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Abstract. The manual ground truth of abdominal multi-organ is labor-
intensive. In order to make full use of CT data, we developed a semi-
supervised learning based dual-light UNet. In the training phase, it con-
sists of two light UNets, which make full use of label and unlabeled data
simultaneously by using consistent-based learning. Moreover, separable
convolution and residual concatenation was introduced light UNet to re-
duce the computational cost. Further, a robust segmentation loss was
applied to improve the performance. In the inference phase, only a light
UNet is used, which required low time cost and less GPU memory uti-
lization. The average DSC of this method in the validation set is 0.8718.
The code is available in https://github.com/laihaoran/Semi-Supervised-
nnUNet.

Keywords: Semi-supervised learning · UNet · Robust segmentation loss.

1 Introduction

Fast automatic abdominal multi-organs segmentation can greatly improve the
labeling speed of radiologists. However, there are still a series of challenges for
automatic abdominal multi-organ segmentation: 1) Manual labeling of ground
truth requires significant labor cost. 2) There is a large amount of unlabeled data
that can be used to improve performance. 3) Medical image segmentation suffers
from unclear boundaries. 4) Integrated automatic segmentation algorithms need
to meet the requirements of low time cost and less GPU memory utilization.

Semi-supervised learning can be achieved by combining a small amount of la-
beled data and a large amount of unlabeled data, thus enabling training on small
labeled datasets. The current major semi-supervised learning algorithms can be
categorized into 1) pseudo-labeling-based learning [1,6] and 2) consistency-based

https://github.com/laihaoran/Semi-Supervised-nnUNet
https://github.com/laihaoran/Semi-Supervised-nnUNet


2 Haoran Lai et al.

learning [2,10]. The prospects of abdominal multi-organ segmentation have mul-
tiple categories and dense distribution (multiple categories may exist in a region),
which is suitable for consistency-based learning.

Therefore, we propose a semi-supervised learning based dual-light UNet to
achieve fast automatic abdominal multi-organs segmentation. First, consistency
learning strategy was introduced in to the proposed network to effectively uti-
lize the large amount of unlabeled data. Second, a light UNet was proposed
to achieve efficient and fast automatic segmentation. Then, a robust segmen-
tation loss function was applied to overcome the challenge of tiny foreground.
Finally, this proposed method achieves fast and accurate automatic abdominal
multi-organ segmentation.

The main contributions of this work are as follows.

• We use a network consistency-based semi-supervised learning strategy to
leverage large amounts of unlabeled data.

• We propose a light UNet for fast and efficient automatic abdominal multi-
organs segmentation.

• We adopt a robust segmentation loss function to effectively overcome the
challenge of tiny foreground.

Fig. 1. Illustrating the architectures for consistent learning.

2 Method

2.1 Consistency-based learning

As shown in Figure 1, let the Xl = {xli, i ∈ N} and Xu = {xui, i ∈ M} be
the labeled and unlabeled data, respectively, where N and M are the number
of labeled and unlabeled data, respectively. In our experiment, the condition of
� M is established for semi-supervised learning. First, dual identical networks
f(θA) and f(θB) are built with different parameter initialization methods. Then,
dual identical networks f(θA) and f(θB) are trained by using the labeled data
for abdominal organ segmentation, respectively.

f(xli; θA) = pA,li

f(xli; θB) = pB,li
(1)



DLUNet 3

where p is the probability map. Next, the trained network is used to obtain
different probability map of unlabeled data and their pseudo-labels.

f(xui; θA) = pA,ui, f(xuj ; θA) = pA,uj

f(xui; θB) = pB,ui, f(xuj ; θB) = pB,uj
(2)

yA,ui = argmax(pA,ui), yA,uj = argmax(pA,uj)
yB,ui = argmax(pA,ui), yB,uj = argmax(pB,uj)

(3)

CutMix operation [14] is implemented on different unlabeled data and pseudo
labels:

xuij = H� xui + (1−H)� xuj
yA,uij = H� yA,ui + (1−H)� yA,uj
yB,uij = H� yB,ui + (1−H)� yB,uj

(4)

In this situation, the outputs of the two networks can be used to supervise
for each other, which achieves the network consistency-based learning.

f(xuij ; θA) = pA,uij −→ yB,uij

f(xuij ; θB) = pB,uij −→ yA,uij
(5)

During each iteration, the label data and the unlabel data are simultaneously
input to the network for optimization.

2.2 Light UNet

To accelerate inference speed and reduce the GPU memory utilization, we modify
the UNet in nnU-Net[9]. A light UNet was presented in Figure 2.

– We replace the original convolution with depthwise separable convolution [3],
thus reducing the number of trainable parameters.

– Residual connection [5] was introduced between all convolution layers, in-
cluding encoder and decoder, thus improving the representational ability of
the UNet.

Fig. 2. The architecture of Light UNet.
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2.3 Robust segmentation Loss

In the segmentation task, the commonly used segmentation loss is a combination
of Dice loss and cross entropy (CE) loss, which have been proved be robust
in various medical image segmentation task [11]. In this paper, based on the
previous segmentation loss, the idea of mean absolute error (MAE) loss was
introduced into Dice and CE loss respectively. Therefore, a robust segmentation
loss fuction LRS was proposed, which consists of noise robust dice loss LNRD
and taylor cross entropy loss LTCE .

LRS = LNRD + LTCE (6)

LNRD =

∑DWH
n=1 |µn − υn|γ∑DWH

n=1 µ2
n +

∑DWH
n=1 υ2n + ε

(7)

LTCE =

DWH∑
n=1

(1− µn,υ=1) +

∑DWH
n=1 (1− µn,υ=1)

2

2
(8)

where D, W and H are the depth, width and height of input, respectively. µ
and υ are the voxels of softmax output and ground truth, respectively.

2.4 Preprocessing and Inference

The dataset was preprocessed by nnU-Net configuration[9], including HU value
clipping, HU values normalization, and resolution uniformity. In order to achieve
category-balanced cropping for unlabeled data in training stage, a nnU-Net
model was trained in advance using a small amount of labeled data. Then, a
pseudo-label for unlabeled data is generated, which is only involved in achieving
category-balanced cropping and not in other utilization.

In the inference phase, a patch shift-based approach was used to generate
mask outputs for the entire 3D CT. We used 0.5 shift steps for each patch to
alleviate the misclassification of the results by local information. Moreover, all
patchs were flipped along three axes to generate robust performance.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [13], KiTS [7,8], AbdomenCT-1K [12],
and TCIA [4]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
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corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. Only DSC score was presented in the exper-
iments. All measures will be used to compute the ranking. Moreover, the GPU
memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
RAM 503 GB
GPU (number and type) Two NVIDIA RTX 2080Ti 11G
CUDA version 11.0
Programming language Python 3.7
Deep learning framework Pytorch (Torch 1.11, torchvision 0.2.2)

Training protocols Ther training protocols are presented in Table 2

Table 2. Training protocols.

Network initialization “he" normal initialization
Batch size 1
Patch size 56×160×160
Target resolution 2.5×1.5×1.5
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule halved by 200 epochs
Training time 276 hours
Loss function RRD + TCE
Number of model parameters 5.59M
Number of flops 33.81G
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4 Results and discussion

A public unlabeled validation set was used to evaluate the experiment results,
which can be uploaded to the online4 for metrics.

4.1 Ablation of semi-supervised learning

Table 3 shows the effects of introducing semi-supervised learning in the nnU-
Net and light unet on the final segmentation performance, respectively. Two
conclusions can be found from Table 3: (1) The segmentation performance of
the light unet is inferior to the nnU-Net due to the less parameters, but the light
unet can speed up the inference and reduce the GPU memory utilization. (2) The
introduction of semi-supervised learning has greatly improved the segmentation
performance for both. Further, the performance improvement is greater for the
light unet with a smaller number of parameters than nnU-Net, which may be
caused by model with few parameters has strong potential for improvement.

Table 3. Ablation of semi-supervised learning (SSL). LV, RK, SL, PC, AT, IVC, RAG,
LAG, GB, EH, SM, DD, and LK are short for Liver, Right Kidney, Spleen, Pancreas,
Aorta, Inferior Vena Cava, Right Adrenal Gland, Left Adrenal Gland, Gallbladder,
Esophagus, Stomach, and Left kidney, respectively.

Method Mean LV RK SL PC AT IVC RAG LAG GB EH SM DD LK
nnU-Net w/o SSL 0.869 0.967 0.880 0.941 0.841 0.949 0.882 0.822 0.819 0.821 0.877 0.885 0.748 0.871
nnU-Net w SSL 0.895 0.978 0.897 0.973 0.909 0.973 0.922 0.839 0.826 0.779 0.900 0.914 0.838 0.888

Light UNet w/o SSL 0.837 0.965 0.869 0.932 0.830 0.945 0.860 0.766 0.731 0.731 0.837 0.858 0.717 0.843
Light UNet w SSL 0.878 0.976 0.910 0.969 0.894 0.960 0.896 0.807 0.763 0.764 0.865 0.915 0.799 0.891

Table 4. Comparison of loss function.

Loss Mean LV RK SL PC AT IVC RAG LAG GB EH SM DD LK
Dice+CE 0.869 0.972 0.915 0.954 0.861 0.958 0.884 0.823 0.814 0.720 0.867 0.888 0.751 0.889

NRD+TCE 0.870 0.967 0.880 0.941 0.841 0.949 0.882 0.822 0.819 0.821 0.877 0.885 0.748 0.871

4.2 Comparison of loss function

From Table Table 4, it can be found that the robust segmentation loss is superior
to the combination of dice and CE loss in terms of overall performance. More-
over, it can be noticed that although the robust segmentation loss is inferior to
the combination of dice and CE loss for the segmentation of most organs from
4 https://flare22.grand-challenge.org/evaluation/challenge/submissions/create/
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the segmentation performance of different organs, the robust segmentation loss
has a great advantage for the segmentation of the gallbladder. The gallbladder
belongs to the small target segmentation region, therefore, we conclude that
robust segmentation loss has some advantages for the small target region.

4.3 Segmentation efficiency results

Considering the balance between segmentation performance and inference speed,
we reduce the original 7 times flips in nnU-net to 3 tmes flips (tta). Moreover,
in order to address the phenomenon that particularly large samples in the im-
age will be out of memory during the inference process, we only keep the final
generated labels and do not keep the intermediate network output (RAM). The
result was performed in Table 5.

We did not upload docker to test computational efficiency issues. However,
we tested on our own platform to test the optimization of computational effi-
ciency. In the end, we achieved a test time of 0.67 hour on 50 validation samples,
maximum ram is 18G, and GPU memory is 2045MB.

Table 5. Extra Processing for fianl result. IS(H) is short for inference speed, with hour
as unit.

Method Mean IS(H) LV RK SL PC AT IVC RAG LAG GB EH SM DD LK
DLUNet 0.878 0.976 0.910 0.969 0.894 0.960 0.896 0.807 0.763 0.764 0.865 0.915 0.799 0.891
DLUNet+tta 0.884 2.00 0.977 0.910 0.972 0.899 0.962 0.901 0.816 0.762 0.801 0.873 0.917 0.800 0.895
DLUNet+tta+RAM 0.872 0.67 0.973 0.903 0.964 0.890 0.948 0.888 0.789 0.741 0.792 0.857 0.911 0.795 0.885

Fig. 3. Qualitative results on easy (case 06 and 21) and hard (case 47 and 48) examples.
First column is the image, second column is the ground truth, third column is the
predicted results by Light U-Net without ssl, third column is the predicted results by
DLUNet with ssl.
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4.4 Qualitative results

Figure 3 presents some easy and hard examples on validation set, and quantita-
tive result is illustrated in Table 6. Comparing (Case 06 and Case 21) and (Case
47 and Case 48), we can find that our proposed method does not work well for
lesion-affected organs. For example, the liver cancer region is wrongly identified
in Case 47 and Case 48, especially Case 48. This situation may be due to our
proposed method is implemented by a patch-based training strategy, which lacks
global information.

Table 6. The DSC scores of easy and hard examples.

Example Method Mean LV RK SL PC AT IVC RAG LAG GB EH SM DD LK
Case 06 w/o ssl 0.915 0.983 0.974 0.978 0.924 0.965 0.944 0.899 0.894 1.000 0.908 0.936 0.756 0.729

w ssl 0.924 0.985 0.983 0.983 0.929 0.977 0.955 0.927 0.920 1.000 0.922 0.940 0.760 0.725
Case 21 w/o ssl 0.946 0.985 0.972 0.983 0.926 0.966 0.937 0.869 0.864 1.000 0.935 0.969 0.926 0.973

w ssl 0.957 0.988 0.980 0.989 0.932 0.980 0.946 0.894 0.897 1.000 0.949 0.973 0.936 0.981
Case 47 w/o ssl 0.798 0.885 0.978 0.866 0.798 0.936 0.665 0.677 0.818 0.676 0.807 0.904 0.395 0.977

w ssl 0.805 0.882 0.986 0.868 0.805 0.954 0.682 0.676 0.833 0.707 0.815 0.918 0.358 0.983
Case 48 w/o ssl 0.716 0.971 0.971 0.667 0.841 0.958 0.461 0.679 0.856 0.000 0.693 0.598 0.796 0.811

w ssl 0.729 0.972 0.978 0.702 0.861 0.970 0.456 0.747 0.869 0.000 0.692 0.623 0.795 0.812

4.5 The performance of testing set

As shown in Table 7, our method shows a competitive segmentation performance
on the testing set. Moreover, we find that all metrics of case 97 are 0. This
may be caused by the fact that the view of case 97 is flipped, which leads
to the misjudgment of the inference optimization algorithm and terminates the
inference in advance, resulting in not generating the correct segmentation output.
Since the focus of our method is on segmentation performance improvement, the
optimization of inference speed is neglected, resulting in the lack of advantage
of our method in the final composite score.

Table 7. The performance of testing set.

Metric Mean LV RK SL PC AT IVC RAG LAG GB EH SM DD LK
DSC 0.881 0.968 0.941 0.949 0.854 0.949 0.900 0.815 0.805 0.809 0.805 0.924 0.797 0.937
NSD 0.940 0.969 0.960 0.961 0.954 0.982 0.923 0.953 0.939 0.828 0.913 0.951 0.926 0.958

Times(s) 73.92
AUC GPU 138831
AUC CPU 1195

4.6 Limitation and future work

In this paper, we do not use existing deep learning model packaging techniques
(e.g., TensorRT) to package the model, reduce computational memory, and in-
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crease inference speed. Therefore, the implementation of the operation can be
considered in the future work.

5 Conclusion

The FLARE2022 competition aims to design an efficient and accuracy abdominal
multi-organ segmentation network by using a small amount of labeled data and
a large amount of unlabeled data. In this paper, we proposed DLUNet for this
task. First, consistent-based learning was introduced to achieve semi-supervised
learning. Second, separable convolution and residual connection were used to
greatly reduce the computational cost. Moreover, a robust segmentation loss
was applied to improve segmentation performance. Experiments prove that the
DLUNet achieves a certain balance in terms of model parameters, computation
time, GPU memory utilization, and segmentation performance. The method is
promising for the task.

Acknowledgements The authors of this paper declare that the segmentation
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used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
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