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Abstract

A shift in data distribution can have a signif-001
icant impact on performance of a model to002
detect important events in text. Recent meth-003
ods addressing unsupervised domain adapta-004
tion for event detection task typically extracted005
domain-invariant representations through bal-006
ancing between various objectives to align fea-007
ture spaces between source and target domains.008
While effective, these methods are impracti-009
cal as large-scale language models are drasti-010
cally growing bigger to achieve optimal per-011
formance. To this end, we propose to lever-012
age meta-learning framework to train a neural013
network-based self-paced learning procedure014
in an end-to-end manner. Our method, called015
Meta Self-Paced Domain Adaption (MSP-DA),016
effectively tune domain-specific hyperparam-017
eters including learning schedules, sample018
weights, and objective balancing coefficients,019
simultaneously throughout the learning pro-020
cess, by imitating the train-test dataset split021
based on the difficulties of source domain’s022
samples. Extensive experiments demonstrate023
our framework substantially improves perfor-024
mance on target domains, surpassing state-of-025
the-art approaches. Detailed analyses validate026
our method and provide insight into how each027
domain affects the learned hyperparameters.028

1 Introduction029

Event detection (ED) task requires models trained030

to both locate event triggers in an event mention031

and classify them into one of the pre-specified event032

types. In unsupervised domain adaptation (UDA)033

setting, the problem becomes more complicated034

while also much more practical, in which the goal035

is to detect events in a different domain compare to036

the source domain of the labeled training dataset,037

given the additional access to easy-to-collect un-038

labeled data from the target domain. This poses a039

major challenge for standard systems due to both040

the intrinsic variation of linguistics (e.g., lexical041

shift, semantic shift) and the extrinsic factors such042

Figure 1: An example where domain shift between source
domain (grey colors) and target domain (deep color) results
in significant overlaps between high-loss regions of source
decision boundary (lime) with high-density target clusters.

as how event-based datasets are collected and anno- 043

tated. For example, a model trained to predict news 044

events may easily recognize, from medical domain, 045

"died" as an event, but would not be able to de- 046

tect obvious events such as "mutation" or "cancer". 047

Such a model may even fail to generalize to closer 048

adaptation settings (e.g. news from different times 049

and sources). 050

The majority of existing UDA approaches com- 051

bined various training objectives to align different 052

aspects of domain-specific extracted features. In 053

particular, the most prominent approach is domain- 054

adversarial neural network (DANN) (Ganin et al., 055

2016) that employs a domain-adversarial training 056

procedure between a domain classifier and the 057

network’s feature extractor to learn a discrimina- 058

tive and domain-invariant joint feature representa- 059

tion. The simplicity of DANN allows researchers 060

to incorporate it with multiple other objectives 061

such as semi-supervised learning (SSL) regular- 062

izers (Shu et al., 2018), discrepancy metrics (Long 063

et al., 2015), co-training (Kumar et al., 2018), and 064

auxiliary tasks (Bousmalis et al., 2016). Each of 065

them plays an important role in enhancing domain 066

adaptation ability of models in the current state- 067
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of-the-art methods. However, it is not trivial to068

apply these techniques to textual tasks, where large069

transformer-based language models are essential070

to achieve top performance, because of the time071

and resource required to fine-tune and balance the072

effects of these terms for multiple different adapta-073

tion scenarios. For example, state-of-the-art UDA074

method for ED is DAA (Ngo et al., 2021), which075

involves manually tuning weights of four auxiliary076

objectives, several of which even have their own077

respective hyperparameters.078

Meta-learning (ML) framework is an effective079

solution for the problem of hyperparameter opti-080

mization (Franceschi et al., 2018; Behl et al., 2019).081

Furthermore, it has been widely applied by recent082

works on Domain Generalization (DG) (Li et al.,083

2018; Dou et al., 2019), in which a learning pro-084

cedure similar to that of Model-Agnostic Meta-085

Learning (MAML) (Finn et al., 2017) is leveraged086

to simulate the domain shift in train-test datasets087

by a virtual meta train-test set created from data088

drawn only from source domains. Though DG and089

UDA share close similarities, the final goal of each090

learning setting is different. More importantly, the091

MAML procedure is not applicable for UDA prob-092

lem because of the lack of a clean validation dataset093

for meta-test step.094

To this end, we propose to dynamically partition095

the training source data into a low-loss meta-source096

domain and a high-loss meta-target domain, in-097

spired by self-paced learning (SPL) approach (Ku-098

mar et al., 2010). Our framework, called Meta Self-099

Paced Domain Adaptation (MSP-DA), employs a100

neural-SPL module to control the data selection101

process for meta train-test set using a learnable102

age hyperparameter as threshold while also intro-103

ducing optimized weighting mechanisms for each104

of the combined loss’ terms, including instance-105

wise weighting for the main classification task and106

layer-wise weighting for domain alignment losses.107

The weighted objectives on meta-source domain108

are minimized in meta-train step in a direction such109

that also leading to improvement in model’s pre-110

dictions on meta-target domain. During the learn-111

ing process, parameters and age threshold of the112

neural-SPL module are updated based on model’s113

evaluation performance in meta-test step, resulting114

in tuned weighting coefficients and learning sched-115

ules similar to that of a standard hyperparameter116

tuning process. To our knowledge, this is the first117

work to devise a neural network-based SPL method,118

in which both the sample weightings/selections and 119

the age hyperparameter are dynamically optimized, 120

generalizing previous works which require heuris- 121

tic age schedule and complicated mathematical 122

derivation for the corresponding instance weight- 123

ing. 124

While the meta-target set does not contain sam- 125

ples from the true target domain, we argue that our 126

formulation is beneficial for UDA because of the 127

two following reasons. First, the proposed partition 128

can result in two virtual domains with a signifi- 129

cant discrepancy, and through learning to address 130

in this hard setting that the model would gain the 131

ability to adapt to other, possibly easier, domains. 132

Another reason is based on the cluster assumption 133

from SSL methods (Chapelle et al., 2006), which 134

states that data points of the same class should 135

concentrate around the same cluster, effectively 136

forming a high-density low-loss region. In case of 137

adapting between two highly dissimilar domains, 138

these regions may get shifted significantly, as a con- 139

sequence low-loss regions of target domain may 140

contain considerable intersection with high-loss re- 141

gions of source domain, as illustrated in Fig. 1. 142

In other words, by learning to adapt the high-loss 143

meta-target domain, the model would also be able 144

to generalize to a significant portion of the true 145

target domain. 146

We provide extensively evaluation of the pro- 147

posed framework for event detection task on ACE- 148

05 dataset, along with additional results for sen- 149

timent analysis task on FDU-MTL dataset. The 150

experimental results when adapting to multiple dif- 151

ferent domains clearly demonstrate the effective- 152

ness of the model. Ablation studies and detailed 153

analyses are provided to validate each main com- 154

ponent of our model and provide insights for future 155

researches. 156

2 Related Work 157

Event Detection and Unsupervised Domain 158

Adaptation Previous line of research on ED 159

mostly addressed the standard supervised learn- 160

ing setting (Li et al., 2013; Nguyen and Grishman, 161

2016a; Yang and Mitchell, 2016; Nguyen et al., 162

2021), with cross-domain evaluation (Nguyen and 163

Grishman, 2016b; Hong et al., 2018). Recently, sev- 164

eral works have focused on the UDA problem of the 165

simpler Event Identification task (Naik and Rosé, 166

2020) using domain-adversarial training. Ngo et al. 167

(2021) further incorporated shared-private architec- 168
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ture efficiently through domain-specific adapters169

(Houlsby et al., 2019) to solve UDA ED task.170

Sample Weighting There are two main research171

directions to adaptively output weight of a sample172

during training process: addressing class imbal-173

ance by monotonically increasing function that im-174

poses larger weights to ones with larger loss values175

(Sun et al., 2007; Lin et al., 2017), and suppress-176

ing the effect of noisy labels using monotonically177

decreasing function which focus on low-loss easy178

samples (Kumar et al., 2010; Jiang et al., 2014).179

Although straightforward to apply, the above meth-180

ods are limited in that they all need a pre-specified181

closed-form weighting function, while their respec-182

tive hyperparameters are sensitive to the change of183

training data such that careful tuning is required.184

Meta-Learning There are three main categories185

of modern ML algorithms: learning a metric186

space to measure distance or similarity among data187

(Vinyals et al., 2016; Sung et al., 2018), learning an188

optimizer which updates all of model’s parameters189

in a latent parameter space (Andrychowicz et al.,190

2016; Chen et al., 2018), and learning an initializa-191

tion that is good for all tasks and able to fast adapt192

to unseen tasks (Finn et al., 2017; Jamal and Qi,193

2019). Our approach falls into the last category,194

where the learning process follows MAML, more195

specifically its variant for DG problem in (Li et al.,196

2018).197

Figure 2: Architecture overview. (gray) Fixed BERT layers.
(green) Adapter layers, bottleneck outputs of which are then
fed into domain classifier heads (red). The neural-SPL module
consists of instance-wise weighting head (purple) for main
task classification (orange) and a layer-wise balancing head
(blue) for domain adversarial training.

3 Model198

We denote the source dataset S = {(xsi , ysi )}
Ns

i=1199

consisted of N s samples and an unlabeled set of N t200

samples T =
{
xti
}Nt

i=1
drawn from target domain.201

Label space Y = {1, 2, · · · ,K} of K classes is202

shared across domains.203

Our model’s feature encoder is a fixed pre- 204

trained BERT encoder with hidden dimension Rdh , 205

augmented by adapters with bottleneck representa- 206

tion of size Rda . We refer to the main model learn- 207

able parameters as θ = (θa, θc, θd), which includes 208

the parameters of adapters, the main classification 209

head, and the DANN heads. Following prior work 210

(Ngo et al., 2021), low dimensional output from 211

each layer’s adapter is used by a separate DANN 212

head for domain adversarial training. Our neural- 213

SPL module consists of two weighting mecha- 214

nisms: an instance-wise fv(θv) : R → R which 215

weighs the contribution vi of each example based 216

on the its classification loss and a learnable age 217

parameter λa; and a layer-wise fw(θw) : Rda → 1 218

that takes adapter representation of each layer and 219

outputs the relative "magnitude" wl of which the 220

corresponding layer l should be aligned. We re- 221

fer to the set of source samples whose losses are 222

less than λa as meta-source domain Str while the 223

rest is meta-target domain Sts. The latter acts, in 224

meta-test step, as a validation set used to evaluate 225

the model after meta-train step and provide learn- 226

ing signals to tune the "hyperparameters" from the 227

neural-SPL module. The overall architecture is 228

presented in Fig. 2. 229

3.1 Meta Self-Paced Learning 230

Self-Paced Learning Kumar et al. (2010) 231

devised Self-Paced Learning method that extends 232

Curriculum Learning (Bengio et al., 2009) 233

to jointly learn the model and its curriculum, 234

circumventing the need for an ad-hoc implemen- 235

tation of easiness based on some predetermined 236

heuristics. Specifically, SPL employs an age 237

hyperparameter λa that represents the current 238

learning pace of the model. The objective is then 239

reformulated as a weighted loss where each in- 240

stance’s contribution is thresholded by λa as follow: 241

L =

n∑
i=1

vi(li;λa)li ; vi =

{
1, if li < λa

0, otherwise.
(1) 242

243

where li is the corresponding loss of i-th 244

training sample. Intuitively, λa is the "age" of the 245

model which is set to gradually grow as training 246

proceed. Thus, only easy samples are considered 247

at the initial learning stage while samples with 248

larger losses will be slowly added to the model’s 249

curriculum as it progresses. 250

Adaptive SPL via Meta-Learning The advan- 251

tage of incorporating SPL into a ML framework is 252
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two-fold. First, ML provides a way to adaptively253

tune the highly sensitive λa, alleviating the need254

for manually devising an age scheduler. At the255

same time, SPL helps address the lack of clean256

validation data, by splitting the source domain257

instances of the current mini-batch into two258

disjoint sets based on the age value λa. The259

easy samples are used for meta-train step, in260

which the objective consists of a domain adver-261

sarial loss and a SPL-weighted classification loss:262

Ltr (Str,T; θ) = Lce (Str; θa, θc) + Ld (Str,T; θa, θd) (2)

vi = fv ◦max(0,
−li
λa

+ 1); Lce (Str) =
∑

xi,yi∈Str

vili (3)
263

264

where li = l(xi, yi; θ) is the loss of each265

sample and Ld is the weighted domain adversarial266

objective that is explained in the following section.267

fv is a small feed-forward network with sigmoid as268

final activation function to guarantee the resulting269

weights located in the interval of [0, 1], and270

with no bias so that the 0-valued inputs will also271

correspond to outputs of the same value.272

Typically, k gradient steps are applied to273

approximate the optimal solution that mini-274

mizes the current meta-train objective. Because275

of the sizeable transformer encoder, a high276

value of k will cost serious computation over-277

head. Thus, we decide to use k = 1, from278

which we observe no significant performance loss:279

θ̄ = θ − α∇θ(Lce (θa, θc) + Ld (θa, θd)) (4)
280

281

where α is meta-train learning rate. Next,282

the meta-test objective is the standard cross-283

entropy loss on samples in meta-target do-284

main Sts with loss values higher than λa:285

Lts

(
Sts; θ̄

)
=

∑
xi,yi∈Sts

(xi, yi; θ̄) (5)286

This acts as a hard, distinct domain that provides287

tuning signals for guiding model updates of both288

model’s parameters in θ and hyperparameters vi289

and λa.290

3.2 Balancing domain adversarial objectives291

The survey presented by (Rogers et al., 2020) pro-292

vides a detailed probing and understanding of how293

the different layer-block of BERT encodes differ-294

ent types of information. Accordingly, each layer295

should contain a different amount of discrepancy296

between source and target domains.297

To align these representation spaces between298

the two domains, we employ multiple do-299

main classifiers at the bottleneck of every adapter: 300

Ld =

L∑
l=1

wlLl
d(z

l
d,yd; θ

l
d) (6) 301

302

where each Ll
d is an adversarial term of a 303

different DANN , taking adapter representations 304

zld of layer lth and domain labels yd as inputs. 305

These losses are weighted by a set of coefficients 306

{wl} that corresponds to how important it is 307

for the representations at the respective layer 308

to be aligned. Following standard learning 309

procedure, they would be hyperparameters that 310

required careful tuning for each specific domain, 311

which would be impractical (in our setting, there 312

would be a total of 12 hyperparameters). To 313

address the above issue, we employ a small 314

feed-forward network fw with a final softmax 315

layer to output the relative layer-wise weights: 316

W = [w0, · · · , wL−1] = fw(Zd; θw) (7)
317

318

where Zd ∈ RL×da is a set of layer repre- 319

sentations, each element of which is the sum of 320

all adapter representations of the corresponding 321

layer with respect to the current mini-batch. As 322

θw is updated throughout the ML process, W 323

is dynamically tuned to maintain high perfor- 324

mance on meta-test set while domain-adversarial 325

training makes representations across layers 326

domain-invariant. 327

Meta Optimization Following MLDG, 328

meta-train and meta-test losses are com- 329

bined in the final objective as follow: 330

argmin
θ

βLts

(
θ̄
)
+ Ltr (θ) ; argmin

θw,θv ,λa

Lts

(
θ̄
)

(8) 331

332

where β is meta-test balancing term. The 333

second term in Eq. 8 is the result of passing the 334

weights computed by neural-SPL module in Eq. 335

3 and 7 into Eq. 2 as pre-determined values, not 336

learnable variables. 337

3.3 Incorporating Pseudo Label 338

Pseudo Label is an effective method to improve 339

target domain performance by leveraging the pre- 340

dictions of previous step on unlabeled target data 341

as additional learning signals for the main down- 342

stream task. We use the pseudo-labeled target 343

data only for Lce from Eq. 2 in meta-train step, 344

in which they are weighted and thresholded by 345

neural-SPL module using the same λa as source 346
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data: Lce

(
Str,T

)
=

∑
xi,yi∈Str∪T

vili, where T is347

the set of target samples with losses lower than348

λa. To alleviate the confirmation bias in pseudo-349

labeling, (Xie et al., 2019) provided strong regular-350

izations and data augmentations to prevent model351

from propagating its own inaccuracy throughout352

the training process. In our case, neural-SPL mod-353

ule would ensure that only high confident pseudo354

labels are used, thus suppressing the noises and355

providing a robust training for the model. In addi-356

tion, as we will discuss later section, the gradient357

updates of these samples are also regularized by358

the ML framework, forcing them to be consistent359

with meta-target domain.360

4 Experiments361

4.1 Datasets, Settings, and Baselines362

We evaluate the proposed model on ED task in363

UDA setting. In addition, we also demonstrate the364

generalization of our framework when applying to365

multi-domain sentiment analysis (SA) task.366

ACE-05 (Walker et al., 2005) A densely anno-367

tated corpus collected from 5 different domains.368

Two of which are used as source data, while each369

of the rest is a target domain for an adaptation set-370

ting. Given a trigger word in the context of an371

event mention, the model is required to perform372

a multi-class classification task that assigns a pre-373

dicted label into one of the pre-defined 34 event374

types (including 1 negative type).375

FDU-MTL (Liu et al., 2017) A dataset included376

reviews from 16 domains for binary sentiment clas-377

sification task. In each adaptation setting, a single378

domain is assigned as the target with unlabeled data379

while the other 15 are labeled source. Given the380

contextual sequence computed by models from a381

review, we use the first token [CLS] as the feature382

to predict its positive or negative sentiment.383

Information about each dataset for UDA setting384

is described in Appendix B.385

ED baselines We provide a comprehensive com-386

parison of our proposed method with multiple base-387

lines from 3 categories: (No Weighting) mod-388

els that do not leverage any weighting mechanism.389

BERT is only fine-tuned on only labeled source390

domain, whereas BERT+DANN follows the stan-391

dard adversarial training; (Functional) weight392

of each sample is given by a pre-determined func-393

tion. Uniform treats each sample’s loss equally, Fo-394

cal Loss down-weights well-classified instance ex- 395

ponentially (Lin et al., 2017), and Class-Balanced 396

uses a weighting factor that is inversely propor- 397

tional to the number of samples (Cui et al., 2019); 398

(Curriculum) a curriculum is used to compute 399

the contribution of each training instance. In Dom- 400

Cls, the weights are provided in prior by a domain 401

classifier of a trained DANN to output the prob- 402

abilities of a sample belonging to target domain; 403

whereas SPL’s dynamic curriculum computes the 404

weighting coefficients based on the corresponding 405

losses as in Eq. 1. Finally, we include results from 406

recent approach DAA (Ngo et al., 2021), in which 407

three adapters were employed to create shared- 408

private representations through layer-wise domain 409

adversarial training, Wasserstein-based data selec- 410

tion, similarity constraint, and a self-supervised 411

auxiliary task. 412

We include details regarding implementations, 413

trainings and evaluations of our experiments in 414

Appendix A. 415

SA baselines ASP-MTL (Liu et al., 2017) and 416

DAEA (Cai and Wan, 2019) are LSTM-based ap- 417

proaches, while BERT and BERT+DANN are the 418

same as in ED baselines. Finally, BertMasker 419

(Yuan et al., 2021) is the state-of-the-art approach 420

that learns to explicitly mask domain-related words 421

from text, resulting in domain-agnostic sentences. 422

4.2 Main Results 423

Event Dectection The first three row-blocks of 424

Table 1 present the performances of the above 425

baselines in each domain adaptation scenario. 426

BERT+DANN only provides slight improvement 427

for domain bc compare to BERT, while signif- 428

icantly degrades model’s performances on the 429

other two. Similarly, applying DANN for the 430

adapter-based model without any weighting mech- 431

anism, as in Uniform, also has adverse effects on 432

out-of-domain performances. Regarding instance- 433

weighting baselines, the change in data distribution 434

across domains results in Class-Balanced’s low 435

domain adaptation ability. Focal Loss and SPL 436

perform generally better in out-of-domain settings 437

as they generate weighting coefficients adaptively 438

based on the current losses, without involving any 439

domain-specific statistics. On the other hand, Dom- 440

Cls requires computing a specific curriculum for 441

each domain, yet performs worse than the dynamic 442

curriculum imposed by SPL. Finally, compared 443

to the state-of-the-art DAA, MSP-DA provides a 444
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System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (cts) Out-of-domain (wl)
P R F P R F P R F P R F aF1

BERT 75.8 72.5 74.1 73.5 68.9 71.1 73.7 69.5 71.5 62.2 51.6 56.4 66.3
BERT+DANN 73.4 76.0 74.7 73.9 69.4 71.5 76.4 53.0 62.5 59.9 53.2 56.3 63.4
Uniform 76.8 79.4 78.1 75.4 66.3 70.5 80.4 21.0 33.3 61.8 45.7 52.6 52.1
Focal 78.2 77.6 77.9 71.7 72.9 72.2 72.9 68.5 70.1 64.8 54.2 59.0 67.1
Class-Balanced 79.3 78.3 78.7 77.8 68.0 72.5 78.0 44.0 56.2 59.0 50.3 54.3 61.0
SPL 77.1 80.0 78.5 77.9 70.7 74.2 79.2 53.0 63.5 62.1 53.2 57.1 64.9
DomCls 79.6 76.4 77.9 73.0 74.5 73.7 78.2 48.7 59.9 62.9 53.1 57.5 63.7
DAA 79.7 75.7 77.7 78.5 75.6 76.9 78.4 73.2 75.6 66.2 60.3 63.1 71.9
MSP-DA 75.4 80.0 77.7 76.2 75.5 75.8 75.3 76.8 76.1 70.8 59.9 64.8 72.2

Table 1: UDA performances for ED task on ACE-05 test datasets. aF1 is the average out-of-domain F1 score.
System MR Appr. Baby Books Cam. DVD Elec. Hlth. IMDB Kitc. Magz. Musics Softw. Sport Toys Video aAcc
ASP-MTL 76.7 87.0 88.2 84.0 89.2 85.5 86.8 88.2 85.5 86.2 92.2 82.5 87.2 85.7 88.0 84.5 86.1
DAEA 77.0 89.0 92.3 89.0 92.0 88.3 91.8 89.8 90.8 90.3 96.5 88.0 92.8 90.8 91.8 92.3 90.2
BERT 90.5 90.8 90.3 91.3 91.5 89.0 91.3 91.3 91.3 90.0 88.5 90.3 90.5 92.0 90.8 92.0 90.7
BERT+DANN 90.5 91.8 92.5 90.8 90.0 91.3 90.5 90.8 91.0 91.8 91.0 90.5 91.0 90.5 90.3 90.3 90.9
BertMasker 83.8 92.3 92.8 93.0 92.8 89.3 93.3 95.3 86.0 90.8 94.5 89.5 93.0 92.5 93.8 91.3 91.5
MSP-DA 93.3 93.1 92.5 93.2 93.3 92.4 93.1 93.2 93.4 93.0 93.1 92.7 93.1 93.3 93.5 92.8 93.0

Table 2: UDA performances for SA task on FDU-MTL test datasets. aAcc is the average accuracy score across all domains.

significant 1.7 points increase when adapting to445

hardest domain wl, and achieving on average 0.3446

points higher in F1 score. While it is a marginal447

boost, we would like to note that DAA leverages448

multiple encoders through different constraints and449

auxiliary tasks to address domain shift problem. In450

contrast, our work focuses on simple domain adap-451

tation approaches (sample weighting and domain452

adversarial training), and is effective because of453

good tuned hyperparameters and training sched-454

ule. Moreover, the two methods are orthogonal455

and can be complementary to each other for further456

improvements.457

Sentiment Analysis SA results are presented458

in Table 2. While simple model using contex-459

tual embedding BERT outperforms all previous460

LSTM-based methods, we again observe little to461

no improvement applying domain adversarial train-462

ing naively with it. In contrast, our framework463

achieves the best performance for 13 out of 16 re-464

view domains, surpassing the current state-of-the-465

art method BertMasker by 1.5 points on average.466

4.3 Ablation Study467

In the first row-block of Table 3, we conduct an468

ablation study to validate the effectiveness of each469

of our main components by investigating the per-470

formance of the following variations of our model:471

MSP-DA–mSPL follows the normal SPL process472

to produce the weighting coefficients and train-test473

datasets for ML; MSP-DA–DANN trains only on474

source domain without utilizing unlabeled target475

data for domain adversarial objective; and MSP-476

DA–PL in which no pseudo-labels are leveraged477

for training. In general, our full model outperforms478

all variants across domains, even in the in-domain479

setting, which confirms the superiority and flex-480

ibility provided by the jointly optimized pacing 481

and weights from our neural-SPL module. Espe- 482

cially for wl domain, domain adversarial training 483

in MSP-DA manages to improve more than 8 F1 484

points. 485

Meta-test Selection To examine the correctness 486

of our assumption, we augment the data selection 487

process for meta domains in Random and Reverse 488

variants. The former randomly selects training sam- 489

ples for each meta domain, whereas the latter im- 490

plements the opposite hypothesis by choosing hard 491

and easy instances for meta-train and meta-test sets, 492

respectively. Both variants result in a considerable 493

decline in domain adaptation results as shown in 494

3. Notably, the significant performance drop in the 495

in-domain setting of Random indicates that simply 496

constructing train-test sets without any appropriate 497

condition can do more harm than good for the ML 498

process. These empirical observations further con- 499

firm our initial assumption on how domain shift 500

correlates well with the easy meta-train and hard 501

meta-test sets.

System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (wl)
P R F P R F P R F

MSP-DA – mSPL 74.5 79.7 77.0 77.5 72.0 74.6 64.1 51.9 57.4
MSP-DA – DANN 74.3 80.3 77.2 75.7 72.9 74.2 61.6 51.9 56.3
MSP-DA – PL 77.8 75.1 76.4 75.1 73.5 74.3 62.6 52.4 57.0
MSP-DA (Random) 73.0 76.4 74.7 75.6 73.3 74.4 61.0 50.3 55.0
MSP-DA (Reverse) 77.7 75.0 76.3 78.2 70.6 74.2 65.0 50.7 57.0
MSP-DA (Ours) 75.4 80.0 77.7 76.2 75.5 75.8 70.8 59.9 64.8

Table 3: Performances for Ablation Study 502

System Out-of-domain (bc) Out-of-domain (wl)
P R F P R F

Fixed (25) 79.3 68.9 73.7 65.8 50.0 56.8
Fixed (50) 75.0 73.7 74.3 66.3 49.5 56.6
Fixed (75) 76.4 72.0 74.1 65.9 52.7 58.6
Linear Incrs 74.9 71.7 73.3 61.6 54.7 57.9
Meta (Ours) 76.2 75.5 75.8 70.8 59.9 64.8

Table 4: Performances for Age Hyperparameter Analysis

4.4 The Values of Age Hyperparameter 503

Age hyperparameter λa is usually the hardest to 504

tune in a SPL system due to the fact that aside 505
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Figure 3: Three columns in each subplot correspond to domain bc, cts, wl, respectively. (Left) Layer-wise DANN weights at
each training step. (Right) source and target age percentiles at each training step.

System Out-of-domain (bc) Out-of-domain (wl)
P R F P R F

Constant 75.8 71.5 73.6 63.2 52.6 57.4
Anneal Up 75.4 71.0 73.1 63.5 52.6 57.4
Anneal Down 74.0 74.8 74.4 62.3 51.1 56.1
Meta (Ours) 76.2 75.5 75.8 70.8 59.9 64.8

Table 5: Performances for DANN Weighting Analysis

from the initial value, determining how λa changes506

throughout the training process also has a major im-507

pact on the final performance. Several prior works508

(Li and Gong, 2017; Ren et al., 2017) have pro-509

posed alternative age schedulers in place of the510

naive strategy which adds/multiples λa with a con-511

stant at each epoch. However, the value of λa in512

these methods still follows a predefined sequence,513

implying the need for a meticulous tuning process.514

In contrast, our neural-SPL module updates λa515

based on optimization signals from meta-test set,516

thus always able to create an appropriate dynamic517

curriculum regardless of different learning tasks518

and datasets. In Table 4, we examine how different519

values and schedules of age hyperparameter affect520

performances on bc and wl domains. The Fixed521

(p) settings with p ∈ [25, 50, 75] are variations522

of our model with λa values always correspond-523

ing to the unchanged p-th percentile of the current524

mini-batch’s sample losses; or in other words, the525

number of samples in meta-train set is always a526

constant p percent that of the current mini-batch.527

Additionally, we evaluate the case in which p is lin-528

early increased as training proceeds, similar to the529

standard SPL process, in Linear Incrs setting. The530

results show that the lower p is, the worse model531

performs, indicating that with too few meta-train532

data, the model will not be able to adapt to the533

hard meta-test domain. Surprisingly, the gradual534

rising scheduler of Linear Incrs is not as effective535

as the other Fixed variants. This means that the536

easy-to-hard assumption of prior SPL systems is537

not suitable for our ML framework.538

λa Visualization To gain more insight into how539

age hyperparameter changes throughout the train-540

ing process of each domain, we plot the values of 541

λa in source-losses percentile against the number 542

of update steps for 10 epochs in the right subplot of 543

Fig. 3. While λa quickly follows the standard in- 544

cremental trend initially, it starts to plateau within 545

the 60-70 percentile range until eventually start- 546

ing to decrease. Notably, behavior of λa diverges 547

across domains in subsequent steps. Whereas λa 548

continues the to decline in bc and cts domains, it 549

experiences a complete trend reversal at the end of 550

the training of wl domain. We hypothesis that this 551

drastic change of λa is because of the gradients’ 552

dot product term that the objective in Eq. 8 implies, 553

which we will delve deeper into in the discussion 554

section below. The
⋂

shape of λa correlates with 555

the term’s value as the model maximizes it to align 556

the gradient directions between the meta train-test 557

domains, going from negative initially as the train- 558

ing started, to 0 which causing the plateau, then 559

gradually becoming positive as the model was able 560

to adjust the updates of meta-train set to be consis- 561

tent with that of meta-test set. However, for hard 562

adaptation such as wl domain, too few data in meta- 563

train set can cause a major disparity between the 564

two meta domains again, thus the resulting trend 565

reversal at the last few steps. 566

We also visualize the same plot for target- 567

pseudo-losses percentile, which leads to an inter- 568

esting observation: Initially, the model followed 569

its own pseudo labels without any constraint and 570

the high value of λa percentile represents model’s 571

incorrect overconfidence. However, these pseudo- 572

label updates will cause discrepancies with meta- 573

test domain, thus the ML framework will gradually 574

fix the corresponding predictions, allowing only 575

quality pseudo samples to be included in meta-train 576

set. Eventually, the target trend converges with the 577

source ones, suggesting that model’s predictions 578

on pseudo labels are then as consistent as on clean 579

training labels. 580
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4.5 Balancing Domain Adversarial Losses581

Previous works have observed that the weight of582

DANN in the combined objective has a significant583

impact on the overall adaptation performance of584

the model. We further validate this point by inves-585

tigating how different domain adversarial weight-586

ing schemes affect the results on bc and wl do-587

mains. Specifically, we evaluate 3 types of layer-588

wise weighting: (i) Constant - all layers share589

the same wl value, (ii) Anneal Up - wl slowly590

increases from lower to higher layers, and (iii) An-591

neal Down - wl is highest for the first layer and592

gradually declines for subsequent layers. The re-593

sults are present in Table 3, in which none of the594

schemes is better than the others in both domains.595

In contrast, the meta-learned coefficients of our596

framework manage to boost model’s performances597

in every adaptation setting, especially for the hard598

wl domain where domain adversarial training mat-599

ters the most.600

We further visualize how each layer’s weight601

changes during the learning process across domains602

in the left subplot of Fig. 3. In particular, we parti-603

tion 12 layers of BERT-base model into 3 groups of604

4 sequential layers, each of which is known to con-605

tain a different type of information that is important606

for a different type of task as described in the pre-607

vious section. We can observe from the graphs a608

certain pattern: the higher level the group is, the609

more volatile its layers’ coefficients are. However,610

there is no specific rule shared among all domains611

regarding the value of each layer’s weight. This612

affirms the sensitivity of domain adversarial bal-613

ancing term to each individual domain and further614

justifies the effectiveness of the jointly optimized615

weighting in our framework.616

5 Discussion617

Following the analysis of MLDG framework618

presented in (Li et al., 2018), we decompose the619

meta-test loss, given that θ̄ = θ − αL′
tr(θ),620

using the first order Taylor expansion:621

Lts

(
θ − αL′

tr(θ)
)
= Lts (θ) +

∂Lts (θ)

∂θ

(
−α

∂Ltr (θ)

∂θ

)
(9)622

623

Denoting G = ∂Lts(θ)
∂θ · ∂Ltr(θ)

∂θ and plug-624

ging Eq. 9 into the final objective to up-625

date main model’s parameters from Eq. 8626

results in the following optimization problem:627

argmin
θ

Ltr (θ) + Lts (θ)− βαG (10)628

629

The third term in Eq. 10 is a gradient-based 630

regularization that penalizes inconsistency between 631

parameter updates of meta-train and meta-test 632

domains. By enforcing loss gradients of the two 633

domains to follow a similar direction, Eq. 10 634

prevents the model from over-fitting to a single 635

domain, effectively improves model’s adaptation 636

capacity provided that meta-test set is ’close’ to 637

target domain. 638

We further examine how the ML framework 639

affects the values of neural-SPL module’s 640

parameters (θw, θv, λa) in our model. Plug- 641

ging Eq. 9 into the gradient of λa, we have: 642

∂Lts

(
θ̄
)

∂λa
= −α

∂Lts (θ)

∂θ
· ∂

2Ltr (θ)

∂θ∂λa
= −αG · ∂fv(λa)

∂λa
(11)

643

644

From Eq. 11, we see that the multiplicative 645

factor G also controls how the value of λa changes 646

throughout the ML process. When there is a 647

significant discrepancy between meta-train and 648

meta-test domain, G would have a negative 649

value, which would in effect push λa higher and 650

allow more samples into meta-train set for easier 651

adaptation to meta-test set. Conversely, a positive 652

G would imply that the model is good enough to 653

align the current meta domains, thus gradually 654

pulling λa down to make the task harder. This 655

behavior is clearly illustrated in Fig. 3. Similar 656

arguments can be made for the meta-learned 657

weighting coefficients, where G would encourage 658

samples whose gradients are similar across 659

domains while decreasing the contribution of those 660

whose gradients are not. These understanding are 661

also presented in (Shu et al., 2019) and closely 662

related to how MAML works (Nichol et al., 2018; 663

Raghu et al., 2019) 664

6 Conclusion 665

We present a novel ML framework for UDA set- 666

ting that achieves state-of-the-art performance on 667

ED task. In particular, a neural-SPL module is em- 668

ployed to adaptively partition source domain into 669

meta-train and meta-test set, while simultaneously 670

learns the instance-wise and layer-wise weights for 671

the loss terms of downstream task and domain ad- 672

versarial task respectively. The proposed model 673

significantly improves domain adaptation perfor- 674

mances against various baselines on every domain 675

without domain-specific hyperparameter tuning. In 676

the future, we intend to apply our approach to other 677

domains and tasks while incorporating different 678

novel domain adaptation regularization methods. 679
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A Implementation Details894

All models are implemented in Pytorch. We lever-895

age pre-trained BERT-base models and checkpoints896

from Huggingface repository. (Wolf et al., 2020).897

Meta-learning process is implemented following898

ANIL algorithm in (Arnold et al., 2020).899

Bounds for each hyperparameter Adapter lay-900

ers injected after every feed-forward sub-blocks901

have bottleneck feed-forward architecture with902

down-sampled dimension chosen among [48, 96,903

128]. All of the downstream heads are implemented904

as feed-forward networks with activation functions905

between layers. Each weighting net of neural-SPL906

module is a feed-forward network with 2 or 3 layers907

with hidden vectors of size [100, 50] or [200, 100,908

50], respectively To train the proposed model, we909

use Adam optimizer with meta-train and meta-test910

learning rates α and γ both chosen from [5e-5, 1e-911

4, 5e-4, 1e-3, 5e-3], the mini-batch size from [50,912

100, 150] of which 20% or 40% are unlabeled tar-913

get data, and the meta-test balancing term β from914

[5, 2, 1, 0.5, 0.1].915

Method of choosing hyperparameter values916

We tune the hyperparameters for the proposed917

model using a random search. All hyperparam-918

eters are selected based on the F1 scores on the919

development set of bc domain. The same hyperpa-920

rameters from this fine-tuning are then applied for921

other domains.922

Best hyperparameter configuration In the best923

model, fixed pre-train BERT-base layers aug-924

mented by adapters with bottleneck size 96 are925

used as our feature encoder. All objective heads926

have 2 hidden layers. We use Adam optimizer with927

a learning rate of 1e-4 for both meta-train and meta-928

test step, 100 for mini-batch size with 20% target929

data, and the meta-test balancing term is 2. Our930

reported results are averages of five runs using the931

best hyperparameter configuration with different932

random seeds.933

B Data Settings934

We provide statistics of each domain in UDA set-935

ting for ACE-05 and FDU-MTL in Table 6 and936

Table 7, respectively.937

For ACE-05 dataset, we gather data from two938

closely related domains, bn and nw, to create a siz-939

able source domain dataset, 80% of which are used940

for training whilst the rest are used as test target941

domain for in-domain setting. For out-of-domain 942

settings, each of the other domains is considered 943

the target domain of a single adaptation scenario, 944

where 20% of its documents are unlabeled training 945

target data and the remainders are utilized as the 946

test dataset. All of the considered models’ hyper- 947

parameters are only tuned based on bc domain. 948

Domains Train Unlabeled Test
bn+nw 38644 N/A 9661
bc N/A 3130 12520
cts N/A 2885 10972
wl N/A 3424 12767

Table 6: Statistics of ACE-05’s domains in UDA setting.

For FDU-MTL dataset, each of the 16 domains 949

has a test set of 400 samples. The amount of train- 950

ing labeled and unlabeled data vary across domains, 951

ranging from 1400 to 2000 samples. In each adap- 952

tation setting, a single domain is designated as the 953

target domain while its unlabeled data are used 954

in training set together with labeled data from the 955

other 15 domains. 956

Domains Train Unlabeled Test
Books 1400 2000 400
Elec. 1398 2000 400
DVD 1400 2000 400
Kitchen 1400 2000 400
Apparel 1400 2000 400
Camera 1397 2000 400
Health 1400 2000 400
Music 1400 2000 400
Toys 1400 2000 400
Video 1400 2000 400
Baby 1300 2000 400
Magaz. 1370 2000 400
Soft. 1315 475 400
Sport 1400 2000 400
IMDb 1400 2000 400
MR 1400 2000 400

Table 7: Statistics of the 16 domains in FDU-MTL
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