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Figure 1: Action recognition (green), action anticipation (red), object detection, and hand tracking on
Trauma THOMPSON dataset.

ABSTRACT

This paper introduces the Trauma THOMPSON dataset, a novel dataset and
benchmarks to foster research towards designing artificial intelligence-based
decision-making algorithms specifically suited for life-saving interventions
performed by less experienced caregivers. This paradigm is particularly relevant
to support humanitarian operational medicine, where the essential resources
are either unavailable or significantly restricted. Our dataset includes a total
of 3717 high-resolution clips and ground-truth action annotations by medical
professionals. The events are unscripted, and the clips are all assigned a specific
medical skill relevant to life-saving interventions. There are two skill types:
regular procedures with standard medical tools and improvised procedures with
daily objects. We have augmented this dataset with additional annotations,
including medical visual question answering, hand tracking and object detection.
Moreover, we propose a framework for replacing manikins in the dataset with real
patients and a realism detection method. Benchmarks are provided for action
recognition, action anticipation, and visual question answering (VQA) using a
variety of vision models and vision language models (VLMs). We found that
MViT v2 is the best performer for action recognition and action anticipation
and BLIP for VQA. By consolidating diverse annotations into a single dataset
and a framework to create realistic patient images, Trauma THOMPSON dataset
offers a foundation for training unified VLMs as AI medics that can perform
holistic reasoning and decision-making in disconnected and high-stakes settings to
support less experienced first responders. The dataset and codes are available at
https://dataverse.harvard.edu/previewurl.xhtml?token=
bd66015d-64bc-4203-ad09-5ab5c90832ef.

1 INTRODUCTION

In medicine, Artificial Intelligence (AI) assistants have been proposed to act as copilots for a mentee
or trainee. Bahl et al., for example, have developed an AI system to guide radiologists (Bahl, 2020),
and there is a wide body of work about the use of AI for diagnostics based on medical records
and multimodal imaging techniques (Liu et al., 2018; Al-Antari, 2023; Dilsizian & Siegel, 2014;
Hamet & Tremblay, 2017), which are in general offline approaches. The use of AI for mentoring
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and intraoperative instruction is more recent (Dinh et al., 2023). For example, the Virtual Operative
Assistant (Mirchi et al., 2020) offers feedback to trainees in neurosurgery during the resection of
brain tumors in a VR setting. Likewise, Auloge et al. and Jha et al. (Auloge et al., 2020; Jha & MB,
2019) proposed assistance for spatial navigation during surgery. Many others have relied on AI as
"evaluators" to assess surgical performance (Bissonnette et al., 2019; Ward et al., 2021; Fazlollahi
et al., 2022). All such systems were developed for controlled environments, such as the Operating
Room (Novaes & Basu, 2020), or alternatively were used in laboratory conditions (Rojas et al., 2020;
Rojas-Muñoz et al., 2020; Zhang et al., 2021; Xu et al., 2022; Vannaprathip et al., 2025; Caballero
et al., 2025). Recently, a first prototype for video analysis software based on speech recognition was
created for operational medicine for first responders (Kar et al., 2021). However, the focus of that
work is on data collection with Natural Language Processing (NLP).

Figure 2: Overview of the experimental pipeline.

None of the aforementioned systems were used for humanitarian medicine, and neither did they
address the specific challenges of uncontrolled field conditions. Some of those challenges involved
just-in-time decision making with limited tools. To address the gap, we introduce the Trauma
THOMPSON dataset and benchmarks, which are a collection of video clips with annotations and
algorithms to encourage research and development of artificial intelligence (AI) copilots for humani-
tarian medicine. To the best of our knowledge, our dataset is the first of its kind in terms of scale,
settings, challenges, and applicability. Figure 1 illustrates the action recognition, action anticipation,
object detection, and hand tracking tasks on the Trauma THOMPSON dataset. The first row shows
the tasks performed on manikin images and the second row shows the tasks performed on realistic
images generated through an image generation framework we propose. Figure 2 shows an overview
of the experimental pipeline of this study. In summary, this paper makes the following contributions.

• We created the first egocentric view dataset of operational medicine that assist field medics to
properly perform emergency care procedures in resource-constrained settings. This dataset
includes annotated video clips corresponding to 5 unscripted life-saving procedures.

• We provide benchmarks for action recognition and anticipation to predict the actions required
for humanitarian medicine and resuscitative care with multiple vision models (VMs) and
vision language models (VLMs). This dataset is intended to act as an essential piece for
developing copilots for medics and first responders.

• We created secondary annotations for VQA and provide benchmarks for this task to illustrate
how VQA algorithms can be potentially used as a clinical decision support (CDS) tool to
assist caregivers through natural dialogue throughout the diagnostic process.

• We tested a methodology to generate pseudo-realistic images of patients in a variety of
settings from images using simulators, and realism assessment metrics. It addresses the chal-
lenge of real patient data collection under emergency conditions without identity concerns.
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2 RELATED WORK

2.1 EGOCENTRIC ACTIVITY RECOGNITION DATASETS

Video understanding has seen dramatic advances due to the introduction of action classification
benchmarks such as UCF101 (Soomro et al., 2012), HMDB51 (Kuehne et al., 2011), Kinetics (Kay
et al., 2017), Something-Something (Goyal et al., 2017), and AVA (Gu et al., 2017), which mostly
consist of short videos focusing on a single action per clip and aim to recognize daily activities.
Nonetheless, these datasets may lack the spontaneity, progression, and multi-tasking that occur in
real-life situations due to their scripted nature. As a result, research has shifted focus to first-person
vision, which delivers activities from a unique viewpoint. For instance, Pirsiavash & Ramanan (2012)
developed a dataset that includes 20 participants and encompasses 10 hours of ADL videos. Li et al.
(2020) created EGTEA Gaze+ with wearable cameras, which is an egocentric ADL dataset of 28
hours of cooking activities from 86 distinct sessions involving 32 subjects. Damen et al. (2018)
curated the EPIC-KITCHENS dataset, which is a large-scale egocentric video dataset with 100 hours
of cooking actions recorded by 32 participants. These egocentric-view datasets often are used for open
challenges in action recognition and action anticipation, as is the case with the EPIC-KITCHENS
dataset.

2.2 SURGICAL AND FIRST RESPONDERS DATASETS

With the surge of machine learning techniques, there has been a renewed interest in the acquisition
of surgical datasets, as they provide fundamental resources for post-recognition error, accuracy,
and further procedural correction. Furthermore, data collection has enabled the computation of
proficiency, skill level, knowledge acquisition, and performance during robotic surgery (Gao et al.,
2014; Tao et al., 2012; Gonzalez et al., 2021). Moreover, with the advance in natural language
processing, AI assistants have been proposed to assess, assist, and coach nurses, residents, and
assistants using behavior understanding (Lee & Yoon, 2021) and captioning methods to communicate
next steps (Hartmann et al., 2022). Instructional videos for life-saving skills have been proposed for
the purpose of training AI algorithms (Gupta et al., 2023). Nevertheless, such datasets were collected
in controlled settings using both simulation and planned surgical procedures. There are very few
cases in that such datasets were collected under austere and limited conditions, as often found in
humanitarian and operational medicine (Wang et al., 2021).

Figure 3: Examples of procedure video clips.

2.3 ACTION RECOGNITION AND ACTION ANTICIPATION

Many researchers have represented and recognized human actions through various visual (including
RGB video, skeleton, depth, infrared, point cloud, event stream) and non-visual (including audio,
acceleration, radar, and WiFi) modalities. Even with challenges from varying viewpoints, scales,
backgrounds, and illuminations, RGB video remains the most popular, accessible, and single-modality
method to capture and represent actions (Sun et al., 2023). For the action recognition task, with
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Table 1: Comparison of Trauma THOMPSON to the related egocentric and medical datasets

Dataset Ego Med Frames No. Act Participants No. Envs

Trauma THOMPSON, 2025 ✓ ✓ 0.7M 162 12 15
EPIC-KITCHENS (Damen et al., 2018) ✓ × 11.5M 149 32 32
BEOID (Damen, 2014) ✓ × 0.1M 34 5 1
GTEA (Fathi et al., 2011) ✓ × 0.4M 42 13 1
CMU-MMAC (de la Torre et al., 2008) ✓ × 0.2M 31 16 1
ADL (Pirsiavash & Ramanan, 2012) ✓ × 1.0M 32 20 20
ESAD (Bawa et al., 2020) × ✓ 0.03M 21 4 4
CholecT50 (Nwoye et al., 2022) × ✓ 0.1M 100 13 13
MedVidCL (Gupta et al., 2023) × ✓ 1489 Videos 0 >100 >100
MRAO (Schmidt et al., 2021) × ✓ 480 Videos 10 16 2
MISAW (Huaulmé et al., 2021) × ✓ 27 Videos 17 6 1
PSI-AVA (Valderrama et al., 2022) × ✓ 8 Videos 167 3 1
PETRAW (Huaulmé et al., 2023) × ✓ 150 Videos 6 4 2

the wide adoption of deep learning, a range of architectures has been proposed in the literature,
mainly based on convolutional neural networks (CNN), recurrent neural networks (RNN), and vision
transformers (ViT) (Yang et al., 2022; Ulhaq et al., 2022). CNN methods are classified into 2D
CNN and 3D CNN, while RNN methods typically use gated architectures like Long-Short Term
Memory (LSTM). ViT has become prominent in video understanding due to its attention mechanism.
Predicting future actions is key for AI copilots. Thus, the action anticipation task can be divided into
three categories: early action recognition; next action anticipation; and long-term action anticipation
(Roy et al., 2023). Various methods (Kong & Fu, 2022) including Large Language Models (LLMs)
and Large Vision Language Models (LVLMs) have been explored to tackle these tasks (Yan et al.,
2024; Xiang et al., 2023; Dessalene et al., 2023; Wang et al., 2025).

2.4 MEDICAL VQA DATASETS

Recent advancements in medical VQA include the VQA-MED-2018 (Hasan et al.), VQA-MED-2019
(Abacha et al., 2019), VQA-MED-2020 (Abacha et al., 2020), VQA-MED-2021 (Ben Abacha et al.,
2021), PathVQA (He et al., 2020), VQA-RAD (Lau et al., 2018), RadVisDial (Kovaleva et al., 2020),
and SLAKE (Liu et al., 2021). These datasets typically focus on medical imagery such as CT scans,
MRI, x-ray, and ultrasound. VQA can serve as a valuable CDS tool by enabling a sequential approach
to diagnostic processes, coming up with conclusions, and potentially facilitating diagnostic inferences
(Zhang et al., 2024). Foundational Models with Chain-of-Thought architectures have been recently
proposed to mimic the step by step reasoning process (Kim et al., 2024; Xu et al., 2024). However, a
key challenge in this area lies in the scarcity of adequate and diverse training data, which is essential
to create robust AI algorithms under real-world scenarios (Antoniadi et al., 2021). VQA datasets
for resource-limited settings are even more scarce, yet they hold significant potential for enhancing
life-saving capabilities.

2.5 OUR WORK: EGOCENTRIC OPERATIONAL MEDICINE DATASET

Table 1 compares the Trauma THOMPSON dataset to common egocentric view and medical in-
structional datasets and presents key metrics that distinguish the Trauma THOMPSON dataset as
the first egocentric view medical instructional dataset with per-frame annotations. The dataset has a
similar structure as other egocentric datasets for action recognition and anticipation, such as EPIC-
KITCHENS (Damen et al., 2018), GTEA (Fathi et al., 2011) and EGTEA Gaze+ (Li et al., 2020),
Charades-Ego (Sigurdsson et al., 2018) dataset, with the following caveats. Firstly, the hands are not
always visible or distinguishable due to artificial blood, occlusions, and multiple limbs, which makes
it more challenging for detection and tracking. Secondly, some of the videos are taken outdoors,
increasing the complexity due to uncontrolled lighting. Thirdly, mistakes require rewinding and
re-doing, or stopping short while completing the procedures, leading to a high variability in style and
performance time. Additionally, as opposed to existing datasets for surgical guidance and instruction,
which rely on a fixed set of tools common to general surgery, our dataset is subject to the emergency
setting, as shown in Figure 3. That is, performers were first responders, medics, and surgeons; and
the procedures were often conducted using improvised tools (e.g. shirt for a tourniquet, a pocket
knife for a cricothyroidotomy) to replicate a resource-limited setting. Lastly, our dataset includes
pseudo-realistic images of patients generated using a VLM.
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3 METHOD OF DATA COLLECTION

Procedure identification The development of the Trauma THOMPSON dataset involved a team of
experts with experience in deployed settings, such as surgeons, critical care physicians, and emergency
medicine physicians, who created a list of essential procedures for prolonged casualty care (PCC),
such as cricothyrotomy and tourniquet application. Additionally, a focus group of 15-30 subject
matter experts (SMEs) determined a consensus on the content and best practices for the dataset.
This information was used to identify a final list of procedures, which includes cricothyroidotomy,
intraosseous infusion, tourniquet, needle thoracostomy, and tube thoracostomy. The collection of
procedures and settings is described in the following section.

Data collection We focused on capturing natural, unscripted life-saving intervention (LSI) procedures
from the first-person perspective, which involves operating a medical tool, searching for an item,
changing one’s mind, and encountering unexpected problems. The videos were recorded at 1080p
using head-mounted cameras (GoPro, Hero7, San Mateo, California) to capture first-person views
filmed across various simulation models and environments. Surgeons wore the cameras on their
heads and adjusted the angle to 20-30° relative to the forehead for optimal video collection. The
hands were centered in frames during procedures for better visualization.

The dataset was also enhanced through the inclusion of videos capturing "just-in-time" (JIT) proce-
dures involving improvised, non-traditional equipment. Videos were obtained of users performing
improvised tourniquets (utilizing belts or clothing and a screwdriver), tube thoracostomy (utilizing
scissors for incision and expansion of thoracostomy and a screwdriver to guide insertion of the tube),
needle cricothyroidotomy (replacing standard incision/tube with a needle for emergency airway
management), and manual intraosseous needle placement (when the needle driver is not available or
functional). In addition to the egocentric manikin recordings, we curated a complementary set of
real human emergency procedure videos sourced from publicly available YouTube content. These
videos depict the five life-saving interventions in the Trauma THOMPSON dataset on real human
subjects. Each video was manually reviewed to ensure clear visualization of the procedure types. To
further expand the dataset and improve translation to clinical scenarios, we generated pseudo-realistic
synthetic images using an AI-based image generation model. These images depict realistic trauma
presentations, including active bleeding, soft tissue deformation, and blunt-force injuries, enabling
more realistic cases. The details is in Section 4.

Annotation pipeline The action annotations in the dataset consist of start timestamps, end timestamps,
and actions expressed as verb-noun pairs for corresponding video clips. The expected output for
testing is the labels for the action, verb, and noun. Medical professionals were responsible for
annotating the data, and providing the timestamps and actions for each procedural step. To reduce the
possibility of errors in timestamping and video segmentation, the annotations underwent peer review.
The medical VQA is derived from the egocentric video dataset and includes additional annotations that
contain questions and corresponding plausible answers. Each question in the secondary annotations
contain 3 to 5 potential answers. For example: Q: What limb is injured? A: Right arm; Q: Where is
the catheter insderted? A: There is no catheter; A: Is there any bleeding? A: No.

Data Quality Assurance To ensure annotation accuracy, each procedure is labeled by one medical
professional and reviewed by two others. Since exact timestamps are difficult to determine, we
estimate the actual timestamp as the average of all annotators’ inputs. Annotation accuracy is then
calculated based on the overlap between the original and actual timestamps, relative to the actual
duration of each clip. The average annotation accuracy across all clips is computed as a duration-
weighted mean. Due to the large volume of the dataset, the annotation reviewers were requested to
randomly review 60 videos in the dataset according to the above-stated instructions. The temporal
accuracy is 99.4%, the label accuracies of actions, verbs, and nouns, are 97.2%, 97.2%, and 97.7%.

4 REALISM: REALISTIC IMAGE GENERATION

We introduce the Trauma THOMPSON Framework (TTFW), a vision-language guided image-
to-image generation framework designed to convert clinical images containing non-realistic ele-
ments—such as manikins or synthetic anatomical proxies—into photorealistic depictions suitable for
both human interpretation and downstream machine learning tasks. The framework ensures that the

5
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generated image remains semantically consistent with the source while satisfying perceptual realism
constraints.

4.1 PROBLEM FORMULATION

Given a source image IS , our objective is to generate a realistic image IR such that the clinical
context is preserved, while any unrealistic subject (e.g., a manikin) is replaced with a human-like,
photorealistic counterpart. We begin by computing a caption CS = VLM(IS) using a vision-language
model. To abstract away subject-specific tokens (e.g., “manikin”), we apply a masking functionM,
yielding a subject-neutral prompt C̃S =M(CS). This prompt and the original image are then passed
to a generative model G, which produces the output image IR = G(IS , C̃S). To ensure semantic
consistency, we caption the generated image CR = VLM(IR) and apply the same masking operation
to obtain C̃R =M(CR). Using a language-image embedding function ϕ, we define the contextual
similarity as the cosine similarity between masked caption embeddings. The generated image is
accepted only if cos(ϕ(C̃S), ϕ(C̃R)) ≥ δ, where δ ∈ [0, 1] is a predefined similarity threshold (e.g.,
δ = 0.99). If this constraint is not satisfied, we compute a semantic delta ∆C = LM(CS , CR) using
a language model, and iteratively refine C̃S before re-generating IR. For our experiments, we used
ChatGPT-4o for VLM, G, and LM.

Realism Constraint. We further require that the output image satisfies human-perceptual realism
based on six binary criteria. Specifically, we define a realism function R(IR) = [r1, . . . , rN ] ∈
{0, 1}N , where each component evaluates whether the patient appears to be moving, whether there
is a visible lesion or wound, the presence of bodily fluids, the naturalness of the skin texture, the
completeness and anatomical coherence of the body, and whether the subject appears human. The
image is accepted only if

∑N
i=1 ri ≥ τ . Algorithm 1 describes the process in detail.

4.2 ALGORITHM

Algorithm 1 TTFW: Context-Guided Realistic Image Generation

Require: Source image IS , VLM, generator G, masking functionM, realism metricR, thresholds
δ, τ

Ensure: Realistic output image IR
1: CS ← VLM(IS) ▷ Generate caption for input
2: C̃S ←M(CS) ▷ Mask subject-specific terms
3: repeat
4: IR ← G(IS , C̃S) ▷ Generate image from prompt
5: CR ← VLM(IR), C̃R ←M(CR)

6: sim← cos(ϕ(C̃S), ϕ(C̃R)) ▷ Compute similarity
7: if sim < δ then
8: ∆C ← LM(CS , CR) ▷ Identify semantic drift
9: C̃S ← RefinePrompt(C̃S ,∆C)

10: end if
11: until sim ≥ δ
12: r ←R(IR)
13: if

∑N
i=1 ri ≥ τ then

14: return IR
15: else
16: return Failure: realism criteria not met
17: end if

4.3 REALISM METRIC AND EVALUATION

We define the realism score as the average of the N (=6 in our case) binary realism indicators:
RealismScore(IR) = 1

N

∑N
i=1 ri. This metric is used to validate generated images, either via expert

raters or automated classifiers trained on trauma imagery datasets. Realism scores are reported both
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as binary pass/fail and as continuous confidence levels, and can be correlated with downstream
performance on medical AI tasks.

4.4 REALISM DETECTOR

By validating whether AI-generated images are indistinguishable from real patient imagery, realism
detection confirms that augmented simulations maintain clinical relevance, bridging the gap between
manikin practice and real-world scenarios. The failure of a classifier to differentiate between generated
and real patient images demonstrates the high-fidelity images generated through TTFW. By gradually
replacing more AI-generated frames into manikin videos, the realism classifier would fail. Firstly, a
manikin video is decomposed into its individual frames. Then, we obtain a 6-dimensional realism
feature vector from each frame with ResNet50 connected to a fully connected layer. Next, we average
those frame-level embeddings to form a single video-level feature, which is fed into our pretrained
Support Vector Machine (SVM) realism detector. If the video is still deemed a manikin, we invoke
the TTFW pipeline to synthesize more realistic patient frames and inject them back into the sequence.
This iterative process recomputes feature vectors, reclassifies with the SVM, and continuously injects
generated frames until the detector finally labels the video as “real”. Failure of the realism detector
demonstrates the generated realistic images are very close to real human patients and can be useful
for training AI models that require real human patients but not easily attainable.

5 RESULTS

5.1 BENCHMARK RESULTS FOR ACTION RECOGNITION AND ACTION ANTICIPATION

Evaluation setups and metrics The Trauma THOMPSON dataset was split into train and test sets
with an 80/20 ratio for both the regular (177 videos) and JIT (43 videos) procedures. All algorithms
were trained on either the regular or combined (regular + JIT) settings and evaluated under three
categories: regular alone, JIT alone, and combined. The use of unconventional tools in the JIT
procedures, coupled with the smaller size of the JIT set, negatively impacted algorithm performance.
Each model was trained on a GeForce RTX™ 4090 Ti. For evaluation, a class-agnostic approach
was applied to assess recognition and anticipation accuracy (Zhao et al., 2019), where a sequence of
frames from the beginning of each action clip was sampled. Accuracy was measured as the ratio of
correctly predicted clips to the total number of clips in the validation and test sets, with Top1 and
Top5 metrics reported for verbs, nouns, and combined actions (verb + noun).

Table 2: Performance comparison (%) of action recognition models on different train-test settings.

Train Test VideoSwin TimeSFormer VideoMAE Uniformer v2 MViT v2 LaViLa
Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Regular
Regular 45.10 74.52 31.91 62.81 43.34 71.89 60.47 85.65 65.59 89.75 42.52 68.81
JIT 3.85 15.38 0.51 5.77 5.77 17.31 8.65 21.15 14.49 35.20 0.96 9.62
Combined 34.60 66.71 27.70 55.27 38.37 64.68 53.62 77.13 58.58 82.08 38.25 60.99

Combined
Regular 44.51 73.35 29.42 63.69 48.61 73.06 60.32 84.19 66.47 89.17 40.17 66.67
JIT 39.42 70.19 32.69 58.65 44.23 65.38 53.85 80.77 50.96 90.38 37.71 63.84
Combined 43.84 72.94 29.86 63.02 48.03 72.05 59.47 83.74 64.42 88.82 39.53 66.02

Action recognition All algorithms used were pretrained and then finetuned on the Trauma
THOMPSON dataset. Table 2 presents a performance comparison of six action recognition mod-
els—VideoSwin (Liu et al., 2022), TimeSFormer (Bertasius et al., 2021), Uniformer v2 (Li et al.,
2022a), VideoMAE (Tong et al., 2022), MViT v2 (Li et al., 2022b), and LaViLa (Zhao et al.,
2022)—evaluated across three train-test scenarios: regular, JIT, and combined. Performance is
reported using Top1 and Top5 accuracy, with per-procedure results provided in the appendix. In
the regular train-test setting, MViT v2 achieves the highest accuracy (65.59% Top1, 89.75% Top5).
When models are trained on the combined set, performance improves notably in the JIT test scenario,
where Uniformer v2 achieves the best Top1 accuracy (53.85%) and MViT v2 reaches the highest Top5
accuracy (90.38%). The left image of Figure 4 shows the confusion matrix of the best-performing
model, MViT v2, where the diagonal pattern indicates reliable predictions for frequent classes, while
scattered dark spots in the lower portion highlight challenges in recognizing infrequent actions.

7
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Figure 4: Comparison of confusion matrices for action recognition (left) and action anticipation
(right) using MViT v2 on regular procedures.

Action anticipation Table ?? presents the benchmarking results for action anticipation on the same
six models. The performance on individual procedures is in the appendix. For the regular train-test
setup, MViT v2 achieves the highest Top1 and Top5 accuracy of 60.12% and 87.02%. The action
anticipation results follow a similar trend to action recognition, with MViT v2 and Uniformer v2
outperforming other models across all scenarios. However, the absolute performance metrics for
anticipation are slightly lower than those for recognition. It suggests that predicting future actions is
inherently more challenging than recognizing current actions, especially in diverse or unexpected
scenarios such as JIT procedures. The right image of Figure 4 shows the confusion matrix of the best
performing model MViT v2 on the action anticipation task. Similar performances are observed in
action recognition, with less frequent classes being hard to classify for the model.

Table 3: Performance comparison (%) of action anticipation models on different train-test settings.

Train Test VideoSwin TimeSFormer VideoMAE Uniformer v2 MViT v2 LaViLa
Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Regular
Regular 39.88 69.24 28.44 59.97 41.42 69.24 56.25 84.70 60.12 87.02 38.79 67.85
JIT 3.16 7.37 3.16 7.37 2.11 8.42 5.26 23.16 8.42 22.11 1.05 8.42
Combined 35.18 61.32 25.20 53.23 36.39 61.46 49.73 76.82 53.50 78.71 33.96 60.24

Combined
Regular 41.89 69.09 26.74 61.21 44.05 69.40 57.95 83.77 60.74 86.56 40.03 67.58
JIT 36.84 63.16 24.21 56.84 33.68 68.42 47.37 81.05 48.42 86.32 35.64 61.96
Combined 41.24 68.33 26.42 60.65 42.72 69.27 56.60 83.42 59.16 86.52 39.65 66.73

Action recognition and anticipation with LVLMs To benchmark the capabilities of LVLMs for
action recognition and anticipation, we reformulated the tasks as image understanding problems. For
each video, multiple frames were sampled and composed into a frame sequence image to represent the
temporal dynamics visually. The task and action labels were embedded into natural language prompts.
We fine-tuned three models, LLaVA-v1.6-7B (Liu et al., 2023; 2024), Qwen2.5-VL-7B (Bai et al.,
2025), and Gemma3-4B (Gemma Team et al., 2025), and used the QLoRA (Quantized Low-Rank
Adaptation) (Dettmers et al., 2023) approach for efficient adaptation on a single GPU. All models
were trained on the regular procedure set and evaluated on regular, JIT, and combined test splits for
both recognition and anticipation tasks. As shown in Table 4, LVLMs achieve reasonable performance
in action recognition, with LLaVA-v1.6-7B attaining the highest Top-1 accuracy (45.56%) on the
Regular test set. Compared to action recognition with VMs, the performances all significantly
improve on the JIT set, indicating VLMs’ strong zero-shot learning capabilities to unseen and out-
of-distribution data. In comparison to VMs like MViT v2 and Uniformer v2 (Table 2 and Table 3),
LVLMs lag in anticipation tasks.

5.2 BENCHMARK RESULTS FOR VQA

The VQA result can also be seen in Table 4. LLaVa-v1.6(7B) achieved an accuracy of 85.57%,
Qwen2.5-VL(7B) with an accuracy of 83.29%, and Gemma3(4B) with an accuracy of 72.04%.
Additionally, we tested three smaller VQA models, including ViLT-B/32 (87M), BLIP-base (224M)
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Table 4: LVLM Performance (%) on action recognition, anticipation and VQA tasks.

Task Action Recognition Action Anticipation VQA
Testset Regular JIT Combined Regular JIT Combined

LLaVa-v1.6-7B 45.56 26.93 43.10 21.51 15.75 20.75 85.47
Qwen2.5-VL-7B 42.64 24.02 40.18 23.01 13.65 21.77 83.29
Gemma3-4B 39.73 21.60 37.33 18.55 13.65 17.90 72.04

and Florence-2-base (230M). Among all models, BLIP-base achieves the highest accuracy of 88.64%,
demonstrating strong VQA capabilities with a relatively moderate size. Florence-2-base follows
closely at 87.86%, while ViLT-B/32 offers a lighter alternative with only 87 million parameters and
an accuracy of 79.88%.

Figure 5: Realistic images generated through our realism framework (TTFW). Top row images are
manikin/simulation and the bottom row corresponds to generated images.

5.3 REALISM

On our test set, the SVM classifier achieved perfect separability between real-patient and manikin
videos, reaching 100% accuracy. To probe its robustness, we incrementally “contaminated” each
manikin video by swapping in AI-generated patient frames, measuring the minimum fraction of
swapped frames required to flip the SVM’s decision. Remarkably, the classifier remained confident in
its original (manikin) prediction until roughly two-thirds of the frames had been replaced. On average,
67.34 % of frames needed to be substituted before the model began classifying the video as “real.”
This result is in accordance with the expectation that at least 50% of frames need to be changed for the
classifier to flip its decision. This threshold suggests that the detector relies on a global aggregation
of subtle texture and structural cues rather than on a few salient frames, highlighting the high fidelity
of our AI-generated images.

In addition to quantitative evaluation, we also performed qualitative comparisons against zero-shot
outputs generated without our framework. The generated images frequently failed to maintain
semantic fidelity, producing errors such as misplaced hands, altered patient poses, or in some cases
failing to generate patients altogether. In contrast, TTFW reliably overcame these shortcomings,
delivering medical imagery that was not only realistic but also contextually consistent with the
manikin scenes. Figure 5 shows several sample images generated by our framework.

6 CONCLUSION

The Trauma THOMPSON dataset provides a comprehensive foundation for advancing AI-driven
medical decision-making in austere and resource-constrained environments. By integrating un-
scripted procedural data, diverse annotations including action recognition, action anticipation, VQA,
object detection, hand tracking, and a realism-enhancing framework, it enables the development of
unified vision-language models capable of various vision and language tasks. This dataset stands
to significantly support the creation of AI copilots that can assist less experienced responders in
delivering life-saving care under pressure. The current dataset relies on simplified action annotations
(verb + noun). Future efforts will include annotating actions with complete sentences and detailed
instructions and collecting videos under more diverse settings, such as variable lighting, adverse
weather conditions, and noisy environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Asma Ben Abacha, Sadid A Hasan, Vivek V Datla, Joey Liu, Dina Demner-Fushman, and Henning
Müller. VQA-Med: Overview of the medical visual question answering task at ImageCLEF 2019.
CLEF (working notes), 2(6), 2019.

Asma Ben Abacha, Vivek V Datla, Sadid A Hasan, Dina Demner-Fushman, and Henning Müller.
Overview of the VQA-Med Task at ImageCLEF 2020: Visual Question Answering and Generation
in the Medical Domain. 2020.

Mugahed A. Al-Antari. Artificial Intelligence for Medical Diagnostics—Existing and Future
AI Technology! Diagnostics, 13(4):688, February 2023. ISSN 2075-4418. doi: 10.3390/
diagnostics13040688. URL https://www.mdpi.com/2075-4418/13/4/688.

Anna Markella Antoniadi, Yuhan Du, Yasmine Guendouz, Lan Wei, Claudia Mazo, Brett A. Becker,
and Catherine Mooney. Current Challenges and Future Opportunities for XAI in Machine Learning-
Based Clinical Decision Support Systems: A Systematic Review. Applied Sciences, 11(11):5088,
May 2021. ISSN 2076-3417. doi: 10.3390/app11115088. URL https://www.mdpi.com/
2076-3417/11/11/5088.

Pierre Auloge, Roberto Luigi Cazzato, Nitin Ramamurthy, Pierre De Marini, Chloé Rousseau,
Julien Garnon, Yan Philippe Charles, Jean-Paul Steib, and Afshin Gangi. Augmented reality and
artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised
clinical trial. European Spine Journal, 29(7):1580–1589, July 2020. ISSN 0940-6719, 1432-
0932. doi: 10.1007/s00586-019-06054-6. URL http://link.springer.com/10.1007/
s00586-019-06054-6.

David P. Azari, Lane L. Frasier, Sudha R. Pavuluri Quamme, Caprice C. Greenberg, Carla M.
Pugh, Jacob A. Greenberg, and Robert G. Radwin. Modeling Surgical Technical Skill Using
Expert Assessment for Automated Computer Rating. Annals of Surgery, 269(3):574–581, March
2019. ISSN 0003-4932, 1528-1140. doi: 10.1097/SLA.0000000000002478. URL https:
//journals.lww.com/00000658-201903000-00028.

Manisha Bahl. Artificial Intelligence: A Primer for Breast Imaging Radiologists. Journal of Breast
Imaging, 2(4):304–314, August 2020. ISSN 2631-6110, 2631-6129. doi: 10.1093/jbi/wbaa033.
URL https://academic.oup.com/jbi/article/2/4/304/5859939.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL Technical Report, February
2025. URL http://arxiv.org/abs/2502.13923. arXiv:2502.13923 [cs].

Vivek Singh Bawa, Gurkirt Singh, Francis KapingA, Inna Skarga-Bandurova, Alice Leporini,
Carmela Landolfo, Armando Stabile, Francesco Setti, Riccardo Muradore, Elettra Oleari, and
Fabio Cuzzolin. ESAD: Endoscopic Surgeon Action Detection Dataset, June 2020. URL
http://arxiv.org/abs/2006.07164. arXiv:2006.07164 [cs].

Asma Ben Abacha, Mourad Sarrouti, Dina Demner-Fushman, Sadid A Hasan, and Henning Müller.
Overview of the vqa-med task at imageclef 2021: Visual question answering and generation in
the medical domain. In Proceedings of the CLEF 2021 Conference and Labs of the Evaluation
Forum-working notes. 21-24 September 2021, 2021.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is Space-Time Attention All You Need
for Video Understanding?, 2021. URL https://arxiv.org/abs/2102.05095. Version
Number: 4.

Vincent Bissonnette, Nykan Mirchi, Nicole Ledwos, Ghusn Alsidieri, Alexander Winkler-Schwartz,
Rolando F. Del Maestro, and on behalf of the Neurosurgical Simulation & Artificial Intelligence
Learning Centre. Artificial Intelligence Distinguishes Surgical Training Levels in a Virtual Reality
Spinal Task. Journal of Bone and Joint Surgery, 101(23):e127, December 2019. ISSN 0021-9355,
1535-1386. doi: 10.2106/JBJS.18.01197. URL https://journals.lww.com/10.2106/
JBJS.18.01197.

10

https://www.mdpi.com/2075-4418/13/4/688
https://www.mdpi.com/2076-3417/11/11/5088
https://www.mdpi.com/2076-3417/11/11/5088
http://link.springer.com/10.1007/s00586-019-06054-6
http://link.springer.com/10.1007/s00586-019-06054-6
https://journals.lww.com/00000658-201903000-00028
https://journals.lww.com/00000658-201903000-00028
https://academic.oup.com/jbi/article/2/4/304/5859939
http://arxiv.org/abs/2502.13923
http://arxiv.org/abs/2006.07164
https://arxiv.org/abs/2102.05095
https://journals.lww.com/10.2106/JBJS.18.01197
https://journals.lww.com/10.2106/JBJS.18.01197


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daniel Caballero, Juan A. Sánchez-Margallo, Manuel J. Pérez-Salazar, and Francisco M. Sánchez-
Margallo. Applications of Artificial Intelligence in Minimally Invasive Surgery Training: A Scop-
ing Review. Surgeries, 6(1):7, January 2025. ISSN 2673-4095. doi: 10.3390/surgeries6010007.
URL https://www.mdpi.com/2673-4095/6/1/7.

Dima Damen. Bristol Egocentric Object Interactions Dataset, 2014. URL http://data.bris.
ac.uk/data/dataset/o4hx7jnmfqt01lyzf2n4rchg6.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. Scaling
Egocentric Vision: The EPIC-KITCHENS Dataset, July 2018. URL http://arxiv.org/
abs/1804.02748. arXiv:1804.02748 [cs].

Fernando de la Torre, Jessica Hodgins, Adam Bargteil, Alex Collado, Xavier Martin, Justin Macey,
and Pep Beltran. Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC)
Database. In Tech. report CMU-RI-TR-08-22, Robotics Institute, Carnegie Mellon University,
April 2008.

Eadom Dessalene, Michael Maynord, Cornelia Fermüller, and Yiannis Aloimonos. LEAP: LLM-
Generation of Egocentric Action Programs. arXiv preprint arXiv:2312.00055, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Fine-
tuning of Quantized LLMs, May 2023. URL http://arxiv.org/abs/2305.14314.
arXiv:2305.14314 [cs].

Steven E. Dilsizian and Eliot L. Siegel. Artificial Intelligence in Medicine and Cardiac Imaging:
Harnessing Big Data and Advanced Computing to Provide Personalized Medical Diagnosis and
Treatment. Current Cardiology Reports, 16(1):441, January 2014. ISSN 1523-3782, 1534-
3170. doi: 10.1007/s11886-013-0441-8. URL http://link.springer.com/10.1007/
s11886-013-0441-8.

Alana Dinh, Andrew Lukas Yin, Deborah Estrin, Peter Greenwald, and Alexander Fortenko.
Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review. JMIR
mHealth and uHealth, 11:e45464, April 2023. ISSN 2291-5222. doi: 10.2196/45464. URL
https://mhealth.jmir.org/2023/1/e45464.

Alireza Fathi, Xiaofeng Ren, and James M. Rehg. Learning to recognize objects in egocentric
activities. In CVPR 2011, pp. 3281–3288, Colorado Springs, CO, USA, June 2011. IEEE. ISBN
978-1-4577-0394-2. doi: 10.1109/CVPR.2011.5995444. URL http://ieeexplore.ieee.
org/document/5995444/.

Ali M. Fazlollahi, Mohamad Bakhaidar, Ahmad Alsayegh, Recai Yilmaz, Alexander Winkler-
Schwartz, Nykan Mirchi, Ian Langleben, Nicole Ledwos, Abdulrahman J. Sabbagh, Khalid
Bajunaid, Jason M. Harley, and Rolando F. Del Maestro. Effect of Artificial Intelligence Tutoring vs
Expert Instruction on Learning Simulated Surgical Skills Among Medical Students: A Randomized
Clinical Trial. JAMA Network Open, 5(2):e2149008, February 2022. ISSN 2574-3805. doi:
10.1001/jamanetworkopen.2021.49008. URL https://jamanetwork.com/journals/
jamanetworkopen/fullarticle/2789268.

Yongchao Feng, Yajie Liu, Shuai Yang, Wenrui Cai, Jinqing Zhang, Qiqi Zhan, Ziyue Huang, Hongxi
Yan, Qiao Wan, Chenguang Liu, Junzhe Wang, Jiahui Lv, Ziqi Liu, Tengyuan Shi, Qingjie Liu, and
Yunhong Wang. Vision-Language Model for Object Detection and Segmentation: A Review and
Evaluation, April 2025. URL http://arxiv.org/abs/2504.09480. arXiv:2504.09480
[cs].

Yixin Gao, S. Swaroop Vedula, Carol E. Reiley, Narges Ahmidi, Balakrishnan Varadarajan, Henry C.
Lin, Lingling Tao, Luca Zappella, Benjamín Béjar, David D. Yuh, Chi Chiung Grace Chen, René
Vidal, Sanjeev Khudanpur, and Gregory Hager. JHU-ISI Gesture and Skill Assessment Working
Set ( JIGSAWS ) : A Surgical Activity Dataset for Human Motion Modeling. In In Modeling and
Monitoring of Computer Assisted Interventions (M2CAI), volume 3, 2014.

11

https://www.mdpi.com/2673-4095/6/1/7
http://data.bris.ac.uk/data/dataset/o4hx7jnmfqt01lyzf2n4rchg6
http://data.bris.ac.uk/data/dataset/o4hx7jnmfqt01lyzf2n4rchg6
http://arxiv.org/abs/1804.02748
http://arxiv.org/abs/1804.02748
http://arxiv.org/abs/2305.14314
http://link.springer.com/10.1007/s11886-013-0441-8
http://link.springer.com/10.1007/s11886-013-0441-8
https://mhealth.jmir.org/2023/1/e45464
http://ieeexplore.ieee.org/document/5995444/
http://ieeexplore.ieee.org/document/5995444/
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2789268
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2789268
http://arxiv.org/abs/2504.09480


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai,
Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao,
Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten
Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin,
Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu
Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alexander
Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano Pinto,
Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy, Ayan
Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le Lan,
Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisenbud,
Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug Reid,
Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick Liu, Gagik
Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucińska, Harman Singh, Harsh
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A DATASET STATISTICS AND ANALYSIS

A.1 DATA QUALITY ASSURANCE

To ensure annotation accuracies, the actions in each procedure are annotated by three medical
professionals. One person annotates and the other two people review the generated annotations.
As the annotations are estimates, and there is no precise way to ensure an absolute timestamp for
each procedure, we propose a method to compute the annotation accuracy. Let ta be the actual
timestamp and defined as the average of timestamps from the annotator and the reviewers. nr

is the number of reviewers. tri is the timestamp from reviewer i. to is the timestamp from the
annotator. ta = 1

nr+1 (
∑nr

i=1 tri + to). tas and tae denote the actual start and end of each clip.
tos and toe denote the original start and end by the annotator. The annotation accuracy of each
clip is computed as the overlapping time between the original and actual timestamps divided by
the actual clip duration. To compute the overlapping time, we define tstart = max(tos, tas) and
tend = min(toe, tae). The clip accuracy pi is computed as tend−tstart

tae−tas
. The average annotation

accuracy is computed as acc =
∑n

i=1(pi∗(tae−tas))∑n
i=1(tae−tas)

.

A.2 ACTION CLASS DISTRIBUTIONS

The dataset comprises 220 videos demonstrating 5 medical procedures and contains 3717 fully
annotated video clips. For classification tasks, we have selected class distribution based on the
frequency of occurrence in real-world scenarios. The regular procedure includes 42 verb classes,
42 noun classes, and 124 action classes, as illustrated in Figure 6, while the JIT procedure includes
31 verb classes, 37 noun classes, and 101 action classes, as illustrated in Figure 7. The two figures
illustrate the imbalanced nature of the dataset. This is because the actions are collected from an
unscripted dataset, reflecting the actual frequency of procedures in real life. It is important to
note that as the class imbalance in the training data increases, an algorithm’s performance tends to
decline. An imbalanced dataset makes algorithm development more challenging than a balanced one.
Thus, data augmentation techniques will be needed to improve the algorithm’s performance, such as
oversampling less frequent classes to rebalance the dataset.

Figure 6: Action classes of regular procedures in the Trauma THOMPSON dataset.

A.3 ACTION CLASS CO-OCCURRENCES

Figure 8 and 9 depict the frequency of verb-noun combinations within the dataset. Evidently, it can
be concluded that the verbs ’take’, ’remove’, and ’drop’ exhibit a higher frequency of co-occurring
with nouns. This phenomenon is indeed consistent with the frequency of actions observed during
LSI.
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Figure 7: Action classes of JIT procedures in the Trauma THOMPSON dataset.

A.4 HAND AND OBJECT ANNOTATIONS

To annotate high-quality bounding boxes efficiently, the human-in-the-loop approach is adopted,
which combines both manual annotation and automatic tracking. The bounding boxes are created by
manual selections of hands and objects in the videos every 10-30 frames and automatically annotated
by CSRT trackers Lukežič et al. (2018) between selections. Left hand, right hand, and 15 medical
tools are annotated. Teaching VLMs to track hands and recognize objects is clinically significant,
especially in high-stakes medical environments. Accurate hand tracking enables AI assistants to
assess procedural skills in real-time, offering immediate feedback on bimanual coordination and task
execution Azari et al. (2019); Mackenzie et al. (2021). Meanwhile, integrating object detection with
natural language understanding allows clinicians to ask AI assistants where specific tools are located,
reducing cognitive load and minimizing the risk of human error. Various VLMs have demonstrated
object detection capability Feng et al. (2025), such as Florence-2 Xiao et al. (2023) and F-VLM Kuo
et al. (2022), highlighting the potential to train unified VLMs that can perform various vision tasks to
assist medical procedures.

B IMPLEMENTATION DETAILS

B.1 ACTION RECOGNITION AND ACTION ANTICIPATION

The training and testing of action recognition and action anticipation were set up in the same way for
all models and only differed on the annotation files. We implemented five models using the open-
source MMAction2 library MMAction2 Contributors (2020) (VideoSwin, TimeSFormer, VideoMAE,
Uniformer and MViT) and one model (LaViLa) via its GitHub repository. All models were fine-tuned
on extracted raw frames to classify 162 classes (regular and JIT actions), initializing from publicly
released checkpoints. Input clips were decoded into NCTHW tensors, normalized by the RGB means
and standard deviations of the Trauma THOMPSON videos, and then subjected to model-specific
augmentations. Unless otherwise noted, we left all other MMAction2 defaults in place.

We fine-tuned the VideoSwin model by sampling 32 frame clips at interval 2. During training, each
clip was resized and then randomly cropped or horizontally flipped. At inference, we applied a single
center crop strategy for validation and a three-crop strategy for testing. We optimized with AdamW
using a base learning rate of 10−3, weight decay of 0.02, warmed up linearly over three epochs, and
then cosine-annealed the learning rate across 200 epochs. Training used a batch size of eight and
validation used a batch size of four.

We fine-tuned a TimeSFormer model by sampling 8 frame clips at interval 32. During training,
each clip was randomly rescaled between 256 and 320 pixels, cropped to 224 pixels, and flipped
horizontally. At validation, we resized to 256 pixels then center-cropped, while at test we performed
three-crop at 224 pixels. Optimization used SGD with a learning rate of 0.005, momentum of 0.9,
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(a) verb and noun

(b) verb and next verb

(c) noun and noun

Figure 8: Frequency of verb noun class co-occurrences of regular procedures.

Nesterov enabled, and weight decay of 10−4, with no decay on the classification token or positional
embeddings. We clipped gradients to a maximum norm of 40 and decayed the learning rate by a
factor of ten at epochs 30, 60, 90 and 120 over a total of 200 epochs. Training ran with batch size 12
and validation and testing with batch size 1.

We built the VideoMAE model by pairing a 16-frame ViT-Base backbone (16-by-16 patches, 12
layers, 12 heads, 768-dimension embedding) with a TimeSFormer head. Clips were sampled with 16
frames at interval 4 and underwent the same training augmentations as VideoSwin. At validation,
we applied a center crop after a 256-pixel resize, and at test, we used five-clip three-crop at 224
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(a) verb and noun

(b) verb and next verb

(c) noun and next noun

Figure 9: Frequency of verb noun class co-occurrences of JIT procedures.

pixels. We optimized with AdamW with learning rate 10−3, betas 0.9 and 0.999, and weight decay
0.02. All positional embeddings and layer norms were exexempted from decay. A three-epoch linear
warmup preceded a cosine-annealing schedule over the remaining 197 epochs, for a total of 200
epochs. Training used batch size four, validation used batch size two, and testing used batch size one.

We fine-tuned a Uniformer V2 model by initializing its backbone with the following parameters,
patch size 16, width 768, 12 layers, 12 heads, and temporal size 32, from Kinetics400 pretrained
weights. During training, we sampled 32 frame per clip at interval 2, applied a random resized crop
to 224×224 and a 50 percent horizontal flip. At validation, we center-cropped to 224×224, and at test,
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we applied three-crop. Inputs were normalized and then fed into a TimeSFormer head with dropout
0.5. We used AdamW optimizer with the same learning rate, betas, weight decay 0.02, positional
embeddings, and layer norms as in VideoMAE. Training ran with batch size 6 and validation and
testing with batch size 1.

We trained the MViT V2 model on 16 frames per clip sampled at interval 4. Each clip was resized,
augmented via RandAugment with magnitude 7 and 4 layers, then randomly resized and cropped to
224×224, flipped 50 percent, randomly erased 25 percent, and batch blended using Mixup (α = 0.8)
and CutMix (α = 1) before normalization. We wrapped the dataset in a RepeatAugDataset with 2
repeats and optimized by AdamW with a base learning rate 1.6 ∗ 10−3, betas 0.9 and 0.999, weight
decay 0.05. All norms and biases were exempted from decays and gradients were clipped to a max
norm of 1. We fine-tuned the model for 200 epochs by warming up the learning rate from 0.016 to
1.6 ∗ 10−3 over thirty epochs and then cosine-annealing it down to one hundredth of its base value by
epoch 200.

We fine-tuned LaViLa model with pretrained video–language backbone by inflating its temporal
positional embeddings to match our clip length and swapping in a single-head VideoClassifier.
Training clips were permuted to channels-first format, randomly resized and cropped to 224×224 with
horizontal flips, and normalized per channel. For validation, we used spatial and temporal cropping.
Text tokens were processed by LaViLa’s default tokenizer. We trained on a single node using AdamW
with a learning rate 3 ∗ 10−3, weight decay 0.05, linear warmup followed by cosine-decay scheduling,
gradient accumulation, and clipping. We fine-tuned the model for 100 epochs.

For the training of LVLMs, LLaVa v1.6, Qwen2.5-VL and Gemma3, we sampled 9 evenly spaced
frames per video clip and arranged them in a 3x3 grid layout. We used the BLIP model to generate
a descriptive caption for each video clip. All models were implemented with the HuggingFace
transformer library. The dataset was converted to the chat template specified by the transformer
library and augmented by oversampling less frequent classes to balance the training data. We used
QLoRA for the three models to allow fine-tuning on a single GPU.

For LLaVa v1.6, we configured a 4-bit quantized LLaVa-v1.6-Vicuna-7B model via BitsAnd-
BytesConfig and attached a LoRA adapter to all linear modules with rank 16, alpha 16, and 5
percent dropout. An SFTConfig was defined to run 15 epochs of supervised fine-tuning with gradient
accumulation, gradient checkpointing, a fused AdamW optimizer under a constant learning-rate
schedule, and bfloat16 precision. A custom collate function applied the chat template, tokenized
the text, preprocessed the images, padded inputs, and masked label tokens. Finally, we ued TRL’s
SFTTrainer for the training.

For Qwen2.5-VL, we initialized a 4-bit quantized Qwen2.5-VL model via BitsAndBytesConfig and
applied a LoRA adapter specifically to the model’s query and value projection layers with rank 8,
alpha 16, and 5 percent dropout so that most original weights remained frozen. An SFTConfig was
set up to run 15 epochs of supervised fine-tuning with gradient accumulation, gradient checkpointing,
a fused AdamW optimizer on a constant schedule, and bfloat16 precision. A custom collate function
formatted the chat inputs, tokenized text, preprocessed images, and padded sequences and masked
both padding and the model’s special image-token IDs.

For Gemma3, we used a similar setup as LLaVa, a 4-bit quantized Gemma3 model and all-linear
LoRA configuration with rank 16 and 5 percent dropout alongside its processor. An SFTConfig
was defined to run 15 epochs of supervised fine-tuning with gradient accumulation, a fused AdamW
optimizer under a constant learning rate schedule, and bfloat16 precision. The custom collate function
pulled out the sequence of messages from each example, applied a BLIP-style processor to tokenize
text and preprocess images, and masked padding tokens as well as special image token IDs in the
labels.

B.2 VQA

For the VQA task, we fine-tuned the ViLT model from the GitHub ViLT repository and BLIP,
Florence-2, LLaVa v1.6, Qwen2.5-VL, and Gemma3 from HuggingFace’s transformer library. For
the ViLT model, the annotation file was firstly converted from json to arrow format. Before training,
the default VQA head was replaced with a lightweight two-layer MLP, projecting the 768-dimensional
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backbone output to 1,536 dimensions, then applying LayerNorm and GELU, and finally projecting to
the number of answer classes. We fine-tuned the model for 100 epochs.

For the BLIP model, a Blip processor tokenized questions and answers with max length padding
of 8 and converted images to RGB format. The model was trained for 100 epochs with a batch size
4, learning rate 4 ∗ 10−5, and mixed precision float16. AdamW was used as the optimizer and an
exponential learning rate scheduler was used with gamma set to 0.9.

For the Florence-2 model, we fine-tuned from florence-2-base-ft checkpoint. We trained it for 50
epochs with a batch size of 1. AdamW was used as the optimizer with a learning rate of 10−6. A
linear learning rate scheduler with no warm up period was implemented.

Additionally, we applied LLaVa v1.6, Qwen2.5-VL, and Gemma3 models on the VQA task. The
training and testing configurations were the same as in the action classification tasks, with identical
LoRA configurations, optimizer settings, batch size, and precision modes.

C MODEL PERFORMANCE BY PROCEDURE TYPES

The radar charts in Figure 10 illustrate the detailed top 1 accuracy of verb, noun, and action of
recognizing the five emergency procedures for VideoSwin, TimeSFormer, VideoMAE, Uniformer
and MViT, and LaViLa. The similarity of shapes in the radar charts indicates the coherence in the
performance of the models for each procedure. It can be seen that no algorithms perform the best in
all procedures.

Figure 10: Action recognition Top 1 accuracies of verb, noun, and action by each type of procedure.

Figure 11: Action anticipation Top 1 accuracies of verb, noun, and action by each type of procedure.

Figure 11 illustrates the comparison for action anticipation on the five emergency procedures. Similar
plots are observed in action recognition, but with decreased performance of the models on the action
anticipation task.
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