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Abstract

A shift in data distribution can have a signif-
icant impact on performance of a model to
detect important events in text. Recent meth-
ods addressing unsupervised domain adapta-
tion for event detection task typically extracted
domain-invariant representations through bal-
ancing between various objectives to align fea-
ture spaces between source and target domains.
While effective, these methods are impracti-
cal as large-scale language models are drasti-
cally growing bigger to achieve optimal per-
formance. To this end, we propose to lever-
age meta-learning framework to train a neural
network-based self-paced learning procedure
in an end-to-end manner. Our method, called
Meta Self-Paced Domain Adaption (MSP-DA),
effectively tune domain-specific hyperparam-
eters including learning schedules, sample
weights, and objective balancing coefficients,
simultaneously throughout the learning pro-
cess, by imitating the train-test dataset split
based on the difficulties of source domain’s
samples. Extensive experiments demonstrate
our framework substantially improves perfor-
mance on target domains, surpassing state-of-
the-art approaches. Detailed analyses validate
our method and provide insight into how each
domain affects the learned hyperparameters.

1 Introduction

Event detection (ED) task requires models trained
to both locate event triggers in an event mention
and classify them into one of the pre-specified event
types. In unsupervised domain adaptation (UDA)
setting, the problem becomes more complicated
while also much more practical, in which the goal
is to detect events in a different domain compare to
the source domain of the labeled training dataset,
given the additional access to easy-to-collect un-
labeled data from the target domain. This poses a
major challenge for standard systems due to both
the intrinsic variation of linguistics (e.g., lexical
shift, semantic shift) and the extrinsic factors such
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Figure 1: An example where domain shift between source
domain (grey colors) and target domain (deep color) results
in significant overlaps between high-loss regions of source
decision boundary (lime) with high-density target clusters.

as how event-based datasets are collected and anno-
tated. For example, a model trained to predict news
events may easily recognize, from medical domain,
"died" as an event, but would not be able to de-
tect obvious events such as "mutation" or "cancer".
Such a model may even fail to generalize to closer
adaptation settings (e.g. news from different times
and sources).

The majority of existing UDA approaches com-
bined various training objectives to align different
aspects of domain-specific extracted features. In
particular, the most prominent approach is domain-
adversarial neural network (DANN) (Ganin et al.,
2016) that employs a domain-adversarial training
procedure between a domain classifier and the
network’s feature extractor to learn a discrimina-
tive and domain-invariant joint feature representa-
tion. The simplicity of DANN allows researchers
to incorporate it with multiple other objectives
such as semi-supervised learning (SSL) regular-
izers (Shu et al., 2018), discrepancy metrics (Long
et al., 2015), co-training (Kumar et al., 2018), and
auxiliary tasks (Bousmalis et al., 2016). Each of
them plays an important role in enhancing domain
adaptation ability of models in the current state-



of-the-art methods. However, it is not trivial to
apply these techniques to textual tasks, where large
transformer-based language models are essential
to achieve top performance, because of the time
and resource required to fine-tune and balance the
effects of these terms for multiple different adapta-
tion scenarios. For example, state-of-the-art UDA
method for ED is DAA (Ngo et al., 2021), which
involves manually tuning weights of four auxiliary
objectives, several of which even have their own
respective hyperparameters.

Meta-learning (ML) framework is an effective
solution for the problem of hyperparameter opti-
mization (Franceschi et al., 2018; Behl et al., 2019).
Furthermore, it has been widely applied by recent
works on Domain Generalization (DG) (Li et al.,
2018; Dou et al., 2019), in which a learning pro-
cedure similar to that of Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) is leveraged
to simulate the domain shift in train-test datasets
by a virtual meta train-test set created from data
drawn only from source domains. Though DG and
UDA share close similarities, the final goal of each
learning setting is different. More importantly, the
MAML procedure is not applicable for UDA prob-
lem because of the lack of a clean validation dataset
for meta-test step.

To this end, we propose to dynamically partition
the training source data into a low-loss meta-source
domain and a high-loss meta-target domain, in-
spired by self-paced learning (SPL) approach (Ku-
mar et al., 2010). Our framework, called Meta Self-
Paced Domain Adaptation (MSP-DA), employs a
neural-SPL module to control the data selection
process for meta train-test set using a learnable
age hyperparameter as threshold while also intro-
ducing optimized weighting mechanisms for each
of the combined loss’ terms, including instance-
wise weighting for the main classification task and
layer-wise weighting for domain alignment losses.
The weighted objectives on meta-source domain
are minimized in meta-train step in a direction such
that also leading to improvement in model’s pre-
dictions on meta-target domain. During the learn-
ing process, parameters and age threshold of the
neural-SPL module are updated based on model’s
evaluation performance in meta-test step, resulting
in tuned weighting coefficients and learning sched-
ules similar to that of a standard hyperparameter
tuning process. To our knowledge, this is the first
work to devise a neural network-based SPL method,

in which both the sample weightings/selections and
the age hyperparameter are dynamically optimized,
generalizing previous works which require heuris-
tic age schedule and complicated mathematical
derivation for the corresponding instance weight-
ing.

While the meta-target set does not contain sam-
ples from the true target domain, we argue that our
formulation is beneficial for UDA because of the
two following reasons. First, the proposed partition
can result in two virtual domains with a signifi-
cant discrepancy, and through learning to address
in this hard setting that the model would gain the
ability to adapt to other, possibly easier, domains.
Another reason is based on the cluster assumption
from SSL methods (Chapelle et al., 2006), which
states that data points of the same class should
concentrate around the same cluster, effectively
forming a high-density low-loss region. In case of
adapting between two highly dissimilar domains,
these regions may get shifted significantly, as a con-
sequence low-loss regions of target domain may
contain considerable intersection with high-loss re-
gions of source domain, as illustrated in Fig. 1.
In other words, by learning to adapt the high-loss
meta-target domain, the model would also be able
to generalize to a significant portion of the true
target domain.

We provide extensively evaluation of the pro-
posed framework for event detection task on ACE-
05 dataset, along with additional results for sen-
timent analysis task on FDU-MTL dataset. The
experimental results when adapting to multiple dif-
ferent domains clearly demonstrate the effective-
ness of the model. Ablation studies and detailed
analyses are provided to validate each main com-
ponent of our model and provide insights for future
researches.

2 Related Work

Event Detection and Unsupervised Domain
Adaptation Previous line of research on ED
mostly addressed the standard supervised learn-
ing setting (Li et al., 2013; Nguyen and Grishman,
2016a; Yang and Mitchell, 2016; Nguyen et al.,
2021), with cross-domain evaluation (Nguyen and
Grishman, 2016b; Hong et al., 2018). Recently, sev-
eral works have focused on the UDA problem of the
simpler Event Identification task (Naik and Rosé,
2020) using domain-adversarial training. Ngo et al.
(2021) further incorporated shared-private architec-



ture efficiently through domain-specific adapters
(Houlsby et al., 2019) to solve UDA ED task.

Sample Weighting There are two main research
directions to adaptively output weight of a sample
during training process: addressing class imbal-
ance by monotonically increasing function that im-
poses larger weights to ones with larger loss values
(Sun et al., 2007; Lin et al., 2017), and suppress-
ing the effect of noisy labels using monotonically
decreasing function which focus on low-loss easy
samples (Kumar et al., 2010; Jiang et al., 2014).
Although straightforward to apply, the above meth-
ods are limited in that they all need a pre-specified
closed-form weighting function, while their respec-
tive hyperparameters are sensitive to the change of
training data such that careful tuning is required.

Meta-Learning There are three main categories
of modern ML algorithms: learning a metric
space to measure distance or similarity among data
(Vinyals et al., 2016; Sung et al., 2018), learning an
optimizer which updates all of model’s parameters
in a latent parameter space (Andrychowicz et al.,
2016; Chen et al., 2018), and learning an initializa-
tion that is good for all tasks and able to fast adapt
to unseen tasks (Finn et al., 2017; Jamal and Qi,
2019). Our approach falls into the last category,
where the learning process follows MAML, more
specifically its variant for DG problem in (Li et al.,
2018).

Figure 2: Architecture overview. (gray) Fixed BERT layers.
(green) Adapter layers, bottleneck outputs of which are then
fed into domain classifier heads (red). The neural-SPL module
consists of instance-wise weighting head (purple) for main
task classification (orange) and a layer-wise balancing head
(blue) for domain adversarial training.

3 Model

We denote the source dataset S = {(x?, yf)}i\f 1

consisted of NS samples and an unlabeled set of N'*
t

samples T = { zt }fv , drawn from target domain.

Label space Y = {T, 2,---,K} of K classes is
shared across domains.

Our model’s feature encoder is a fixed pre-
trained BERT encoder with hidden dimension R%
augmented by adapters with bottleneck representa-
tion of size R% . We refer to the main model learn-
able parameters as 6 = (0,, 6., 04), which includes
the parameters of adapters, the main classification
head, and the DANN heads. Following prior work
(Ngo et al., 2021), low dimensional output from
each layer’s adapter is used by a separate DANN
head for domain adversarial training. Our neural-
SPL module consists of two weighting mecha-
nisms: an instance-wise f,(6,) : R — R which
weighs the contribution v; of each example based
on the its classification loss and a learnable age
parameter \,; and a layer-wise fy,(60,,) : Rda — 1
that takes adapter representation of each layer and
outputs the relative "magnitude" w' of which the
corresponding layer [ should be aligned. We re-
fer to the set of source samples whose losses are
less than A\, as meta-source domain Sy, while the
rest is meta-target domain S;s. The latter acts, in
meta-test step, as a validation set used to evaluate
the model after meta-train step and provide learn-
ing signals to tune the "hyperparameters” from the
neural-SPL module. The overall architecture is
presented in Fig. 2.

3.1 Meta Self-Paced Learning

Self-Paced Learning Kumar et al. (2010)
devised Self-Paced Learning method that extends
Curriculum Learning (Bengio et al., 2009)
to jointly learn the model and its curriculum,
circumventing the need for an ad-hoc implemen-
tation of easiness based on some predetermined
heuristics.  Specifically, SPL employs an age
hyperparameter ), that represents the current
learning pace of the model. The objective is then
reformulated as a weighted loss where each in-
stance’s contribution is thresholded by ), as follow:

1, ifl; < Ay
0, otherwise.

L= (1)

n

vi(liz Aa)li 5 vi = {

i=1

where [; is the corresponding loss of i-th
training sample. Intuitively, A, is the "age" of the
model which is set to gradually grow as training
proceed. Thus, only easy samples are considered
at the initial learning stage while samples with
larger losses will be slowly added to the model’s
curriculum as it progresses.

Adaptive SPL via Meta-Learning The advan-
tage of incorporating SPL into a ML framework is



two-fold. First, ML provides a way to adaptively
tune the highly sensitive \,, alleviating the need
for manually devising an age scheduler. At the
same time, SPL helps address the lack of clean
validation data, by splitting the source domain
instances of the current mini-batch into two
disjoint sets based on the age value A\,. The
easy samples are used for meta-train step, in
which the objective consists of a domain adver-
sarial loss and a SPL-weighted classification loss:

l:tv" (Stm T; 0) = Ece (Stﬂ 9&7 ac) + l:d (Str-, T; 0(17 Od) 2)

—1;
v; = fr, 0o max(0, X, +1); Lee (Str) = Z vil;  (3)

T4,Yi €Str

where l; = I(z;,v:;60) is the loss of each
sample and L is the weighted domain adversarial
objective that is explained in the following section.
fv 1s a small feed-forward network with sigmoid as
final activation function to guarantee the resulting
weights located in the interval of [0, 1], and
with no bias so that the 0-valued inputs will also
correspond to outputs of the same value.
Typically, k gradient steps are applied to
approximate the optimal solution that mini-
mizes the current meta-train objective. Because
of the sizeable transformer encoder, a high
value of k will cost serious computation over-
head. Thus, we decide to use k¥ = 1, from
which we observe no significant performance loss:

0=0—aVe(Lee 0a,0:) + La(04,04)) 4)

where « is meta-train learning rate.  Next,
the meta-test objective is the standard cross-
entropy loss on samples in meta-target do-
main S;; with loss values higher than A,:

Lis (Sesi0) = Y (i vi:0) (5)

Ti,Yi €Sts
This acts as a hard, distinct domain that provides

tuning signals for guiding model updates of both
model’s parameters in 6 and hyperparameters v;
and \,.

3.2 Balancing domain adversarial objectives

The survey presented by (Rogers et al., 2020) pro-
vides a detailed probing and understanding of how
the different layer-block of BERT encodes differ-
ent types of information. Accordingly, each layer
should contain a different amount of discrepancy
between source and target domains.

To align these representation spaces between
the two domains, we employ multiple do-

main classifiers at the bottleneck of every adapter:

L

Lq= Z w' LYY, ya;04) (6)

=1

where each Efi is an adversarial term of a
different DANN , taking adapter representations
zil of layer /th and domain labels y, as inputs.
These losses are weighted by a set of coefficients
{w!} that corresponds to how important it is
for the representations at the respective layer
to be aligned. Following standard learning
procedure, they would be hyperparameters that
required careful tuning for each specific domain,
which would be impractical (in our setting, there
would be a total of 12 hyperparameters). To
address the above issue, we employ a small
feed-forward network f,, with a final softmax
layer to output the relative layer-wise weights:

W= [’ wh T = f,(Zg; 00) )

where Z; € RI*da is a set of layer repre-
sentations, each element of which is the sum of
all adapter representations of the corresponding
layer with respect to the current mini-batch. As
0, is updated throughout the ML process, W
is dynamically tuned to maintain high perfor-
mance on meta-test set while domain-adversarial
training makes representations across layers
domain-invariant.

Meta Optimization Following MLDG,
meta-train and meta-test losses are com-
bined in the final objective as follow:

arg;nin BLs (9) + Ly (0); 3rg0m/i\n Lis (9) (8)
where [ is meta-test balancing term. The
second term in Eq. 8 is the result of passing the
weights computed by neural-SPL module in Eq.
3 and 7 into Eq. 2 as pre-determined values, not
learnable variables.

3.3 Incorporating Pseudo Label

Pseudo Label is an effective method to improve
target domain performance by leveraging the pre-
dictions of previous step on unlabeled target data
as additional learning signals for the main down-
stream task. We use the pseudo-labeled target
data only for L. from Eq. 2 in meta-train step,
in which they are weighted and thresholded by
neural-SPL module using the same )\, as source



data: L. (SW,T) = > v;l;, where T is

24,y €SrUT
the set of target samples with losses lower than

Aq. To alleviate the confirmation bias in pseudo-
labeling, (Xie et al., 2019) provided strong regular-
izations and data augmentations to prevent model
from propagating its own inaccuracy throughout
the training process. In our case, neural-SPL mod-
ule would ensure that only high confident pseudo
labels are used, thus suppressing the noises and
providing a robust training for the model. In addi-
tion, as we will discuss later section, the gradient
updates of these samples are also regularized by
the ML framework, forcing them to be consistent
with meta-target domain.

4 Experiments

4.1 Datasets, Settings, and Baselines

We evaluate the proposed model on ED task in
UDA setting. In addition, we also demonstrate the
generalization of our framework when applying to
multi-domain sentiment analysis (SA) task.

ACE-05 (Walker et al., 2005) A densely anno-
tated corpus collected from 5 different domains.
Two of which are used as source data, while each
of the rest is a target domain for an adaptation set-
ting. Given a trigger word in the context of an
event mention, the model is required to perform
a multi-class classification task that assigns a pre-
dicted label into one of the pre-defined 34 event
types (including 1 negative type).

FDU-MTL (Liuetal., 2017) A dataset included
reviews from 16 domains for binary sentiment clas-
sification task. In each adaptation setting, a single
domain is assigned as the target with unlabeled data
while the other 15 are labeled source. Given the
contextual sequence computed by models from a
review, we use the first token [CLS] as the feature
to predict its positive or negative sentiment.

Information about each dataset for UDA setting
is described in Appendix B.

ED baselines We provide a comprehensive com-
parison of our proposed method with multiple base-
lines from 3 categories: (No Weighting) mod-
els that do not leverage any weighting mechanism.
BERT is only fine-tuned on only labeled source
domain, whereas BERT+DANN follows the stan-
dard adversarial training; (Functional) weight
of each sample is given by a pre-determined func-
tion. Uniform treats each sample’s loss equally, Fo-

cal Loss down-weights well-classified instance ex-
ponentially (Lin et al., 2017), and Class-Balanced
uses a weighting factor that is inversely propor-
tional to the number of samples (Cui et al., 2019);
(Curriculum) a curriculum is used to compute
the contribution of each training instance. In Dom-
Cls, the weights are provided in prior by a domain
classifier of a trained DANN to output the prob-
abilities of a sample belonging to target domain;
whereas SPL’s dynamic curriculum computes the
weighting coefficients based on the corresponding
losses as in Eq. 1. Finally, we include results from
recent approach DAA (Ngo et al., 2021), in which
three adapters were employed to create shared-
private representations through layer-wise domain
adversarial training, Wasserstein-based data selec-
tion, similarity constraint, and a self-supervised
auxiliary task.

We include details regarding implementations,
trainings and evaluations of our experiments in
Appendix A.

SA baselines ASP-MTL (Liu et al., 2017) and
DAEA (Cai and Wan, 2019) are LSTM-based ap-
proaches, while BERT and BERT+DANN are the
same as in ED baselines. Finally, BertMasker
(Yuan et al., 2021) is the state-of-the-art approach
that learns to explicitly mask domain-related words
from text, resulting in domain-agnostic sentences.

4.2 Main Results

Event Dectection The first three row-blocks of
Table 1 present the performances of the above
baselines in each domain adaptation scenario.
BERT+DANN only provides slight improvement
for domain bc compare to BERT, while signif-
icantly degrades model’s performances on the
other two. Similarly, applying DANN for the
adapter-based model without any weighting mech-
anism, as in Uniform, also has adverse effects on
out-of-domain performances. Regarding instance-
weighting baselines, the change in data distribution
across domains results in Class-Balanced’s low
domain adaptation ability. Focal Loss and SPL
perform generally better in out-of-domain settings
as they generate weighting coefficients adaptively
based on the current losses, without involving any
domain-specific statistics. On the other hand, Dom-
Cls requires computing a specific curriculum for
each domain, yet performs worse than the dynamic
curriculum imposed by SPL. Finally, compared
to the state-of-the-art DAA, MSP-DA provides a



System In-domain(bn+nw) | Out-of-domain (bc) | Out-of-domain (cts) | Out-of-domain (wl)

> P R F P R F P R F P R F aF1
BERT 758 725 741|735 689 711 | 737 695 715 622 51.6 564 | 66.3
BERT+DANN | 734 760 747 | 739 694 715 | 764 530 625 599 532 563 | 634
Uniform 768 794 781 | 754 663 70.5 | 804 21.0 333 | 61.8 457 52.6 | 52.1
Focal 782 776 719 | 71.7 729 722 | 729 685  70.1 648 542 59.0 | 67.1
Class-Balanced | 793 783 787 | 778 680 725 | 780 440 562 | 59.0 503 543 | 61.0
SPL 77.1 80.0 785|779 707 742 | 792 530 635 62.1 532 57.1 | 649
DomCls 796 764 779 | 73.0 745 73,7 | 782 487 599 | 629 531 57.5 | 63.7
DAA 797 757 717 | 785 756 769 | 784 732 756 | 662 603 63.1 | 719

[ MSP-DA [ 754 800 777762 755 758 753 768 761 [708 599 64.8 [72.2 |

Table 1: UDA performances for ED task on ACE-05 test datasets. aF1 is the average out-of-domain F1 score.

System MR | Appr. | Baby | Books | Cam. | DVD | Elec. | Hith. | IMDB | Kitc. | Magz. | Musics | Softw. | Sport | Toys | Video | aAce
ASP-MTL 7677 | 87.0 | 8.2 84.0 892 | 855 | 86.8 | 882 855 862 | 922 825 87.2 857 | 88.0 | 845 | 86.1
DAEA 770 | 89.0 | 923 89.0 920 | 883 | 91.8 | 89.8 90.8 903 | 96.5 88.0 92.8 90.8 | 91.8 | 923 | 90.2
BERT 90.5 | 90.8 | 903 913 915 | 89.0 | 913 | 91.3 91.3 90.0 | 885 90.3 90.5 920 | 90.8 | 92.0 | 90.7
BERT+DANN | 90.5 | 91.8 | 92.5 90.8 90.0 | 91.3 | 90.5 | 90.8 91.0 | 91.8 | 91.0 90.5 91.0 90.5 | 903 | 90.3 | 90.9
BertMasker 838 | 923 | 92.8 93.0 928 | 89.3 | 933 | 953 86.0 | 90.8 | 945 89.5 93.0 925 | 93.8 | 913 | 915
[ MSP-DA [933] 931 [ 925 ] 932 [ 933 [ 924 [ 931 [ 932 ] 934 [ 930 ] 931 | 927 [ 931 | 933 ] 935 ] 928 [ 93.0 |

Table 2: UDA performances for SA task on FDU-MTL test datasets. aAcc is the average accuracy score across all domains.

significant 1.7 points increase when adapting to
hardest domain w1, and achieving on average 0.3
points higher in F1 score. While it is a marginal
boost, we would like to note that DAA leverages
multiple encoders through different constraints and
auxiliary tasks to address domain shift problem. In
contrast, our work focuses on simple domain adap-
tation approaches (sample weighting and domain
adversarial training), and is effective because of
good tuned hyperparameters and training sched-
ule. Moreover, the two methods are orthogonal
and can be complementary to each other for further
improvements.

Sentiment Analysis SA results are presented
in Table 2. While simple model using contex-
tual embedding BERT outperforms all previous
LSTM-based methods, we again observe little to
no improvement applying domain adversarial train-
ing naively with it. In contrast, our framework
achieves the best performance for 13 out of 16 re-
view domains, surpassing the current state-of-the-
art method BertMasker by 1.5 points on average.

4.3 Ablation Study

In the first row-block of Table 3, we conduct an
ablation study to validate the effectiveness of each
of our main components by investigating the per-
formance of the following variations of our model:
MSP-DA-mSPL follows the normal SPL process
to produce the weighting coefficients and train-test
datasets for ML; MSP-DA-DANN trains only on
source domain without utilizing unlabeled target
data for domain adversarial objective; and MSP-
DA-PL in which no pseudo-labels are leveraged
for training. In general, our full model outperforms
all variants across domains, even in the in-domain
setting, which confirms the superiority and flex-

ibility provided by the jointly optimized pacing
and weights from our neural-SPL module. Espe-
cially for w1l domain, domain adversarial training
in MSP-DA manages to improve more than 8 F1
points.

Meta-test Selection To examine the correctness
of our assumption, we augment the data selection
process for meta domains in Random and Reverse
variants. The former randomly selects training sam-
ples for each meta domain, whereas the latter im-
plements the opposite hypothesis by choosing hard
and easy instances for meta-train and meta-test sets,
respectively. Both variants result in a considerable
decline in domain adaptation results as shown in
3. Notably, the significant performance drop in the
in-domain setting of Random indicates that simply
constructing train-test sets without any appropriate
condition can do more harm than good for the ML
process. These empirical observations further con-
firm our initial assumption on how domain shift
correlates well with the easy meta-train and hard
meta-test sets.

In-domain(bn+nw) | Out-of-domain (bc) Out-of-domain (wl)
P R F P F P F

System

MSP-DA - mSPL 745 797 710 | 775 720 746 | 641 519 574
MSP-DA - DANN 743 803 772 | 757 729 742 | 616 519 563
MSP-DA - PL 778 751 764 | 75.1 735 743 | 626 524 57.0

730 764 747 | 756 733 744 | 610 503 55.0

MSP-DA (Random)
MSP-DA (Reverse)

MSP-DA (Ours)

717
[754

75.0
80.0

76.3 | 782
71.7 [ 762

70.6
75.5

74.2
75.8

65.0
[708

50.7
59.9

57.0
648 |

Table 3: Performances for Ablation Study

System Out-of-domain (bc) | Out-of-domain (wl)

) P R F P R F
Fixed (25) 793 689 737 | 658 500 56.8
Fixed (50) 75.0 737 743 | 663 495 56.6
Fixed (75) 764 720 741 | 659 527 58.6
Linear Incrs | 749 717 733 | 61.6 547 579

[ Meta (Ours) [ 762 755 758 [ 708 599 64.8 |

Table 4: Performances for Age Hyperparameter Analysis

4.4 The Values of Age Hyperparameter

Age hyperparameter ), is usually the hardest to
tune in a SPL system due to the fact that aside
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Figure 3: Three columns in each subplot correspond to domain bc, cts, wl, respectively. (Left) Layer-wise DANN weights at
each training step. (Right) source and target age percentiles at each training step.

Out-of-domain (bc) Out-of-domain (wl)
P R F P R F
632 526 574
635 52,6 574
623 51.1 56.1

[708_ 399 648 |

System

758 715
71.0
74.8

75.5

736
73.1
744

75.8

Constant
Anneal Up 75.4
Anneal Down | 74.0

[ Meta (Ours) [ 76.2

Table 5: Performances for DANN Weighting Analysis

from the initial value, determining how )\, changes
throughout the training process also has a major im-
pact on the final performance. Several prior works
(Li and Gong, 2017; Ren et al., 2017) have pro-
posed alternative age schedulers in place of the
naive strategy which adds/multiples A, with a con-
stant at each epoch. However, the value of )\, in
these methods still follows a predefined sequence,
implying the need for a meticulous tuning process.
In contrast, our neural-SPL module updates A,
based on optimization signals from meta-test set,
thus always able to create an appropriate dynamic
curriculum regardless of different learning tasks
and datasets. In Table 4, we examine how different
values and schedules of age hyperparameter affect
performances on bc and w1l domains. The Fixed
(p) settings with p € [25,50, 75] are variations
of our model with A\, values always correspond-
ing to the unchanged p-th percentile of the current
mini-batch’s sample losses; or in other words, the
number of samples in meta-train set is always a
constant p percent that of the current mini-batch.
Additionally, we evaluate the case in which p is lin-
early increased as training proceeds, similar to the
standard SPL process, in Linear Incrs setting. The
results show that the lower p is, the worse model
performs, indicating that with too few meta-train
data, the model will not be able to adapt to the
hard meta-test domain. Surprisingly, the gradual
rising scheduler of Linear Incrs is not as effective
as the other Fixed variants. This means that the
easy-to-hard assumption of prior SPL systems is
not suitable for our ML framework.

A Visualization To gain more insight into how
age hyperparameter changes throughout the train-

ing process of each domain, we plot the values of
Aq 1n source-losses percentile against the number
of update steps for 10 epochs in the right subplot of
Fig. 3. While )\, quickly follows the standard in-
cremental trend initially, it starts to plateau within
the 60-70 percentile range until eventually start-
ing to decrease. Notably, behavior of )\, diverges
across domains in subsequent steps. Whereas )\,
continues the to decline in bc and ct s domains, it
experiences a complete trend reversal at the end of
the training of w1l domain. We hypothesis that this
drastic change of ), is because of the gradients’
dot product term that the objective in Eq. 8 implies,
which we will delve deeper into in the discussion
section below. The (] shape of A, correlates with
the term’s value as the model maximizes it to align
the gradient directions between the meta train-test
domains, going from negative initially as the train-
ing started, to O which causing the plateau, then
gradually becoming positive as the model was able
to adjust the updates of meta-train set to be consis-
tent with that of meta-test set. However, for hard
adaptation such as w1 domain, too few data in meta-
train set can cause a major disparity between the
two meta domains again, thus the resulting trend
reversal at the last few steps.

We also visualize the same plot for target-
pseudo-losses percentile, which leads to an inter-
esting observation: Initially, the model followed
its own pseudo labels without any constraint and
the high value of )\, percentile represents model’s
incorrect overconfidence. However, these pseudo-
label updates will cause discrepancies with meta-
test domain, thus the ML framework will gradually
fix the corresponding predictions, allowing only
quality pseudo samples to be included in meta-train
set. Eventually, the target trend converges with the
source ones, suggesting that model’s predictions
on pseudo labels are then as consistent as on clean
training labels.



4.5 Balancing Domain Adversarial Losses

Previous works have observed that the weight of
DANN in the combined objective has a significant
impact on the overall adaptation performance of
the model. We further validate this point by inves-
tigating how different domain adversarial weight-
ing schemes affect the results on bc and wl do-
mains. Specifically, we evaluate 3 types of layer-
wise weighting: (i) Constant - all layers share
the same w' value, (ii) Anneal Up - w slowly
increases from lower to higher layers, and (iii) An-
neal Down - w! is highest for the first layer and
gradually declines for subsequent layers. The re-
sults are present in Table 3, in which none of the
schemes is better than the others in both domains.
In contrast, the meta-learned coefficients of our
framework manage to boost model’s performances
in every adaptation setting, especially for the hard
w1l domain where domain adversarial training mat-
ters the most.

We further visualize how each layer’s weight
changes during the learning process across domains
in the left subplot of Fig. 3. In particular, we parti-
tion 12 layers of BERT-base model into 3 groups of
4 sequential layers, each of which is known to con-
tain a different type of information that is important
for a different type of task as described in the pre-
vious section. We can observe from the graphs a
certain pattern: the higher level the group is, the
more volatile its layers’ coefficients are. However,
there is no specific rule shared among all domains
regarding the value of each layer’s weight. This
affirms the sensitivity of domain adversarial bal-
ancing term to each individual domain and further
justifies the effectiveness of the jointly optimized
weighting in our framework.

5 Discussion

Following the analysis of MLDG framework
presented in (Li et al., 2018), we decompose the
meta-test loss, given that § = 6 — oL} .(0),
using the first order Taylor expansion:

OLyy (9)) ©)

o0

Lis (6 — Ly, (0)) = Lis (0) + 0Ly (0) (—a a

Denoting G = 8%39(9) : Mg@(m and plug-

ging Eq. 9 into the final objective to up-
date main model’s parameters from Eq. 8
results in the following optimization problem:

argmin Ly, (0) + L5 (0) — BaG (10)
(4

The third term in Eq. 10 is a gradient-based
regularization that penalizes inconsistency between
parameter updates of meta-train and meta-test
domains. By enforcing loss gradients of the two
domains to follow a similar direction, Eq. 10
prevents the model from over-fitting to a single
domain, effectively improves model’s adaptation
capacity provided that meta-test set is ’close’ to
target domain.

We further examine how the ML framework
affects the values of neural-SPL module’s
parameters (0., 60,,A;) in our model. Plug-
ging Eq. 9 into the gradient of )\,, we have:

OLis (0) 0L, (0) %Ly (0) dfs(Ma)
) P TR T W R W
From Eq. 11, we see that the multiplicative

factor G also controls how the value of A\, changes
throughout the ML process. When there is a
significant discrepancy between meta-train and
meta-test domain, G would have a negative
value, which would in effect push A, higher and
allow more samples into meta-train set for easier
adaptation to meta-test set. Conversely, a positive
G would imply that the model is good enough to
align the current meta domains, thus gradually
pulling A\, down to make the task harder. This
behavior is clearly illustrated in Fig. 3. Similar
arguments can be made for the meta-learned
weighting coefficients, where G would encourage
samples whose gradients are similar across
domains while decreasing the contribution of those
whose gradients are not. These understanding are
also presented in (Shu et al., 2019) and closely
related to how MAML works (Nichol et al., 2018;
Raghu et al., 2019)

6 Conclusion

We present a novel ML framework for UDA set-
ting that achieves state-of-the-art performance on
ED task. In particular, a neural-SPL module is em-
ployed to adaptively partition source domain into
meta-train and meta-test set, while simultaneously
learns the instance-wise and layer-wise weights for
the loss terms of downstream task and domain ad-
versarial task respectively. The proposed model
significantly improves domain adaptation perfor-
mances against various baselines on every domain
without domain-specific hyperparameter tuning. In
the future, we intend to apply our approach to other
domains and tasks while incorporating different
novel domain adaptation regularization methods.
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A Implementation Details

All models are implemented in Pytorch. We lever-
age pre-trained BERT-base models and checkpoints
from Huggingface repository. (Wolf et al., 2020).
Meta-learning process is implemented following
ANIL algorithm in (Arnold et al., 2020).

Bounds for each hyperparameter Adapter lay-
ers injected after every feed-forward sub-blocks
have bottleneck feed-forward architecture with
down-sampled dimension chosen among [48, 96,
128]. All of the downstream heads are implemented
as feed-forward networks with activation functions
between layers. Each weighting net of neural-SPL
module is a feed-forward network with 2 or 3 layers
with hidden vectors of size [100, 50] or [200, 100,
50], respectively To train the proposed model, we
use Adam optimizer with meta-train and meta-test
learning rates « and y both chosen from [Se-5, 1e-
4, 5e-4, 1e-3, 5e-3], the mini-batch size from [50,
100, 150] of which 20% or 40% are unlabeled tar-
get data, and the meta-test balancing term /3 from
[5,2,1,0.5,0.1].

Method of choosing hyperparameter values
We tune the hyperparameters for the proposed
model using a random search. All hyperparam-
eters are selected based on the F1 scores on the
development set of bc domain. The same hyperpa-
rameters from this fine-tuning are then applied for
other domains.

Best hyperparameter configuration In the best
model, fixed pre-train BERT-base layers aug-
mented by adapters with bottleneck size 96 are
used as our feature encoder. All objective heads
have 2 hidden layers. We use Adam optimizer with
a learning rate of 1e-4 for both meta-train and meta-
test step, 100 for mini-batch size with 20% target
data, and the meta-test balancing term is 2. Our
reported results are averages of five runs using the
best hyperparameter configuration with different
random seeds.

B Data Settings

We provide statistics of each domain in UDA set-
ting for ACE-05 and FDU-MTL in Table 6 and
Table 7, respectively.

For ACE-05 dataset, we gather data from two
closely related domains, bn and nw, to create a siz-
able source domain dataset, 80% of which are used
for training whilst the rest are used as test target
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domain for in-domain setting. For out-of-domain
settings, each of the other domains is considered
the target domain of a single adaptation scenario,
where 20% of its documents are unlabeled training
target data and the remainders are utilized as the
test dataset. All of the considered models’ hyper-
parameters are only tuned based on bc domain.

Domains Train  Unlabeled Test
bn+nw 38644 N/A 9661
be N/A 3130 12520
cts N/A 2885 10972
wl N/A 3424 12767

Table 6: Statistics of ACE-05’s domains in UDA setting.

For FDU-MTL dataset, each of the 16 domains
has a test set of 400 samples. The amount of train-
ing labeled and unlabeled data vary across domains,
ranging from 1400 to 2000 samples. In each adap-
tation setting, a single domain is designated as the
target domain while its unlabeled data are used
in training set together with labeled data from the
other 15 domains.

Domains Train Unlabeled Test
Books 1400 2000 400
Elec. 1398 2000 400
DVD 1400 2000 400
Kitchen 1400 2000 400
Apparel 1400 2000 400
Camera 1397 2000 400
Health 1400 2000 400
Music 1400 2000 400
Toys 1400 2000 400
Video 1400 2000 400
Baby 1300 2000 400
Magaz. 1370 2000 400
Soft. 1315 475 400
Sport 1400 2000 400
IMDb 1400 2000 400
MR 1400 2000 400

Table 7: Statistics of the 16 domains in FDU-MTL



