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Abstract

Neural Machine Translation (NMT) suffers
from the challenges of translating in new do-
mains and low-resource languages. To address
these challenges, researchers have proposed
methods to incorporate additional knowledge
into NMT, including the integration of transla-
tion memories (TMs). However, finding TMs
that closely match the input sentence remains
difficult, particularly for specific domains. In
contrast, monolingual data is widely available
in most languages and back-translation is be-
lieved as a promising method to utilize target
language data. But, it still needs additional
training. In this paper, we propose Pseudo-
kNN-MT, a method that exploit target language
data during the inference phase, without train-
ing the NMT model. Also, we further inves-
tigate the assistance of large language model
(LLM) in NMT. Experimental results show that
our method can improve translation quality by
a great margin. Interestingly, LLMs are found
to be helpful for strong NMT systems.

1 Introduction

Neural Machine Translation (NMT) has witnessed
significant advancements with the introduction of
deep learning techniques(Sutskever et al., 2014;
Bahdanau et al., 2015), especially the transformer
model(Vaswani et al., 2017). Despite these ad-
vancements, challenges still exist in translating
rare words and adapting NMT systems to new do-
mains(Koehn and Knowles, 2017; Saunders, 2022).
To address these challenges, researchers have
proposed various methodologies to incorporate ex-
ternal knowledge into NMT. One such approach
involves imposing constraints from terminology
dictionaries(Dougal and Lonsdale, 2020; Hasler
et al., 2018), or the incorporating fuzzy matches
retrieved from translation memory (TM)(Eriguchi
et al., 2019; Xu et al., 2020; Khandelwal et al.,
2021; He et al., 2021; Reheman et al., 2023).

These techniques enhance the NMT systems us-
ing bilingual translation knowledge. However, due
to the limitations of the bilingual data scale and
coverage of domains, it is highly challenging to
find sentences that are highly similar to the input
sentence, particularly in specific domains or in low-
resource languages. One natural idea is utilizing
the vast amount of monolingual data, which can
offer a pool of highly relevant sentences in terms
of semantics. As a promising method, back trans-
lation (Sennrich et al., 2016) has been proven to
be useful for NMT, especially in low-resource sce-
narios. However, it still needs some additional
training, including the training of a reverse NMT
system and retraining the NMT model with the
augmented training data.

In this paper, we propose pseudo-kNN-MT, a
training-free method that utilizes target language
data for translation. For an input sentence, we
retrieve its similar target sentences using a cross-
lingual retriever. our main goal is how to use these
retrieved sentences effectively. First of all, we pair
the retrievals with the input sentence and construct
pseudo sentence pairs, then conduct nearest neigh-
bor machine translation following Khandelwal et al.
(2021). Besides, LLLMs are believed to be good
compressors (Brown et al., 2020; Radford et al.,
2019), which can map texts into representation
space effectively, and also demonstrate strong trans-
lation capabilities (Zhang et al., 2023; Zhu et al.,
2023a; Xu et al., 2023). Consequently, We also
investigate the effectiveness of kNN translation
model interpolation, whose datastore and the con-
text representation vector are obtained by LLMs,
rather than by the NMT model itself. Further, we
study the integration of LLMs with the NMT with-
out referring to the target retrieval, from the per-
spectives of the utilization of the translation ability
of LLMs and fluency of the target translation. Ex-
perimental results on multi-domain test sets show
that our method improves the translation results



with a great margin, with 4.51 sacreBLEU points
on average, utilizing the target language data only.

2 Background

In this section, we give some background knowl-
edge about nearest neighbor machine translation,
cross-lingual retrieval and the fusion of language
models in NMT.

2.1 Nearest Neighbor Machine Translation

The k-Nearest Neighbor Machine Translation
(KENN-MT) Khandelwal et al. (2021) is a non-
parametric method that uses nearest neighbor re-
trievals from a vector datastore of translation con-
text representation. It involves two main steps:
datastore creation and inference.

Datastore Creation The datastore D consist of
a set of key-value pairs, and the key is the high-
dimensional representation of the translation con-
text, which is computed by an auto-regressive MT
decoder, and the value is the corresponding ground-
truth target token. Here, the combination of source
language tokens and the generated target tokens
is called translation context. Suppose (X,)) is
a set of bilingual sentences, and f(-) is a map-
ping function that transfers the translation context
into the high-dimensional representation, using a
translation model. For all examples in (X, )), the
key-value datastore is created as:

D = {(f(z,y1:4—1) ), Yyr € ¥

(z,y) € (X, )} (1)

Inference During the inference, the translation
context representation of each time-step is used
as query, ¢ = f(x,91.4—1), to retrieve k-nearest
neighbors N from D, using vector distance mea-
suring methods, such as L2 distance. A probability
distribution, pgNN, over the target vocabulary is
then constructed from A by applying a softmax
with temperature to the negative distances and ag-
gregating the same tokens, defined as:

PENN (Ye| 2, G1:—-1) =
Z(k:j,uj)eN Ly, =v,exp(—d(q, k;)/T)
>ty P~ )]T)
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where d(-, -) is a distance function that calculates
the distance between the two vectors. Here, it is the
distance between the query vector and the retrieved
neighbors.

In the end, the final probability distribution is ob-
tained by linear interpolating the two distributions,
prNN and pNwvT, using a tuned hyperparameter \:

(Y], 91:6-1) = Aprnn (yelz, Gr0-1) +
(1 = Npnmr (Yelz, 91:0-1) - (3)
2.2 Cross-lingual Retrieval

Cross-lingual retrieval is the technique of retrieving
information from multilingual sources (Feng et al.,
2022a; Li et al., 2023; Gao et al., 2023). Its core
is a pretrained cross-lingual sentence embedding
model, which maps the sentences from different
languages into a shared semantic space. In usage,
they return the embedding of "CLS" tokens or us-
ing mean pooling strategy for all token embeddings
in the sentence to acquire the representation of a
sentence. This is useful in various cross-lingual
applications, such as information retrieval and ma-
chine translation (MT). We use it to retrieve simi-
lar sentences from the target language, taking the
source sentence as query, in this paper.

3 Methodology

In this section, we will introduce retrieving similar
sentences from target dataset (§3.1), as well as
the proposed method of pseudo ANN-MT (§3.2)
and the large language model integration (§3.3 and
§3.4) in detail.

3.1 Retrieving Similar Sentences from Target
Language Dataset

Given a source input sentence x, a target lan-
guage dataset ) = {y', %2, ...,4"}, and a cross-
lingual sentence embedding model e. First of all,
the distributed representation of the target dataset,
hy = {hi, ha, ..., h,}, is obtained by feeding )
into the cross-lingual model, formulated as:

hy = e(Y) “)

In the same way, we acquire the distributed rep-
resentation of = by h, = e(z). After that, we
calculate the distances of each item in hy from h,
by the distance function d(-):

D = d(hg, hy) (5)

where D = {d,do, ..., d, } is the distance of each
sentence in y from x in the vector space. Finally,
we acquire the top-k similar sentences by ranking
the sentences by their distances and select k-nearest
of them as the final retrieval, namely the k-nearest
neighbors. Our work is primarily centered on the
utilization of this target retrievals.
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Figure 1: pseudo datastore creation process. Function f(-) returns the last hidden state of MT decoder at every

time-step.

3.2 ENN-MT with Pseudo Datastore

After obtaining similar sentences from the target
dataset, we endeavor to construct bilingual data
in order to align with the decoding behavior of
the MT model. A well-known method is to back-
translate them into the source language, and pair
the corresponding sentences (Sennrich et al., 2016).
But, this needs to train an additional reverse NMT
model, which is trained to translate from target to
source. Here, we take another option. Due to the
semantic similarity between the retrieved sentences
with the input sentence, we pair them and construct
bilingual data. After this, we explore whether this
pseudo bilingual data can effectively facilitate the
translation, following the approach of KNN-MT
(Khandelwal et al., 2021).

First, we build a key-value datastore Dp. on
the pseudo bilingual data. Suppose Vsim =
{y*, 4%, ...,y"} is the target retrieval for the in-
put sentence x, the pseudo bilingual data is con-
structed by pairing « with each sentence in Vi, as
(va)})se = {(‘Tayi)’yi S ysinni S [17 k]} The
ENN-MT datastore on (X, ))ps. is built using the
equation 1, defined as:

Dpse = {(f(wyylstfl)ayt)avyt € y|

(z,y) € (va)pse} (6)

where f(-) also is the mapping function from
translation context to last hidden state of the MT
decoder and ¢ is the time-step of decoding. Figure
1 shows the pseudo datastore creation process.

During the inference, we construct the target to-
ken distribution from Dp,. and interpolate it with
the NMT distribution, using equation 2 and equa-
tion 3, same as kNN-MT (Khandelwal et al., 2021).

3.3 ENN-MT with LLM Pseudo Datastore

As a dual-model method, kNN-MT is the com-
bination of NMT model and the kNN translation
model from datastore. Unlike the naive implemen-
tation that uses NMT model’s own hidden states to
construct key-value datastore and retrieve during
inference, any MT model can be used to finish this
procedure. In addition, previous works reported
that LLMs has the distinct translation and multilin-
gual modeling capability(Zhang et al., 2023; Zhu
et al., 2023a; Xu et al., 2023). Here, we explore
marrying NMT model with the kNN translation
model whose datastore is constructed by an LLM.

Due to the differences between utilizing LLMs
for translation tasks and NMT, where LLMs require
instructions to specify the desired translation task,
including the support for zero-shot and few-shot
learning, the translation context here differs from
that in NMT. Taking the zero-shot scenario of De-
En translation task as an example, presuming x
to be the source sentence, and y;.4—1 representing
the target string of previously generated tokens.
The translation context for LLM can be written as
"Translate this from Geman into English.\nGerman:
<zr>\nEnglish: <y;4_1>". In few-shot scenario,
few-shot examples come after the instruction.

First of all, we construct the key-value datastore
on the pseudo bilingual dataset obtained previously,
using an LLM. For all the bilingual sentences, we
feed them into the LLM using specific prompt and
extract the hidden states of the translation context
at each time step as the key and the corresponding
target token as value. For zero-shot, we use the
prompt as "Translate this from source language
into target language \nsource language: <source
sentence>\ntarget language:". It is worth mention-
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Figure 2: Illustration of decoding using LLLM datastore. Here, we take zero shot prompt as an example. The kNN
datastore is constructed offline using the LLM on the pseudo bilingual dataset.

ing that when constructing the key-value datastore
from the pseudo bilingual dataset, we should use
the same prompt that was used during the inference
to maintain key representation consistency.

At each time step of inference phase, we first
construct the translation context using the prompt.
The translation context is then fed into the LLM to
extract the hidden state. Then, we take this hidden
state as a query to search the k-nearest neighbors
from the datastore, and get the kNN probability,
which is interpolated with NMT probability after-
ward. The illustration of the inference phase is
given in Figure 2.

3.4 Large Language Model Integration

Being a key component of statistical machine trans-
lation (SMT), a language model trained on target
language data is used to predict sentence proba-
bility. while NMT models the translation task in
end-to-end way, and no need to train a language
model explicitly. A target language model incor-
poration in the inference can not help much to the
NMT (Giilgehre et al., 2015).

But, in LLMs, things changed a lot. They not
only possess capabilities beyond merely generating
continuations based on prefix text but also can pro-
cess multilingual information according to human
instructions, such as translating. With this knowl-
edge, we further explore LLM integration without
additional data. For an input sentence = and pre-
viously generated target tokens y1.;—1, our method
operates as follows.

LLM Translator Interpolation In this method,
we leverage the translation capabilities of the LLM.
At each time-step of inference, we utilize both z
and y1..—1 to construct the prompt for the LLM.
The prompt here is the same as the translation
context for LLM described in Section 3.3. Sub-

sequently, the constructed prompt is fed into the
LLM, which in turn generates its probability dis-
tribution for y;. Finally, we combine the LLM
probability pr1n and the NMT probability pnyT
through interpolation using a hyperparameter \:

P(Yelz, G1:0—1) = Aot (Ve 2, Jre—1) +

(1 = Nprem (el z, gr:e—1,pr) (1)

where pr represents the prompt template.

LLM Continuation Generator Fusion In this
method, we leverage the continue generation capa-
bilities of the LLM, without referencing the source
language information That is to say, next token gen-
eration is only conditioned on y;.4—1. At each time
step of inference, we feed y1.;—1 into the LLM and
get its next token generation probability prra. The
final translation probability for y; is calculated by
adding this probability with the generation prob-
ability of NMT, pxmT, using a hyperparameter A
as:

= pavT(YelT, Gre—1) +
Aprim (el yil91:6-1)

P(Yil T, Yr:e—1)
)]

4 Experiments

In this section, we will introduce our experiments,
including the main experiment and the comprehen-
sive analysis from various perspectives.

Datasets and Evaluation Metrics We evaluated
the effectiveness of our proposed method on pub-
licly available datasets. For domain adaptation,
we performed the experiments on IT, Koran, Law,
and Medical domains of multi-domain datasets pro-
vided by Aharoni and Goldberg (2020). To measure
the translation quality, we used sarcreBLEU (Post,
2018) and COMET (Rei et al., 2022). The data
statistics are given in table 1.



Multi-domain

Split WMT19
IT Koran Law Medical

Train 223K 17K 467K 248K 33M

Valid 2000 2000 2000 2000 6002

Test 2000 2000 2000 2000 2000
Table 1: Statistics of datasets.

Models We used the winner model of the

WMT19 De-En news translation task, submitted
by Facebook, as the pretrained base NMT model
(Ng et al., 2019). For LLM, we use various ver-
sions of LLAMA 2 (Touvron et al., 2023), includ-
ing the base version LLAMA-2-7B, dialogue opti-
mized version LLAMA-2-7B-chat and ALMA-7B
(Advanced Language Model-based trAnslator), a
translation optimized model from LLAMA-2-7B,
from Xu et al. (2023), respectively. We encoun-
tered difficulties when integrating the NMT model
with Llama 2. The native version of wmt19 cannot
be assisted by LLM directly, because they used
different tokenization strategiesword granularity,
and different training data, which results in the dif-
ference in the dictionary of the two models. So,
we trained another NMT model on WMT19 De-
En training data, using the dictionary of Llama 2.
Also, we trained a decoder-only transformer lan-
guage model (Radford et al., 2019) with 12 layers
and a model dimension of 768 on the target data of
the WMT19 De-En dataset and Llama 2 dictionary
as well, ensuring a fair comparison. Before train-
ing, We cleaned WMT19 training data by applying
punctuation normalization and language identifica-
tion filtering. After that, we tokenized them using
llama. tokenizer.

Settings We use the cross-lingual embedding
model LaBSE (Feng et al., 2022b) to transfer both
the source and target datasets into the embedding
representations, then we use dense vector similarity
search library FAISS (Johnson et al., 2021) to per-
form cross-lingual retrieval. For k-nearest neigh-
bor searching from the kNN datastore, we also
use FAISS. In all experiments, for retrieving top-k
similar sentences from the target dataset, we set
this £’ to 32. For models that perform retrieval,
we retrieve k = 8 neighbors from the transla-
tion context vector datastore. For the kNN tem-
perature, we followed the optimized settings from
Zheng et al. (2021), and set it to 100 for Koran,
and 10 for other domains. Except for the £NN-

MT method that used in LLM datastore, which
searches the interpolation hyperparameter from
A € {0.2,0.3,0.4}, other methods searches from
A € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. For
decoding, we set the beam size to 5, and length
penalty to 1.0.

We take vanilla NMT (Base-NMT) and vanilla
KNN-MT (ENN-MT) as the baselines. For simu-
lating the usage of monolingual data, we take the
target language training data as the monolingual
dataset. The other compared methods are as fol-
lows:

Pseudo-kNN-MT: the method that introduced
in Section 3.2.

Mono-bt-ANN-MT: a kENN-MT method. Its
datastore is created from a bilingual dataset whose
source sentences are obtained by translating the tar-
get dataset back into source language by WMT19
En-De model (Ng et al., 2019).

Retrieve-bt-kNN-MT: a variant of Pseudo-
kKNN-MT. In this method, the retrieved target sen-
tences are back translated into the source language
sentences by WMT19 en-de model (Ng et al.,
2019), then constructed bilingual sentence pairs,
from which the datastore is constructed afterward.

4.1 Main Experiment

In this experiment, we tested our method on the
testset of the multi-domain dataset. The base model
for NMT is Facebook’s WMT19 De-En model.
For back translation, we employed Facebook’s
WMT19 En-De model. The experimental results
with sacreBLEU scores are given in Table 2. We
give the COMET scores for this experiment in the
Appendices B. In this experiment, we compare our
proposed method with the vanilla KENN-MT (Khan-
delwal et al., 2021).

The experimental results indicate that although
the performance is not as good as the vanilla KNN-
MT, our proposed Pseudo-KNN-MT method can
improve BLEU scores by an average of 4.51 BLEU
points compared to the baseline. This seems rea-
sonable intuitively because the pseudo-bilingual
sentences are constructed by pairing the retrieved
target sentences with the source ones, they are simi-
lar or relevant in semantics, but not the exact match
to each other. However, the datastore of KNN-Mt
is constructed from fully aligned bilingual data. To
address this, we use the reverse model to trans-
late the retrieved target language data back into
the source language and build the bilingual data.
This approach further boosts BLEU scores by 0.75



Methods IT Koran Law Medical  Average
NMT 38.43 17.07 45.99 41.97 35.86
ENN-MT 46. 7407y 21.9307) 61.92g9)  56.40(0.g) 46.75
Pseudo-kNN-MT 40.63(0.3) 184604 53.0304)  49.36(0.5) 40.37
Retrieve-bt-kNN-MT  41.53(g5) 194405 544905 49.02(5) 41.12
Mono-bt-kNN-MT 4158050 203507 54430090 494707 41.46

Table 2: SacreBLEU scores of Facebook’s WMT19 De-En model on the multi-domain test sets. The numbers
in the parentheses at the bottom-right indicate that the model yielded the best translation performance when the

hyperparameter lambda for interpolation is this value.

points. Additionally, translating the entire target
data into the source language using the reverse
translation model, followed by KNN-MT on this
bilingual data, can yield an additional improvement
of 0.34 BLEU points. However, this also implies a
higher computational cost.

4.2 LLM Integration

In this experiment, we validate the effectiveness
of the integration methods of NMT and LLM on
the multi-domain test set. To ensure the consis-
tency of the vocabulary between NMT and LLM
for interpolation, for base NMT model, we used
the WMT19 De-En model, which is trained on
WMT19 De-En training data and the vocabulary
of the Llama-2 model, as mentioned in Subsection
4. We examine various LLM integration methods,
including the interpolation via KNN-MT whose
pseudo datastore is constructed by the LLM, via
the translation ability of the Llama model itself,
and the fusion using LLM as a continuation gener-
ator, on Llama2, Llama2-chat, and ALMA models,
respectively. The experimental results are given in
Tabel 3.

From the results of the base models, it’s clear
that all three Llama models perform weaker in
translation compared to the NMT model, even the
translation-optimized ALMA model. Since the
base NMT model is trained Utilizing the Llama
dictionary, its performance averaged a loss of 1.67
BLEU points compared to Facebook’s WMT19
model. In this experiment, in order to fair compar-
ing with the method of kNN-MT with LLM pseudo
datastore, we also experimented Pseudo-ANN-MT.
Compared to base NMT, Pseudo-kKNN-MT still sig-
nificantly improves translation performance, with
an average increase of 4.37 BLEU points on a
slightly weaker NMT model. Retrieve-bt-kNN-
MT and Mono-bt-kNN-MT can further improve
over Pseudo-kNN-MT.

Unlike the NMT counterpart that constructs the
datastore by NMT itself, our attempt to construct
the datastore using LLM failed except the Llama2-
zero-shot, resulting in a lower BLEU score than
the base NMT. This indicates that LLMs are not
good at compressing effective translation knowl-
edge from pseudo-bilingual data. Besides, even the
ALMA model, which has better translation capa-
bilities, achieved similar BLEU scores to the other
two Llama models. Moreover, the interpolation
ratio A was consistent with the other two Llama
models, suggesting that the construction of a trans-
lation knowledge datastore from pseudo-bilingual
data is not strongly correlated with the translation
capabilities of LLMs.

Within the interpolation of the LLM translators,
all three models can improve NMT translation to
varying degrees on zero-shot and few-shot scenar-
ios, with such enhancement being notably obvi-
ous in the more proficient ALMA model. Concur-
rently, optimal translation results are achieved on
larger A values for the stronger LLM translators,
which means the latter can provide more translation
knowledge to the NMT.

In the experimentation of fusing language mod-
els as text continuators, the Llama2 model, owing
to its robust generative capability, aids in generat-
ing better translations, exhibiting an average im-
provement of 1.07 BLEU points over the base NMT.
Conversely, conventional generative language mod-
els decrease the average BLEU score by 0.83 points
compared to the base NMT. These results indicate
that a language model solely trained for next token
generation, if powerful enough, can be directly in-
tegrated during decoding and contribute to better
translation. Furthermore, fine-tuned language mod-
els on validation sets in each domain also prove
effective in achieving a similar impact.



Methods IT Koran Law Medical Average
Base Models
NMT 36.39 16.76 44.29 39.34 34.19
+ KNN-MT 45.46(0.7) 21.68(0.6) 60.24(0.9) 55.17(0.8) 45.64
+ Pseudo—kNN—MT 3897(03) 1814(04) 5114(04) 4719(05) 3856
+ Retrieve-bt-kNN-MT 39.59(0.5) 19.26(0.5) 52.14(()‘6) 46.71(0.6) 3943
+ Mono-bt-ANN-MT 40.22(0‘7) 20.14(0.6) 52.40(0.7) 46.85(0.7) 39.90
Llama?2 34.19 11.71 37.52 33.96 29.35
Llama2-chat 29.03 12.97 28.54 33.83 26.09
ALMA 36.20 15.66 36.25 40.05 32.04
KNN-MT with LLM Pseudeo Datastore
+Llama2-zero-shot 3553(03) 17.91 (0.3) 4439(03) 4209(03) 34.98
+Llama2-three-shot 3558(03) 1734(03) 4038(03) 40.71 (0.4) 33.50
+Llama2-chat-zero-shot ~ 35.58g3)  17.33(03) 40.33(03) 40.53(04) 33.44
+LIlama2-chat-three-shot 35.49(0.3) ]7.37(0'3) 40.50(03) 40.89(0.4) 33.56
+ALMA-zero-shot 35.48(0.3) 17.37(0,3) 40.46(0.3) 42.52(0.4) 33.96
+ALMA-three-shot 35.71(0 3) 17.67(0,3) 40.62(0.3) 40.65(0.4) 33.66
LLM Translator Interpolation
+Llama2-zero-shot 37.68(0.2) 17.36(0,2) 44.94(0.1) 39.95(0.1) 34.98
+Llama2-three-shot 37.75(0.1) 17.74(0_3) 45.10(0.2) 39.77(0.1) 35.09
+Llama2-chat-zero-shot 3773001y 172101 44.86(02) 40.03(0.2) 34.96
+Llama2-chat-three-shot ~ 38.33(09) 174192 45.1702) 40.44(g3) 35.34
+ALMA-Zer0—ShOt 3867(04) 1770(04) 4578(03) 41 10(05) 3581
+ALMA—three—sh0t 3867(03) 1776(04) 4578(03) 41 13(0 3) 3584
Language Model Continuation Generator Fusion
+LM 34.20(0.1) 17.00(0_1) 43.37(0.1) 38.89(0_1) 33.36
+fine-tuned-LM 3579(01) 1835(03) 4703(02) 4269(02) 35.96

Table 3: SacreBLEU scores of WMT19 Llama-dictionary De-En model on the testsets of multi-domain data. The
numbers in the parentheses at the bottom-right indicate same meaning as in Table 2.

4.3 The Influence of Nearest Neighbors
Numbers for Per Query

The performance of kNN-MT is sensitive to the
k, which is the number of the retrieved nearest
neighbors. To investigate the impact of k£ on our
approach, we conducted experiments on the Medi-
cal and Law test sets with varying values of k. In
this experiment, the cross-lingual retrieval remains
at 32. We only vary the number of neighbors re-
trieved from the kNN datastore. The experimental
results in Figure 3 show that, as the k increases,
both methods exhibit a trend of initially improv-
ing before declining, consistent with the findings
in KENN-MT (Khandelwal et al., 2021), which sug-
gest that appropriately increasing the number of

neighbors is beneficial for translation but too many
neighbors introduce noise and degrade translation
quality. Moreover, on the Medical dataset, starting
from k=8, Pseudo-kKNN-MT surpasses Retrieve-bt-
kNN-MT, which means Pseudo-5NN-MT is strong
competitor to its back-translation counterpart.

4.4 The Influence of Cross-retrieval Similarity
on Translation

To explore the applicability of our approach, we
conducted experiments under low-resource settings
on the WMT?21 Is-En and Cs-En news translation
tasks. The results indicated that Pseudo-kNN-MT
failed to enhance translation quality, while Retrieve-
bt-kNN-MT can improve it slightly. Details of
the experiments are provided in the Appendix A.1.
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Figure 3: Impact of nearest neighbor numbers on the
translation.

From these experiments, we observed that the sim-
ilarity between the retrieval and source language
is crucial. To investigate the impact of retrieval
similarity on translation results, we conducted this
experiment on Medical and Law test sets. We par-
titioned the retrieved 32 target sentences into four
groups according to their similarity. Here, we mea-
sure the similarity of two vectors by using L2 dis-
tance from FAISS library, and closer distances in-
dicate greater similarities. Each group consisted of
eight sentences, which were used as retrievals of
each group. We set k for kNN search to 4, while
keeping other experimental settings consistent with
the main experiment. The results are presented
in Figure 4. The average distances of retrieval
from Group 1 to Group 4 are as follows: for Medi-
cal (0.5764, 0.6834, 0.7232, 0.7491) and for Law
(0.5798, 0.6648, 0.6964, 0.7167). This means that
the similarity decreases sequentially from Group
1 to Group 4. This indicates that the higher the
similarity of target language retrieval, the more
significant the improvement in translation perfor-
mance.

5 Related Works

As a mature and widely known method, kNN-
MT(Khandelwal et al., 2021) has many variants.
Zheng et al. (2021) introduce adaptive knn-mt,
which can adaptively choose & to decrease noisy
neighbors. Deguchi et al. (2023) introduce sub-
set kNN-MT, which accelerates inference speed
since it only retrieves in a small subset according to
source similarity. We also leverage subset retrieval
while relying cross language similarity. Wang et al.
(2022) introduces cluster-based KNN-MT, which
adopts a compact network to prune feature data-
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Figure 4: Impact of retrieval similarity on the translation
results.

store extremely. Martins et al. (2022) introduces
chuck-based kNN-MT, which transforms retrieve
granularity from single token to chunk. Dai et al.
(2023) introduces a fast XNN-MT method, which
combines subset KkNN-MT and distance-aware A
together. Liu et al. (2023) introduced KNN-TL,
which explores how to combine the transfer learn-
ing method and KNN-MT in low-resource scenery.
Zhu et al. (2023b) introduces INK, which is a train-
ing framework refines the representation space of
an NMT model according to the extracted kNN
knowledge to avoid the expensive inference cost
of kNN-MT method.Also, Wang et al. (2023) ex-
plores non-parametric KNN-MT method can im-
prove machine translation models at the fine-tuning
stage. Cao et al. (2023) introduces a method to deal
with the gap between the upstream NMT model
and downstream domains datastore, which makes
kKNN-MT adopt better for downstream tasks by re-
constructing datastore.

6 Conclusion and Future Work

In this paper, we propose the pseudo-kNN-MT
method, and achieve significant improvements on
domain adaptation task, validating the effective-
ness of incorporating target monolingual data in
the kKNN-MT. Within this method, we employ a
cross-lingual retrieval model to retrieve semanti-
cally similar sentences from the target language
data and pair them with the input sentences to con-
struct pseudo-bilingual data, which is then used
to build a key-value datastore. We also explore
methods of utilizing large language models to con-
struct the key-value datastore. In future work, we
will further explore LLM prompts suitable for this
scenario and explore the potential of LLMs in this



context.

7 Limitation

Our proposed pseudo-kNN-MT method is signifi-
cantly influenced by the similarity of the retrieved
target language sentence. If the retrieved target
sentence matches the source sentence semantically,
it can help the translation; otherwise, it may not,
and could even degrade translation performance.
Therefore, its applicability is limited. Specifically,
when translating in a particular domain, the target
language data used should also belong to that do-
main to ensure similarity in retrieval. If this target
language data can cover the domain extensively,
then our method can perform even better.
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A Other Experiments

A.1 Low Resource Settings

To verify the performance of our method in low-
resource scenarios, we conducted experiments on
the datasets from Is-En and Cs-En news translation
tasks of WMT 21. For data selection, we com-
bined all datasets except for the bilingual obtained
from machine translation, and then performed uni-
form sampling on the cleaned bilingual data to
obtain a bilingual dataset. The monolingual tar-
get language data utilized the news2021 data from
news-crawl/en. After cleaning, we also used uni-
form sampling to obtain final monolingual data. In
the back-translation method, following Sennrich
et al. (2016), we initially trained a reverse NMT
model from bilingual data to translate target lan-
guage monolingual data back into the source lan-
guage, resulting in 1 million synthetic-bilingual
data. Subsequently, we mixed this data with the
original bilingual data and trained an NMT model
on this combined dataset. Data statistics are pre-
sented in Table 4, and experimental results are pro-
vided in Table 5.

B Comet Scores

Here we present the COMET evaluation results
for the main experiment and the LLM integration
experiments. Specifically, Table 6 corresponds to
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Split Is-En Cs-En En

Train 500K 500K 1M
Valid 2004 2082 -
Test 1000 1000 -

Table 4: Statistics of datasets for low resource transla-
tion scenario.

Split Is-En Cs-En
NMT 21.46 21.46
Back-translation 25.69 23.68
Mono-bt-kNN-MT 2226 22.54

Retrieve-bt-ENN-MT 21.79 21.97

Table 5: SacreBLEU scores for low resource translation
scenario.

Table 2 in the main text, and Table 7corresponds to
Table 3 in the main part of the paper.
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Methods IT Koran Law  Medical Average

NMT 8246 7257 .8538 .8316 .8089
ENN-MT 8489 7352 8717 .8486 .8261
Pseudo-ENN-MT .8251 7224 8468 .8243 .8046
Retrieve-bt-kENN-MT  .8264  .7314  .8611 .8384 .8143
Mono-bt-kNN-MT 8296 7300  .8596 .8393 .8146

Table 6: COMET scores of Facebook’s WMT19 De-En model on the multi-domain test sets.

Methods IT Koran Law  Medical Average
Base Models
NMT .8236 7244 .8547 .8335 .8090
+ KNN-MT .8616 7342 .8748 .8541 8311
+ Pseudo-ENN-MT .8338 7208 .8492 .8252 .8072
+ Retrieve-bt-kNN-MT .8346 7239 .8630 .8409 .8156
+ Mono-bt-ANN-MT .8354 7304 .8653 .8428 8184
Llama2 7456 .6827 7678 .8035 .7499
Llama2-chat 7548 7773 7954 .7894 7792
ALMA 7700 7643 7985 .8049 7844
KNN-MT with LLM Pseudeo Datastore
+Llama2-zero-shot 7747 7830 8127 8064 7942
+Llama2-three-shot 7760 .7859 .7992 .8017 .7907
+Llama2-chat-zero-shot 7720 7858 .8000 .8003 7895
+Llama2-chat-three-shot  .7773 7863 7991 .8010 .7909
+ALMA-zero-shot .8240 7857 .8000 .8083 .8045
+ALMA-three-shot 7760 7860 .8000 .8006 7907

LLM Translator Interpolation

+Llama2-zero-shot 7819 7932 .8189 .8085 .8006
+Llama2-three-shot 7823 7933 .8189 .8087 .8008
+Llama2-chat-zero-shot 7869 71978 .8204 .8146 .8049
+Llama2-chat-three-shot  .7889 7975 .8208 .8142 .8054
+ALMA-zero-shot 1877 .7992 .8206 .8124 .8050
+ALMA-three-shot 7866 1977 .8204 8144 8048
Language Model Continuation Generator Fusion
+Llama2-7B 7782 7913 8177 .8096 .7992
+L.M 7748 .7856 8128 .8058 7947
+fine-tuned-LM 772 7891 .8165 .8093 7980

Table 7: COMET scores of WMT19 Llama-dictionary De-En model on the testsets of multi-domain data.
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