γp(k)

)
− αξi(k)− θi(k).
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Proof. As the dynamic of p still follows Eq. (4) as in the uncorrelated model, we can argue as in the
proof of Lemma A.2 to obtain that for some γ ∈ (0, 1)

pi(k + 1) = pi(k) + αpi(k)
(
Yi(k)−

d∑
j=1

pj(k)Yj(k)
)

− α2pi(k)

∑d
j=1 pj(k)Yj(k)

(
Yi(k)−

∑d
j=1 pj(k)Yj(k)

)
(
1 + γ

∑d
j=1 pj(k)Yj(k)

)3 .

Then, since |Yi(k)| ≤ Q we obtain the same bound on the error term as in the proof of Lemma A.2∣∣∣∣∣α2pi(k)

∑d
j=1 pj(k)Yj(k)

(
Yi(k)−

∑d
j=1 pj(k)Yj(k)

)
(
1 + γ

∑d
j=1 pj(k)Yj(k)

)3
∣∣∣∣∣

≤ α2 2Q2

(1−Qα)3
pi(k)(1− pi(k)).

Since the pi(k) are Fk−1-measurable and C(k) is independent of Fk−1, we finally obtain
E[Yi(k)|Fk−1] = Γi,·p(k).

In the following we always assume for ∆p,∆Γ > 0

p1(0) ≥ pi(0) + ∆p, ∀i = 2, . . . , d,

(Γp(0))1 ≥ (Γp(0))i +∆Γ, ∀i = 2, . . . , d,

c⋆ :=
∆p∆Γ

4
− ν
(
1 +

∆p∆Γ

4

)
> 0, where, ν := max

i ̸=j∈[d]
Γi,j .

(38)

These assumptions are for example fulfilled in the following case

p(0) =

(
0.8
0.1
0.1

)
, Γ =

(
1 0.1 0.1
0.1 1 0
0.1 0 1

)
,

since we can choose ∆p = 0.7,∆Γ = 0.64, ν = 0.1, and hence c⋆ = 8 ∗ 10−4. In the independent
case, which corresponds to ν = 0, the assumptions given in Eq. (38) reduce to the original assumption
given in Eq. (21). For k = 1, 2, . . . , we define a sequence of benign events

Ω(k) :=
{
p1(u) ≥ max

i=2,...,d
pi(u) +

∆p

2
,
(
Γp(u)

)
1
≥ max

i=2,...,d

(
Γp(u)

)
i
+

∆Γ

2
, ∀u ∈ [k]

}
.

Due to assumption Eq. (38), Ω(0) = Ω. Additionally, since the assumptions in Eq. (38) imply the
gradient to be bounded away from 0, we can prove the following recursive upper bound for 1− p1(k).

Proposition A.11. If

0 < α ≤ (1−Qα)3

8Q2
∆Γ,

then, on the event Ω(k),

1− p1(k + 1) ≤
(
1− α

∆Γ

4d

(
1 +

∆p

2
(d− 1)

))(
1− p1(k)

)
+ αξi(k).

Proof. By definition, we have on the event Ω(k),

(Γp(k))1 − p(k)⊤Γp(k) =
d∑

j=1

pj(k)
(
(Γp(k))1 − (Γp(k))j

)
≥ ∆Γ

2

(
1− p1(k)

)
. (39)
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The assumption on α implies α < 1/Q and thus Lemma A.10 becomes applicable. Now applying
Lemma A.10 with i = 1, gives on the event Ω(k),

1− p1(k + 1)

≤ 1− p1(k)− α
∆Γ

2
p1(k)(1− p1(k)) + αξi(k) + θi(k)

≤ 1− p1(k)− α
(∆Γ

2
− α

2Q2

(1−Qα)3

)
p1(k)(1− p1(k)) + αξi(k)

≤ 1− p1(k)− α
∆Γ

4
p1(k)(1− p1(k)) + αξi(k)

≤
(
1− α

∆Γ

4d

(
1 +

∆p

2
(d− 1)

))
(1− p1(k)) + αξi(k)

This concludes the proof.

As in the uncorrelated setting our goal is now to derive a lower bound for the probability of the
favourable event Ω(k). For this we again follow the same strategy and rely on uniform concentration
inequalities for martingales. In order apply those, we require the following lemma, which states that
Ω(k) is fulfilled as soon as

Mj(k) :=

k∑
ℓ=0

αξj(ℓ)1Ω(ℓ), k = 0, 1, . . . (40)

with ξj(ℓ) defined in Eq. (22), exhibits a uniform concentration behaviour. In the following we denote
by ∥Γ∥∞ the row-sum norm of Γ, i.e. ∥Γ∥∞ = maxi∈[d]

∑d
j=1 Γi,j .

Lemma A.12. Define the sets

(E)j(k) :=
{
max
u∈[k]

|Mj(u)| ≤
1

4

(
∆p ∧

∆Γ

∥Γ∥∞

)}
, E(k) :=

d⋂
j=1

(E)j(k), k = 0, 1, . . . .

Then if

0 < α ≤ (1−Qα)3

4Q2
c⋆,

the following set inclusion holds for any k = 0, 1, . . .

E(k) ⊆ Ω(k + 1).

Proof. Let u ∈ {2, . . . , d} be arbitrary. By Lemma A.10, on the event Ω(k),

p1(k + 1)− pu(k + 1)

≥ p1(k)− pu(k) + α
(
p1(k)− pu(k)

)(
(Γp(k))1 − p(k)⊤Γp(k)

)
+ α

(
ξj(k)− ξ1(k)

)
− θ1(k) + θu(k).

Since pu(k) ≤ 1− p1(k) we also obtain on Ω(k),

−θ1(k) + θu(k) ≥ −α2 2Q2

(1−Qα)3

(
p1(k)

(
1− p1(k)

)
+ pu(k)(1− pu(k))

)
≥ −α2 4Q2

(1−Qα)3
(
1− p1(k)

)
.

The assumptions on α then imply that on the event Ω(k),

p1(k + 1)− pu(k + 1)− α(ξj(k)− ξ1(k))

≥ p1(k)− pu(k) + α
(
p1(k)− pu(k)

)(
(Γp(k))1 − p(k)⊤Γp(k)

)
− α2 4Q2

(1−Qα)3
(
1− p1(k)

)
≥ p1(k)− pu(k).
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Because of Ω(k) ⊆ Ω(k − 1) it then follows,

(p1(k + 1)− pu(k + 1))1Ω(k) ≥ (p1(k)− pu(k))1Ω(k) + α(ξj(k)− ξ1(k))1Ω(k)

= 1Ω(k)

(
(p1(k)− pu(k))1Ω(k−1) + α(ξj(k)− ξ1(k))1Ω(k)

)
.

This gives

(p1(k + 1)− pu(k + 1))1Ω(k)

≥ 1Ω(k)

(
p1(0)− pu(0) +

k∑
ℓ=0

α(ξj(ℓ)− ξ1(ℓ))1Ω(ℓ)

)
≥ ∆p1Ω(k) − |Mj(k)| − |M1(k)|.

(41)

Now again let u ∈ {2, . . . , d} be given. Then it holds, on Ω(k)

(Γp(k + 1))1 − (Γp(k + 1))u

= (Γp(k))1 − (Γp(k))u + α

d∑
j=1

Γ1,jpj(k)((Γp(k))j − p(k)Γp)

− α

d∑
j=1

Γu,jpj(k)((Γp(k))j − p(k)Γp)−
d∑

j=1

(Γ1,j − Γu,j)(αξj(k) + θj(k))

≥ (Γp(k))1 − (Γp(k))u + α(1− Γ1,u)(p1(k)− pu(k))((Γp(k))1 − p(k)Γp)

+ α

d∑
j=2,j ̸=u

(Γ1,j − Γu,j)pj(k)((Γp(k))j − p(k)Γp)

−
d∑

j=1

(Γ1,j − Γu,j)(αξj(k) + θj(k))

≥ (Γp(k))1 − (Γp(k))u + α(1− Γ1,u)
∆p∆Γ

4
(1− p1(k))− αν(1− p1(k))

−
d∑

j=1

(Γ1,j − Γu,j)(αξj(k) + θj(k))

≥ (Γp(k))1 − (Γp(k))u + α
(
(1− ν)

∆p∆Γ

4
− ν − α

4Q2

(1−Qα)3

)
(1− p1(k))

− α

d∑
j=1

(Γ1,j − Γu,j)ξj(k)

≥ (Γp(k))1 − (Γp(k))u − α

d∑
j=1

(Γ1,j − Γu,j)ξj(k).

Hence, arguing as in the derivation of Eq. (41) gives(
(Γp(k + 1))1 − (Γp(k + 1))u

)
1Ω(k)

≥ 1Ω(k)

(
(Γp(0))1 − (Γp(0))u − α

k∑
ℓ=0

d∑
j=1

(Γ1,j − Γu,j)ξj(ℓ)1Ω(ℓ)

)

= 1Ω(k)

(
(Γp(0))1 − (Γp(0))u −

d∑
j=1

(Γ1,j − Γu,j)Mj(k)
)

≥ 1Ω(k)

(
(Γp(0))1 − (Γp(0))u − 2∥Γ∥∞ max

j∈[d]
|Mj(k)|

)
.

(42)

With the above results we can now begin proving that E(k) ⊆ Ω(k + 1) for all k = 0, 1, . . ..
We do this by induction. For k = 0, this directly follows from Eq. (41) and Eq. (42), since
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Ω(0) = Ω by assumption. Now, assume the assertion holds for some k = 0, 1, . . .. This implies
E(k + 1) ⊆ E(k) ⊆ Ω(k + 1), such that for any u ∈ {2, . . . , d} it holds on E(k + 1) by Eq. (41)

(p1(k + 2)− pu(k + 2)) ≥ ∆p − |Mj(k + 1)| − |M1(k + 1)|

≥ ∆p

2
,

and additionally by Eq. (42) it holds on E(k + 1)

(Γp(k + 2))1 − (Γp(k + 2))u ≥ (Γp(0))1 − (Γp(0))u − 2∥Γ∥∞ max
j∈[d]
|Mj(k + 1)|

≥ ∆Γ

2
,

which proves the assertion.

With the above results we are now able to prove and state the main theorem for the correlated case.
Theorem A.13. Given ε ∈ (0, 1), assume

∆p := p1(0)− max
i=2,...,d

pi(0) > 0, ∆Γ := (Γp(0))1 − max
i=2,...,d

(Γp(0))1 > 0,

c⋆ :=
∆p∆Γ

4
− ν
(
1 +

∆p∆Γ

4

)
> 0, where, ν := max

i̸=j∈[d]
Γi,j ,

and

0 < α ≤ 1

4Q2

(
(1−Qα)3c⋆ ∧

1

1024(1− p1(0))

(
∆p ∧

∆Γ

∥Γ∥∞

)2
∆Γ

(4
d
+∆p

))
.

Then there exists an event Θ with probability ≥ 1− ε/2 such that

E
[
∥p(k)− e1∥11Θ

]
≤ 2(1− p1(0)) exp

(
− α

∆Γ

16

(4
d
+∆p

)
k

)
, for all k = 0, 1, . . .

Consequently, given δ > 0, it holds

P
(
∥p(k)− e1∥1 ≥ δ

)
≤ ε for all k ≥ 16d

α∆Γ(4 + d∆p)
log
(4(1− p1(0))

εδ

)
.

Before giving the proof of the above theorem, we want to remark that Theorem A.13 exactly recovers
the result of Theorem 2.2 in the independent case. Indeed, in the independent case Γ is equal to
the identity matrix and thus ∆p = ∆Γ, ν = 0 and c⋆ = ∆2

p/4 hold true, which gives the result of
Theorem 2.2.

Proof of Theorem A.13. As in the uncorrelated case, the recursive definition ensures that p(k) is
Fk−1-measurable. Thus, also Ω(k) ∈ Fk−1 for any k = 0, 1, . . . . Then (Mi(k))k=0,1,..., defined in
Eq. (40), is a martingale for each i ∈ [d]. This allows us to apply Doob’s submartingale inequality.
For this, we deduce the following bound on the second moment,

E[M1(k)
2]

= α2
k∑

ℓ=0

E[(ξ1(ℓ)1Ω(ℓ))
2]

= α2
k∑

ℓ=0

E
[
(p1(ℓ))

2
(
E
[
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
∣∣∣Fℓ−1

]
−
(
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
))2

1Ω(ℓ)

]

≤ α2
k∑

ℓ=0

E
[
E
[(

E
[
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
∣∣∣Fℓ−1

]
−
(
Y1(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
))2∣∣∣Fℓ−1

]
1Ω(ℓ)

]

≤ α2
k∑

ℓ=0

E
[(

Y1(ℓ)−
d∑

j=1

pj(ℓ)Yj(ℓ)
)2
1Ω(ℓ)

]

39



= α2
k∑

ℓ=0

E
[(

(1− p1(ℓ))Y1(ℓ)−
d∑

j=2

pj(ℓ)Yj(ℓ)
)2
1Ω(ℓ)

]

≤ 2Q2α2
k∑

ℓ=0

E
[(

(1− p1(ℓ))
2 +

( d∑
j=2

pj(ℓ)
)2)

1Ω(ℓ)

]

≤ 4Q2α2
k∑

ℓ=0

E
[
(1− p1(ℓ))1Ω(ℓ)

]
,

where we argued similarly as for the independent case. Furthermore, we obtain for u ∈ {2, . . . , d},

E[(Mu(k))
2] = α2E

[ k∑
ℓ=0

(ξu(ℓ)1Ω(ℓ))
2
]

≤ α2
k∑

ℓ=0

E
[
(pu(k))

2
(
Yu(ℓ)−

d∑
j=1

pj(ℓ)Yj(ℓ)
)2
1Ω(ℓ)

]

≤ 4Q2α2
k∑

ℓ=0

E
[
pu(ℓ)1Ω(ℓ)

]
.

Hence, applying a union bound, Doob’s submartingale inequality Eq. (27) with p = 2 gives for any
k = 0, 1, . . .

P(E(k)) = 1− P
( d⋃

j=1

max
u∈[k]

|Mj(u)| ≥
1

4

(
∆p ∧

∆Γ

∥Γ∥∞

))

≥ 1−
d∑

j=1

P
(
max
u∈[k]

|Mj(u)| ≥
1

4

(
∆p ∧

∆Γ

∥Γ∥∞

))

≥ 1− 64Q2α2
(
∆p ∧

∆Γ

∥Γ∥∞

)−2( k∑
ℓ=0

E
[
(1− p1(ℓ))1Ω(ℓ)

]
+

d∑
j=2

k∑
ℓ=0

E
[
pj(ℓ)1Ω(ℓ)

])

= 1− 128Q2α2
(
∆p ∧

∆Γ

∥Γ∥∞

)−2 k∑
ℓ=0

E
[
(1− p1(ℓ))1Ω(ℓ)

]
.

Proposition A.11 gives for any k = 0, 1, . . . the bound

E
[(
1− p1(k + 1)

)
1Ω(k+1)

]
≤ E

[(
1− p1(k + 1)

)
1Ω(k)

]
≤ E

[(
1− α

∆Γ

4d

(
1 +

∆p

2
(d− 1)

))(
1− p1(k)

)
1Ω(k) + αξ1(k)1Ω(k)

]
=
(
1− α

∆Γ

4d

(
1 +

∆p

2
(d− 1)

))
E
[(
1− p1(k)

)
1Ω(k)

]
,

which implies

E
[(
1− p1(k)

)
1Ω(k)

]
≤
(
1− p1(0)

)(
1− α

∆Γ

4d

(
1 +

∆p

2
(d− 1)

))k
. (43)

We set

Θ :=

∞⋂
k=0

Ω(k).

The continuity of probability measures and Lemma A.12 then imply

P(Θ) = lim
k→∞

P(Ω(k))
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≥ lim
k→∞

P(E(k))

≥ 1− 128Q2α2
(
∆p ∧

∆Γ

∥Γ∥∞

)−2 ∞∑
ℓ=0

E
[
(1− p1(ℓ))1Ω(ℓ)

]
≥ 1− 128Q2α2(1− p1(0))

(
∆p ∧

∆Γ

∥Γ∥∞

)−2 ∞∑
ℓ=0

(
1− α

∆Γ

4d

(
1 +

∆p

2
(d− 1)

))ℓ
= 1− 1024Q2α(1− p1(0))

(
∆p ∧

∆Γ

∥Γ∥∞

)−2 d

∆Γ

(
2 + ∆p(d− 1)

)
= 1− 2048Q2α(1− p1(0))

(
∆p ∧

∆Γ

∥Γ∥∞

)−2 1

∆Γ

(
4/d+∆p

)
≥ 1− ε/2,

where we used that we can assume d ≥ 2 without loss of generality. Additionally, Eq. (43) and the
elementary inequality 1− x ≤ exp(−x), which is valid for any real number x, give

E
[(
1− p1(k)

)
1Θ

]
≤ E

[(
1− p1(k)

)
1Ω(k)

]
≤
(
1− p1(0)

)(
1− α

∆Γ

4d

(
1 +

∆p

2
(d− 1)

))k
≤ (1− p1(0)) exp

(
− α

∆Γ

4d

(
1 +

∆p

2
(d− 1)

)
k
)
.

When d = 1, the right hand side of this inequality is 0. For d ≥ 2, we can also use the bound
d− 1 ≥ d/2. Together with

∥p(k)− e1∥1 = 1− p1(k) +

d∑
i=2

pi(k) = 2
(
1− p1(k)

)
,

this concludes the proof of the first statement. For the proof of the second statement, we apply
Markov’s inequality to obtain

P
(
∥p(k)− e1∥1 ≥ δ

)
≤ P((Θ)C) + P

(
∥p(k)− e1∥11Θ ≥ δ

)
≤ ε

2
+ 2(1− p1(0)) exp

(
− α

∆Γ

16

(4
d
+∆p

)
k

)
δ−1.

Hence, if

k ≥

(
α∆Γ

16

(4
d
+∆p

))−1

log
(4(1− p1(0))

εδ

)
=

16d

α∆Γ(4 + d∆p)
log
(4(1− p1(0))

εδ

)
,

then,

P
(
∥p(k)− e1∥1 ≥ δ

)
≤ ε.
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