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ABSTRACT

Dot-product is a central building block in neural networks. However, multipli-
cation (mult) in dot-product consumes intensive energy and space costs that
challenge deployment on resource-constrained edge devices. In this study, we
realize energy-efficient neural networks by exploiting a mult-less, sparse dot-
product. We first reformulate a dot-product between an integer weight and acti-
vation into an equivalent operation comprised of additions followed by bit-shifts
(add-shift-add). In this formulation, the number of add operations equals
the number of bits of the integer weight in binary format. Leveraging this obser-
vation, we propose Bit-Pruning, which removes unnecessary bits in each weight
value during training to reduce the energy consumption of add-shift-add.
Bit-Pruning can be seen as soft Weight-Pruning as it prunes bits, not the whole
weight element. In extensive experiments, we demonstrate that sparse mult-
less networks trained with Bit-Pruning show a better accuracy-energy trade-off
than sparse mult networks trained with Weight-Pruning. (Code is available at
https://github.com/DensoITLab/bitprune)

1 INTRODUCTION

Modern deep neural networks (DNNs) contain numerous dot-products between input features and
weight matrices. However, it is well known that multiplication (mult) in dot-product consumes
intensive energy and space costs, challenging DNNs’ deployment on resource-constrained edge de-
vices. This drives several attempts for efficient DNNs by reducing the energy of mult.

Table 1: Energy [pJ] and area [µm2] cost on ASIC
(45nm technology) and FPGA (ZYNQ-7ZC706). Data
adapted from (You et al., 2020; Gholami et al.;
Horowitz, 2014)

ASIC FPGA
Operation Format Energy Area Energy
mult FIX32 3.1 3495 19.6

FIX8 0.2 282 0.2
add FIX32 0.1 137 0.1

FIX8 0.03 36 0.1
shift FIX32 0.13 - 0.1

FIX8 0.024 - 0.025

Quantization (Yin et al., 2019; Esser et al.,
2020; Li & Baillieul, 2004) discretizes the
weight and/or activation into a low-bit repre-
sentation; low-precision mult requires less en-
ergy than the high-precision counterpart. Power
of two networks (Li et al., 2019b; Miyashita
et al., 2016; Elhoushi et al., 2021) restricts the
mult operation to the power of two (PoT); PoT
mult can be realized by a bit-shift (shift),
which consumes orders of magnitude less en-
ergy than mult. Although these approaches
have successfully reduced energy consumption,
they define the energy-efficient model structure
before training. That is, they limit model capacity and impose training with a precision that is
difficult to use gradient-based optimization, e.g., approximate gradient with the straight-through
estimator (STE) (Yin et al., 2019), making it challenging to achieve good accuracy in the low-bit
regime (e.g., 4bit, 2bit, or binary).

Aside from low-bit approaches, Weight-Pruning (Frankle & Carbin, 2018; Chen et al., 2022; Yang
et al., 2020; Wortsman et al., 2019) learns efficient model structure during training by removing
unimportant weight from high capacity models. Owing to its data-driven nature, it could remove
the unnecessary mult without sacrificing accuracy (e.g., 95% reduction in unstructured pruning).
Empowered by the recent progress of in/near-memory computing architectures (Gholami et al.),
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Figure 1: Dot-product realized using sparse mult-add (left) and equivalent representation using
add-shift-add(right). In the mult-add, computation is reduced by pruning the entire weight (mult). In
contrast, in the add-shift-add computation is reduced by pruning the bit (add) in binary format.

several DNN accelerators designed for the unstructured sparsity have emerged (Han et al., 2016;
Bamberg et al., 2023; Dietrich et al., 2021; Zhang et al., 2020), realizing the efficient inference
of these sparse networks. Furthermore, optimized implementation for general-purpose CPUs also
proved to be a good candidate for unstructured sparsity (Kurtz et al., 2020).

Motivated by the significant energy reduction of sparse mult operations by Weight-Pruning and
recent advances in the frameworks supporting unstructured sparsity, we envision new frontiers in
the accuracy/energy trade-off by realizing sparse and mult-less dot-product for hardware support-
ing the unstructured sparsity. Noting that the dot-product between integer weights and activation
can be decomposed into a PoT basis and binary vector, we first reformulate a dot-product between
integer weight and activation (mult-add) into an equivalent operation comprised of additions fol-
lowed by bit-shifts and additions (add-shift-add, Figure 1). In this formulation, the number
of the first add operations equals the bitcount of the weight elements in binary format. From
this observation, we propose Bit-Pruning, which removes unnecessary add (therefore unnecessary
bits in weight) during training in a data-driven manner to reduce the energy consumption in the
add-shift-add operation. Because of the difficulty of optimization in binary format, we opti-
mize parameters on a high-precision differentiable mult-add network with bit-sparsity regulariza-
tion, which promotes weights to be sparse in binary format. After training, the obtained bit-sparse
mult-add network is converted to an equivalent add-shift-add network comprised of sparse
add for efficient inference on DNN accelerators supporting unstructured sparsity.

As depicted in Figure 1, Bit-Pruning can be seen as a soft and fine-grained Weight-Pruning; it does
not necessarily remove the whole weight elements but removes only some unnecessary bits of the
weight values. This interpretation raises the following question:

Which pruning offers a better accuracy/energy trade-off? mult in mult-add
network (Weight-Pruning) or add in add-shift-add network (Bit-Pruning)?

We conducted an extensive evaluation to answer the question (Section 4); the results suggest that
pruning the add is several times more energy efficient than pruning the mult.

Remark: We do not argue that the add-shift-add representation itself is efficient. In fact, the
estimated energy consumption of (dense) mult-add and add-shift-add without pruning are
almost the same, as we see in Section 3.3. Our research interest is to investigate whether the fine-
grained pruning by removing bits rather than weights can find a more efficient sparse structure; the
add-shift-add representation permits this investigation.

2 PRELIMINARIES

2.1 DOT-PRODUCT WITH MULT-ADD

The dot-product is a fundamental building block of neural networks. In this study, we mainly focus
on the dot-product that appears in convolution1. Let the weights and activation be quantized to M

1The same discussion can be applied for dot-product in another computation block such as multi-layer
perceptron or self/cross attention.
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and N bits, respectively, where M,N are sufficiently fine quantization levels such as M,N = 8, 32.
Convolution with the input I 2 ZCi⇥W⇥H and weight W 2 ZCo⇥Ci⇥k⇥k is equivalent to matrix
multiplication of unfolded input X 2 ZCikk⇥WH and the reshaped weight W 2 ZCo⇥Cikk:

O = I ⇤W = WX, (1)
For brevity, we consider a single input pixel u and an output channel j. Then, the convolution which
corresponds to the dot-product of the u-th column vector of the unfolded input X·,u and j-th row
vector of the weight Wj is written as follows:

Oj,u = X
>
·,uWj =

KX

k=1

Xk,u ·Wj,k, (2)

where K = Cikk. Computing (2) using naive dense mult-add requires K mult followed by
(K � 1) add, which consumes a lot of energy as it contains many mult operations (Table 1).

2.2 SPARSE MULT-ADD BY WEIGHT-PRUNING

When a DNN processor supports unstructured weight and dynamic activation sparsity (Han et al.,
2016; Bamberg et al., 2023), mult can be skipped either when the activation or weight is zero. In
this case, the number of mult operation become �multK where �mult is the ratio of the nonzero
element defined as bitcount(Wj 6= 0 | X·,u 6= 0)/K. Therefore, the dot-product using sparse
mult-add consumes less energy than dense mult-add.

The sparse mult-add dot-product is typically realized by Weight-Pruning, which trains a network
with the weight-sparsity regularization Lwgt

2 (Liu et al., 2015; Han et al., 2015):
L(W) = Ltask(W) + ⌘ Lwgt(W),

Lwgt(W) =
LX

l=1

���X(l) �W
(l)
���
0
, (3)

where Ltask is a loss specific to the given task (e.g., cross-entropy for classification), W =
{W (l)}L

l=1 is a set of weight matrices from all L layers, X(l) is an input of l-th layer, and ⌘ is a
hyper-parameter to balance the accuracy and computational energy. In practice, l1-norm or Hoyer(-
Square) loss (Yang et al., 2020) is applied to relax l0-norm for efficient training. Note that when
the target hardware only supports unstructured weight sparsity (no activation sparsity), the same
argument can be applied by replacing X

(l)� with numel(X(l)).

3 BIT-PRUNING

For more efficient DNN inference, we propose a sparse and mult-less dot-product by softening the
Weight-Pruning. Our intuition is that better energy-accuracy tradeoff could be achieved by bit-level
fine-grained pruning instead of the weight-level course pruning. We first reformulate a dot-product
between integer weight and activation into an equivalent operation comprised of add-shift-add,
which does not contain mult (Section 3.1 which consumes lot of energy, Figure 1). In this formu-
lation, we can see that the number of the first add (which directly translates to energy consumption)
equals the bitcount of the weight element in binary format. Then, we propose Bit-Pruning,
which removes unnecessary bits of weight elements during training to achieve efficient inference
(Section 3.2).

3.1 REFORMULATE DOT-PRODUCT WITH ADD-SHIFT-ADD

An M -bit weight matrix3
W 2 ZCo⇥K is represented in binary format with a tensor B 2

{0, 1}Co⇥M⇥K , where Bj,·,k 2 {0, 1}M is the binary representation of the weight value Wj,k 2 Z:

Wj,k =
MX

m=1

2m�1 ·Bj,m,k. (4)

2For x 2 ZI⇥J and y 2 ZJ⇥K , x� y 2 ZI⇥J⇥K is defined as (x� y)i,j,k = xi,j · yj,k.
3For simplicity, we assume the weight element Wj,k is positive in the following explanation.
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Figure 2: Matrix view of the mult-add (left) and add-shift-add (right) dot-product.

Then, we rewrite the mult-add dot-product (2) into the following add-shift-add formulation:

X
>
·,uWj =

KX

k=1

 
Xk,u ·

MX

m=1

2m�1 ·Bj,m,k

!

=
MX

m=1

2m�1 ·
�
X

>
·,uBj,m

�
. (5)

This is computed first by accumulating the input X·,u along the binary vector Bj,m using add, then
multiplying 2m using shift, and finally aggregating the results of all M bits by add. When the
operation is mapped into the hardware supporting the unstructured sparsity, the first add using the
binary vector Bj,m requires bitcount(Bj,m) times add. The shift and last add are executed
for M � 1 times (Table 2).

3.2 SPARSE ADD-SHIFT-ADD BY BIT-PRUNING

In the add-shift-add formulation of (5), the number of the first add operations equals the
bitcount of the binary tensor B, which directly translates to energy consumption. Therefore, our
goal is to learn the sparse binary tensor of the add-shift-add network that also achieves good
performance by minimizing the following loss:

L(B) = Ltask(B) + ⌘ bitcount(B), (6)

where B = {B(l)}L
l=1 is a set of binary tensors from all L layers. However, binary parameters

prohibit gradient computation, making it difficult to train with standard backpropagation.

Instead of directly optimizing the binary tensor B, as done by Yang et al. (2021), we deal with
the original weight matrix W while promoting it to be sparse in the binary format B. Notice that
any dot-product with the integer weight can be precisely expressed as the add-shift-add dot
product, and the number of add counts for B depends on the corresponding integer weight W . For
example, when Wj,k is zero, then Bj,·,k = [0, 0, 0, 0, 0, 0, 0]>, and there is no add. When Wj,k is
PoT (e.g., 23), then Bj,·,k = [0, 0, 0, 1, 0, 0, 0]>, and there is only one add. In such a way, a number
of add in add-shift-add dot-product depends on the value of the corresponding weight Wj,k

(Figure 3a), and there is favorable value in terms of energy consumption.

We leverage this to propose a framework called Bit-Pruning, which optimizes the network’s energy
consumption in a data-driven manner. The binary tensor B of the add-shift-add network is
trained as the high-precision mult-add network having weight W (Figure 2), and a sparsification
of B is realized by imposing the bit-sparsity regularization Lbit on weight W :

L(W) = Ltask(W) + ⌘ Lbit(W),

Lbit(W) =
LX

l=1

���X(l) � (W (l) � Ŵ
(l))
���
0
, (7)

where Lbit measures a deviation of the current weight W from bit-sparse proximal weight Ŵ ,
explained as follows. Similar to Weight-Pruning (3), we relax the l0-norm in (7) with l1-norm or
Hoyer(-Square) loss in practice.

Proximal weight Given the current weight W , the proximal weight Ŵ is computed (element-wise)
as a minimizer of the sum of weight proximity cost Cmv and add count cost Cadd:

Ŵj,k = argmin
w

⇣
Cmv(w,Wj,k) + �(l)Cadd(w)

⌘
, (8)
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(a) Number of addition (8bit)

(b) Proximal weight (� = 0.1)

(c) Proximal weight (� = 1.0)

Figure 3: (a) Number of add for each weight (add count cost Cadd). (b)-(c) Proximal weight Ŵ (arrow),
which is a solution of (8) (number of add for add-shift-add dot-product is encoded as color). Refer to
Appendix C for the visualization of corresponding loss landscape (Cmv(w, ŵ) + Cadd(ŵ)).

where Cadd(w) is the bitcount of w in binary format (Figure 3a) and Cmv(w,w0) mea-
sures the proximity of two weight values w and w0. In this study, we adopted Cmv(w,w0) :=
|sgn(w)|w|p � sgn(w0)|w0|p|. We choose p = 1/2 to discount the change in Cmv for larger value
(assuming accuracy is less affected by the change when it is large). Intuitively, Cadd encourages
Ŵj,k to be sparse in the binary format while Cmv keeps it close to the current weight Wj,k and �(l)

controls its balance (larger � induce more sparsity). Owing to the discrete structure of the weight
space (e.g., 8 bit), the solution of (8) can be analytically computed for given � (Figure 3b-3c).

Efficient sparse inference. Once the training has been completed, the high-precision mult-add
network is converted into a mathematically equivalent add-shift-add network for efficient in-
ference. It is expected to be comprised of sparse add which consumes less energy.

3.3 WHICH IS EFFICIENT? WEIGHT-PRUNING OR BIT-PRUNING

Table 2: Number of operations for dot-product be-
tween K-dimensional M -bit vectors.

mult-add add-shift-add
dense sparse sparse/dense

mult K �multK 0
add K � 1 �multK M�addK+M�1
shift 0 0 M � 1

An important question in this study is whether
pruning the add (Bit-Pruning) is more effi-
cient than pruning the mult (Weight-Pruning).
When considering the dot-product between
two K-dimensional, M -bit vectors, the en-
ergy consumption of sparse add-shift-add
(Eadd-shift-add) over that of sparse mult-add
(Emult-add) is calculated from Table 2:

Eadd-shift-add

Emult-add
=

(M�add K)Eadd + (M � 1)Eshift + (M � 1)Eadd

(�mult K)Emult + (�mult (K � 1))Eadd
⇡ MEadd

Emult

�add
�mult

(9)

where �mult and �add are the ratio of nonzero elements in weight (Wj) and the ratio of nonzero
bits in its binary format (Bj), respectively. Emult, Eadd, and Eshift are energy consumption of
corresponding operations and we assume K � M in the last approximation. In the case of ASIC, we
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Table 3: Experimental setup
CIFAR-10 CIFAR-100 ImageNet

Network ResNet18 ResNet18 ConvNeXt-B
Batch size 512 256

Training epochs 200 100
Optimizer AdamW (Loshchilov & Hutter, 2019)
Scheduler OneCycle (Smith & Topin, 2019) Cosine decay (Loshchilov & Hutter, 2017)

Weight quantization M 8
Activation quantization N 4/8/32 8

Weight initialization Kaiming-uniform (He et al., 2015) Pretrained4

�(l) for Cmove (Bit-Pruning only) 1.0 for all layers (Figure 3c)

roughly get Emult ⇡ MEadd from Table 1; therefore, the computational efficiency of Bit-Pruning
over Weight-Pruning is almost determined by the ratio of obtained connection density �add/�mult.

We expect that the �add in a Bit-Pruned network is much smaller than the �mult in a Weight-
Pruned network when both networks achieve comparable accuracy. This is because Bit-Pruning
removes connections more finely than Weight-Pruning; in other words, given the same nonzero ra-
tio, i.e., �add = �mult, Bit-Pruned weight can have a more nonzero element (at most M times)
than Weight-Pruned weight when it learns a weight that is sparse in binary format. In the extreme
case where all the nonzero weights in a network are represented as PoT, the computational cost in
add-shift-add representation is M times smaller than that in mult-add representation. The
evaluation on actual DNN training is presented in Section 4.

3.4 BIT-PRUNING AS A UNIFIED LOW-ENERGY MODEL

(Non-uniform) quantization. Bit-Pruning effectively applies different non-uniform mixed-
precision quantization for each weight element. As a result of the Bit-Pruning, we will get a sparse
B; this has a similar effect to the non-uniform quantization of weight. Existing quantization tech-
niques learn (non-uniform) step size for a group of weights; contrary, Bit-Pruning realizes pseudo-
non-uniform quantization by selecting a bit pattern.

PoT dot-product. Bit-Pruning can be interpreted as the soft version of the (additive) PoT quan-
tization. The bit-sparsity regularization prefers sparse binary representation, which corresponds to
the PoT; however, it could learn to choose individual non-PoT values for each weight element when
necessary (i.e., when it achieves less total energy for the same accuracy). The learned weight by
Bit-Pruning is dominated by PoT, while some have multiple nonzero bits (See Figure 6).

Unstructured Weight-Pruning. Bit-Pruning can be seen as a soft, fine-grained version of Weight-
Pruning. Both bit-sparsity and weight-sparsity regularization loss are minimized when W = 0;
this corresponds to zero add in add-shift-add and zero mult in mult-add. However, bit-
sparsity regularization does not necessarily remove the whole weight elements but only some unnec-
essary bits in the weight element.

4 EXPERIMENT

4.1 EVALUATION OF ACCURACY/ENERGY TRADE-OFF

Which is energy efficient; pruning add (Bit-Pruning) or pruning mult (Weight-Pruning)? We eval-
uated the accuracy/energy trade-off of both methods on CIFAR-10 (Krizhevsky et al., a), CIFAR-100
(Krizhevsky et al., b), and ImageNet (Deng et al., 2009). For both bit-sparsity regularization Lbit

(7) and weight-sparsity regularization Lwgt (3) which is used for all the conv layer, we approximate
l0-norm using Hoyer-Square loss (Yang et al., 2020). We use the same network architecture, quan-
tization method (we use LSQ Esser et al. (2020)), and training strategy except for the loss function
for both frameworks. The primary experimental setup5 is summarized in Table 3. To compare the
trade-off, we train networks across various sparsity coefficients ⌘ of Lwgt and Lbit (fixed across the
entire training sequence).

4Pytorch official model zoo http://pytorch.org/vision/main/models/resnext
5See appendix for more detailed experimental setup (Appendix A) and additional results (Appendix B).
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(a) CIFAR-10/4-bit (b) CIFAR-10/8-bit (c) CIFAR-10/32-bit

(d) CIFAR-100/4-bit (e) CIFAR-100/8-bit (f) CIFAR-100/32-bit

Figure 4: Accuracy/energy trade-off of ResNet18 trained on CIFAR-10 and CIFAR-100 for difference acti-
vation quantization level. Bit-Pruning (add-shift-add) (BP) and Weight-Pruning (mult-add) (WP) are
compared. Bit-Pruning always uses an 8-bit width binary tensor B, and Weight-Pruning quantizes weight using
the same quantization level for activation. The result of Weight-Pruning in add-shift-add representation
(WP(add)) and Bit-Pruning in mult-add representation (BP(mult)) is provided for reference. The multiply-
accumulate (MAC) of the original dense mult-add network is about 0.55 ⇥ 106, and the estimated energy
consumption (from Table 1) are 26µJ, 107µJ, and 1721µJ for 4-bit, 8-bit, and 32-bit network, respectively.

Figure 5: Result of ConvNeXt-B on
ImageNet. 8bit activation. See Fig-
ure 4 for legend.

CIFAR-10/CIFAR-100. We use ResNet18 (He et al., 2016a) as
one of the most popular architectures and train them from scratch.
Figure 4 summarizes the results on CIFAR-10 (Figure 4a,4b,4c)
and CIFAR-100 (Figure 4d,4e,4f).

ImageNet. We conducted an experiment using pre-trained Con-
vNeXt (Liu et al., 2022) on ImageNet (Deng et al., 2009). The
ConvNeXt is designed to be energy efficient by its network archi-
tecture; c.f., it heavily utilizes depthwise convolutions to reduce
the number of mult. Results are summarized in Figure 5.

Summary. In all ranges of accuracy, add-shift-add net-
work trained with Bit-Pruning consumes less energy than that of
mult-add network trained with Weight-Pruning. In particular,
huge energy saving is observed in high accuracy regime, demon-
strating the superior data-adaptivity of Bit-Pruning over Weight-Pruning. We see a similar trend for
the large-sized, already efficient networks (ConvNeXt) on a large-scale dataset (ImageNet). The
number of add (in add-shift-add network) and mult (in mult-add network) can be com-
pared by multiplying M (number of bits for weight) to the add count in the plots (Because we have
Emult ⇡ MEadd from Table 1, Section 3.3). The number of add (from Bit-Pruning) is larger than
mult (from Weight-Pruning), however; their ratio is significantly less than M ; therefore, we’ll get
the better trade-off.

Notice that the Bit-Pruned network does not show efficiency in mult-add representation
(BP(mult)), and the Weight-Pruned network does not show efficiency in add-shift-add rep-
resentation (WP(add)). This is because the Bit-Pruned network prefers sparse weights in binary
format (Figure 6d), which is not necessarily zero, contrary, the Weight-pruned network prefer small
weight, which is not necessarily sparse in binary format (Figure 6c).
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(a) Initial (Kaming uniform) (b) Naive

(c) Weight-Pruning (d) Bit-Pruning (Ours)

Figure 6: Weight histogram (CIFAR-10/ResNet18 13th convolution layer). Naive is a model trained using
only task loss (test accuracy: 93.1%). We choose a model performing around 93.0% test accuracy for Weight-
Pruning and Bit-Pruning. The color indicates the number of addition for add-shift-add.

4.2 ABLATION ON BASE BIT WIDTH

Can we obtain a better accuracy-energy trade-off by pruning bits from a wider bit tensor? We
conducted the accuracy/energy trade-off comparison between Bit-Pruning with different base bit
widths (4-bit/8-bit) (Figure 7). The result shows the network with a wide tensor (8-bit) shows a
better trade-off than one using a narrow tensor (4bit). We consider it is because a network with a
wide bit has more choices for selecting good PoT values, suggesting that a better bit-sparse network
is obtained from the larger design space, just like the case of Weight-Pruning (Frankle & Carbin,
2018).

4.3 LEARNED WEIGHT DISTRIBUTION

Figure 6 visualizes histograms of learned weight. Starting from the initial uniform distribution, both
Bit-Pruning and Weight-Pruning drive most of the weight to zero; this corresponds to removing
mult in the mult-add network and add in the add-shift-add network, respectively. In
Bit-Pruning, most of the remaining nonzero weights are concentrated on sparse values in a binary
format, such as PoT. Whereas, Weight-Pruning did not show such particular preference.

5 RELATED WORKS

ShiftAddNet (You et al., 2020) is mult-less DNNs utilizing shift and add for efficient train-
ing and inference. It realizes a better accuracy/energy trade-off than the former study, AdderNet
(Chen et al., 2020), utilizing only add. Ours and ShiftAddNet have similarities in that both utilize
shift and add to realize mult-less DNNs. However, their computational model is fundamen-
tally different from ours; ShiftAddNet computes the interaction between weight and input by first
computing the dot-product with PoT weight followed by the l1 norm with add weight. It does not
have an equivalent mult-add dot-product. Its limited expressiveness and the non-differentiability
of the PoT operation make training harder (requiring specifically designed gradient computation)
and prohibit it from reaching the accuracy of the corresponding mult-add network. Ours can be
learned as an ordinal high-precision differentiable mult-add network; therefore, it is possible to
reach the performance of the original network. Besides, motivation and target hardware is different;
ShiftAddNet aims to realize efficient training and inference on dense vector-type processors, while
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our target is hardware supporting unstructured sparsity solely for inference6. Instead, using the re-
cent extension, ShiftAddNAS You et al. (2022), ours and ShiftAddNet can be combined, e.g., the
best combination of shift-add and add-shift-add are automatically searched.

Lottery ticket hypothesis states that “dense, randomly-initialized, feed-forward networks contain
sub-networks that have the equivalent accuracy as the original network (winning tickets): unstruc-
tured weight pruning naturally uncovers the winning tickets” (Frankle & Carbin, 2018; Ramanujan
et al., 2020). The comparison of different bit widths in Bit-Pruning (Section 4.2) might indicate the
lottery ticket hypothesis in bits; a network having more connections in terms of add-shift-add
representation (i.e., the large binary tensor B) has more chance of containing the winning ticket.

Bit-level sparsity have been considered in several areas. BSQ Yang et al. (2021) proposed
a novel technique for learning the layer-wise bit-width for mixed-precision networks by induc-
ing grouped bit-label sparsity. The novel notion of bit-slice sparsity (sparsity within a sliced
subdivision of binary weight) is introduced by Zhang et al. (2019) to realize efficient infer-
ence on emerging ReRAM-based DNN accelerators. Because their motivation for considering
the bit-level sparsity differs from ours, their proposed method for inducing it is also totally dif-
ferent. Therefore, it cannot efficiently sparsify the add in the add-shift-add network7.

Figure 7: Ablation of bit width.
CIFAR-10/100 (top/bottom).

6 CONCLUSION

We propose Bit-Pruning, a novel framework for learning efficient
mult-less sparse DNNs. The intensive evaluation shows prun-
ing add (bit) of the add-shift-add network is more energy
efficient than pruning mult (weight) of the mult-add network.

6.1 LIMITATIONS & FUTURE WORK

Learning weight moving cost. In Bit-Pruning, sparse add for
efficient inference is achieved by guiding the weights closer to the
proximal weight (sparse in binary format and close to the current
weight) defined in (8). The distance to current weight needs to be
defined as weight moving cost Cmv . In this study, we predefined
it (Section 3.2). We consider this to be sub-optimal, and it might
be possible to determine the cost (e.g., by learning p) from data to
achieve a better tradeoff, e.g., some weight can move a lot without
affecting the task loss and vice versa.

Evaluation on quantization susceptible module. In this study,
we evaluate Bit-Pruning on simple classification tasks using sim-
ple network modules such as conv. Some DNN modules are
known to be more susceptible to quantization noise, such as
the object detection head (Li et al., 2019a), transformer module
(Bamberg et al., 2023), and recurrent module (He et al., 2016b), making it challenging to quan-
tize them in a lower bit regime. Bit-Pruning might be an ideal choice for realizing energy-efficient
inference on these modules because it could virtually utilize high-precision weight to achieve the
accuracy of the original high-precision network.

Benchmark on real hardware We show the estimate of computational gain by Bit-Pruning using
the basic statistic known in the literature (Table 1); we have not evaluated the actual energy consump-
tion, wall-clock time, or area cost in the actual hardware. The proposed add-shift-add or exist-
ing sparse mult-add models require specialized hardware that supports unstructured/dynamic
sparsity or optimized CPU implementation Kurtz et al. (2020) to exploit the sparsity to the full ex-
tent. The sparsity-aware accelerators often utilize in/near-memory computing architecture (Gholami
et al.). We believe the Bit-Pruning is more suitable than Weight-Pruning for this architecture because
add logic is cheaper in size and energy to place in or near memory than mult logic.

6For this reason, it is difficult to compare with ShiftAddNet in terms of computational efficiency.
7Refer to Appendix-E,H for more discussion and experiments for comparing the ability to induce sparsity.
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