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Abstract

Neural Machine Translation (NMT) suffers001
from the challenges of translating in new do-002
mains and low-resource languages. To address003
these challenges, researchers have proposed004
methods to incorporate additional knowledge005
into NMT, including the integration of transla-006
tion memories (TMs). However, finding TMs007
that closely match the input sentence remains008
difficult, particularly for specific domains. In009
contrast, monolingual data is widely available010
in most languages and back-translation is be-011
lieved as a promising method to utilize target012
language data. But, it still needs additional013
training. In this paper, we propose Pseudo-014
kNN-MT, a method that exploit target language015
data during the inference phase, without train-016
ing the NMT model. Also, we further inves-017
tigate the assistance of large language model018
(LLM) in NMT. Experimental results show that019
our method can improve translation quality by020
a great margin. Interestingly, LLMs are found021
to be helpful for strong NMT systems.022

1 Introduction023

Neural Machine Translation (NMT) has witnessed024

significant advancements with the introduction of025

deep learning techniques(Sutskever et al., 2014;026

Bahdanau et al., 2015), especially the transformer027

model(Vaswani et al., 2017). Despite these ad-028

vancements, challenges still exist in translating029

rare words and adapting NMT systems to new do-030

mains(Koehn and Knowles, 2017; Saunders, 2022).031

To address these challenges, researchers have032

proposed various methodologies to incorporate ex-033

ternal knowledge into NMT. One such approach034

involves imposing constraints from terminology035

dictionaries(Dougal and Lonsdale, 2020; Hasler036

et al., 2018), or the incorporating fuzzy matches037

retrieved from translation memory (TM)(Eriguchi038

et al., 2019; Xu et al., 2020; Khandelwal et al.,039

2021; He et al., 2021; Reheman et al., 2023).040

These techniques enhance the NMT systems us- 041

ing bilingual translation knowledge. However, due 042

to the limitations of the bilingual data scale and 043

coverage of domains, it is highly challenging to 044

find sentences that are highly similar to the input 045

sentence, particularly in specific domains or in low- 046

resource languages. One natural idea is utilizing 047

the vast amount of monolingual data, which can 048

offer a pool of highly relevant sentences in terms 049

of semantics. As a promising method, back trans- 050

lation (Sennrich et al., 2016) has been proven to 051

be useful for NMT, especially in low-resource sce- 052

narios. However, it still needs some additional 053

training, including the training of a reverse NMT 054

system and retraining the NMT model with the 055

augmented training data. 056

In this paper, we propose pseudo-kNN-MT, a 057

training-free method that utilizes target language 058

data for translation. For an input sentence, we 059

retrieve its similar target sentences using a cross- 060

lingual retriever. our main goal is how to use these 061

retrieved sentences effectively. First of all, we pair 062

the retrievals with the input sentence and construct 063

pseudo sentence pairs, then conduct nearest neigh- 064

bor machine translation following Khandelwal et al. 065

(2021). Besides, LLMs are believed to be good 066

compressors (Brown et al., 2020; Radford et al., 067

2019), which can map texts into representation 068

space effectively, and also demonstrate strong trans- 069

lation capabilities (Zhang et al., 2023; Zhu et al., 070

2023a; Xu et al., 2023). Consequently, We also 071

investigate the effectiveness of kNN translation 072

model interpolation, whose datastore and the con- 073

text representation vector are obtained by LLMs, 074

rather than by the NMT model itself. Further, we 075

study the integration of LLMs with the NMT with- 076

out referring to the target retrieval, from the per- 077

spectives of the utilization of the translation ability 078

of LLMs and fluency of the target translation. Ex- 079

perimental results on multi-domain test sets show 080

that our method improves the translation results 081
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with a great margin, with 4.51 sacreBLEU points082

on average, utilizing the target language data only.083

2 Background084

In this section, we give some background knowl-085

edge about nearest neighbor machine translation,086

cross-lingual retrieval and the fusion of language087

models in NMT.088

2.1 Nearest Neighbor Machine Translation089

The k-Nearest Neighbor Machine Translation090

(kNN-MT) Khandelwal et al. (2021) is a non-091

parametric method that uses nearest neighbor re-092

trievals from a vector datastore of translation con-093

text representation. It involves two main steps:094

datastore creation and inference.095

Datastore Creation The datastore D consist of096

a set of key-value pairs, and the key is the high-097

dimensional representation of the translation con-098

text, which is computed by an auto-regressive MT099

decoder, and the value is the corresponding ground-100

truth target token. Here, the combination of source101

language tokens and the generated target tokens102

is called translation context. Suppose (X ,Y) is103

a set of bilingual sentences, and f(·) is a map-104

ping function that transfers the translation context105

into the high-dimensional representation, using a106

translation model. For all examples in (X ,Y), the107

key-value datastore is created as:108

D = {(f(x, y1:t−1), yt), ∀yt ∈ y|109

(x, y) ∈ (X ,Y)} (1)110

Inference During the inference, the translation111

context representation of each time-step is used112

as query, q = f(x, ŷ1:t−1), to retrieve k-nearest113

neighbors N from D, using vector distance mea-114

suring methods, such as L2 distance. A probability115

distribution, pkNN, over the target vocabulary is116

then constructed from N by applying a softmax117

with temperature to the negative distances and ag-118

gregating the same tokens, defined as:119

pkNN(yt|x, ŷ1:t−1) =120 ∑
(kj ,vj)∈N 1yj=vjexp(−d(q, kj)/T )∑

(kj ,vj)∈N exp(−d(q, kj)/T )
(2)121

where d(·, ·) is a distance function that calculates122

the distance between the two vectors. Here, it is the123

distance between the query vector and the retrieved124

neighbors.125

In the end, the final probability distribution is ob- 126

tained by linear interpolating the two distributions, 127

pkNN and pNMT, using a tuned hyperparameter λ: 128

p(yt|x, ŷ1:t−1) = λpkNN(yt|x, ŷ1:t−1) + 129

(1− λ)pNMT(yt|x, ŷ1:t−1) (3) 130

2.2 Cross-lingual Retrieval 131

Cross-lingual retrieval is the technique of retrieving 132

information from multilingual sources (Feng et al., 133

2022a; Li et al., 2023; Gao et al., 2023). Its core 134

is a pretrained cross-lingual sentence embedding 135

model, which maps the sentences from different 136

languages into a shared semantic space. In usage, 137

they return the embedding of "CLS" tokens or us- 138

ing mean pooling strategy for all token embeddings 139

in the sentence to acquire the representation of a 140

sentence. This is useful in various cross-lingual 141

applications, such as information retrieval and ma- 142

chine translation (MT). We use it to retrieve simi- 143

lar sentences from the target language, taking the 144

source sentence as query, in this paper. 145

3 Methodology 146

In this section, we will introduce retrieving similar 147

sentences from target dataset (§3.1), as well as 148

the proposed method of pseudo kNN-MT (§3.2) 149

and the large language model integration (§3.3 and 150

§3.4) in detail. 151

3.1 Retrieving Similar Sentences from Target 152

Language Dataset 153

Given a source input sentence x, a target lan- 154

guage dataset Y = {y1, y2, ..., yn}, and a cross- 155

lingual sentence embedding model e. First of all, 156

the distributed representation of the target dataset, 157

hY = {h1, h2, ..., hn}, is obtained by feeding Y 158

into the cross-lingual model, formulated as: 159

hY = e(Y) (4) 160

In the same way, we acquire the distributed rep- 161

resentation of x by hx = e(x). After that, we 162

calculate the distances of each item in hY from hx 163

by the distance function d(·): 164

D = d(hx, hY) (5) 165

where D = {d1, d2, ..., dn} is the distance of each 166

sentence in y from x in the vector space. Finally, 167

we acquire the top-k similar sentences by ranking 168

the sentences by their distances and select k-nearest 169

of them as the final retrieval, namely the k-nearest 170

neighbors. Our work is primarily centered on the 171

utilization of this target retrievals. 172
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Figure 1: pseudo datastore creation process. Function f(·) returns the last hidden state of MT decoder at every
time-step.

3.2 kNN-MT with Pseudo Datastore173

After obtaining similar sentences from the target174

dataset, we endeavor to construct bilingual data175

in order to align with the decoding behavior of176

the MT model. A well-known method is to back-177

translate them into the source language, and pair178

the corresponding sentences (Sennrich et al., 2016).179

But, this needs to train an additional reverse NMT180

model, which is trained to translate from target to181

source. Here, we take another option. Due to the182

semantic similarity between the retrieved sentences183

with the input sentence, we pair them and construct184

bilingual data. After this, we explore whether this185

pseudo bilingual data can effectively facilitate the186

translation, following the approach of kNN-MT187

(Khandelwal et al., 2021).188

First, we build a key-value datastore Dpse on189

the pseudo bilingual data. Suppose Ysim =190

{y1, y2, ..., yk} is the target retrieval for the in-191

put sentence x, the pseudo bilingual data is con-192

structed by pairing x with each sentence in Ysim, as193

(X ,Y)pse = {(x, yi)|yi ∈ Ysim, i ∈ [1, k]}. The194

kNN-MT datastore on (X ,Y)pse is built using the195

equation 1, defined as:196

Dpse = {(f(x, y1:t−1), yt), ∀yt ∈ y|197

(x, y) ∈ (X ,Y)pse} (6)198

where f(·) also is the mapping function from199

translation context to last hidden state of the MT200

decoder and t is the time-step of decoding. Figure201

1 shows the pseudo datastore creation process.202

During the inference, we construct the target to-203

ken distribution from Dpse and interpolate it with204

the NMT distribution, using equation 2 and equa-205

tion 3, same as kNN-MT (Khandelwal et al., 2021).206

3.3 kNN-MT with LLM Pseudo Datastore 207

As a dual-model method, kNN-MT is the com- 208

bination of NMT model and the kNN translation 209

model from datastore. Unlike the naive implemen- 210

tation that uses NMT model’s own hidden states to 211

construct key-value datastore and retrieve during 212

inference, any MT model can be used to finish this 213

procedure. In addition, previous works reported 214

that LLMs has the distinct translation and multilin- 215

gual modeling capability(Zhang et al., 2023; Zhu 216

et al., 2023a; Xu et al., 2023). Here, we explore 217

marrying NMT model with the kNN translation 218

model whose datastore is constructed by an LLM. 219

Due to the differences between utilizing LLMs 220

for translation tasks and NMT, where LLMs require 221

instructions to specify the desired translation task, 222

including the support for zero-shot and few-shot 223

learning, the translation context here differs from 224

that in NMT. Taking the zero-shot scenario of De- 225

En translation task as an example, presuming x 226

to be the source sentence, and y1:t−1 representing 227

the target string of previously generated tokens. 228

The translation context for LLM can be written as 229

"Translate this from Geman into English.\nGerman: 230

<x>\nEnglish: <y1:t−1>". In few-shot scenario, 231

few-shot examples come after the instruction. 232

First of all, we construct the key-value datastore 233

on the pseudo bilingual dataset obtained previously, 234

using an LLM. For all the bilingual sentences, we 235

feed them into the LLM using specific prompt and 236

extract the hidden states of the translation context 237

at each time step as the key and the corresponding 238

target token as value. For zero-shot, we use the 239

prompt as "Translate this from source language 240

into target language.\nsource language: <source 241

sentence>\ntarget language:". It is worth mention- 242
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Figure 2: Illustration of decoding using LLM datastore. Here, we take zero shot prompt as an example. The kNN
datastore is constructed offline using the LLM on the pseudo bilingual dataset.

ing that when constructing the key-value datastore243

from the pseudo bilingual dataset, we should use244

the same prompt that was used during the inference245

to maintain key representation consistency.246

At each time step of inference phase, we first247

construct the translation context using the prompt.248

The translation context is then fed into the LLM to249

extract the hidden state. Then, we take this hidden250

state as a query to search the k-nearest neighbors251

from the datastore, and get the kNN probability,252

which is interpolated with NMT probability after-253

ward. The illustration of the inference phase is254

given in Figure 2.255

3.4 Large Language Model Integration256

Being a key component of statistical machine trans-257

lation (SMT), a language model trained on target258

language data is used to predict sentence proba-259

bility. while NMT models the translation task in260

end-to-end way, and no need to train a language261

model explicitly. A target language model incor-262

poration in the inference can not help much to the263

NMT (Gülçehre et al., 2015).264

But, in LLMs, things changed a lot. They not265

only possess capabilities beyond merely generating266

continuations based on prefix text but also can pro-267

cess multilingual information according to human268

instructions, such as translating. With this knowl-269

edge, we further explore LLM integration without270

additional data. For an input sentence x and pre-271

viously generated target tokens y1:t−1, our method272

operates as follows.273

LLM Translator Interpolation In this method,274

we leverage the translation capabilities of the LLM.275

At each time-step of inference, we utilize both x276

and y1:t−1 to construct the prompt for the LLM.277

The prompt here is the same as the translation278

context for LLM described in Section 3.3. Sub-279

sequently, the constructed prompt is fed into the 280

LLM, which in turn generates its probability dis- 281

tribution for yt. Finally, we combine the LLM 282

probability pLLM and the NMT probability pNMT 283

through interpolation using a hyperparameter λ: 284

p(yt|x, ŷ1:t−1) = λpNMT(yt|x, ŷ1:t−1) + 285

(1− λ)pLLM(yt|x, ŷ1:t−1, pr) (7) 286

where pr represents the prompt template. 287

LLM Continuation Generator Fusion In this 288

method, we leverage the continue generation capa- 289

bilities of the LLM, without referencing the source 290

language information That is to say, next token gen- 291

eration is only conditioned on y1:t−1. At each time 292

step of inference, we feed y1:t−1 into the LLM and 293

get its next token generation probability pLLM. The 294

final translation probability for yt is calculated by 295

adding this probability with the generation prob- 296

ability of NMT, pNMT, using a hyperparameter λ 297

as: 298

p(yi|x, ŷ1:t−1) = pNMT(yt|x, ŷ1:t−1) + 299

λpLLM(yt|yi|ŷ1:t−1) (8) 300

4 Experiments 301

In this section, we will introduce our experiments, 302

including the main experiment and the comprehen- 303

sive analysis from various perspectives. 304

Datasets and Evaluation Metrics We evaluated 305

the effectiveness of our proposed method on pub- 306

licly available datasets. For domain adaptation, 307

we performed the experiments on IT, Koran, Law, 308

and Medical domains of multi-domain datasets pro- 309

vided by Aharoni and Goldberg (2020). To measure 310

the translation quality, we used sarcreBLEU (Post, 311

2018) and COMET (Rei et al., 2022). The data 312

statistics are given in table 1. 313
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Split
Multi-domain

WMT19
IT Koran Law Medical

Train 223K 17K 467K 248K 33M
Valid 2000 2000 2000 2000 6002
Test 2000 2000 2000 2000 2000

Table 1: Statistics of datasets.

Models We used the winner model of the314

WMT19 De-En news translation task, submitted315

by Facebook, as the pretrained base NMT model316

(Ng et al., 2019). For LLM, we use various ver-317

sions of LLAMA 2 (Touvron et al., 2023), includ-318

ing the base version LLAMA-2-7B, dialogue opti-319

mized version LLAMA-2-7B-chat and ALMA-7B320

(Advanced Language Model-based trAnslator), a321

translation optimized model from LLAMA-2-7B,322

from Xu et al. (2023), respectively. We encoun-323

tered difficulties when integrating the NMT model324

with Llama 2. The native version of wmt19 cannot325

be assisted by LLM directly, because they used326

different tokenization strategiesword granularity,327

and different training data, which results in the dif-328

ference in the dictionary of the two models. So,329

we trained another NMT model on WMT19 De-330

En training data, using the dictionary of Llama 2.331

Also, we trained a decoder-only transformer lan-332

guage model (Radford et al., 2019) with 12 layers333

and a model dimension of 768 on the target data of334

the WMT19 De-En dataset and Llama 2 dictionary335

as well, ensuring a fair comparison. Before train-336

ing, We cleaned WMT19 training data by applying337

punctuation normalization and language identifica-338

tion filtering. After that, we tokenized them using339

llama.tokenizer.340

Settings We use the cross-lingual embedding341

model LaBSE (Feng et al., 2022b) to transfer both342

the source and target datasets into the embedding343

representations, then we use dense vector similarity344

search library FAISS (Johnson et al., 2021) to per-345

form cross-lingual retrieval. For k-nearest neigh-346

bor searching from the kNN datastore, we also347

use FAISS. In all experiments, for retrieving top-k348

similar sentences from the target dataset, we set349

this k′ to 32. For models that perform retrieval,350

we retrieve k = 8 neighbors from the transla-351

tion context vector datastore. For the kNN tem-352

perature, we followed the optimized settings from353

Zheng et al. (2021), and set it to 100 for Koran,354

and 10 for other domains. Except for the kNN-355

MT method that used in LLM datastore, which 356

searches the interpolation hyperparameter from 357

λ ∈ {0.2, 0.3, 0.4}, other methods searches from 358

λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For 359

decoding, we set the beam size to 5, and length 360

penalty to 1.0. 361

We take vanilla NMT (Base-NMT) and vanilla 362

kNN-MT (kNN-MT) as the baselines. For simu- 363

lating the usage of monolingual data, we take the 364

target language training data as the monolingual 365

dataset. The other compared methods are as fol- 366

lows: 367

Pseudo-kNN-MT: the method that introduced 368

in Section 3.2. 369

Mono-bt-kNN-MT: a kNN-MT method. Its 370

datastore is created from a bilingual dataset whose 371

source sentences are obtained by translating the tar- 372

get dataset back into source language by WMT19 373

En-De model (Ng et al., 2019). 374

Retrieve-bt-kNN-MT: a variant of Pseudo- 375

kNN-MT. In this method, the retrieved target sen- 376

tences are back translated into the source language 377

sentences by WMT19 en-de model (Ng et al., 378

2019), then constructed bilingual sentence pairs, 379

from which the datastore is constructed afterward. 380

4.1 Main Experiment 381

In this experiment, we tested our method on the 382

testset of the multi-domain dataset. The base model 383

for NMT is Facebook’s WMT19 De-En model. 384

For back translation, we employed Facebook’s 385

WMT19 En-De model. The experimental results 386

with sacreBLEU scores are given in Table 2. We 387

give the COMET scores for this experiment in the 388

Appendices B. In this experiment, we compare our 389

proposed method with the vanilla kNN-MT (Khan- 390

delwal et al., 2021). 391

The experimental results indicate that although 392

the performance is not as good as the vanilla KNN- 393

MT, our proposed Pseudo-KNN-MT method can 394

improve BLEU scores by an average of 4.51 BLEU 395

points compared to the baseline. This seems rea- 396

sonable intuitively because the pseudo-bilingual 397

sentences are constructed by pairing the retrieved 398

target sentences with the source ones, they are simi- 399

lar or relevant in semantics, but not the exact match 400

to each other. However, the datastore of kNN-Mt 401

is constructed from fully aligned bilingual data. To 402

address this, we use the reverse model to trans- 403

late the retrieved target language data back into 404

the source language and build the bilingual data. 405

This approach further boosts BLEU scores by 0.75 406
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Methods IT Koran Law Medical Average

NMT 38.43 17.07 45.99 41.97 35.86
kNN-MT 46.74(0.7) 21.93(0.7) 61.92(0.9) 56.40(0.8) 46.75
Pseudo-kNN-MT 40.63(0.3) 18.46(0.4) 53.03(0.4) 49.36(0.5) 40.37
Retrieve-bt-kNN-MT 41.53(0.8) 19.44(0.8) 54.49(0.8) 49.02(0.8) 41.12
Mono-bt-kNN-MT 41.58(0.5) 20.35(0.7) 54.43(0.9) 49.47(0.7) 41.46

Table 2: SacreBLEU scores of Facebook’s WMT19 De-En model on the multi-domain test sets. The numbers
in the parentheses at the bottom-right indicate that the model yielded the best translation performance when the
hyperparameter lambda for interpolation is this value.

points. Additionally, translating the entire target407

data into the source language using the reverse408

translation model, followed by kNN-MT on this409

bilingual data, can yield an additional improvement410

of 0.34 BLEU points. However, this also implies a411

higher computational cost.412

4.2 LLM Integration413

In this experiment, we validate the effectiveness414

of the integration methods of NMT and LLM on415

the multi-domain test set. To ensure the consis-416

tency of the vocabulary between NMT and LLM417

for interpolation, for base NMT model, we used418

the WMT19 De-En model, which is trained on419

WMT19 De-En training data and the vocabulary420

of the Llama-2 model, as mentioned in Subsection421

4. We examine various LLM integration methods,422

including the interpolation via kNN-MT whose423

pseudo datastore is constructed by the LLM, via424

the translation ability of the Llama model itself,425

and the fusion using LLM as a continuation gener-426

ator, on Llama2, Llama2-chat, and ALMA models,427

respectively. The experimental results are given in428

Tabel 3.429

From the results of the base models, it’s clear430

that all three Llama models perform weaker in431

translation compared to the NMT model, even the432

translation-optimized ALMA model. Since the433

base NMT model is trained Utilizing the Llama434

dictionary, its performance averaged a loss of 1.67435

BLEU points compared to Facebook’s WMT19436

model. In this experiment, in order to fair compar-437

ing with the method of kNN-MT with LLM pseudo438

datastore, we also experimented Pseudo-kNN-MT.439

Compared to base NMT, Pseudo-kNN-MT still sig-440

nificantly improves translation performance, with441

an average increase of 4.37 BLEU points on a442

slightly weaker NMT model. Retrieve-bt-kNN-443

MT and Mono-bt-kNN-MT can further improve444

over Pseudo-kNN-MT.445

Unlike the NMT counterpart that constructs the 446

datastore by NMT itself, our attempt to construct 447

the datastore using LLM failed except the Llama2- 448

zero-shot, resulting in a lower BLEU score than 449

the base NMT. This indicates that LLMs are not 450

good at compressing effective translation knowl- 451

edge from pseudo-bilingual data. Besides, even the 452

ALMA model, which has better translation capa- 453

bilities, achieved similar BLEU scores to the other 454

two Llama models. Moreover, the interpolation 455

ratio λ was consistent with the other two Llama 456

models, suggesting that the construction of a trans- 457

lation knowledge datastore from pseudo-bilingual 458

data is not strongly correlated with the translation 459

capabilities of LLMs. 460

Within the interpolation of the LLM translators, 461

all three models can improve NMT translation to 462

varying degrees on zero-shot and few-shot scenar- 463

ios, with such enhancement being notably obvi- 464

ous in the more proficient ALMA model. Concur- 465

rently, optimal translation results are achieved on 466

larger λ values for the stronger LLM translators, 467

which means the latter can provide more translation 468

knowledge to the NMT. 469

In the experimentation of fusing language mod- 470

els as text continuators, the Llama2 model, owing 471

to its robust generative capability, aids in generat- 472

ing better translations, exhibiting an average im- 473

provement of 1.07 BLEU points over the base NMT. 474

Conversely, conventional generative language mod- 475

els decrease the average BLEU score by 0.83 points 476

compared to the base NMT. These results indicate 477

that a language model solely trained for next token 478

generation, if powerful enough, can be directly in- 479

tegrated during decoding and contribute to better 480

translation. Furthermore, fine-tuned language mod- 481

els on validation sets in each domain also prove 482

effective in achieving a similar impact. 483
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Methods IT Koran Law Medical Average

Base Models

NMT 36.39 16.76 44.29 39.34 34.19
+ kNN-MT 45.46(0.7) 21.68(0.6) 60.24(0.9) 55.17(0.8) 45.64
+ Pseudo-kNN-MT 38.97(0.3) 18.14(0.4) 51.14(0.4) 47.19(0.5) 38.56
+ Retrieve-bt-kNN-MT 39.59(0.5) 19.26(0.5) 52.14(0.6) 46.71(0.6) 39.43
+ Mono-bt-kNN-MT 40.22(0.7) 20.14(0.6) 52.40(0.7) 46.85(0.7) 39.90
Llama2 34.19 11.71 37.52 33.96 29.35
Llama2-chat 29.03 12.97 28.54 33.83 26.09
ALMA 36.20 15.66 36.25 40.05 32.04

kNN-MT with LLM Pseudeo Datastore

+Llama2-zero-shot 35.53(0.3) 17.91(0.3) 44.39(0.3) 42.09(0.3) 34.98
+Llama2-three-shot 35.58(0.3) 17.34(0.3) 40.38(0.3) 40.71(0.4) 33.50
+Llama2-chat-zero-shot 35.58(0.3) 17.33(0.3) 40.33(0.3) 40.53(0.4) 33.44
+Llama2-chat-three-shot 35.49(0.3) 17.37(0.3) 40.50(0.3) 40.89(0.4) 33.56
+ALMA-zero-shot 35.48(0.3) 17.37(0.3) 40.46(0.3) 42.52(0.4) 33.96
+ALMA-three-shot 35.71(0.3) 17.67(0.3) 40.62(0.3) 40.65(0.4) 33.66

LLM Translator Interpolation

+Llama2-zero-shot 37.68(0.2) 17.36(0.2) 44.94(0.1) 39.95(0.1) 34.98
+Llama2-three-shot 37.75(0.1) 17.74(0.3) 45.10(0.2) 39.77(0.1) 35.09
+Llama2-chat-zero-shot 37.73(0.1) 17.21(0.1) 44.86(0.2) 40.03(0.2) 34.96
+Llama2-chat-three-shot 38.33(0.2) 17.41(0.2) 45.17(0.2) 40.44(0.3) 35.34
+ALMA-zero-shot 38.67(0.4) 17.70(0.4) 45.78(0.3) 41.10(0.5) 35.81
+ALMA-three-shot 38.67(0.3) 17.76(0.4) 45.78(0.3) 41.13(0.3) 35.84

Language Model Continuation Generator Fusion

+Llama2-7B 37.15(0.2) 18.38(0.7) 45.10(0.3) 40.41(0.5) 35.26
+LM 34.20(0.1) 17.00(0.1) 43.37(0.1) 38.89(0.1) 33.36
+fine-tuned-LM 35.79(0.1) 18.35(0.3) 47.03(0.2) 42.69(0.2) 35.96

Table 3: SacreBLEU scores of WMT19 Llama-dictionary De-En model on the testsets of multi-domain data. The
numbers in the parentheses at the bottom-right indicate same meaning as in Table 2.

4.3 The Influence of Nearest Neighbors484

Numbers for Per Query485

The performance of kNN-MT is sensitive to the486

k, which is the number of the retrieved nearest487

neighbors. To investigate the impact of k on our488

approach, we conducted experiments on the Medi-489

cal and Law test sets with varying values of k. In490

this experiment, the cross-lingual retrieval remains491

at 32. We only vary the number of neighbors re-492

trieved from the kNN datastore. The experimental493

results in Figure 3 show that, as the k increases,494

both methods exhibit a trend of initially improv-495

ing before declining, consistent with the findings496

in kNN-MT (Khandelwal et al., 2021), which sug-497

gest that appropriately increasing the number of498

neighbors is beneficial for translation but too many 499

neighbors introduce noise and degrade translation 500

quality. Moreover, on the Medical dataset, starting 501

from k=8, Pseudo-kNN-MT surpasses Retrieve-bt- 502

kNN-MT, which means Pseudo-kNN-MT is strong 503

competitor to its back-translation counterpart. 504

4.4 The Influence of Cross-retrieval Similarity 505

on Translation 506

To explore the applicability of our approach, we 507

conducted experiments under low-resource settings 508

on the WMT21 Is-En and Cs-En news translation 509

tasks. The results indicated that Pseudo-kNN-MT 510

failed to enhance translation quality, while Retrieve- 511

bt-kNN-MT can improve it slightly. Details of 512

the experiments are provided in the Appendix A.1. 513
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Figure 3: Impact of nearest neighbor numbers on the
translation.

From these experiments, we observed that the sim-514

ilarity between the retrieval and source language515

is crucial. To investigate the impact of retrieval516

similarity on translation results, we conducted this517

experiment on Medical and Law test sets. We par-518

titioned the retrieved 32 target sentences into four519

groups according to their similarity. Here, we mea-520

sure the similarity of two vectors by using L2 dis-521

tance from FAISS library, and closer distances in-522

dicate greater similarities. Each group consisted of523

eight sentences, which were used as retrievals of524

each group. We set k for kNN search to 4, while525

keeping other experimental settings consistent with526

the main experiment. The results are presented527

in Figure 4. The average distances of retrieval528

from Group 1 to Group 4 are as follows: for Medi-529

cal (0.5764, 0.6834, 0.7232, 0.7491) and for Law530

(0.5798, 0.6648, 0.6964, 0.7167). This means that531

the similarity decreases sequentially from Group532

1 to Group 4. This indicates that the higher the533

similarity of target language retrieval, the more534

significant the improvement in translation perfor-535

mance.536

5 Related Works537

As a mature and widely known method, kNN-538

MT(Khandelwal et al., 2021) has many variants.539

Zheng et al. (2021) introduce adaptive knn-mt,540

which can adaptively choose k to decrease noisy541

neighbors. Deguchi et al. (2023) introduce sub-542

set kNN-MT, which accelerates inference speed543

since it only retrieves in a small subset according to544

source similarity. We also leverage subset retrieval545

while relying cross language similarity. Wang et al.546

(2022) introduces cluster-based kNN-MT, which547

adopts a compact network to prune feature data-548

group1 group2 group3 group4
Grouping by Similarity of Retrieval

30

40

50

Sa
cr

eB
LE

U

Law-Baseline
Law-Pseudo
Law-Retrieve-bt
Medical-Baseline
Medical-Pseudo
Medical-Retrieve-bt

Figure 4: Impact of retrieval similarity on the translation
results.

store extremely. Martins et al. (2022) introduces 549

chuck-based kNN-MT, which transforms retrieve 550

granularity from single token to chunk. Dai et al. 551

(2023) introduces a fast kNN-MT method, which 552

combines subset kNN-MT and distance-aware λ 553

together. Liu et al. (2023) introduced kNN-TL, 554

which explores how to combine the transfer learn- 555

ing method and kNN-MT in low-resource scenery. 556

Zhu et al. (2023b) introduces INK, which is a train- 557

ing framework refines the representation space of 558

an NMT model according to the extracted kNN 559

knowledge to avoid the expensive inference cost 560

of kNN-MT method.Also, Wang et al. (2023) ex- 561

plores non-parametric kNN-MT method can im- 562

prove machine translation models at the fine-tuning 563

stage. Cao et al. (2023) introduces a method to deal 564

with the gap between the upstream NMT model 565

and downstream domains datastore, which makes 566

kNN-MT adopt better for downstream tasks by re- 567

constructing datastore. 568

6 Conclusion and Future Work 569

In this paper, we propose the pseudo-kNN-MT 570

method, and achieve significant improvements on 571

domain adaptation task, validating the effective- 572

ness of incorporating target monolingual data in 573

the kNN-MT. Within this method, we employ a 574

cross-lingual retrieval model to retrieve semanti- 575

cally similar sentences from the target language 576

data and pair them with the input sentences to con- 577

struct pseudo-bilingual data, which is then used 578

to build a key-value datastore. We also explore 579

methods of utilizing large language models to con- 580

struct the key-value datastore. In future work, we 581

will further explore LLM prompts suitable for this 582

scenario and explore the potential of LLMs in this 583

8



context.584

7 Limitation585

Our proposed pseudo-kNN-MT method is signifi-586

cantly influenced by the similarity of the retrieved587

target language sentence. If the retrieved target588

sentence matches the source sentence semantically,589

it can help the translation; otherwise, it may not,590

and could even degrade translation performance.591

Therefore, its applicability is limited. Specifically,592

when translating in a particular domain, the target593

language data used should also belong to that do-594

main to ensure similarity in retrieval. If this target595

language data can cover the domain extensively,596

then our method can perform even better.597
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A Other Experiments826

A.1 Low Resource Settings827

To verify the performance of our method in low-828

resource scenarios, we conducted experiments on829

the datasets from Is-En and Cs-En news translation830

tasks of WMT 21. For data selection, we com-831

bined all datasets except for the bilingual obtained832

from machine translation, and then performed uni-833

form sampling on the cleaned bilingual data to834

obtain a bilingual dataset. The monolingual tar-835

get language data utilized the news2021 data from836

news-crawl/en. After cleaning, we also used uni-837

form sampling to obtain final monolingual data. In838

the back-translation method, following Sennrich839

et al. (2016), we initially trained a reverse NMT840

model from bilingual data to translate target lan-841

guage monolingual data back into the source lan-842

guage, resulting in 1 million synthetic-bilingual843

data. Subsequently, we mixed this data with the844

original bilingual data and trained an NMT model845

on this combined dataset. Data statistics are pre-846

sented in Table 4, and experimental results are pro-847

vided in Table 5.848

B Comet Scores849

Here we present the COMET evaluation results850

for the main experiment and the LLM integration851

experiments. Specifically, Table 6 corresponds to852

Split Is-En Cs-En En

Train 500K 500K 1M
Valid 2004 2082 -
Test 1000 1000 -

Table 4: Statistics of datasets for low resource transla-
tion scenario.

Split Is-En Cs-En

NMT 21.46 21.46
Back-translation 25.69 23.68
Mono-bt-kNN-MT 22.26 22.54
Retrieve-bt-kNN-MT 21.79 21.97

Table 5: SacreBLEU scores for low resource translation
scenario.

Table 2 in the main text, and Table 7corresponds to 853

Table 3 in the main part of the paper. 854
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Methods IT Koran Law Medical Average

NMT .8246 .7257 .8538 .8316 .8089
kNN-MT .8489 .7352 .8717 .8486 .8261
Pseudo-kNN-MT .8251 .7224 .8468 .8243 .8046
Retrieve-bt-kNN-MT .8264 .7314 .8611 .8384 .8143
Mono-bt-kNN-MT .8296 .7300 .8596 .8393 .8146

Table 6: COMET scores of Facebook’s WMT19 De-En model on the multi-domain test sets.

Methods IT Koran Law Medical Average

Base Models

NMT .8236 .7244 .8547 .8335 .8090
+ kNN-MT .8616 .7342 .8748 .8541 .8311
+ Pseudo-kNN-MT .8338 .7208 .8492 .8252 .8072
+ Retrieve-bt-kNN-MT .8346 .7239 .8630 .8409 .8156
+ Mono-bt-kNN-MT .8354 .7304 .8653 .8428 .8184
Llama2 .7456 .6827 .7678 .8035 .7499
Llama2-chat .7548 .7773 .7954 .7894 .7792
ALMA .7700 .7643 .7985 .8049 .7844

kNN-MT with LLM Pseudeo Datastore

+Llama2-zero-shot .7747 .7830 .8127 8064 .7942
+Llama2-three-shot .7760 .7859 .7992 .8017 .7907
+Llama2-chat-zero-shot .7720 .7858 .8000 .8003 .7895
+Llama2-chat-three-shot .7773 .7863 .7991 .8010 .7909
+ALMA-zero-shot .8240 .7857 .8000 .8083 .8045
+ALMA-three-shot .7760 .7860 .8000 .8006 .7907

LLM Translator Interpolation

+Llama2-zero-shot .7819 .7932 .8189 .8085 .8006
+Llama2-three-shot .7823 .7933 .8189 .8087 .8008
+Llama2-chat-zero-shot .7869 .7978 .8204 .8146 .8049
+Llama2-chat-three-shot .7889 .7975 .8208 .8142 .8054
+ALMA-zero-shot .7877 .7992 .8206 .8124 .8050
+ALMA-three-shot .7866 .7977 .8204 .8144 8048

Language Model Continuation Generator Fusion

+Llama2-7B .7782 .7913 .8177 .8096 .7992
+LM .7748 .7856 .8128 .8058 .7947
+fine-tuned-LM .7772 .7891 .8165 .8093 .7980

Table 7: COMET scores of WMT19 Llama-dictionary De-En model on the testsets of multi-domain data.
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