

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EDUDIAL: CONSTRUCTING A LARGE-SCALE MULTI-TURN TEACHER-STUDENT DIALOGUE CORPUS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recently, several multi-turn dialogue benchmarks have been proposed to evaluate the conversational abilities of large language models (LLMs). As LLMs are increasingly recognized as a key technology for advancing intelligent education, owing to their ability to deeply understand instructional contexts and provide personalized guidance, the construction of dedicated teacher-student dialogue benchmarks has become particularly important. To this end, we present EduDial, a comprehensive multi-turn teacher-student dialogue dataset. EduDial covers 345 core knowledge points and consists of 34,250 dialogue sessions generated through interactions between teacher and student agents. Its design is guided by Bloom’s taxonomy of educational objectives and incorporates ten questioning strategies—including situational questioning, zone of proximal development (ZPD) questioning, and metacognitive questioning—thus better capturing authentic classroom interactions. Furthermore, we design differentiated teaching strategies for students at different cognitive levels, thereby providing more targeted teaching guidance. Building on EduDial, we further develop EduDial-LLM 32B via training and propose an 11-dimensional evaluation framework that systematically measures the teaching abilities of LLMs, encompassing both overall teaching quality and content quality. Experiments on 17 mainstream LLMs reveal that most models struggle in student-centered teaching scenarios, whereas our EduDial-LLM achieves significant gains, consistently outperforming all baselines across all metrics.

1 INTRODUCTION

The burgeoning field of artificial intelligence has drawn significant research focus to the multi-turn conversational capabilities of large language models (LLMs) (Kwon et al., 2024; Duan et al., 2024; Deshpande et al., 2025). As models grow in scale and complexity, a critical challenge lies in evaluating their ability to maintain coherent and meaningful interactions within dynamic dialogue contexts. To systematically address this, a series of multi-turn dialogue benchmarks has been introduced. Noteworthy examples include MT-Bench (Bai et al., 2024), which utilizes powerful LLMs like GPT-4o (Hurst et al., 2024) as evaluators for open-domain conversations, and AlpacaEval (Li et al., 2023), which employs automated metrics to rapidly assess a model’s proficiency in multi-turn instruction-following.

However, while these general-purpose benchmarks are useful, they do not fully capture the deeper conversational capabilities of LLMs in vertical domains. As LLM-based agents (Xi et al., 2025; Cai et al., 2025; Shang et al.) and systems play an increasingly important role in education, a competent LLM must not only maintain coherent dialogues but also exhibit core teaching abilities, such as guiding student reasoning, correcting errors, and providing personalized feedback—skills that current general benchmarks fail to assess adequately. Consequently, developing a benchmark that systematically evaluates LLMs’ multi-turn conversational abilities in domain-specific contexts, particularly in education, has become an urgent and essential task. As illustrated in Figure 1, (a) represents single-turn teaching, where the model merely delivers knowledge, whereas (b) depicts multi-turn teacher-student dialogue, in which the teacher actively guides the student through interactive instruction.

However, constructing a multi-turn teacher-student dialogue benchmark still faces two major challenges: **(1) How to accurately determine the optimal timing for teacher questioning?** Inappropriate timing can interrupt students’ comprehension, disrupt their reasoning process, and ultimately

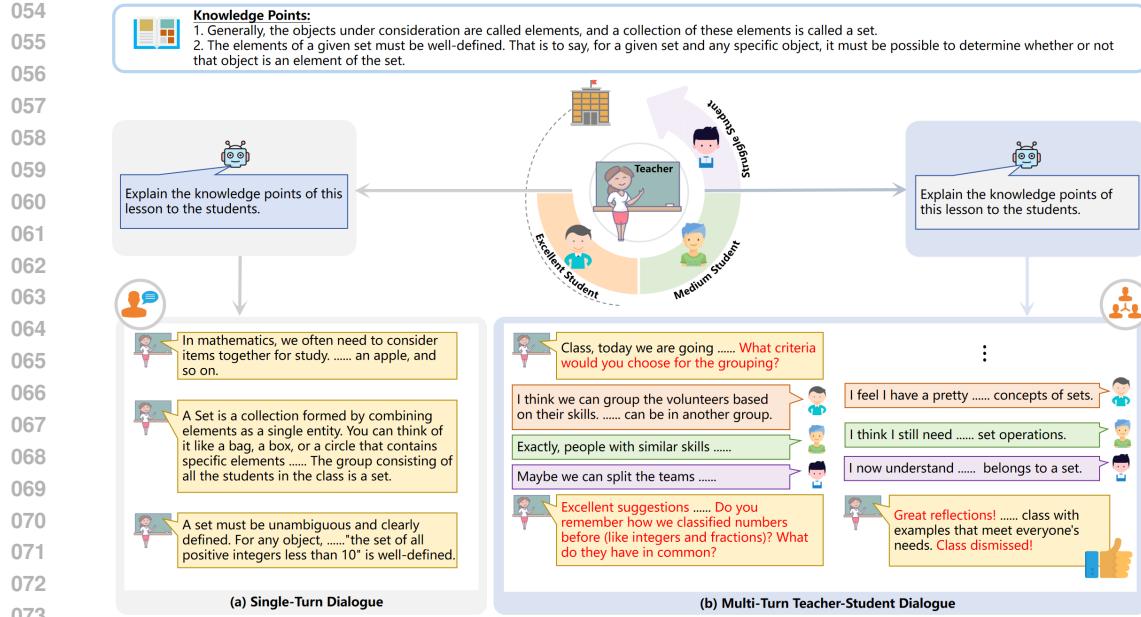


Figure 1: Comparison of “(a) single-turn” and “(b) multi-turn teacher-student” dialogue.

hinder learning outcomes. For instance, when students are still grasping a new concept, frequent questioning may interfere with their cognitive flow, significantly reducing learning efficiency. **(2) How to adjust questioning strategies according to different teaching stages?** Existing approaches often lack stage-specific strategies. Even with proper timing, unsuitable strategies may backfire and negatively impact learning. For example, posing questions beyond a student’s cognitive level at the initial stage of learning can easily lead to frustration and hinder further progress.

To address these challenges, we propose **EduDial**, a multi-turn teacher-student dialogue dataset designed to enable LLMs to pose appropriate questions at the right time in education. EduDial covers 345 core knowledge points and comprises 34,250 dialogue sessions generated through interactions between teacher and student. The dataset follows five progressive teaching stages: introduction, concept exploration, deep understanding, knowledge application and reflection, and incorporates ten questioning strategies—including situational, zone of proximal development (ZPD), and metacognitive questioning—to better simulate authentic classroom interactions. Moreover, differentiated teaching strategies are designed for students at varying cognitive levels, providing more targeted guidance. Building on EduDial, we further train **EduDial-LLM 32B** and propose an 11-dimensional evaluation framework that systematically measures LLMs’ teaching capabilities, encompassing both overall teaching quality and content quality. Extensive experiments demonstrate the challenging nature of EduDial and the effectiveness of our approach in enhancing LLMs’ performance in educational tasks.

2 RELATED WORK

Dialogue Dataset. Early dialogue data research primarily focuses on single-turn interaction scenarios, constructing domain-specific question-answering datasets that enhance model performance in healthcare, finance, and code generation through supervised fine-tuning (Zeng et al., 2020; Chen et al., 2021; Dong et al., 2024). However, single-turn dialogues cannot capture crucial elements such as dialogue history understanding and adaptive response strategies, which severely restricts the practical deployment of LLMs. Recognizing these limitations, researchers shift toward multi-turn dialogue systems. Current research explores both general and domain-specific approaches. General methods establish evaluation benchmarks through iterative optimization but lack domain adaptability (Wu et al., 2025; Bai et al., 2024). Domain-specific methods construct specialized datasets in law, medicine, and mathematics through role simulation (ShengbinYue et al., 2025; Wang et al., 2024a; Liu et al., 2025c). However, these datasets primarily focus on knowledge transfer accuracy and fail to meet educational requirements that guide student thinking through interaction. Therefore, researchers increasingly focus on multi-turn educational dialogue datasets. Early research relies on costly human-annotated

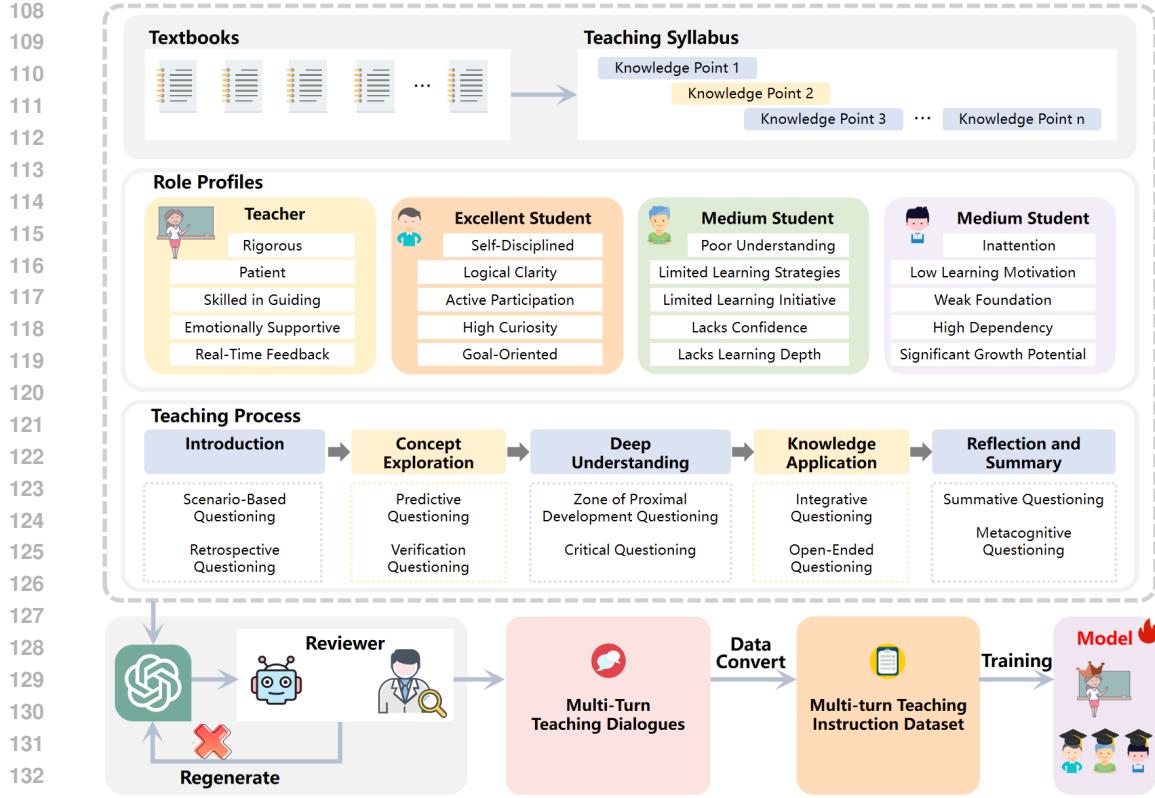


Figure 2: Based on the teaching syllabus and role profiles, generate high-quality multi-turn teaching instruction data through a five-stage teaching process to train one teacher and three student models.

data (Stasaski et al., 2020; Caines et al., 2020; Suresh et al., 2022). With LLM development, recent studies employ various approaches, including textbook-based generation (Wang et al., 2024b), pedagogical theory integration (Liu et al., 2025b), and Socratic teaching simulation through teacher-LLM collaboration (Macina et al., 2023) or multi-agent frameworks (Liu et al., 2024b). However, existing educational dialogue datasets employ rigid questioning strategies and ignore cognitive differences among students. To address these limitations, we propose a five-stage instructional framework that defines when and how to ask questions at each teaching stage, along with differentiated strategies tailored to varying cognitive levels.

Leveraging LLMs for Advanced Intelligent Education. Large language models (LLMs) profoundly reshape three key application directions of intelligent education: the automation of teaching content generation, learning assessment and feedback, and interactive teaching (Labadze et al., 2023; Stamper et al., 2024; Wang et al., 2024c). For teaching content, current research focuses on using LLMs to automatically generate teaching plans, exercises, and PPTs based on specific goals (Hu et al., 2024; Li et al., 2024; Xie et al., 2025). It provides personalized and diverse teaching support for teachers. For learning assessment and feedback, LLMs demonstrate the potential to evaluate learners' cognitive levels and provide personalized feedback instantly (Meyer et al., 2024). It helps create more responsive and adaptive educational experiences for students. Regarding interactive teaching, most relevant to our research, there are two main research directions. The first direction uses prompt engineering (Liu et al., 2023) to directly leverage general large language models for teaching guidance. Examples include providing support in programming (Kargupta et al., 2024), classroom education (Zhang et al., 2024), and psychological counseling (Qiu and Lan, 2024). The second direction enhances the model's multi-turn interactive teaching ability through specialized training and fine-tuning. For example, previous work enhances deep interactive teaching abilities by collecting numerous teaching instructions to train models (like SocraticLM (Liu et al., 2025a)).

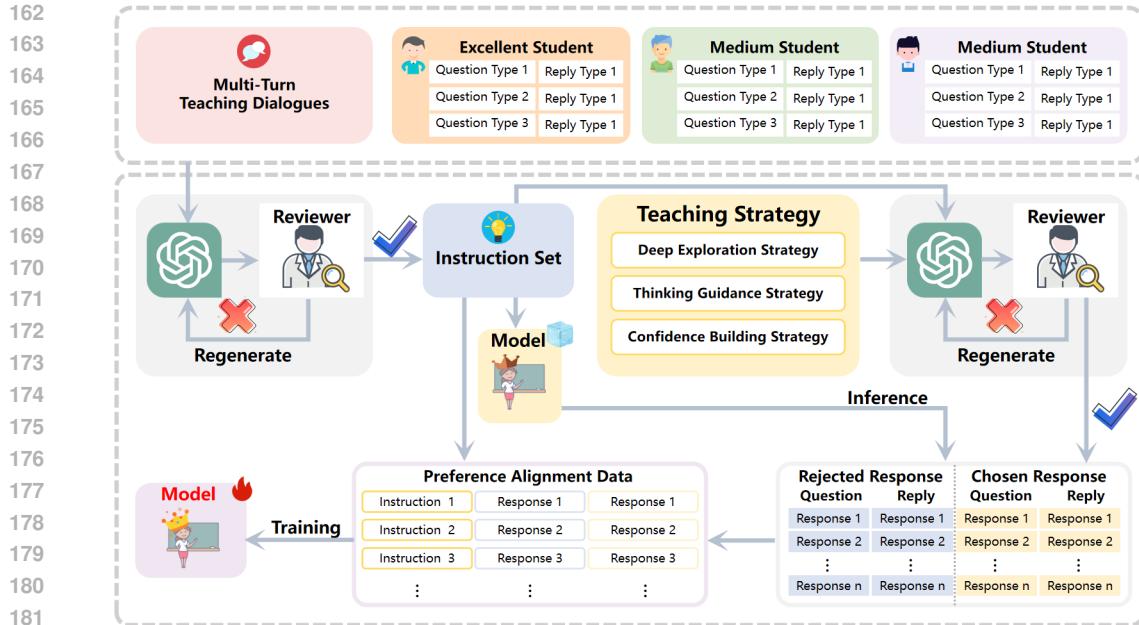


Figure 3: Develop corresponding teaching strategies based on the three student response types, construct preference datasets by generating chosen and rejected responses, and further optimize the teacher model using direct preference optimization.

3 THE EDUDIAL DATASET

3.1 TASK DEFINITION

Single-turn dialogue represents the most basic form of interaction. Each sample contains a standalone independent question-answer pair without contextual dependencies. This data type evaluates models' immediate direct response capabilities to individual queries. It encompasses factual question answering, task execution, and information retrieval scenarios.

Multi-turn dialogue extends interactions to continuous conversational sequences. In this paradigm, models must maintain dialogue history and understand topic evolution. They generate coherent responses based on prior interactions. Multi-turn dialogue embodies natural conversational dynamics through progressive topic refinement, incremental knowledge construction, and coherent reasoning progression. It requires models to possess context understanding and dialogue state tracking.

Teacher-student multi-turn dialogue introduces role asymmetry and objective divergence to multi-turn interactions. Unlike general multi-turn dialogues, teacher-student conversations exhibit clearly defined role positioning. Teachers guide and explain; students express understanding and confusion. This interaction paradigm necessitates dynamic pedagogical adaptation based on student feedback signals. Teachers identify comprehension levels, calibrate explanatory approaches, and deliver tailored scaffolding. Simultaneously, students demonstrate different cognitive states from bewilderment to partial grasp to full application proficiency.

3.2 PREPARATION

Unlike general-domain data synthesis, educational dialogue generation relies on pedagogical theories, teaching strategies, and domain knowledge. We therefore establish three foundational components during the preparation.

1) Teaching Syllabus. To ensure the authenticity of teaching content and comprehensive coverage of core knowledge points, we surveyed over 100 primary and secondary schools. Additionally, we held extensive discussions with experienced mathematics teachers. Based on this, we selected 345 core knowledge points most concerned about teachers and students from the K-12 mathematics curriculum,

216 covering 173 chapters. Furthermore, we extracted each knowledge point from textbooks, including
 217 concepts, theorems, and examples, to ensure consistency with curriculum standards.
 218

219 *2) Teaching Process and Question Strategies.* We propose a teaching process that integrates Bloom's
 220 taxonomy (Forehand, 2010), constructing a five-stage progressive teaching process where each stage
 221 aligns with specific cognitive levels. The introduction stage corresponds to "remember" and activates
 222 prior knowledge through contextual and retrospective questioning. The concept exploration stage
 223 maps to "understand" and facilitates concept internalization via predictive and verification questioning.
 224 The deep understanding stage aligns with "analyze" to cultivate critical thinking using the zone of
 225 proximal development and critical questioning. The knowledge application stage combines "apply and
 226 evaluate" to enhance practical competencies through integrative and open-ended questioning. Finally,
 227 the reflection and summary stage corresponds to "create" and promotes knowledge reconstruction with
 228 summary and metacognitive questioning. These question strategies derive from extensive analysis
 229 of MOOC instructional videos and in-depth discussions with experienced mathematics teachers,
 ensuring each teaching phase has appropriate dual question strategies.

230 *3) Role Profiles and Teaching Strategies.* We establish a four-member role system comprising
 231 a teacher and three student profiles (excellent, medium, struggling), characterized through five
 232 dimensions: cognitive capacity, learning motivation, classroom engagement, learning strategies, and
 233 self-regulation skills. Based on these profiles, we design differentiated teaching strategies. Excellent
 234 students exhibit inquiry-based, exploratory, and optimization-focused questioning patterns, with
 235 responses demonstrating accuracy, clarity of explanation, and the ability to connect related concepts.
 236 For these students, we employ a deep exploration strategy that fosters higher-order thinking through
 237 progressive questioning sequences. Medium students typically pose application-oriented, procedural,
 238 and detail-focused questions, with responses showing partial correctness, uncertainty expression,
 239 and hint-seeking features. Accordingly, we implement a thinking guidance strategy to support their
 240 problem-solving process and enhance cognitive clarity. Struggling students mainly ask fundamental,
 241 understanding, and learning efficacy questions, with answers often showing errors, vagueness, or
 242 absence. For this group, we develop a confidence-building strategy that strengthens foundational
 243 cognition and learning confidence through gradual knowledge construction.

244 3.3 DATASET CONSTRUCTION

245 **Data Generation** We detail the construction process of our dataset, EduDial, which is composed of
 246 two main components: Multi-turn Teaching Instruction (MTI) and the Preference Dataset based on
 247 Teaching Strategies (PDTs).

248 *MTI Dataset Generation.* We design a three-step data generation pipeline for multi-turn teacher-
 249 student dialogues in the MTI dataset. Inspired by MT-Bench, we begin by transforming the teaching
 250 process, role profiles, and teaching syllabus into structured prompt templates. Using LLMs (i.e.,
 251 o1 (Jaech et al., 2024)), we generate multi-turn teaching dialogues that maintain strict role consistency
 252 and logical coherence, ensuring interactions align with authentic teaching scenarios. In the second
 253 step, we collaborate with experts to establish five core teaching principles: teaching stage integrity,
 254 comprehensive questioning strategy, consistent role-playing, accurate knowledge delivery, and natural
 255 interaction flow. Based on these principles, we ensure that the generated dialogues align with teaching
 256 standards through an expert-machine dual validation. Finally, in step three, we convert dialogues
 257 that meet the established standards into role-specific supervised fine-tuning (SFT) corpora. For the
 258 teacher model, the training data pairs student responses as input with teacher responses as output.
 259 For the student model, the training data uses teacher and peer responses as input and the student
 260 responses as output.

261 *PDTs Dataset Generation.* The PDTs Dataset Generation process is based on differentiated teaching
 262 strategies and involves a systematic data generation approach. First, we combine student profile
 263 descriptions at each cognitive level with multi-turn teaching dialogues to create structured prompts.
 264 These prompts guide LLMs to generate student interactions that align with specific cognitive levels,
 265 with the generated questions and replies serving as "instructions" for the teacher model input. In
 266 the second step, we input these instructions into a fine-tuned teacher model to generate rejected
 267 responses. While these responses are reasonable in content, they deviate from the predetermined
 268 teaching strategies. Next, in step three, we combine the instructions with the corresponding teaching
 269 strategies and input them into LLMs to generate chosen responses, which accurately reflect the

270 designated teaching methods. Finally, in step four, we construct preference alignment triplets
 271 containing \langle instruction, chosen response, rejected response \rangle , which form the final PDTS dataset for
 272 direct preference optimization (DPO) training.

273 **Expert-Machine Dual Verification.** We employ a dual verification system combining expert
 274 evaluation and machine-based assessment to ensure data quality. All generated data undergo automatic
 275 verification by GPT-4o and manual review by experts. For the MTI dataset, verification criteria
 276 include: logical progression of teaching stages, consistency between questioning strategies and
 277 objectives, alignment between student responses and cognitive levels, the educational value of teacher
 278 feedback, and the natural flow of dialogue. For the PDTS dataset, verification dimensions encompass:
 279 teaching strategy adaptability and distinction between chosen and rejected responses. For data failing
 280 verification, expert annotators and GPT-4o provide feedback for regeneration. This process continues
 281 until the data meet established quality standards.

282 3.4 TWO-STAGE TRAINING STRATEGY

283 One of our main contributions is constructing two datasets. To validate their effectiveness, we adopt
 284 a standard two-stage training framework: SFT followed by DPO. We use these mainstream methods
 285 to ensure that performance gains stem from data quality rather than algorithmic innovations.

286 **SFT Stage.** To ensure that LLMs better align with role profiles when simulating different roles, we
 287 use instruction fine-tuning techniques to train four LLMs. Specifically, we use instruction fine-tuning
 288 data for four different roles and train four LLMs using the negative log-likelihood loss function. The
 289 loss function is defined as follows:

$$292 \mathcal{L}_{sft} = - \sum_{c=1}^C \sum_{k=1}^{K_c} \sum_{i=1}^{N_{c,k}} \log P(t_{c,k,i} | t_{c,k,<i}, C_{c,k}). \quad (1)$$

$$295 \quad C_{c,k} = \{ (input_{c,j}, output_{c,j}) \}_{j=1}^{k-1} \cup \{input_{c,k}\}, \quad (2)$$

296 where C is the batch size, K_c is the total number of rounds for the c -th sample, $N_{c,k}$ is the number of
 297 tokens output in the k -th round of the c -th sample, $t_{c,k,i}$ is i -th token output in the k -th round of the
 298 c -th sample, $t_{c,k,<i}$ is the sequence of tokens output before i -th token in the k -th round of the c -th
 299 sample, $C_{c,k}$ is the context before the k -th round of the c -th sample, $input_{c,j}$ is the input of the j -th
 300 round in the c -th sample, and $output_{c,j}$ is the output of the j -th round in the c -th sample.

301 **DPO Stage.** To further enhance the model’s teaching capabilities, we train the fine-tuned teacher
 302 model using the direct preference alignment algorithm. The algorithm optimizes two objectives:
 303 maximizing the generation probability of chosen responses and minimizing the generation probability
 304 of rejected responses. The optimization mechanism ensures that the model tends to generate responses
 305 conforming to teaching strategies while suppressing responses deviating from teaching strategies.
 306 The loss function of the direct preference alignment algorithm is defined as follows.

$$308 \quad \mathcal{L}_{dpo} = - \log \sigma(s_{chosen} - s_{rejected}), \quad (3)$$

$$310 \quad s_{chosen} = \log P(chosen | instruction), \quad (4)$$

$$311 \quad s_{rejected} = \log P(rejected | instruction), \quad (5)$$

312 where s_{chosen} and $s_{rejected}$ denote the scores of the chosen and rejected responses, respectively, and
 313 σ represents the sigmoid function.

315 3.5 EVALUATION METRICS.

317 To evaluate teaching quality, we design two metric categories: overall and content quality. Overall
 318 quality includes nine dimensions: insight, response, feedback, thinking, fluency, interactivity, emotional
 319 support, adaptability, and goal. Content quality covers relevance (syllabus alignment) and
 320 coverage (knowledge point inclusion). Table 1 details all eleven dimensions. Overall quality and
 321 relevance are rated on a five-point Likert scale (1-5), while coverage is measured as a percentage,
 322 with 100Evaluation combines human and machine methods: five experts score independently, and
 323 their average forms the human result. GPT-4o independently evaluates the same data five times, with
 the average as the machine result.

324
325
326 Table 1: Evaluation Metrics for Overall and Content Quality.
327
328
329
330
331
332
333
334
335
336

Dimension	Abbr.	Definition
<i>Overall Quality</i>		
Insight	INS	Assess whether the teacher accurately identifies student learning needs, knowledge levels, and question intent.
Response	RES	Assess whether the teacher effectively addresses student questions and provides feasible, constructive guidance.
Feedback	FB	Assess whether the teacher provides timely and effective feedback that facilitates improvement.
Thinking	THK	Assess whether the teacher fosters thinking skills, including analysis and open-mindedness.
Fluency	FLU	Assess whether the teacher communicates clearly and is easy to understand.
Interactivity	INT	Assess the frequency and quality of interactions between teacher and students in teaching dialogues.
Emotional Support	EMO	Assess whether the teacher provides emotional support during teaching and creates a positive learning environment.
Adaptability	ADP	Assess whether the teacher adjusts teaching methods to accommodate different contexts, ensuring personalized guidance.
Goal	GOL	Assess whether teacher guidance helps achieve teaching goals, such as knowledge acquisition.
<i>Content Quality</i>		
Relevance	REL	Assess whether the teacher-student dialogue is relevant to the teaching content of this chapter.
Coverage	COV	Assess the proportion of required teaching knowledge points encompassed within the teacher-student dialogue.

337
338
339 3.6 STATISTICS
340
341
342
343
344
345
346
347

We split the dataset at an 8:2 ratio by chapter. The training set contains 137 chapters (275 knowledge points), and the test set contains 36 chapters (70 knowledge points). We construct two datasets: (1) MTI Dataset: We generate 100 teacher-student dialogues per training chapter, yielding 13,700 dialogue samples. Each dialogue averages 11 interaction rounds. Teachers pose an average of 14.2 questions per dialogue. (2) PDTS Dataset: We generate 50 instructions per student role. Each instruction yields one preference pair, totaling 20,550 preference pairs. For evaluation, we create 36 teaching scenarios per model. Each model acts as the teacher, engaging with three students of varying cognitive levels. Sessions end when the teacher completes instruction or after 15 rounds.

348
349 4 EXPERIMENTS
350
351
352353 4.1 EXPERIMENTAL SETUP
354
355
356
357
358
359
360
361

Baselines. We select 18 large language models as baselines, including nine closed-source and eight open-source models. For closed-source models, we evaluate Gemini-2.5-Pro-Exp (Google DeepMind, 2025), Gemini-2.0-Flash-Exp (Google Cloud, 2025), Claude-3-7-Sonnet (Anthropic, 2025), Claude-3-7-Sonnet-Thinking (Anthropic, 2025), Claude-3-5-Sonnet (Anthropic, 2024), o3-mini-High (OpenAI, 2025), o1 (Jaech et al., 2024), GPT-4o (Hurst et al., 2024) and GPT-3.5 (Ouyang et al., 2022). Regarding open-source models, we evaluate DeepSeek-R1 (Guo et al., 2025), DeepSeek-V3 (Liu et al., 2024a), Llama-3.3-70B-Instruct (Meta AI, 2024), Yi-1.5-34B-Chat (Young et al., 2024), Qwen-2.5-72B-Instruct (Yang et al., 2024a), Qwen-2.5-72B-Math (Yang et al., 2024b), QwQ-32B-Preview (Qwen Team, 2024), SocraticLM (Liu et al., 2024b), and ours model EduDial-LLM.

Experiments Settings. We conduct experiments on two NVIDIA A100 80GB GPUs with CUDA 12.4, PyTorch 2.4.0, and Python 3.10. In the SFT stage, we use the QLoRA (Dettmers et al., 2023) with 4-bit quantization to fine-tune models, and LoRA (Hu et al.) configuration (rank $r=64$, scaling factor $\alpha = 16$). We utilize the AdamW optimizer alongside BF16 mixed precision training while evaluating model performance every 500 steps. Each epoch in this stage takes approximately 3 hours to complete, with a total computation time of 45 hours across all four models. For more experimental settings, see Table 5 in the appendix. In the DPO stage, the learning rate is 5e-7 with a batch size of 8. We accumulate gradients over 16 steps and train for two epochs. The QLoRA ($r=64$, $\alpha=16$) configuration remains consistent with the first stage. For DPO-specific parameters, we set β to 0.1, and the maximum sequence length is 1024 tokens. Each epoch requires approximately 4 hours, resulting in a total computation time of 8 hours for this stage. All hyperparameters are empirically determined via grid search on the test set.

373
374 4.2 PERFORMANCE COMPARISON
375
376
377

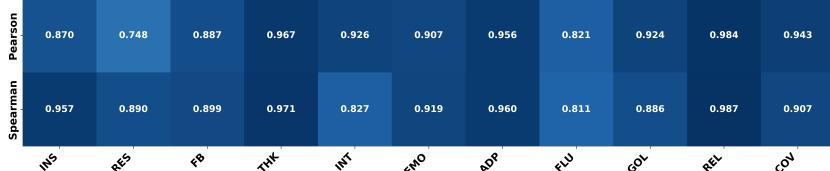
Our model exhibits comprehensive and balanced performance across nine evaluation dimensions of overall quality, achieving the highest average scores in both machine-based and human evaluations. In contrast, baseline models show uneven performance across different dimensions. Furthermore,

378
379
380
381 Table 2: Comprehensive Machine (M) and Human (H) Evaluation of 18 Models across Overall
382 Quality and Content Quality.
383

381 Model	Overall Quality												Content Quality											
	INS		RES		FB		THK		INT		EMO		ADP		FLU		GOL		AVG		REL		COV(%)	
	M	H	M	H	M	H	M	H	M	H	M	H	M	H	M	H	M	H	M	H	M	H	M	H
Closed Source Models																								
Gemini-2.5-Pro-Exp (Google DeepMind, 2025)	4.06	4.05	4.23	4.41	3.84	3.95	3.48	3.71	4.56	4.58	4.67	4.64	4.12	3.97	4.67	4.62	4.09	4.08	4.19	4.22	4.95	4.81	94.17	91.98
Gemini-2.0-Flash-Exp (Google Cloud, 2025)	3.89	3.78	4.34	4.37	3.89	4.00	4.29	4.41	3.57	3.51	3.69	4.01	3.89	3.79	4.46	4.64	4.31	4.29	4.04	4.09	4.94	4.78	96.16	94.84
Claude-3-7-Sonnet (Anthropic, 2025)	3.90	3.93	4.33	4.29	3.67	3.84	3.39	3.51	4.36	4.37	4.39	4.32	3.91	3.93	4.50	4.59	4.01	3.98	4.05	4.08	4.89	4.76	90.08	88.47
Claude-3-7-Sonnet-Thinking (Anthropic, 2025)	4.05	3.91	4.63	4.50	3.85	3.71	4.19	4.08	3.42	3.11	3.28	3.34	3.63	3.53	4.63	4.61	4.29	4.29	4.00	3.90	4.60	4.49	90.26	89.31
Claude-3-5-Sonnet (Anthropic, 2024)	3.82	3.71	4.29	4.00	3.68	3.40	3.44	3.38	3.62	3.21	3.97	3.86	3.78	3.49	4.47	4.14	3.94	4.05	3.89	3.69	4.80	4.68	93.70	91.82
o3-mini-High (OpenAI, 2025)	3.66	3.45	4.24	4.10	3.41	3.18	3.23	3.30	2.86	2.60	3.40	3.23	2.91	2.78	4.42	4.30	3.76	3.77	3.54	3.41	4.20	4.12	80.11	79.24
o1 (Jacob et al., 2024)	3.50	3.36	4.30	4.30	3.20	3.17	3.42	3.51	2.66	2.62	3.04	2.86	2.82	2.71	4.40	4.34	3.91	3.47	3.42	4.54	4.46	90.17	92.91	
GPT-4o (Hurst et al., 2024)	3.75	3.63	4.14	4.08	3.61	4.04	3.92	3.28	3.00	3.47	2.86	4.31	4.27	3.81	4.20	3.75	3.64	4.83	4.73	88.52	84.89			
GPT-3.5 (Ouyang et al., 2022)	3.67	3.50	4.03	3.85	3.22	3.10	3.92	3.84	2.92	2.58	3.25	2.56	3.28	2.94	4.31	3.93	3.72	3.86	3.59	3.35	4.76	4.61	91.30	89.83
Open Source Models																								
Deepseek-R1 (Guo et al., 2025)	3.77	3.54	4.50	4.42	3.61	3.44	3.79	4.03	2.73	2.62	2.76	2.58	3.40	3.27	4.18	4.23	4.16	4.17	3.66	3.59	4.57	4.48	90.18	89.93
Deepseek-V3 (Liu et al., 2024a)	3.39	3.25	4.09	4.26	3.21	3.09	3.08	3.25	2.50	2.31	2.72	2.58	2.77	2.74	4.07	4.35	3.94	3.91	3.31	3.30	4.62	4.51	95.04	94.32
Llama-3.3-70B-Instruct (Meta AI, 2024)	2.56	2.04	3.08	1.97	2.52	2.50	2.36	2.25	2.81	2.15	2.72	2.23	2.47	2.06	4.25	3.47	3.56	3.36	2.93	2.45	4.33	4.12	88.19	87.69
Yi-1.5-34B-Chat (Young et al., 2024)	2.28	2.10	3.11	3.17	2.81	2.86	2.28	2.28	2.75	2.92	2.89	3.08	2.44	2.78	3.64	3.22	3.58	3.81	2.86	2.91	4.28	4.11	86.92	85.53
Qwen-2.5-72B-Instruct (Yang et al., 2024a)	3.18	2.89	3.45	2.74	2.91	2.43	2.70	2.89	2.59	2.78	2.97	2.67	2.24	2.41	3.30	3.62	2.97	3.39	2.92	2.87	4.44	4.27	89.42	87.75
Qwen-2.5-72B-Math (Yang et al., 2024b)	2.02	2.06	2.32	3.60	1.96	2.63	1.93	2.58	1.91	2.57	1.89	2.44	1.84	2.01	2.84	3.26	2.70	3.19	2.16	2.82	4.35	4.16	83.89	82.43
QwQ-32B-Preview (Qwen Team, 2024)	2.89	2.22	3.24	2.42	2.65	2.28	2.43	2.33	2.69	2.25	2.67	2.31	2.16	2.22	3.15	3.44	2.89	3.31	2.75	2.53	4.43	4.25	88.08	86.56
SocraticLM (Liu et al., 2024b)	2.69	2.97	3.69	3.36	3.31	3.48	3.08	3.07	3.56	3.46	3.56	3.43	2.83	2.82	3.58	3.94	4.03	3.81	3.37	3.44	4.39	4.31	87.94	86.31
EduDial-LLM (Ours)	4.58	4.43	4.12	4.26	4.62	4.25	4.55	4.41	4.64	4.68	4.10	4.09	4.60	4.25	4.43	4.49	4.56	4.42	4.47	4.36	4.83	4.77	91.83	88.29

397
398 most open-source models score below 4.0 in multiple dimensions, highlighting their limitations.
399 Regarding content quality, our scores match the best baseline models. This can be attributed to our
400 carefully constructed high-quality dataset, EduDial. The MTI dataset used for SFT stage training
401 endows our model with clear teaching objectives and reliable content processing capabilities. These
402 capabilities manifest in outstanding performance across goal, relevance, and coverage dimensions.
403 Additionally, our model masters questioning techniques that effectively promote teacher-student
404 interaction and stimulate student thinking. These skills lead to excellent performance in dimensions
405 of thinking and insight. Subsequently, the PDTs dataset used for DPO stage training significantly
406 enhances the model’s ability to perceive varied student states. The model learns to make real-time
407 adjustments based on student responses. Superior performance in interactivity, adaptability, and
408 feedback dimensions substantiates this improvement. In conclusion, our dataset, EduDial, combined
409 with the two-stage training paradigm, enables the model to maintain deep cognitive interaction while
410 achieving teaching objectives.

4.3 ABLATION STUDY

420
421 Figure 4: Machine-Human Rating Consistency: Pearson and Spearman Correlation Coefficients
422 Between Machine and Human Evaluations for 18 Models Across 11 Dimensions.

423 **Human-Machine Rating Consistency Analysis.** As shown in Fig. 4, we evaluated the consistency
424 between human and machine ratings across 11 dimensions using Pearson and Spearman correlation
425 coefficients. The results demonstrate robust inter-rater consistency with average Pearson and
426 Spearman coefficients of 0.90 and 0.91, respectively. Analysis of all dimensions shows that content
427 quality aspects (Relevance and Coverage) consistently achieve high correlation coefficients exceeding
428 0.90. In contrast, the nine overall quality dimensions exhibit variable performance. While thinking
429 and adaptability dimensions demonstrate high consistency, interactivity, feedback, and insight show
430 comparatively lower agreement. While machine evaluation systems align strongly with human expert
431 assessment for dimensions with explicit criteria and objective metrics, they show decreased agreement
432 on dimensions requiring complex contextual understanding and teaching interaction quality

432 assessment. Despite these variations, the overall high consistency indicates machine rating reliability.
 433 Therefore, we employ machine ratings as the primary assessment method in subsequent experiments.
 434

435 Impact of Training Strategies on 436 Teaching Capabilities.

437 Table 3 shows evaluation results across 11 dimensions for the complete model and
 438 three ablation models when teaching students of different performance levels.
 439 The experimental results demonstrate: In overall quality, the complete model achieves optimal performance across all student types. It significantly outperforms other ablation models.
 440 Among single-stage training approaches, SFT significantly enhances base model performance, effectively teaching the model questioning techniques.
 441 Similarly, DPO notably strengthens thinking and adaptability dimensions while yielding modest interactivity gains, indicating its efficacy for complex teaching capabilities.
 442 Moreover, two-stage training optimizes performance beyond SFT alone, primarily bolstering thinking and adaptability dimensions.
 443 Analysis across different performance levels shows that the complete model possesses excellent adaptive capabilities. It provides personalized teaching according to different learning needs. Aspects of content quality assessment exhibit minimal fluctuation across all models.
 444 However, the complete model still achieves notable improvements. Experimental results prove that two-stage training ensures accuracy and comprehensiveness in knowledge transfer during teaching.
 445

446 Balancing Teaching Capability and Mathematical Reasoning.

447 To verify our model's general reasoning capability, we conduct experiments on two challenging mathematical reasoning datasets: Math500 (Hendrycks et al.) and AIME2024. Results show in Table 4 our model achieves 87.54% Averagepass@1 on Math-500 (Baseline: 91.12%) and 33.33% on AIME2024 (Baseline: 43.33%). Although our model performs slightly below the baseline in mathematical reasoning, this difference falls within the expected range. Our model aims not at maximizing reasoning performance but at enhancing teaching capability. In educational contexts, both reasoning capabilities and teaching skills are indispensable components. An ideal educational assistant provides accurate answers while identifying learners' confusion points and offering personalized guidance. As our model exemplifies, it maintains acceptable mathematical reasoning abilities while placing greater emphasis on guided teaching capabilities. These features make our model more suitable for real-world educational applications.

474 5 CONCLUSION

475 In this work, we introduce EduDial-LLM, a novel large language model tailored for multi-turn teacher-student dialogue teaching. Departing from the traditional single-turn paradigm, EduDial-LLM actively engages students through a structured questioning process, emulating effective pedagogical practices found in real-world classrooms. Central to our approach is the EduDial dataset, which supports two-stage training through instructional fine-tuning and preference optimization, enabling the model to adapt its teaching strategies to diverse learner profiles. To rigorously evaluate teaching quality, we also propose a comprehensive 11-dimensional evaluation framework. Experimental results on 17 mainstream LLMs validate the effectiveness of our approach: while most models struggle with student-driven interaction, EduDial-LLM consistently achieves superior performance across all evaluation dimensions. This work underscores the value of guided, interactive teaching in intelligent education and offers a new direction for future LLM-based tutoring systems.

476 Table 3: EduDial-LLM One-on-One Teaching Performance Across Different Training Configurations and Student Proficiency Levels. Student Types: Excellent (E), Medium (M), and Struggling (S).

Model	Overall Quality											Content Quality	
	INS	RES	FB	THK	INT	EMO	ADP	FLU	GOL	AVG	REL	COV(%)	
Complete Model (QwQ-32B-Preview + SFT + DPO)													
EduDial-LLM (E)	4.28	4.49	4.61	4.27	4.31	4.12	4.78	4.70	4.86	4.49	4.78	91.83	
EduDial-LLM (M)	4.23	4.41	4.52	4.24	4.25	4.19	4.64	4.89	4.75	4.46	4.68	90.87	
EduDial-LLM (S)	4.27	4.46	4.59	4.25	4.42	4.18	4.58	4.77	4.83	4.48	4.74	91.42	
SFT Only (QwQ-32B-Preview + SFT)													
EduDial-LLM w/o DPO (E)	4.16	4.40	4.31	3.92	4.18	3.94	4.17	4.83	4.53	4.27	4.63	89.03	
EduDial-LLM w/o DPO (M)	4.14	4.43	4.38	3.81	4.19	3.98	4.14	4.79	4.47	4.26	4.64	88.31	
EduDial-LLM w/o DPO (S)	4.08	4.45	4.32	3.89	4.14	3.91	4.13	4.77	4.45	4.24	4.66	89.14	
DPO Only (QwQ-32B-Preview + DPO)													
EduDial-LLM w/o SFT (E)	3.21	3.83	3.99	3.99	3.96	3.65	3.72	4.02	3.98	3.81	4.45	87.25	
EduDial-LLM w/o SFT (M)	3.15	3.72	3.56	3.93	3.82	3.51	3.64	3.85	4.12	3.70	4.38	86.34	
EduDial-LLM w/o SFT (S)	3.29	3.89	3.71	3.87	3.91	3.69	3.75	3.93	3.78	3.76	4.43	89.05	
Base Model (QwQ-32B-Preview)													
EduDial-LLM w/o SFT w/o DPO (E)	2.67	3.11	3.33	2.56	3.33	3.31	2.33	3.94	3.33	3.10	4.39	89.83	
EduDial-LLM w/o SFT w/o DPO (M)	2.28	3.06	2.44	2.17	3.00	2.86	2.86	3.44	3.78	2.88	4.29	82.47	
EduDial-LLM w/o SFT w/o DPO (S)	2.83	3.17	2.97	2.14	3.14	3.22	2.61	3.75	3.06	2.99	4.37	88.58	

477 Table 4: Reasoning Capability Comparison Between Base Model and EduDial-LLM on Standard Benchmarks.

Model	Math500	AIME2024
QwQ-32B-Preview	91.12	43.33
EduDial-LLM	87.54	33.33

486 **Ethics statement.** The EduDial dataset was constructed using simulated interactions between teacher
 487 and student agents. No real-world student data or personally identifiable information was used in the
 488 creation of this dataset, thereby eliminating privacy concerns. Furthermore, the content was carefully
 489 curated and validated to ensure the integrity, accuracy, and safety of the educational material. Our
 490 work is committed to mitigating potential biases that could be introduced through the generative
 491 process and aims to promote the responsible development of LLMs for educational applications.

492 **Reproducibility statement.** To ensure full reproducibility of our research, we will make all key
 493 components publicly available. This includes the complete EduDial dataset, the code used for data
 494 generation, the training scripts for EduDial-LLM 32B, and the source code for our 11-dimensional
 495 evaluation framework. We will also release the model weights for EduDial-LLM 32B, enabling other
 496 researchers to replicate our experiments and build upon our work. All resources will be hosted on a
 497 public repository upon publication.

498 REFERENCES

501 Anthropic. Claude 3.5 sonnet, 2024. URL <https://www.anthropic.com/news/claude-3-5-sonnet>. [Online; accessed 30-April-2025].

504 Anthropic. Claude 3.7 sonnet and claude code, 2025. URL <https://www.anthropic.com/news/claude-3-7-sonnet>. [Online; accessed 11-May-2025].

506 Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su,
 507 Tiezheng Ge, Bo Zheng, et al. Mt-bench-101: A fine-grained benchmark for evaluating large
 508 language models in multi-turn dialogues. In *Proceedings of the 62nd Annual Meeting of the
 509 Association for Computational Linguistics (Volume 1: Long Papers)*, pages 7421–7454, 2024.

510 Leng Cai, Junxuan He, Yikai Li, Junjie Liang, Yuanping Lin, Ziming Quan, Yawen Zeng, and Jin Xu.
 511 Rtbagent: A llm-based agent system for real-time bidding. In *Companion Proceedings of the ACM
 512 on Web Conference 2025*, pages 104–113, 2025.

514 Andrew Caines, Helen Yannakoudakis, Helena Edmondson, Helen Allen, Pascual Pérez-Paredes,
 515 Bill Byrne, and Paula Buttery. The teacher-student chatroom corpus. In *Proceedings of the 9th
 516 Workshop on NLP for Computer Assisted Language Learning*, pages 10–20, 2020.

517 Zhiyu Chen, Wenhui Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
 518 Moussa, Matt Beane, Ting-Hao Huang, Bryan R Routledge, et al. Finqa: A dataset of numerical
 519 reasoning over financial data. In *Proceedings of the 2021 Conference on Empirical Methods in
 520 Natural Language Processing*, pages 3697–3711, 2021.

521 Kaustubh Deshpande, Ved Sirdeshmukh, Johannes Baptist Mols, Lifeng Jin, Ed-Yeremai Hernandez-
 522 Cardona, Dean Lee, Jeremy Kritz, Willow E Primack, Summer Yue, and Chen Xing. Multichal-
 523 lenge: A realistic multi-turn conversation evaluation benchmark challenging to frontier llms. In
 524 *Findings of the Association for Computational Linguistics: ACL 2025*, pages 18632–18702, 2025.

525 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 526 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

528 Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
 529 Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected
 530 by supervised fine-tuning data composition. In *Proceedings of the 62nd Annual Meeting of the
 531 Association for Computational Linguistics (Volume 1: Long Papers)*, pages 177–198, 2024.

532 Haodong Duan, Jueqi Wei, Chonghua Wang, Hongwei Liu, Yixiao Fang, Songyang Zhang, Dahua
 533 Lin, and Kai Chen. Botchat: Evaluating llms’ capabilities of having multi-turn dialogues. In
 534 *Findings of the Association for Computational Linguistics: NAACL 2024*, pages 3184–3200, 2024.

535 Mary Forehand. Bloom’s taxonomy. *Emerging perspectives on learning, teaching, and technology*,
 536 41(4):47–56, 2010.

538 Google Cloud. Gemini 2.0 flash | generative ai on vertex ai | google cloud, 2025. URL <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash>. [Online;
 539 accessed 30-April-2025].

540 Google DeepMind. Gemini 2.5: Our most intelligent ai model, 2025. URL <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking>. [Online; accessed 11-May-2025].

541

542

543

544 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

545

546

547 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*.

548

549

550

551

552 Bihao Hu, Longwei Zheng, Jiayi Zhu, Lishan Ding, Yilei Wang, and Xiaoqing Gu. Teaching plan generation and evaluation with gpt-4: Unleashing the potential of llm in instructional design. *IEEE Transactions on Learning Technologies*, 2024.

553

554

555 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *International Conference on Learning Representations*.

556

557

558

559 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.

560

561

562 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024.

563

564

565

566 Priyanka Kargupta, Ishika Agarwal, Dilek Hakkani-Tur, and Jiawei Han. Instruct, not assist: Llm-based multi-turn planning and hierarchical questioning for socratic code debugging. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 9475–9495, 2024.

567

568

569 Deuksin Kwon, Emily Weiss, Tara Kulshrestha, Kushal Chawla, Gale Lucas, and Jonathan Gratch. Are llms effective negotiators? systematic evaluation of the multifaceted capabilities of llms in negotiation dialogues. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 5391–5413, 2024.

570

571

572

573

574 Lasha Labadze, Maya Grigolia, and Lela Machaidze. Role of ai chatbots in education: systematic literature review. *International Journal of Educational Technology in Higher Education*, 20(1):56, 2023.

575

576

577 Ruijia Li, Yiting Wang, Chanjin Zheng, Yuan-Hao Jiang, and Bo Jiang. Generating contextualized mathematics multiple-choice questions utilizing large language models. In *International Conference on Artificial Intelligence in Education*, pages 494–501. Springer, 2024.

578

579

580

581 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, CG Ishaan Gulrajani, P Liang, and TB Hashimoto. Alpacaeval: an automatic evaluator of instruction-following models (2023). URL https://github.com/tatsu-lab/alpaca_eval, 2023.

582

583

584

585 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024a.

586

587

588 Jiayu Liu, Zhenya Huang, Tong Xiao, Jing Sha, Jinze Wu, Qi Liu, Shijin Wang, and Enhong Chen. Socratiicl: Exploring socratic personalized teaching with large language models. *Advances in Neural Information Processing Systems*, 37:85693–85721, 2024b.

589

590

591

592 Jiayu Liu, Zhenya Huang, Tong Xiao, Jing Sha, Jinze Wu, Qi Liu, Shijin Wang, and Enhong Chen. Socratiicl: Exploring socratic personalized teaching with large language models. *Advances in Neural Information Processing Systems*, 37:85693–85721, 2025a.

593

594 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
 595 Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
 596 processing. *ACM computing surveys*, 55(9):1–35, 2023.

597

598 Sanyuya Liu, Jintian Feng, Xiaoxuan Shen, Shengyingjie Liu, Qian Wan, and Jianwen Sun. Vcr: A
 599 “cone of experience” driven synthetic data generation framework for mathematical reasoning. In
 600 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 24650–24658,
 601 2025b.

602 Wenhao Liu, Zhenyi Lu, Xinyu Hu, Jierui Zhang, Dailin Li, Jiacheng Cen, Huilin Cao, Haiteng Wang,
 603 Yuhan Li, Kun Xie, et al. Storm-born: A challenging mathematical derivations dataset curated via
 604 a human-in-the-loop multi-agent framework. *arXiv preprint arXiv:2506.01531*, 2025c.

605

606 Jakub Macina, Nico Daheim, Sankalan Chowdhury, Tanmay Sinha, Manu Kapur, Iryna Gurevych,
 607 and Mrinmaya Sachan. Mathdial: A dialogue tutoring dataset with rich pedagogical properties
 608 grounded in math reasoning problems. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 5602–5621, 2023.

609

610 Meta AI. Llama 3.3 model card and prompt formats, 2024. URL https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/. [Online; accessed 11-May-2025].

611

612

613 Jennifer Meyer, Thorben Jansen, Ronja Schiller, Lucas W Liebenow, Marlene Steinbach, Andrea
 614 Horbach, and Johanna Fleckenstein. Using llms to bring evidence-based feedback into the
 615 classroom: Ai-generated feedback increases secondary students’ text revision, motivation, and
 616 positive emotions. *Computers and Education: Artificial Intelligence*, 6:100199, 2024.

617

618 OpenAI. Openai o3-mini system card, 2025. URL <https://openai.com/index/o3-mini-system-card/>. [Online; accessed 30-April-2025].

619

620 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 621 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 622 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 623 27744, 2022.

624

625 Huachuan Qiu and Zhenzhong Lan. Interactive agents: Simulating counselor-client psychological
 626 counseling via role-playing llm-to-llm interactions. *arXiv preprint arXiv:2408.15787*, 2024.

627

628 Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
 629 <https://qwenlm.github.io/blog/qwq-32b-preview/>. [Online; accessed 30-April-2025].

630

631 Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
 632 llm agent search in modular design space. In *The Thirteenth International Conference on Learning
 Representations*.

633

634 ShengbinYue ShengbinYue, Ting Huang, Zheng Jia, Siyuan Wang, Shujun Liu, Yun Song, Xuan-Jing
 635 Huang, and Zhongyu Wei. Multi-agent simulator drives language models for legal intensive
 636 interaction. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pages
 637 6537–6570, 2025.

638

639 John Stamper, Ruiwei Xiao, and Xinying Hou. Enhancing llm-based feedback: Insights from
 640 intelligent tutoring systems and the learning sciences. In *International Conference on Artificial
 Intelligence in Education*, pages 32–43. Springer, 2024.

641

642 Katherine Stasaski, Kimberly Kao, and Marti A Hearst. Cima: A large open access dialogue dataset
 643 for tutoring. In *Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building
 Educational Applications*, pages 52–64, 2020.

644

645 Abhijit Suresh, Jennifer Jacobs, Charis Harty, Margaret Perkoff, James H Martin, and Tamara
 646 Sumner. The talkmoves dataset: K-12 mathematics lesson transcripts annotated for teacher and
 647 student discursive moves. In *Proceedings of the Thirteenth Language Resources and Evaluation
 Conference*, pages 4654–4662, 2022.

648 Junda Wang, Zonghai Yao, Zhichao Yang, Huixue Zhou, Rumeng Li, Xun Wang, Yucheng Xu,
 649 and Hong Yu. Notechat: A dataset of synthetic patient-physician conversations conditioned on
 650 clinical notes. In *Findings of the Association for Computational Linguistics ACL 2024*, pages
 651 15183–15201, 2024a.

652

653 Rose Wang, Qingyang Zhang, Carly Robinson, Susanna Loeb, and Dorottya Demszky. Bridging the
 654 novice-expert gap via models of decision-making: A case study on remediating math mistakes.
 655 In *Proceedings of the 2024 Conference of the North American Chapter of the Association for
 656 Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages
 657 2174–2199, 2024b.

658

659 Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S Yu, and
 660 Qingsong Wen. Large language models for education: A survey and outlook. *arXiv preprint
 661 arXiv:2403.18105*, 2024c.

662

663 Jiangxu Wu, Cong Wang, TianHuang Su, Jun Yang, Haozhi Lin, Chao Zhang, Ming Peng, Kai Shi,
 664 SongPan Yang, BinQing Pan, et al. Instruct: A review-driven multi-turn conversations generation
 665 method for large language models. *arXiv preprint arXiv:2505.11010*, 2025.

666

667 Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Xin Guo,
 668 Dingwen Yang, Chenyang Liao, Wei He, et al. Agentgym: Evaluating and training large language
 669 model-based agents across diverse environments. In *Proceedings of the 63rd Annual Meeting of the
 670 Association for Computational Linguistics (Volume 1: Long Papers)*, pages 27914–27961, 2025.

671

672 Eric Xie, Guangzhi Xiong, Haolin Yang, Olivia Coleman, Michael Kennedy, and Aidong Zhang.
 673 Leveraging grounded large language models to automate educational presentation generation. In
 674 *Large Foundation Models for Educational Assessment*, pages 207–220. PMLR, 2025.

675

676 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 677 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 678 arXiv:2412.15115*, 2024a.

679

680 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 681 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 682 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

683

684 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
 685 Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. *arXiv preprint
 686 arXiv:2403.04652*, 2024.

687

688 Guangtao Zeng, Wenmian Yang, Zeqian Ju, Yue Yang, Sicheng Wang, Ruisi Zhang, Meng Zhou,
 689 Jiaqi Zeng, Xiangyu Dong, Ruoyu Zhang, et al. Meddialog: Large-scale medical dialogue datasets.
 690 In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
 691 (EMNLP)*, pages 9241–9250, 2020.

692

693 Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianxiao Jiang,
 694 Jie Cao, Huiqin Liu, Zhiyuan Liu, et al. Simulating classroom education with llm-empowered
 695 agents. *arXiv preprint arXiv:2406.19226*, 2024.

696

697

A APPENDIX

698 Table 5: Parameter Settings in SFT Stage for Four Models.
 699

Parameter	Teacher	Excellent Student	Medium Student	Struggling Student
Base Model	QwQ-32B-Preview	Qwen2.5-32B-Instruct	Qwen2.5-14B-Instruct	Qwen2.5-7B-Instruct
Learning Rate	3e-4	5e-4	2e-4	5e-5
Batch Size	16	16	32	32
Epochs	2	3	5	5

702 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)
703704 In this paper, we employ LLMs as an auxiliary tool. We utilized LLMs for language polishing to
705 enhance clarity, and we manually reviewed all modifications.
706707 A.2 CASE STUDY
708709 To illustrate the effectiveness of our approach, we present a comparative case study examining how
710 EduDial-LLM and GPT-4o guide students in learning the concept of "Normal Distribution."
711712 **Comparative Teaching Dialogue: Normal Distribution**713 **EduDial-LLM 32B**714
715 **Teacher:** Students, today we're going to learn
716 about a new statistical concept — normal dis-
717 tribution. Have you observed any patterns in
718 the distribution of phenomena or data? For ex-
719 ample, how do you think the test scores in your
720 class might be distributed?
721722 **Excellent Student:** I think there would prob-
723 ably be an average value, with most students'
724 scores clustered around it, and only a few doing
725 exceptionally well or poorly.
726727 **Medium Student:** I think test scores would
728 mostly be concentrated in the middle position,
729 with possibly only a few students scoring par-
730 ticularly high or low.
731732 **Struggling Student:** I'm not really sure, but
733 I feel like some students would do well and
734 some would do poorly.
735736 **Teacher:** Very good! Your observations are
737 very close to the normal distribution we're go-
738 ing to learn about today. Normal distribution
739 is commonly used to describe many real-life
740 phenomena, such as test scores, human height,
741 weight, etc. Its characteristic is that most data
742 is concentrated around the mean value, gradu-
743 ally decreasing on both sides. In our previous
744 studies, we've already encountered the con-
745 cepts of random variables and probability dis-
746 tributions. Do you remember what a probabili-
747 ty distribution is?
748749 **GPT-4o**750 **Teacher:** Today, we are learning about normal
751 distribution. Has anyone seen a "high in the
752 middle, low on both sides" bell-shaped distri-
753 bution in daily life?
754755 **Excellent Student:** Yes! Test scores, long
756 jump results, and height data all follow this
757 pattern, with most people clustered around the
758 average value.
759760 **Medium Student:** Yes, class heights and test
761 scores indeed follow this pattern, with fewer
762 students getting very high or very low scores.
763764 **Struggling Student:** I think I've heard that
765 test scores are like this... But what does this
766 have to do with normal distribution? Is it very
767 complicated?
768769 **Teacher:** Normal distribution can be repre-
770 sented by a bell-shaped curve, and its formula
771 is:
772

773
$$\phi_{\mu, \sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

774 where μ is the center position (mean), and σ
775 is the width of the distribution (standard devia-
776 tion).
777778 This comparison reveals significant pedagogical differences between the two approaches. EduDial-
779 LLM employs an open-ended inquiry strategy that activates students' prior knowledge and encourages
780 observation-based learning, progressively building from students' existing understanding to formal
781 mathematical concepts. In contrast, GPT-4o follows a more traditional didactic approach, directly
782 introducing the concept with pre-defined examples before immediately presenting the complex
783 mathematical formula. Notably, EduDial-LLM demonstrates adaptive teaching by acknowledging all
784 student responses and building upon each student's understanding level, while GPT-4o maintains a
785 uniform teaching pace regardless of individual cognitive differences. Through this case study, we
786 observe that EduDial-LLM's approach encourages deeper reflection and student engagement through
787 exploratory questions, adapting its teaching strategy to provide appropriate scaffolding for different
788 learner types, thereby embodying the differentiated instruction principles that are fundamental to
789 effective mathematics education.
790

756
757

Generation MTI Dataset Prompt Template

758
759

STUDENT PROFILES

760
761
762
763

- **Excellent Student (s1):** {Excellent profile}
- **Medium Student (s2):** {Medium student profile}
- **Struggling Student (s3):** {Struggling student profile}

764
765

TEACHER PROFILE

766
767
768

TEACHING STAGES & QUESTIONING STRATEGIES

769
770
771

1. Introduction Stage

772
773
774

- *Scenario-based Questions:* Guide students to understand concepts through life experiences
Example: {Scenario question example}
- *Recall Questions:* Help students connect prior knowledge with new concepts
Example: {Recall question example}

775
776

2. Concept Exploration Stage

777
778
779

- *Prediction Questions:* Encourage students to predict new concepts based on existing knowledge
Example: {Prediction question example}
- *Verification Questions:* Verify conceptual understanding through examples
Example: {Verification question example}

780
781
782

3. Deep Understanding Stage

783
784
785

- *Zone of Proximal Development Questions:* Present questions slightly above students' current ability
Example: {ZPD question example}
- *Critical Thinking Questions:* Encourage students to question assumptions and explore new perspectives
Example: {Critical thinking question example}

786
787
788

4. Knowledge Application Stage

789
790
791

- *Integrative Questions:* Combine multiple knowledge points to solve complex problems
Example: {Integrative question example}
- *Open-ended Questions:* Present questions without unique answers to promote creative thinking
Example: {Open-ended question example}

792
793
794
795

5. Reflection and Summary Stage

796

- *Summary Questions:* Help students review and consolidate understanding
Example: {Summary question example}
- *Metacognitive Questions:* Guide students to evaluate their learning methods and effectiveness
Example: {Metacognitive question example}

797
798
799

TEACHING SYLLABUS

{Detailed teaching syllabus description}

800

INTERACTION STRUCTURE

801

- At least two rounds of dialogue per phase
- Ensure coherence between phases

802
803804
805
806

807

808

809

810
811

Deep Exploration Strategy Prompt Template for Excellent Students

812
813
814

You are a mathematics teacher delivering a lesson based on the curriculum: {Teaching Content} The classroom instruction is divided into five phases, with teacher (T) and student interactions in each phase:

815
816
817
818
819
820
821
822

- **T:** Represents the teacher, possessing systematic mathematical knowledge, rich teaching experience, and differentiated teaching abilities.
- **s1:** Represents high-performing students, typically with active thinking, solid foundation, and questions involving deep thinking or knowledge extension.
- **s2:** Represents average students, with relatively stable basic knowledge, but possibly insufficient mastery of problem-solving techniques and comprehensive application abilities.
- **s3:** Represents struggling students, who may have difficulty keeping up with classroom pace due to weak foundations or comprehension deficiencies.

823

HIGH-PERFORMING STUDENT (S1) CHARACTERISTICS AND TEACHING STRATEGIES

824
825
826
827

STUDENT PERFORMANCE CHARACTERISTICS:

828
829
830
831
832
833
834

1. Question Types:

- **Inquiry questions:** e.g., "Why can derivatives represent the rate of change of a function? How is this conclusion derived?"
- **Extension questions:** e.g., "Can this theorem be applied in more complex situations, such as non-linear equations?"
- **Optimization questions:** e.g., "Is the standard answer to this problem unique? Is there a more concise solution?"

835
836
837
838
839
840
841
842

2. Response Types:

- **Accurate answers with explanations:** e.g., "This function has an extreme point at $x = 1$ because the derivative is zero at that point and the second derivative is greater than zero, so it's a minimum value."
- **Exploring conceptual essence:** e.g., "Besides the algebraic method, we can also use a geometric method to prove this conclusion."
- **Creating knowledge connections:** e.g., "This problem is related to the arithmetic sequence we learned earlier, and can be solved using the general term formula for arithmetic sequences."

843
844
845
846
847
848
849
850
851
852
853
854

TEACHER RESPONSE STRATEGY (DEEP EXPLORATION STRATEGY):

- Guide students to consider theoretical foundations, helping them understand the origins and deeper meanings of concepts
- Provide extended explanations or guide independent research, cultivating independent thinking abilities
- Encourage reflection on problems from different angles, exploring multiple solutions, fostering critical and innovative thinking
- Design higher-order challenging questions, encouraging application of learned knowledge to solve open-ended or comprehensive problems
- Guide students to reflect on problem-solving processes, promoting group discussion and collaboration

855
856

TASK REQUIREMENTS

857
858

Design 25 non-repetitive single-round dialogues for high-performing students (s1) across five classroom phases, with 5 dialogues per phase. Each dialogue should include:

859
860
861
862
863

1. s1's statement (question or answer): Must conform to high-performing student characteristics, reflecting realistic teaching scenarios, limited to mathematical content
2. Teacher's response (T): Apply the deep exploration strategy, demonstrate teaching professionalism, and provide detailed guidance for student thinking processes

Generated dialogue format should be [s1], [T], ensuring rich, deep content that reflects the teacher's guidance for high-performing students' cognitive development.

864
865

Thinking Guidance Strategy Prompt Template for Average Students

866
867
868

You are a mathematics teacher delivering a lesson based on the curriculum: {Teaching Content} The classroom instruction is divided into five phases, with teacher (T) and student interactions in each phase:

869
870
871
872
873
874
875
876

- **T:** Represents the teacher, possessing systematic mathematical knowledge, rich teaching experience, and differentiated teaching abilities.
- **s1:** Represents high-performing students, typically with active thinking, solid foundation, and questions involving deep thinking or knowledge extension.
- **s2:** Represents average students, with relatively stable basic knowledge, but possibly insufficient mastery of problem-solving techniques and comprehensive application abilities.
- **s3:** Represents struggling students, who may have difficulty keeping up with classroom pace due to weak foundations or comprehension deficiencies.

877

AVERAGE STUDENT (S2) CHARACTERISTICS AND TEACHING STRATEGIES

880
881

STUDENT PERFORMANCE CHARACTERISTICS:

882

1. Question Types:

883

- **Application questions:** e.g., "In this problem, how do I determine whether to use the binomial theorem or direct expansion?"
- **Skill-based questions:** e.g., "Why must this problem be simplified first rather than directly substituting into the formula?"
- **Detail-oriented questions:** e.g., "Why can this transformation step be done this way?"

884

885

886

887

888

2. Response Types:

889

890

891

892

893

- **Partially correct answers:** e.g., "For the equation $x^2-4=0$, after moving terms and taking the square root, we get $x=2$."
- **Expressing uncertainty:** e.g., "I think I should use the formula to solve it, but I don't know how to proceed to the next step."
- **Seeking hints:** e.g., "This problem is a bit difficult, could you give me another hint?"

894

TEACHER RESPONSE STRATEGY (THINKING GUIDANCE STRATEGY):

895

896

897

898

899

900

901

902

903

904

905

- Help students understand internal connections between knowledge points, clarifying their functions and applicable scenarios
- Gradually explain the logic of problem-solving processes, encourage independent restatement of problem-solving ideas, cultivating thinking abilities
- Provide in-depth explanations for detail-oriented questions, offer efficient practice strategies to help consolidate knowledge application
- Provide positive feedback, promptly praise progress and correct portions, offering improvement suggestions in an encouraging manner
- Provide layered guidance, breaking down problem-solving processes into smaller steps, guiding completion step-by-step

906

TASK REQUIREMENTS

907

908

909

Design 25 non-repetitive single-round dialogues for average students (s2) across five classroom phases, with 5 dialogues per phase. Each dialogue should include:

910

911

912

913

1. s2's statement (question or answer): Must conform to average student characteristics, reflecting realistic teaching scenarios, limited to mathematical content
2. Teacher's response (T): Apply the thinking guidance strategy, demonstrate teaching professionalism, and provide detailed guidance for problem-solving approaches

914

915

Generated dialogue format should be [s2], [T], ensuring responses are inspirational and effectively help average students understand knowledge points and improve problem-solving abilities.

916

917

918
919

Confidence Building Strategy Prompt Template for Struggling Students

920
921
922

You are a mathematics teacher delivering a lesson based on the curriculum: {Teaching Content}
 The classroom instruction is divided into five phases, with teacher (T) and student interactions in each
 phase:

923
924
925
926
927
928
929
930

- **T:** Represents the teacher, possessing systematic mathematical knowledge, rich teaching experience, and differentiated teaching abilities.
- **s1:** Represents high-performing students, typically with active thinking, solid foundation, and questions involving deep thinking or knowledge extension.
- **s2:** Represents average students, with relatively stable basic knowledge, but possibly insufficient mastery of problem-solving techniques and comprehensive application abilities.
- **s3:** Represents struggling students, who may have difficulty keeping up with classroom pace due to weak foundations or comprehension deficiencies.

931

STRUGGLING STUDENT (S3) CHARACTERISTICS AND TEACHING STRATEGIES

932
933
934
935

STUDENT PERFORMANCE CHARACTERISTICS:

936
937
938
939
940

1. Question Types:

- **Fundamental questions:** e.g., "Why are alternate interior angles equal when two parallel lines are crossed by a transversal?"
- **Understanding questions:** e.g., "I'm completely lost, where should I start with this problem?"

941
942
943
944
945

2. Response Types:

- **Incorrect answers:** e.g., "Teacher, the expansion of $(a+b)^2$ is $2a+2b$."
- **Vague responses:** e.g., "I think I calculated something wrong, I'm not sure if the answer is correct."
- **Direct expression of inability:** e.g., "Teacher, I don't know how to do this."

946
947
948
949
950
951
952
953
954
955
956

TEACHER RESPONSE STRATEGY (CONFIDENCE BUILDING STRATEGY):

- Emphasize repeated explanation of basic knowledge, using straightforward language to aid understanding
- Patiently guide step-by-step analysis of problems, avoiding presenting too much information at once
- Use simple, concrete examples to help build confidence and reduce frustration
- Affirm students' efforts and correct portions, then help gradually correct thinking paths, protecting self-confidence
- Start from the most basic elements, allowing students to experience step-by-step success, reducing psychological burden

957
958

TASK REQUIREMENTS

959
960

Design 25 non-repetitive single-round dialogues for struggling students (s3) across five classroom phases, with 5 dialogues per phase. Each dialogue should include:

961
962
963
964

1. s3's statement (question or answer): Must conform to struggling student characteristics, reflecting realistic teaching scenarios, limited to mathematical content
2. Teacher's response (T): Apply the confidence-building strategy, demonstrating teaching patience and understanding of student psychology

965
966
967
968
969
970
971

Generated dialogue format should be [s3], [T], ensuring responses are clear, progressive, and help struggling students build confidence in mathematics learning.

972

Evaluation Prompt Template

973

974

975 Please evaluate the following teaching content based on 11 teaching indicators spanning two dimensions:
 976 overall quality and content quality. Each overall quality indicator and relevance score ranges from 1-5
 977 points (1 being the lowest, 5 being the highest). Coverage is rated from 0%-100% (0% being the lowest,
 100% being the highest).

978

ASSESSMENT OBJECT

979

Teaching content: {Teaching content}

980

Teaching outline: {Teaching outline}

981

982

OVERALL QUALITY DIMENSION (1-5 POINTS EACH)

983

1. INSIGHT

984

985 **Definition:** Assessing whether the teacher can accurately capture and deeply understand students'
 986 learning needs, knowledge levels, and question intentions.

987 **Assessment points:**

- 988 • **Need identification:** Whether the teacher identifies students' specific learning needs and difficulties
 989 through questioning, observation, or other methods
- 990 • **Problem analysis:** Whether the teacher can analyze students' questions and understand the learning
 991 obstacles or misconceptions behind them
- 992 • **Personalized understanding:** Whether the teacher demonstrates understanding of each student's
 993 unique learning style and needs

994 **Score:** []/5

995

2. RESPONSE

996

997 **Definition:** Assessing whether the teacher can effectively solve students' problems and provide practical
 998 and constructive guidance.

999 **Assessment points:**

- 1000 • **Problem solving:** Whether the teacher can provide clear and effective solutions to students' problems
- 1001 • **Specificity of guidance:** Whether the advice provided is specific, actionable, and can help students
 1002 improve in practice
- 1003 • **Resource provision:** Whether the teacher recommends relevant resources (such as textbooks, exer-
 1004 cises, reference materials) to support students' further learning

1005 **Score:** []/5

1006

3. FEEDBACK

1007

1008 **Definition:** Assessing whether the teacher can provide timely and effective feedback to help students
 1009 improve their learning.

1010 **Assessment points:**

- 1011 • **Timeliness:** Whether feedback is provided promptly after students raise questions, avoiding delays in
 1012 students' learning progress
- 1013 • **Constructiveness:** Whether the feedback content is constructive and can guide students on how to
 1014 improve
- 1015 • **Two-way communication:** Whether the teacher encourages students to respond to feedback, promot-
 1016 ing two-way communication

1017 **Score:** []/5

1018

4. THINKING

1019

1020 **Definition:** Assessing whether the teacher can stimulate students' critical thinking abilities, including
 1021 analytical ability, open-mindedness, and self-assessment ability.

1022 **Assessment points:**

- 1023 • **Question guidance:** Whether the teacher guides students to think deeply through open-ended
 1024 questions
- 1025 • **Analysis training:** Whether the teacher cultivates students' analytical abilities, helping them break
 1026 down complex problems

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

- **Self-assessment:** Whether the teacher encourages students to reflect and self-assess to enhance independent learning abilities

Score: []/5

5. INTERACTIVITY

Definition: Assessing the frequency and quality of teacher-student interactions in teaching dialogues, including questioning techniques and ways of responding to student feedback.

Assessment points:

- **Questioning techniques:** Whether the teacher uses effective questioning methods to promote student thinking and participation
- **Response to feedback:** Whether the teacher actively responds to student feedback, promoting continued interaction
- **Interaction frequency:** Whether interactions between teacher and students are frequent, avoiding one-way knowledge transmission

Score: []/5

6. EMOTIONAL SUPPORT

Definition: Assessing whether the teacher can provide emotional support during the teaching process, establish a positive learning environment, and help students build confidence and positive learning attitudes.

Assessment points:

- **Emotional care:** Whether the teacher pays attention to students' emotional states and provides necessary care and support
- **Motivation and encouragement:** Whether the teacher stimulates students' learning motivation and self-confidence through encouragement and praise
- **Building trust:** Whether the teacher establishes trust relationships with students, making them feel safe and respected

Score: []/5

7. ADAPTABILITY

Definition: Assessing the teacher's ability to adjust teaching methods according to different students' learning styles and needs, ensuring that each student receives personalized guidance.

Assessment points:

- **Teaching method adjustment:** Whether the teacher adjusts teaching strategies and methods based on student feedback and learning progress
- **Personalized guidance:** Whether the teacher can provide personalized guidance and support based on different students' characteristics
- **Flexible response:** Whether the teacher can flexibly respond to unexpected situations in the classroom to ensure teaching effectiveness

Score: []/5

8. FLUENCY

Definition: Assessing whether the teacher's expression is clear, easy to understand, and natural in tone.

Assessment points:

- **Language expression:** Whether the language used by the teacher is accurate and concise, avoiding ambiguous or obscure expressions
- **Logical structure:** Whether the teacher's explanation has a clear logical structure that facilitates student understanding
- **Natural tone:** Whether the teacher's tone in communication is friendly and patient, creating a good communication atmosphere

Score: []/5

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

9. GOAL

Definition: Assessing whether the teacher's guidance helps achieve predetermined teaching objectives, such as knowledge mastery, skill development, etc.

Assessment points:

- **Clear objectives:** Whether teaching activities have clearly set specific learning objectives
- **Goal alignment:** Whether the teacher's teaching behaviors and guidance align with the set objectives
- **Outcome assessment:** Whether the teacher uses assessment methods to verify if students have achieved the predetermined objectives

Score: []/5

CONTENT QUALITY DIMENSION

10. RELEVANCE

Definition: Assessing whether the teaching content is relevant to the teaching outline of this lesson.

Assessment points:

- Whether the content aligns with the themes and objectives of the teaching outline
- Whether the content includes core concepts and knowledge points related to the course topic

Score: []/5

11. COVERAGE

Definition: Assessing the proportion of teaching outline knowledge points covered by the teaching content.

Assessment points:

- The proportion of knowledge points in the teaching outline covered by the teaching content
- Whether the core concepts and key knowledge points in the teaching outline are covered

Coverage rate: []%

SUMMARY EVALUATION

[Provide comprehensive evaluation and improvement suggestions here]

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

Table 6: Pedagogical Questioning Strategies for the Five-Stage Teaching Process.

Question Type	Purpose	Cognitive Process	Exemplar Questions
Scenario-based	Connect abstract concepts to real-world applications	Activation of prior knowledge → Contextualization	"In planning a 'Community Garden Project' with varied participant skills (vegetable growing, design, tool provision), how would you optimize team allocation?"
Retrospective	Bridge previous and new knowledge	Memory retrieval → Knowledge integration	"How does today's set theory connect with our earlier classification of numbers?"
Predictive	Stimulate hypothesis formation	Pattern recognition → Logical conjecture	"Predict the elements when grouping all even numbers from 1 to 10 into a set"
Verification	Develop critical evaluation skills	Hypothesis testing → Counterexample analysis	"If we add 0 to the positive integer set, does it remain a positive integer set? Justify."
Zone of Proximal Development	Scaffold conceptual advancement	Guided discovery → Generalization	"Extend the 1-10 even number set to formulate a general representation for any range."
Critical	Foster alternative perspectives	Divergent thinking → Justification	"Design a novel integer classification beyond odd-/even with explanatory principles"
Integrative	Synthesize multiple concepts	Cross-domain application → System thinking	"Find a number in \mathbb{Q} but not \mathbb{Z} and explain its significance"
Open-ended	Encourage creative exploration	Speculative reasoning → Perspective-taking	"How would a mathematical system with only \mathbb{Z} and irrationals impact real-world applications?"
Summative	Consolidate learning outcomes	Knowledge organization → Key point identification	"Summarize the core concepts of set representation covered today"
Metacognitive	Develop self-regulated learning	Process reflection → Strategy planning	"Which aspects do you feel confident about? What improvement plan would address gaps?"

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Table 7: Role Profiles for Simulating Authentic Teaching Scenarios.

Dimensions	Teacher	Excellent Student	Medium Student	Struggling Student
Cognitive Ability	Rigorous understanding of mathematical concepts; capable of clear and accurate explanations	Sharp logical thinking; quickly comprehends new content; applies knowledge to solve complex problems	Good comprehension but requires more time to absorb new knowledge; capable of understanding core content	Weak foundational knowledge; difficulties grasping new concepts; struggles with complex problem-solving
Learning Motivation	Committed to comprehensive knowledge transfer; provides emotional support to enhance student confidence	Strong curiosity for knowledge; explores mathematics beyond textbooks; seeks interdisciplinary connections	Moderate interest in learning; requires occasional encouragement to maintain engagement	Lacks interest in mathematics; easily frustrated when unable to keep pace; diminished learning drive
Classroom Participation	Facilitates active discussions; creates an inclusive learning environment; provides real-time feedback	Active participant in discussions; assumes leadership roles in group learning; helps peers understand difficult concepts	Moderate participation level; contributes when prompted; neither overly active nor passive	Easily distracted; minimal voluntary participation; requires significant prompting to engage
Learning Strategies	Employs diverse teaching methodologies; adjusts explanations to accommodate different learning levels; uses varied assessment techniques	Self-regulated learning; effectively balances academic and extracurricular activities; employs multiple problem-solving approaches	Limited range of learning strategies; relies on note-taking and peer discussions; benefits from structured learning frameworks	Highly dependent on external support; lacks independent problem-solving skills; requires step-by-step guidance
Self-Regulation	Monitors classroom dynamics; adapts teaching pace and content based on student responses; balances coverage with comprehension	Self-disciplined; maintains consistent learning motivation despite challenges; sets clear goals with actionable implementation plans	Requires external structure; occasionally lacks confidence, especially with complex problems; benefits from incremental successes	Strong dependency on external motivation; easily discouraged by failures; shows improvement potential with personalized guidance and encouragement

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

Table 8: Teaching Strategies for Different Student Question and Reply Types.

1207

Student Behavior	Teacher Strategy
Excellent Students	Depth Exploration Strategy
Inquiry Questions	Guide students to understand the concept essence
Extension Questions	Guide independent research and thinking
Optimization Questions	Compare solutions from multiple perspectives
Accurate answers with explanations	Design advanced questions for deeper understanding
Exploring essence	Explore core elements and mechanisms
Connecting relevant knowledge	Establish connections across contexts
Medium Students	Guided Thinking Strategy
Application Questions	Help understand knowledge connections
Technique Questions	Explain logic and techniques of problem-solving
Detail Questions	Analyze inquiries to consolidate knowledge
Partially correct answers	Affirm correct portions, provide feedback
Expressing uncertainty	Break complex problems into sub-steps
Seeking hints	Guide analysis of key components
Struggling Students	Confidence Building Strategy
Basic Questions	Emphasize fundamentals with simple methods
Comprehension Questions	Guide problem analysis for understanding
Learning Efficacy Questions	Use examples to build confidence
Incorrect answers	Provide encouragement and gradual guidance
Vague answers	Use prompts to clarify reasoning
Unable to answer	begin with basics to reduce pressure

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241