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Abstract
The remarkable performance of the o1 model001
in complex reasoning demonstrates that test-002
time compute scaling can further unlock the003
model’s potential, enabling powerful System-004
2 thinking. However, there is still a lack of005
comprehensive surveys for test-time compute006
scaling. We trace the concept of test-time com-007
pute back to System-1 models. In System-1008
models, test-time compute addresses distribu-009
tion shifts and improves robustness and gen-010
eralization through parameter updating, input011
modification, representation editing, and out-012
put calibration. In System-2 models, it en-013
hances the model’s reasoning ability to solve014
complex problems through repeated sampling,015
self-correction, and tree search. We organize016
this survey according to the trend of System-017
1 to System-2 thinking, highlighting the key018
role of test-time compute in the transition from019
System-1 models to weak System-2 models,020
and then to strong System-2 models. We also021
point out a few possible future directions.022

1 Introduction023

Over the past decades, deep learning with its scal-024

ing effects has been the driving engine behind the025

artificial intelligence revolution. Particularly in the026

text modality, large language models (LLMs) rep-027

resented by the GPT series (Radford et al., 2018,028

2019; Brown et al., 2020; Ouyang et al., 2022;029

OpenAI, 2023) have demonstrated that larger mod-030

els and more training data lead to better perfor-031

mance on downstream tasks. However, on the one032

hand, further scaling in the training phase becomes033

difficult due to the scarcity of data and computa-034

tional resources (Villalobos et al., 2024); on the035

other hand, existing models still perform far below036

expectations in terms of robustness and handling037

complex tasks. These shortcomings are attributed038

to the model’s reliance on fast, intuitive System-1039

thinking, rather than slow, deep System-2 think-040

ing (Weston and Sukhbaatar, 2023). Recently, the041

o1 model (OpenAI, 2024), equipped with System- 042

2 thinking, has gained attention for its outstand- 043

ing performance in complex reasoning tasks. It 044

demonstrates a test-time compute scaling effect: 045

the greater the computational effort in the infer- 046

ence, the better the model’s performance. 047

The concept of test-time compute emerged be- 048

fore the rise of LLMs and was initially applied to 049

System-1 models (illustrated in Figure 1). These 050

System-1 models can only perform limited per- 051

ceptual tasks, relying on patterns learned during 052

training for predictions. As a result, they are con- 053

strained by the assumption that training and testing 054

are identically distributed and lack robustness and 055

generalization to distribution shifts (Zhuang et al., 056

2020). Many works have explored test-time adapta- 057

tion (TTA) to improve model robustness by updat- 058

ing parameters (Wang et al., 2021; Ye et al., 2023), 059

modifying the input (Dong et al., 2024b), editing 060

representations (Rimsky et al., 2024), and calibrat- 061

ing the output (Zhang et al., 2023c). With TTA, the 062

System-1 model slows down its thinking process 063

and has better generalization. However, TTA is an 064

implicit slow thinking, unable to exhibit explicit, 065

logical thinking process like humans, and struggles 066

to handle complex reasoning tasks. Thus, TTA- 067

enabled models perform weak System-2 thinking. 068

Currently, advanced LLMs with chain-of- 069

thought (CoT) prompting (Wei et al., 2022) have en- 070

abled language models to perform explicit System- 071

2 thinking (Hagendorff et al., 2023). However, 072

vanilla CoT is limited by error accumulation 073

and linear thinking pattern (Stechly et al., 2024; 074

Sprague et al., 2024), making it difficult to fully 075

simulate non-linear human cognitive processes 076

such as brainstorming, reflection, and backtrack- 077

ing. To achieve stronger System-2 models, re- 078

searchers employ test-time compute strategies to 079

extend model reasoning’s breadth, depth and ac- 080

curacy, such as repeated sampling (Cobbe et al., 081

2021), self-correction (Shinn et al., 2023), and 082
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Figure 1: Illustration of test-time compute in the System-1 and System-2 model.

tree search (Yao et al., 2023). Repeated sampling083

simulates the diversity of human thinking, self-084

correction enables LLMs to reflect, and tree search085

enhances reasoning depth and backtracking.086

To the best of our knowledge, this paper is087

the first to systematically review test-time com-088

pute methods and thoroughly explore their critical089

role in advancing models from System-1 to weak090

System-2, and ultimately to strong System-2 think-091

ing. In Section 2, we present the background of092

System-1 and System-2 thinking. Section 3 and093

Section 4 detail the test-time compute methods for094

the System-1 and System-2 models. Then, we dis-095

cuss future directions in Section 5 and Appendix096

C. Additionally, we review benchmarks and open-097

source frameworks in Appendix D.098

2 Background099

System-1 and System-2 thinking are psychological100

concepts (Kahneman, 2011). When recognizing101

familiar patterns or handling simple problems, hu-102

mans often respond intuitively. This automatic,103

fast thinking is called System-1 thinking. In con-104

trast, when dealing with complex problems like105

mathematical proofs or logical reasoning, deep and106

deliberate thought is required, referred as System-2107

thinking—slow and reflective. In the field of AI, re-108

searchers also use these terms to describe different109

types of models (LeCun, 2022). System-1 models110

respond directly based on internally encoded per-111

ceptual information and world knowledge without112

showing any intermediate decision-making process.113

In contrast, System-2 models explicitly generate114

reasoning processes and solve tasks incrementally. 115

Before the rise of LLMs, System-1 models were the 116

mainstream in AI. Although many deep learning 117

models achieve excellent performance in various 118

tasks in computer vision and natural language pro- 119

cessing, these System-1 models, similar to human 120

intuition, lack sufficient robustness and are prone 121

to errors. Nowadays, the strong generation and 122

reasoning capabilities of LLMs make it possible to 123

build System-2 models. Wei et al. (2022) propose 124

the CoT, which allows LLMs to generate intermedi- 125

ate reasoning steps progressively during inference. 126

Empirical and theoretical results show that this ap- 127

proach significantly outperforms methods that gen- 128

erate answers directly (Kojima et al., 2022; Zhou 129

et al., 2023; Tang et al., 2024b; Feng et al., 2024a; 130

Li et al., 2024h). However, current System-2 mod- 131

els represented by CoT prompting still have short- 132

comings. The intermediate processes generated by 133

LLMs may contain errors, leading to cumulative 134

mistakes and ultimately resulting in incorrect an- 135

swers. As a result, CoT-enabled LLMs are still at 136

the weak System-2 thinking stage. 137

3 Test-time Adaptation for System-1 138

Thinking 139

3.1 Updating the Parameters 140

Model updating utilizes test sample information 141

to further finetune model parameters during the 142

inference stage, enabling the model to adapt to 143

the test distribution. In the inference stage, the 144

ground-truth of test samples is unavailable. Thus 145

many works attempt to design unsupervised or self- 146
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Test-time
Adaptation (§3)

Parameter
Updating

TTT (Sun et al., 2020), TTT++ (Liu et al., 2021), CPT (Zhu et al., 2024), Tent (Wang et al., 2021),
SAR (Niu et al., 2023), TPT (Shu et al., 2022), OIL (Ye et al., 2022), RLCF (Zhao et al., 2024a); etc.

Input
Modification

EPR (Rubin et al., 2022), UDR (Li et al., 2023b), MDL (Wu et al., 2023), HiAR (Wu et al., 2024a),
Self-ICL (Chen et al., 2023), DAIL (Su et al., 2024), DAWN-ICL (Tang et al., 2024a); etc.

Representation
Editing

ITI (Li et al., 2023a), ActAdd (Turner et al., 2024), SEA (Qiu et al., 2024b), CAA (Rimsky et al., 2024); etc.

Output
Calibration

kNN-MT (Khandelwal et al., 2021), AdaNPC (Zhang et al., 2023c), Bi-kNN (You et al., 2024); etc.

Test-time
Reasoning (§4)

Feedback
Modeling

Score-based
Bradley and Terry (1952), ORM (Cobbe et al., 2021), CriticRM (Yu et al., 2024b)
PRM (Lightman et al., 2024), GenRM (Zhang et al., 2024f); etc.

Verbal-based Liu et al. (2023), Auto-J (Li et al., 2024b), Prometheus (Kim et al., 2024b,c); etc.

Search
Strategies

Repeated Sampling
SC-CoT (Wang et al., 2023d), DiVeRSe (Li et al., 2023c), Zhang et al. (2024g); etc.

Improvement training: ReST (Gulcehre et al., 2023), vBoN (Amini et al., 2024),
BoNBoN(Gui et al., 2024), BOND (Sessa et al., 2024), Chow et al. (2024); etc.

Self-correction

Self-debug (Chen et al., 2024d), RIC (Kim et al., 2023), Critic (Gou et al., 2024),
Reflexion (Shinn et al., 2023), MAD (Liang et al., 2024b), Li et al. (2024e); etc.

Improvement training: GLoRe (Havrilla et al., 2024), SCoRe(Kumar et al., 2024),
Self-correct (Welleck et al., 2023), Qu et al. (2024), Zhang et al. (2024i); etc.

Tree Search
Yao et al. (2023), RAP (Hao et al., 2023), AlphaMATH (Chen et al., 2024a); etc.

Improvement training: ReST-MCTS* (Zhang et al., 2024a), Qin et al. (2024b),
MCTS-DPO (Xie et al., 2024), Zhao et al. (2024b), Zhang et al. (2024h); etc.

Future
Directions (§5)

Generalization Jia (2024), GRM (Yang et al., 2024), DogeRM (Lin et al., 2024b), Weak-to-strong (Burns et al., 2023); etc.

Multi-modal MM-CoT (Zhang et al., 2024j), VoT (Wu et al., 2024b), Lee et al. (2024), LLaVA-CoT (Xu et al., 2024); etc.

Efficient Damani et al. (2024), OSCA (Zhang et al., 2024e), Wang et al. (2024d), CCoT (Cheng and Durme, 2024); etc.

Scaling Law Brown et al. (2024), Snell et al. (2024), Wu et al. (2024c), Chen et al. (2024e); etc.

Combination Marco-o1 (Zhao et al., 2024b), TTT (Akyürek et al., 2024), HiAR-ICL (Wu et al., 2024a); etc.

Figure 2: Taxonomy of test-time compute methods and future directions.

supervised objectives as learning signals. Existing147

learning signals can be classified into two cate-148

gories based on whether the training process can149

be modified: test-time training (TTT) and fully150

test-time adaptation (FTTA). TTT assumes users151

can modify the training process by incorporating152

distribution-shift-aware auxiliary tasks. During153

test-time adaptation, the auxiliary task loss serves154

as the learning signal for optimization. Many self-155

supervised tasks have been shown to be effective as156

auxiliary tasks in image modality, such as rotation157

prediction (Sun et al., 2020), meta learning (Bartler158

et al., 2022), masked autoencoding (Gandelsman159

et al., 2022) and contrastive learning (Liu et al.,160

2021; Chen et al., 2022; Zhu et al., 2024).161

In contrast, FTTA is free from accessing the162

training process and instead uses internal or exter-163

nal feedback on test samples as learning signals.164

Uncertainty is the most commonly learned signal,165

driven by the motivation that when test samples166

shift from the training distribution, the model’s167

confidence in its predictions is lower, resulting in168

higher uncertainty. Tent (Wang et al., 2021) uses169

the entropy of model predictions as a measure of un-170

certainty. MEMO (Zhang et al., 2022a) augments171

the data for a single test sample and then minimizes 172

its marginal entropy, which is more stable in the 173

single-sample TTA setting. However, minimizing 174

entropy also has pitfalls, as blindly reducing predic- 175

tion uncertainty may cause the model to collapse 176

and make trivial predictions (Press et al., 2024; 177

Zhao et al., 2023). Some works propose new reg- 178

ularization terms for minimizing entropy to avoid 179

model collapse, including Kullback-Leibler diver- 180

gence (Su et al., 2023a), moment matching (Has- 181

san et al., 2023) and entropy matching (Bar et al., 182

2024). For specific tasks, human feedback (Gao 183

et al., 2022; Li et al., 2022b) or external model 184

rewards (Zhan et al., 2023) can also serve as high- 185

quality learning signals. In cross-modal tasks, 186

RLCF (Zhao et al., 2024a) demonstrates CLIP 187

scores are effective TTA signals. In language mod- 188

eling, training with semantically relevant contexts 189

at test time can reduce perplexity (Hardt and Sun, 190

2024; Wang et al., 2024h). Hübotter et al. (2025) 191

theoretically shows that it reduces the uncertainty 192

of test samples and proposes a more effective ac- 193

tive learning selection strategy. In practical applica- 194

tions, the efficiency and stability of parameter up- 195

dates are also important research directions, which 196
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we review in detail in the Appendix A.197

3.2 Modifying the Input198

Input-modification methods, which leverage in-199

context learning (ICL) without updating param-200

eters, have become mainstream for LLMs because201

of their efficiency and stability. ICL improves202

performance by adding demonstrations before the203

test sample but is highly sensitive to demonstra-204

tion selection and order. Therefore, the key to205

input-modification TTA is choosing the appropriate206

demonstrations and arranging them optimally.207

Empirical studies (Liu et al., 2022) show that208

the more similar the demonstrations are to the test209

sample, the better the ICL performance. Therefore,210

retrieval models are used to retrieve demonstrations211

semantically closest to the test sample (Qin et al.,212

2024a; Luo et al., 2023a; Rubin et al., 2022; Li213

et al., 2023b). Then, ICL is considered to con-214

duct implicit gradient descent on the demonstra-215

tions (Dai et al., 2023). Therefore, from the per-216

spective of training data, demonstrations also need217

to be informative and diverse (Su et al., 2022; Li218

and Qiu, 2023; Wang et al., 2023c). Additionally,219

the ordering of examples is another important area220

for improvement. Lu et al. (2022) and Wu et al.221

(2023) use information theory as a guide to se-222

lect the examples with maximum local entropy and223

minimum description length for ranking, respec-224

tively. Scarlatos and Lan (2024) and Zhang et al.225

(2022b) consider the sequential dependency among226

demonstrations, and model it as a sequential deci-227

sion problem and optimize demonstration selection228

and ordering through reinforcement learning.229

Another line of work (Chen et al., 2023; Lyu230

et al., 2023; Kim et al., 2022; Zhang et al., 2023d)231

argues that in practice, combining a limited set of232

externally provided examples may not always be233

the optimal choice. LLMs can leverage their gen-234

erative and annotation capabilities to create better235

demonstrations. DAIL (Su et al., 2024) constructs236

a demonstration memory, storing previous test sam-237

ples and their predictions as candidate demonstra-238

tions for subsequent samples. DAWN-ICL (Tang239

et al., 2024a) further models the traversal order of240

test samples as a planning task and optimizes it by241

the Monte Carlo tree search (MCTS).242

3.3 Editing the Representation243

For generative LLMs, some works have found244

that the performance bottleneck is not in encod-245

ing world knowledge, but in the large gap between246

the information in intermediate layers and the out- 247

put. During the inference phase, editing the rep- 248

resentation can help externalize the intermediate 249

knowledge into the output. PPLM (Dathathri et al., 250

2020) performs gradient-based representation edit- 251

ing under the guidance of a small language model 252

to control the style of outputs. ActAdd (Turner 253

et al., 2024) selects two semantically contrastive 254

prompts and calculates the difference between their 255

representations as a steering vector, which is then 256

added to the residual stream. Representation edit- 257

ing based on contrastive prompts has demonstrated 258

its effectiveness in broader scenarios, including in- 259

struction following (Stolfo et al., 2024), alleviating 260

hallucinations (Li et al., 2023a; Arditi et al., 2024), 261

reducing toxicity (Liu et al., 2024b; Lu and Rimsky, 262

2024) and personality (Cao et al., 2024; Scalena 263

et al., 2024). SEA (Qiu et al., 2024b) projects rep- 264

resentations onto directions with maximum covari- 265

ance with positive prompts and minimum covari- 266

ance with negative prompts. They also introduce 267

nonlinear feature transformations, allowing repre- 268

sentation editing to go beyond linearly separable 269

representations. 270

3.4 Calibrating the Output 271

Using external information to calibrate the model’s 272

output distribution is also an efficient yet effec- 273

tive test-time adaptation method (Khandelwal et al., 274

2020). AdaNPC (Zhang et al., 2023c) designs a 275

memory pool to store training data. During in- 276

ference, given a test sample, AdaNPC recalls k 277

samples from the memory pool and uses a kNN 278

classifier to predict the test sample. It then stores 279

the test sample and its predicted label in the mem- 280

ory pool. Over time, the sample distribution in the 281

memory pool gradually aligns with the test distri- 282

bution. In NLP, the most representative applica- 283

tion of such methods is kNN machine translation 284

(kNN-MT). kNN-MT (Khandelwal et al., 2021) 285

constructs a datastore to store contextual represen- 286

tations and their corresponding target tokens. Dur- 287

ing translation inference, it retrieves the k-nearest 288

candidate tokens from the datastore based on the 289

decoded context and processes them into probabil- 290

ities. Finally, it calibrates the translation model’s 291

probability distribution by performing a weighted 292

fusion of the model’s probabilities and the retrieved 293

probabilities. kNN-MT has demonstrated superior 294

transferability and generalization compared to tra- 295

ditional models in cross-domain and multilingual 296

MT tasks. Subsequent studies have focused on 297
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improving its performance and efficiency (Wang298

et al., 2022a; Zhu et al., 2023b; You et al., 2024)299

or applying its methods to other NLP tasks (Wang300

et al., 2022b; Bhardwaj et al., 2023).301

Summary 1: Parameter updating and output cal-302

ibration are the most versatile TTA methods. How-303

ever, parameter updating suffers from training in-304

stability and inefficiency in LLMs, while output305

calibration relies on target domain information306

and risks knowledge leakage. Input modification307

and representation editing are free from training308

but have limited applicability: input modification309

is related to ICL capabilities, and representation310

editing demands manual prior knowledge.311

4 Test-time Reasoning for System-2312

Thinking313

Test-time reasoning aims to spend more inference314

time to search for the most human-like reasoning315

process within the vast decoding search space. In316

this section, we introduce the two core compo-317

nents of test-time reasoning: feedback modeling318

and search strategies.319

4.1 Feedback Modeling320

Score-based Feedback Score-based feedback,321

also known as the verifier, aims to score gen-322

erated results, evaluating their alignment with323

ground truth or human cognitive processes. Its324

training process is typically similar to the reward325

model in RLHF (Gao et al., 2023a), using vari-326

ous forms of feedback signals and modeling it327

as a classification (Cobbe et al., 2021) or rank328

task (Bradley and Terry, 1952; Yuan et al., 2024a;329

Hosseini et al., 2024). In reasoning tasks, verifiers330

are mainly divided into two categories: outcome-331

based (ORMs) and process-based verifiers (PRMs).332

ORMs (Cobbe et al., 2021) use the correctness of333

the final CoT result as training feedback, while334

PRMs (Uesato et al., 2022; Lightman et al., 2024;335

Zhang et al., 2024d) are trained based on feedback336

from each reasoning step. PRM not only evalu-337

ates intermediate reasoning steps but also evalu-338

ates the entire reasoning process more accurately339

than ORM. However, PRM requires more human340

effort to annotate feedback for the intermediate341

steps. Math-Shepherd (Wang et al., 2024g) and342

OmegaPRM (Luo et al., 2024) utilize MCTS algo-343

rithm to collect high-quality process supervision344

data automatically. Setlur et al. (2024) argue that345

PRM should evaluate the advantage of each step for346

subsequent reasoning rather than focusing solely 347

on its correctness. They propose process advantage 348

verifiers (PAVs) and efficiently construct training 349

data through Monte Carlo simulations. Further- 350

more, Lu et al. (2024) and Yuan et al. (2024b) 351

notice that ORMs implicitly model the advantage 352

of each step, leading them to automatically anno- 353

tate process supervision data using ORM or di- 354

rectly train PRM on outcome labels, respectively. 355

Score-based feedback modeling overlooks the gen- 356

erative capabilities of LLMs, making it difficult 357

to detect fine-grained errors. Thus, recent works 358

propose generative score-based verifiers (Ankner 359

et al., 2024; Ye et al., 2024). GenRM (Zhang et al., 360

2024f) leverages instruction tuning to enable the 361

verifier to answer ‘Is the answer correct (Yes/No)?’ 362

and uses the probability of generated ‘Yes’ token 363

as the score. GenRM can also incorporate CoT, 364

allowing the verifier to generate the corresponding 365

rationale before answering ‘Yes’ or ‘No’. Critic- 366

RM (Yu et al., 2024b) jointly trains the critique 367

model and the verifier. During inference, the veri- 368

fier scores according to answers and verbal-based 369

feedback generated by the critique model. 370

Verbal-based Feedback Although the verifier 371

can accurately evaluate the correctness of gener- 372

ated answers or steps, it lacks interpretability, mak- 373

ing it unable to locate the specific cause of errors 374

or provide correction suggestions. Verbal-based 375

feedback, also referred to critic, fully leverages the 376

LLM’s instruction-following ability. By designing 377

specific instructions, it can perform pairwise com- 378

parisons, evaluate answers from multiple dimen- 379

sions, and even provide suggestions for revision in 380

natural language. Powerful closed-source LLMs 381

are effective critics. They can perform detailed 382

and controlled assessments of generated texts, such 383

as factuality, logical errors, coherence, and align- 384

ment, with high consistency with human evalua- 385

tions (Wang et al., 2023a; Luo et al., 2023b; Liu 386

et al., 2023; Chiang and Lee, 2023). However, they 387

still face biases such as length, position, and per- 388

plexity (Bavaresco et al., 2024; Wang et al., 2024f; 389

Stureborg et al., 2024). LLM-as-a-Judge (Zheng 390

et al., 2023) carefully designs system instructions 391

to mitigate the interference of biases. 392

To obtain cheaper verbal-based feedback, open- 393

source LLMs can also serve as competitive alterna- 394

tives through supervised fine-tuning (SFT) (Wang 395

et al., 2024i; Zhu et al., 2023a; Liang et al., 2024c; 396

Paul et al., 2024). Shepherd (Wang et al., 2023b) 397
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collects high-quality training data from human an-398

notation and online communities to fine-tune an399

evaluation model. Auto-J (Li et al., 2024b) collects400

queries and responses from various scenarios and401

designs evaluation criteria for each scenario. GPT-402

4 then generates critiques of the responses based on403

these criteria and distills its critique ability to open-404

source LLMs. Prometheus (Kim et al., 2024b,c)405

designs more fine-grained evaluation dimensions.406

It trains a single evaluation model and a pairwise407

ranking model separately, then unifies them into408

one LLM by weight merging.409

4.2 Search Strategies410

4.2.1 Repeated Sampling411

Sampling strategies such as top-p and top-k are412

commonly used decoding algorithms in LLM infer-413

ence. They introduce randomness during decoding414

to enhance text diversity, allowing for parallelly415

sampling multiple generated texts. Through re-416

peated sampling, we have more opportunities to417

find the correct answer. Repeated sampling is par-418

ticularly suitable for tasks that can be automatically419

verified, such as code generation, where we can eas-420

ily identify the correct solution from multiple sam-421

ples using unit tests (Li et al., 2022a; Rozière et al.,422

2024). For tasks that are difficult to verify, like423

math word problems, the key to the effectiveness424

of repeated sampling is the verification strategy.425

Verification strategy Verification strategies in-426

clude two types: majority voting and best-of-N427

(BoN) sampling. Majority voting (Wang et al.,428

2023d; Li et al., 2024c; Lin et al., 2024a) selects429

the most frequently occurring answer in the sam-430

ples as the final answer, which is motivated by431

ensemble learning. However, the majority does not432

always hold the truth, as they may make similar433

mistakes. Therefore, some studies perform vali-434

dation and filtering before voting. For example,435

the PROVE framework (Toh et al., 2024) converts436

CoT into executable programs, filtering out sam-437

ples if the program’s results are inconsistent with438

the reasoning chain’s outcomes.439

Best-of-N sampling uses a verifier to score each440

generated result and selects the one with the high-441

est score as the final answer (Stiennon et al., 2020;442

Cobbe et al., 2021; Nakano et al., 2022). Li et al.443

(2023c) propose a voting-based BoN variant, which444

performs weighted voting on all answers based on445

the verifier’s scores and selects the answer with the446

highest weight. In addition, some works aim to447

improve the efficiency of BoN. Inspired by spec- 448

ulative decoding, Zhang et al. (2024g); Qiu et al. 449

(2024a); Sun et al. (2024) and Manvi et al. (2024) 450

evaluate each reasoning step by an efficient verifier. 451

They prune low-scoring sampled results, halting 452

further generation for those paths, thereby signifi- 453

cantly reducing the overall time cost. PRS (Ye and 454

Ng, 2024) enables LLMs to self-critique and self- 455

correct, guiding the model to generate expected 456

responses with fewer sampling times. 457

Improvement Training Repeated sampling, es- 458

pecially the BoN strategy, has proven to be a simple 459

yet effective method in many studies, even can sur- 460

passing models fine-tuned with RLHF (Gao et al., 461

2023a). However, it comes at the cost of inference 462

times that are difficult to afford in practical appli- 463

cations. Therefore, many studies have attempted to 464

train the model by BoN sampling to approximate 465

the BoN distribution, thereby reducing the search 466

space during inference. ReST (Gulcehre et al., 467

2023) samples responses with reward values above 468

a threshold from the policy model as self-training 469

data and fine-tune the policy model by offline rein- 470

forcement learning. In each iteration, ReST sam- 471

ples new training data. vBoN (Amini et al., 2024), 472

BoNBoN (Gui et al., 2024) and BOND (Sessa et al., 473

2024) derive the BoN distribution and minimize 474

the difference between the policy model’s distribu- 475

tion and the BoN distribution. Chow et al. (2024) 476

design a BoN-aware loss to make the policy model 477

more exploratory during fine-tuning. 478

4.2.2 Self-correction 479

Self-correction is a sequential test-time compute 480

method that enables LLMs to iteratively revise and 481

refine generated results based on external or inter- 482

nal feedback (Shinn et al., 2023). 483

Feedback sources The feedback used for self- 484

correction is typically presented in natural language 485

and comes from various sources, including human 486

evaluation, tool checking, external model evalua- 487

tion, and intrinsic feedback. Human evaluation 488

is the gold standard for feedback, but due to its 489

high cost and limited scalability, it is mainly used 490

in early research to explore the upper limits of 491

self-correction capabilities (Tandon et al., 2021; 492

Elgohary et al., 2021; Tandon et al., 2022). For 493

certain domain-specific tasks, tool checking pro- 494

vides accurate feedback (Gou et al., 2024; Chen 495

et al., 2024d; Gao et al., 2023b). For example, 496

Yasunaga and Liang (2020) propose to obtain feed- 497
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back from compilers in code repair and generation498

tasks. In embodied tasks, the environment can pro-499

vide precise feedback on the action trajectories of500

LLM-based agents (Wang et al., 2024a).501

External model evaluation is an effective feed-502

back source for general tasks, such as various503

verbal-based critique models described in Section504

4.1. For example, Paul et al. (2024) first define505

multiple error types for natural language reasoning506

tasks and then design the corresponding feedback507

templates. They train an evaluation model using508

synthetic feedback training data, and with the critic,509

the reasoning model achieves substantial perfor-510

mance improvement. Multi-agent debate (Du et al.,511

2023; Xiong et al., 2023; Liang et al., 2024b; Chen512

et al., 2024b; Wang et al., 2024e) is another mecha-513

nism that leverages external feedback to enhance514

reasoning capabilities. In this approach, models515

do not have distinct roles as reasoners and critics.516

Instead, multiple models independently conduct517

reasoning, critique each other, and defend or refine518

their reasoning based on feedback. This process519

continues until agents reach a consensus or a judge520

model summarizes the final reasoning results. The521

multi-agent debate has shown its potential in fact-522

checking (Kim et al., 2024a; Khan et al., 2024),523

commonsense QA (Xiong et al., 2023), faithful524

evaluations (Chan et al., 2024), and complex rea-525

soning (Du et al., 2023; Cheng et al., 2024). How-526

ever, multi-agent debate may be unstable, as LLMs527

are susceptible to adversarial information and may528

revise correct answers to incorrect ones in response529

to misleading inputs (Laban et al., 2024; Amayue-530

las et al., 2024). Therefore, a successful multi-531

agent debate requires that LLMs maintain their532

stance when faced with incorrect answers from533

other models while remaining open to valid sugges-534

tions (Stengel-Eskin et al., 2024). In general, the535

more LLMs involved in the debate, the stronger the536

overall reasoning performance. However, this sig-537

nificantly increases the number of LLM inferences538

required, and the length of input context, posing539

a major challenge to LLM inference costs (Liu540

et al., 2024c). To reduce debate inference costs, Li541

et al. (2024g) investigate the impact of topological542

connections among multiple agents and show that543

sparse connections, such as ring structures, are not544

inferior to the fully connected topology.545

Self-critique assumes that LLMs can self-546

evaluate their outputs and optimize them through547

intrinsic feedback (Yuan et al., 2024c). This idea548

stems from a fundamental principle in computa-549

tional complexity theory: verifying whether a so- 550

lution is correct is typically easier than solving the 551

problem. Bai et al. (2022) propose self-correcting 552

harmful responses from LLMs by prompting them- 553

selves. Self-Refine (Madaan et al., 2023) and RCI 554

Prompting (Kim et al., 2023) iteratively prompt 555

LLMs to self-correct their responses in tasks such 556

as arithmetic reasoning. IoE (Li et al., 2024e) ob- 557

serves that LLMs may over-criticize themselves 558

during self-critique, leading to performance degra- 559

dation, and designs prompt to guide LLMs in as- 560

sessing confidence. However, the effectiveness of 561

self-correction has remained controversial, and we 562

discuss it in Appendix B. 563

Improvement Training Most of the aforemen- 564

tioned self-correction methods demonstrate sig- 565

nificant performance improvements on advanced 566

LLMs. However, for medium-scale models with 567

weaker reasoning capabilities, we need to further 568

fine-tune them to unlock their self-correction ca- 569

pabilities. SFT optimizes the model using high- 570

quality multi-turn correction data, either manually 571

annotated (Saunders et al., 2022) or sampled from 572

stronger LLMs (An et al., 2023; Paul et al., 2024; 573

Qu et al., 2024; Gao et al., 2024c; Zhang et al., 574

2024i; Xi et al., 2024). GLoRe (Havrilla et al., 575

2024) considers that LLMs need global or local 576

refinement for different types of errors. To address 577

this, they construct training sets for global and lo- 578

cal refinement, train verifiers to identify global 579

and local errors, and develop LLMs for refine- 580

ment based on different global or local feedback 581

signals. Although SFT is effective, training data 582

from offline-generated self-correction trajectories 583

can only simulate limited correction patterns. This 584

leads to the distribution mismatch with the actual 585

self-correction behavior during model inference. 586

Self-correct (Welleck et al., 2023) adopts online 587

imitation learning, re-sampling new self-correction 588

trajectories for training after each training epoch. 589

SCoRe (Kumar et al., 2024) proposes using the 590

multi-turn RL method to improve self-critique and 591

self-correction capability. 592

4.2.3 Tree Searching 593

Repeated sampling and self-correction scale test- 594

time compute in parallel and sequentially, respec- 595

tively. Human thinking is a tree search that com- 596

bines brainstorming in parallel with backtracking 597

to find other paths to solutions when it encounters 598

a dead end. Search algorithms and value functions 599
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are two critical components in tree searching.600

Search algorithm In LLM reasoning, current601

search algorithms include uninformed search and602

heuristic search. Uninformed search does not rely603

on specific heuristic information but explores the604

search space according to a fixed rule. For example,605

tree-of-thought (ToT) (Yao et al., 2023) adopts the606

BFS or DFS to search, while Xie et al. (2023) use607

beam search. Uninformed search is usually less608

efficient for problems with large search spaces, so609

heuristic search represented by MCTS is widely610

used in reasoning tasks (Hao et al., 2023; Zhang611

et al., 2024b; Bi et al., 2024). MCTS gradually612

optimizes search results through four steps: selec-613

tion, expansion, simulation, and backpropagation,614

thereby approaching the optimal solution. Long615

(2023) trains an LLM controller by reinforcement616

learning to guide the LLM reasoner’s search path.617

Value function The value function evaluates the618

value of each action and guides the tree to expand619

towards branches with higher values in MCTS.620

RAP (Hao et al., 2023) designs a series of heuristic621

value functions, including the likelihood of the ac-622

tion, the confidence of the state, self-evaluation re-623

sults, and task-specific reward, and combines them624

according to task requirements. Reliable and gen-625

eralized value functions facilitate the application626

of MCTS to more complex problems with deeper627

search spaces. AlphaMath (Chen et al., 2024a)628

and TS-LLM (Feng et al., 2024b) replace the hand-629

crafted value function with a learned LLM value630

function, automatically generating reasoning pro-631

cess and step-level evaluation signals in MCTS.632

Traditional MCTS methods expand only one tra-633

jectory, while rStar (Qi et al., 2024) argues that634

the current value function struggles to guide the635

selection of the optimal path accurately. Therefore,636

rStar retains multiple candidate paths and performs637

reasoning with another LLM, ultimately selecting638

the path where both LLMs’ reasoning results are639

consistent. Gao et al. (2024d) propose SC-MCTS640

inspired by contrast decoding, which utilizes multi-641

ple external reward models as value functions.642

Improvement Training Tree search can guide643

LLMs to generate long reasoning processes, and644

these data help train LLMs with stronger reasoning645

abilities. ReST-MCTS* (Zhang et al., 2024a) uses646

process rewards as a value function to guide MCTS,647

collecting high-quality reasoning trajectories and648

the value of each step to improve the policy model649

and reward model. Due to the step-by-step ex- 650

ploration of tree search, it can obtain finer-grained 651

step-level feedback signals. MCTS-DPO (Xie et al., 652

2024) collects step-level preference data through 653

MCTS and uses DPO for preference learning. Re- 654

cently, many o1-like models (Qin et al., 2024b; 655

Zhao et al., 2024b; Zhang et al., 2024h) also con- 656

firm the necessity of using tree search to construct 657

high-quality long reasoning chain data for training. 658

Summary 2: Repeated sampling is easy to im- 659

plement and improves answer diversity, making it 660

suitable for open-ended or easily verifiable tasks, 661

though computationally inefficient. Self-correction 662

relies on precise, fine-grained feedback and works 663

well for easily verifiable tasks, but may not perform 664

well with poor feedback or weak reasoning capabil- 665

ity. Tree search optimizes complex planning tasks 666

globally but involves complex implementation. 667

5 Future Directions 668

Test-time compute is a promising path toward 669

System-2 models, with several directions for fu- 670

ture exploration. First, the generalization capa- 671

bilities of System-2 models remain challenging, 672

particularly in cross-domain and weak-to-strong 673

generalization. Second, human cognition relies not 674

only on language, thus System-2 models should in- 675

tegrate multimodal collaboration. Another critical 676

issue is the high computational cost of test-time 677

compute presents a significant challenge, requiring 678

a balance between efficiency and performance. 679

Additionally, while we have a qualitative under- 680

standing of the scaling effects of test-time compute, 681

the quantitative scaling law is still lacking. Finally, 682

combining multiple strategies is worth further in- 683

vestigation, as it has the potential to lead to better 684

performance. We provide a more detailed explana- 685

tion in Appendix C. 686

6 Conclusion 687

In this paper, we conduct a comprehensive survey 688

of existing works on test-time compute. We intro- 689

duce various test-time compute methods in System- 690

1 and System-2 models, and look forward to future 691

directions for this field. We believe test-time com- 692

pute can help models handle complex real-world 693

distributions and tasks better, making it a promising 694

path for advancing LLMs toward cognitive intel- 695

ligence. We hope this paper will promote further 696

research in this area. 697
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Limitations698

Test-time compute, especially the strategies in699

System-2, is evolving rapidly. While we have made700

efforts to provide a comprehensive survey of exist-701

ing research, it is challenging to cover all the latest702

developments. This review includes papers up to703

December 2024, with more recent advancements to704

be updated in future versions. TTA has seen many705

successful applications and task-specific strategies706

in CV tasks. Since the primary audience of our707

paper is researchers in NLP, we do not systemat-708

ically present these works, and interested readers709

can refer to Liang et al. (2024a) for details.710
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A Parameter updating-based TTA in2370

Real-world Scenarios2371

To advance the application of TTA in real-world2372

scenarios, researchers must address challenges of2373

efficiency and stability. To improve efficiency,2374

many methods only fine-tune a small subset of pa-2375

rameters, such as normalization layers (Schneider2376

et al., 2020; Su et al., 2023b), soft prompt (Lester2377

et al., 2021; Shu et al., 2022; Hassan et al., 2023;2378

Ma et al., 2023; Feng et al., 2023; Niu et al.,2379

2024), low-rank module (Hu et al., 2022; Imam2380

et al., 2024), adapter module (Houlsby et al., 2019;2381

Muhtar et al., 2024; Su et al., 2023a) and cross-2382

modality projector (Zhao et al., 2024a). Although2383

the number of parameters to fine-tune is reduced,2384

TTA still requires an additional backward prop-2385

agation. Typically, the time cost of a backward2386

propagation is approximately twice that of a for-2387

ward propagation. Thus, Niu et al. (2024) propose2388

FOA, which is free from backward propagation2389

by adapting soft prompt through covariance matrix2390

adaptation evolution strategy.2391

The stability of TTA is primarily shown in two2392

aspects. On the one hand, unsupervised or self-2393

supervised learning signals inevitably introduce2394

noise into the optimization process, resulting in2395

TTA optimizing the model in the incorrect gradi-2396

ent direction. To address this, Niu et al. (2023)2397

and Gong et al. (2024b) propose noise data filter-2398

ing strategies and the robust sharpness-aware opti-2399

mizer. On the other hand, in real-world scenarios,2400

the distribution of test samples may continually2401

shift, but continual TTA optimization may lead2402

to catastrophic forgetting of the model’s original2403

knowledge. Episodic TTA (Wang et al., 2021; Shu2404

et al., 2022; Zhao et al., 2024a) is a setting to avoid2405

forgetting, which resets the model parameters to2406

their original state after TTA on a single test sam-2407

ple. However, episodic TTA frequently loads the2408

original model, leading to higher inference latency2409

and also limiting the model’s incremental learning2410

capability. To overcome the dilemma, a common2411

trick is the exponential moving average (Wortsman2412

et al., 2022; Ye et al., 2022), which incorporates2413

information from previous model states.2414

B Arguments about Self-correction2415

The effectiveness of self-correction has remained2416

controversial. Several empirical studies on code2417

generation (Olausson et al., 2024), common-2418

sense QA (Huang et al., 2024a), math problem-2419

solving (Wang et al., 2024d), planning (Valmeekam 2420

et al., 2023a), and graph coloring (Stechly et al., 2421

2023) confirm that self-correction is not a guaran- 2422

teed solution for improving performance. Kamoi 2423

et al. (2024) think the effectiveness of self- 2424

correction has been overestimated. Previous suc- 2425

cesses either rely on oracle answers or weak initial 2426

answers. Only tasks that can be broken down into 2427

easily verifiable sub-tasks can truly benefit from 2428

self-correction. They suggest fine-tuning specific 2429

evaluation models to achieve better self-correction. 2430

Tyen et al. (2024) decouple the abilities of LLMs 2431

to identify and correct errors and create the corre- 2432

sponding evaluation datasets. The evaluation re- 2433

sults show that LLMs do not lack the ability to cor- 2434

rect errors during self-correction, and their main 2435

performance bottleneck lies in locating the errors. 2436

C Future Directions 2437

C.1 Generalizable System-2 Model 2438

Currently, most o1-like models exhibit strong rea- 2439

soning abilities only in specific domains such as 2440

math and code and struggle to adapt to cross- 2441

domain or general tasks. The key to addressing 2442

this issue lies in enhancing the generalization abil- 2443

ity of verifiers or critics (LeVine et al., 2023; Kim 2444

et al., 2024d; Chen et al., 2024c). Currently, some 2445

works utilize multi-objective training (Wang et al., 2446

2024b), model ensemble (Lin et al., 2024b) or regu- 2447

larization constraints (Yang et al., 2024; Jia, 2024) 2448

to make verifiers more generalizable. Neverthe- 2449

less, there is still significant room for improvement 2450

in the generalization of the verifier. Additionally, 2451

weak-to-strong generalization (Burns et al., 2023) 2452

is a topic worth further exploration. People are no 2453

longer satisfied with solving mathematical prob- 2454

lems with standard answers; they hope System-2 2455

models can assist in scientific discovery and the 2456

proofs of mathematical conjectures. In such cases, 2457

even human experts struggle to provide accurate 2458

feedback, while weak-to-strong generalization of- 2459

fers a promising direction to address this issue. We 2460

think that more generalized System-2 models may 2461

not rely on a single feedback source but instead 2462

obtain multi-source feedback through interactions 2463

between LLM-based agents and tools, experts, or 2464

other agents (Nathani et al., 2023; Lan et al., 2024). 2465

C.2 Multimodal Reasoning 2466

In System-1 thinking, TTA has been successfully 2467

applied to multimodal LLMs, improving perfor- 2468

24



Category sub-category Representative Methods Tasks Verifier/Critic Train-free

Repeat Sampling
Majority voting

CoT-SC (2023d) Math, QA self-consistency ✓
PROVE (2024) Math compiler ✓

Best-of-N
Cobbe et al. (2021) Math ORM ✗

DiVeRSe (2023c) Math PRM ✗

Self-correction

Human feedback
NL-EDIT (2021) Semantic parsing Human ✗

FBNET (2022) Code Human ✗

External tools
DrRepair (2020) Code compiler ✗

Self-debug (2024d) Code compiler ✓
CRITIC (2024) Math, QA, Detoxifying text-to-text APIs ✓

External models

REFINER (2024) Math, Reason critic model ✗

Shepherd (2023b) QA critic model ✗

Multiagent Debate (2023) Math, Reason multi-agent debate ✓
MAD (2024b) Translation, Math multi-agent debate ✓

Intrinsic feedback
Self-Refine (2023) Math, Code, Controlled generation self-critique ✓
Reflexion (2023) QA self-critique ✓
RCI (2023) Code, QA self-critique ✓

Tree Search

Uninformed search
ToT (2023) Planing, Creative writing self-critique ✓
Xie et al. (2023) Math self-critique ✓

Heuristic search

RAP (2023) Planing, Math, Logical self-critique ✓
TS-LLM (2024b) Planing, Math, Logical ORM ✗

rStar (2024) Math, QA multi-agent consistency ✓
ReST-MCTS* (2024a) Math, QA PRM ✗

Table 1: Overview of search strategies.

mance in tasks such as zero-shot image classifi-2469

cation, image-text retrieval, and image caption-2470

ing (Zhao et al., 2024a). However, test-time com-2471

pute methods in System-2 thinking remain limited2472

to text modalities. Visual, speech, and other modal-2473

ities are crucial for model understanding and inter-2474

action with the world. To achieve cognitive intel-2475

ligence, System-2 models must be able to fully2476

integrate multimodal information for reasoning.2477

The exploration of multimodal CoT (Zhang et al.,2478

2024j; Wu et al., 2024b; Mondal et al., 2024; Lee2479

et al., 2024; Gao et al., 2024b) and multimodal2480

critics or verifiers (Xiong et al., 2024) open up2481

the possibility of building multimodal System-22482

models. Xu et al. (2024) are the first to apply test-2483

time compute to visual reasoning tasks. They di-2484

vide the visual reasoning process into four stages:2485

task summary, caption, reasoning, and answer con-2486

clusion. They propose a stage-level beam search2487

method, which repeatedly samples at each stage2488

and selects the best result for the next stage. Nowa-2489

days, Qwen team has released the open-weight2490

multimodal reasoning model QVQ (Qwen, 2024),2491

OpenAI and Kimi (Team et al., 2025) have released2492

their multimodal reasoning products. We believe2493

test-time compute still holds significant potential2494

for development in multimodal reasoning. For ex-2495

ample, incorporating more modalities like speech2496

and video into reasoning tasks, applying successful2497

methods such as reflection mechanisms and tree2498

search to multimodal reasoning, or aligning the 2499

multimodal reasoning process with human cogni- 2500

tive processes. Besides understanding and reason- 2501

ing tasks, Xie et al. (2025) and Guo et al. (2025) 2502

show test-time compute can improve image gener- 2503

ation performance, with great potential for multi- 2504

modal generation in the future. 2505

C.3 Efficiency and Performance Trade-off 2506

The successful application of test-time compute 2507

shows that sacrificing reasoning efficiency can lead 2508

to better reasoning performance. However, re- 2509

searchers continue to seek a balance between per- 2510

formance and efficiency, aiming to achieve opti- 2511

mal performance under a fixed reasoning latency 2512

budget. This requires adaptively allocating com- 2513

putational resources for each sample. Damani 2514

et al. (2024) train a lightweight module to predict 2515

the difficulty of a question, and allocate computa- 2516

tional resources according to its difficulty. Zhang 2517

et al. (2024e) further extend the allocation targets 2518

to more hyperparameters. Chen et al. (2025) sys- 2519

tematically evaluate the overthinking problem in 2520

o1-like models and mitigate it by length preference 2521

optimizing. There are still many open questions 2522

worth exploring, such as how to integrate inference 2523

acceleration strategies, e.g. model compression (Li 2524

et al., 2024f; Huang et al., 2024c; Li et al., 2025), 2525

token pruning (Fu et al., 2024; Zhang et al., 2024c), 2526

and speculative decoding (Leviathan et al., 2023; 2527

25



Xia et al., 2024) with test-time compute, and how2528

to predict problem difficulty more accurately.2529

C.4 Scaling Law2530

Unlike training-time computation scaling, test-time2531

compute still lacks a universal scaling law. Some2532

works have attempted to derive scaling laws for spe-2533

cific test-time compute strategies (Wu et al., 2024c;2534

Levi, 2024). Brown et al. (2024) demonstrate2535

that the performance has an approximately log-2536

linear relationship with repeated sampling times.2537

Chen et al. (2024e) models repeated sampling as a2538

knockout tournament and league-style algorithm,2539

proving theoretically that the failure probability2540

of repeated sampling follows a power-law scaling.2541

Snell et al. (2024) investigate the scaling laws of2542

repeated sampling and self-correction, and propose2543

the computing-optimal scaling strategy. There are2544

two major challenges to achieving a universal scal-2545

ing law: first, current test-time compute strategies2546

are various, each with different mechanisms to steer2547

the model; thus, it lacks a universal framework for2548

describing them; second, the performance of test-2549

time compute is affected by a variety of factors,2550

including the difficulty of samples, the accuracy2551

of feedback signals, and decoding hyperparame-2552

ters, and we need empirical studies to filter out the2553

critical factors.2554

C.5 Strategy Combination2555

Different test-time compute strategies are suited to2556

various tasks and scenarios, so combining multi-2557

ple strategies is one way to achieve better System-2558

2 thinking. For example, Marco-o1 (Zhao et al.,2559

2024b) combines the MCTS and self-correction,2560

using MCTS to plan reasoning processes, and2561

self-correction to improve the accuracy of each2562

step. Moreover, test-time adaptation strategies in2563

System-1 models can also be combined with test-2564

time reasoning strategies. Akyürek et al. (2024)2565

combine test-time training with repeated sampling.2566

They further optimize the language modeling loss2567

on test samples, then generate multiple candidate2568

answers through data augmentation, and finally2569

determine the answer by majority voting. They2570

demonstrate the potential of test-time training in2571

reasoning tasks, surpassing the human average on2572

the ARC challenge. Therefore, we think that for2573

LLM reasoning, it is crucial to focus not only2574

on emerging test-time strategies but also on test-2575

time adaptation methods. By effectively combining2576

these strategies, we can develop System-2 models2577

that achieve or surpass o1-level performance. 2578

D Benchmarks and Open-source 2579

Frameworks 2580

D.1 Benchmarks 2581

Test-time Adaptation In System-1 models, dis- 2582

tribution shifts include adversarial robustness, 2583

cross-domain and cross-lingual scenarios. In 2584

the field of CV, ImageNet-C (Hendrycks and Di- 2585

etterich, 2019), ImageNet-R (Hendrycks et al., 2586

2021a), ImageNet-Sketch (Wang et al., 2019) are 2587

common datasets for TTA. Yu et al. (2023) pro- 2588

pose a benchmark to conduct a unified evalua- 2589

tion of TTA methods across different TTA settings 2590

and backbones on 5 image classification datasets. 2591

For NLP tasks, TTA is primarily applied in QA 2592

and machine translation tasks, with commonly 2593

used datasets such as MLQA (Lewis et al., 2020), 2594

XQuAD (Artetxe et al., 2020), MRQA (Fisch et al., 2595

2019), CCMatrix (Schwenk et al., 2021) and Ted 2596

Talks (Qi et al., 2018). 2597

Feedback Modeling RewardBench (Lambert 2598

et al., 2024) collects 20.2k prompt-choice-rejection 2599

triplets covering tasks such as dialogue, reasoning, 2600

and safety. It evaluates the accuracy of reward mod- 2601

els in distinguishing between chosen and rejected 2602

responses. RM-Bench (Liu et al., 2024d) further 2603

evaluates the impact of response style on reward 2604

models. RMB (Zhou et al., 2024) extends the eval- 2605

uation to the more practical BoN setting, where 2606

reward models are required to select the best re- 2607

sponse from multiple candidates. CriticBench (Lin 2608

et al., 2024c) is specifically designed to evaluate 2609

a critic model’s generation, critique, and correc- 2610

tion capabilities. For PRM, Song et al. (2025) pro- 2611

pose PRMBench, which evaluates PRMs whether 2612

can identify the earliest incorrect reasoning step 2613

in math tasks. ProcessBench (Zheng et al., 2024) 2614

provides a more fine-grained evaluation, including 2615

redundancy, soundness, and sensitivity. In addition, 2616

there are benchmarks for evaluating multimodal 2617

feedback modeling, such as VL-RewardBench (Li 2618

et al., 2024d) and MJ-Bench (Chen et al., 2024f). 2619

Test-time Reasoning Reasoning capability is 2620

the core of System-2 models, including mathe- 2621

matics, code, commonsense, planning, etc (Zeng 2622

et al., 2024). Math reasoning is one of the most 2623

compelling reasoning tasks. With the advance- 2624

ments in LLM and test-time compute, the ac- 2625

curacy on some previously challenging bench- 2626
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marks, like GSM8K (Cobbe et al., 2021) and2627

MATH (Hendrycks et al., 2021b), have surpassed2628

the 90% mark. Thus, more difficult college ad-2629

missions exam (Zhang et al., 2023b; Arora et al.,2630

2023; Azerbayev et al., 2024) and competition-2631

level (Gao et al., 2024a) math benchmarks have2632

been proposed. Some competition-level bench-2633

marks are not limited to textual modalities in alge-2634

bra, logic reasoning, and word problems. For in-2635

stance, OlympiadBench (He et al., 2024), Olympi-2636

cArena (Huang et al., 2024b) and AIME (Zamil2637

and Rabby, 2024) provide images for geometry2638

problems, incorporating visual information to aid2639

in problem-solving, while AlphaGeometry (Trinh2640

et al., 2024) employs symbolic rules for geomet-2641

ric proofs. The most challenging benchmark cur-2642

rently is FrontierMath (Glazer et al., 2024), with2643

problems crafted by mathematicians and covering2644

major branches of modern mathematics. Even the2645

most advanced o3 has not achieved 30% accuracy.2646

Code ability is a key aspect of LLM reasoning,2647

with high practical value, covering code comple-2648

tion (Ding et al., 2023; Zhang et al., 2023a; Gong2649

et al., 2024a), code reasoning (Gu et al., 2024), and2650

code generation (Chen et al., 2021; Austin et al.,2651

2021) tasks. Among these, code generation gains2652

more attention. HumanEval (Chen et al., 2021)2653

and MBPP (Austin et al., 2021) provide natural2654

language descriptions of programming problems,2655

requiring LLMs to generate corresponding Python2656

code and use unit tests for evaluation. MultiPL-2657

E (Cassano et al., 2022) extend them to 18 program2658

languages. EvalPlus (Liu et al., 2024a) automati-2659

cally augments test cases to assess the robustness2660

of the generated code. Recently, some studies col-2661

lect benchmarks from open-source projects, which2662

are closed to realistic applications and more chal-2663

lenging due to complex function calls, such as2664

DS-1000 (Lai et al., 2023), CoderEval (Yu et al.,2665

2024a), EvoCodeBench (Li et al., 2024a) and Big-2666

CodeBench (Zhuo et al., 2025).2667

Commonsense reasoning requires LLMs to pos-2668

sess both commonsense knowledge and reasoning2669

abilities. Early benchmarks (Zellers et al., 2019;2670

Talmor et al., 2019; Sakaguchi et al., 2021; Bisk2671

et al., 2020) focus on evaluating LLMs’ common-2672

sense ability. StrategyQA (Geva et al., 2021) col-2673

lects more complex and subtle multi-hop reasoning2674

questions. MMLU (Hendrycks et al., 2021b) and2675

MMLU-Pro (Wang et al., 2024j) cover common-2676

sense reasoning questions across various domains,2677

including STEM, the humanities, the social sci-2678

ences, etc. 2679

Planning aims to enable LLMs to take optimal 2680

actions based on the current state and environ- 2681

ment to successfully complete tasks. Current plan- 2682

ning benchmarks primarily focus on small-scale 2683

synthetic tasks, such as Blocksworld (Valmeekam 2684

et al., 2023b), Crosswords, and Game-of-24 (Yao 2685

et al., 2023). 2686

D.2 Projects 2687

OpenR (Wang et al., 2024c)1 is an open-source 2688

test-time reasoning framework that integrates var- 2689

ious test-time compute strategies, PRM training, 2690

and improvement training. It currently supports 2691

beam search, BoN, MCTS, and rStar, and imple- 2692

ments popular online reinforcement learning algo- 2693

rithms like APPO, GRPO, and TPPO. 2694

RLHFlow (Dong et al., 2024a) offers a compre- 2695

hensive framework for reward modeling2 and on- 2696

line RLHF training3. Its standout feature is the 2697

integration of various reward model training meth- 2698

ods, including the vanilla preference reward model, 2699

multi-objective reward models, PRM, etc. 2700

OpenRLHF (Hu et al., 2024)4 also integrates 2701

reward modeling and RLHF training but focuses 2702

more on the efficient implementation of reinforce- 2703

ment learning algorithms and training tricks. Its 2704

strength lies in the integration of distributed train- 2705

ing and efficient fine-tuning, enabling users to eas- 2706

ily train large language models with more than 70B 2707

parameters. 2708

1https://github.com/openreasoner/openr
2https://github.com/RLHFlow/RLHF-Reward-Modeling
3https://github.com/RLHFlow/Online-RLHF
4https://github.com/OpenRLHF/OpenRLHF
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