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ABSTRACT

Existing Multimodal Large Language Models (MLLMs) process a large num-
ber of visual tokens, leading to significant computational costs and inefficiency.
Instruction-related visual token compression demonstrates strong task relevance,
which aligns well with MLLMs’ ultimate goal of instruction following. Previous
works generally assume that visual tokens achieve better vision–language align-
ment in the shallow layers of LLMs, which have led to task-related token compres-
sion being primarily applied in intermediate LLM layers. In contrast, our study
reveals that with proper selection, task-related token compression is feasible at
the input stage of LLM with negligible performance loss. This new paradigm sig-
nificantly reduces task-irrelevant visual tokens and its model-agnostic design en-
ables application without modifying the LLM architecture. Specifically, we sug-
gest that explainability methods for transformer-based architechtures can evaluate
the global importance of each visual token with respect to the given instruction,
which can effectively guide the task-related token compression for MLLMs. Fur-
thermore, we propose to learn a mapping from the attention map of the first LLM
layer to the explanation results, thereby avoiding the need for a full inference pass.
Interestingly, this mapping can be learned using a simple and lightweight convolu-
tional network, whose training is efficient and independent of MLLMs. Extensive
experiments on 13 image and video benchmarks across three leading MLLMs
(Qwen2-VL, LLaVA-OneVision, and VILA1.5) demonstrate the remarkable ef-
fectiveness and strong generalization of our approach. Additionally, our new com-
pression paradigm achieves faster inference with reductions in both prefilling time
and KV-cache memory.

1 INTRODUCTION

With large language models (LLMs) providing a strong foundation Brown et al. (2020); OpenAI
(2023); Touvron et al. (2023); Bi et al. (2024), research on multimodal large language models
(MLLMs) has gained significant momentum Liu et al. (2023); Chen et al. (2023); Zhu et al. (2024);
Bai et al. (2023). Considerable progress has been achieved in various image- and video-related
tasks Chen et al. (2024d); Anil et al. (2023). A common paradigm among existing MLLMs is to
jointly feed visual tokens (generated by a vision encoder) and textual tokens into the LLM for cross-
modal alignment and integration Liu et al. (2023); Zhu et al. (2024); Li et al. (2023b). This paradigm
introduces substantial memory and computational overhead due to the high volume of visual tokens,
which grows rapidly with higher resolutions or frame rates Wang et al. (2024b); Zhang et al. (2024a).
Consequently, there is a pressing need for effective token compression techniques.

Previous exploration of visual token compression methods can be roughly divided into two cat-
egories. The first aims to obtain more compact and fewer visual representations (especially for
videos) in a task/instruction-agnostic manner (independent of LLM) Bolya et al. (2023); Yang et al.
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(2024); Shen et al. (2025b); Wang et al. (2025); Shen et al. (2025a). We argue that visual represen-
tations are an integral part of MLLMs and serve as the foundation for achieving strong performance
and generalization. Many state-of-the-art(SOTA) MLLMs already incorporate built-in, task-agnostic
compression mechanisms (e.g., spatial and temporal pooling) instead of relying on separate com-
pression techniques applied afterward Wang et al. (2024b;a); Li et al. (2024c). The second category
focuses on selecting visual tokens that are most relevant to the given instruction. FastV Chen et al.
(2024b) is a pioneering work that highlights the importance of retaining all shallow-layer visual
tokens in LLMs for lossless compression. While this assumption has been adopted by many subse-
quent studies Zhang et al. (2024b); Zhao et al. (2024); Xing et al. (2024); Tan et al. (2025); Huang
et al. (2024); Wen et al. (2025), we believe it remains open to question: Are all visual tokens in the
shallow layers of LLM truly indispensable for task-related compression?

This paper seeks to answer the question of whether an effective task-related token compression
approach prior to the LLM exists but remains undiscovered, or whether it is inherently infeasible.
To the best of our knowledge, our work is among the earliest efforts to investigate this issue. We
first explore the use of explainability methods to assess visual token importance with respect to the
instruction. Explainability methods for transformer-based architecture generally iteratively update a
relevance map across layers using gradient-weighted multi-head attentions Chefer et al. (2021b;a),
which effectively captures the global relevance scores of visual tokens. Relevance scores indicating
the contributions of input tokens to output can be used to rank and prune less important visual tokens
for compression. Comprehensive experiments conducted on both image and video data across three
representative MLLMs demonstrate the effectiveness of such a compressor. The results indicate that,
with proper selection, pruning tokens that are not relevant to the task at the LLM input stage is indeed
feasible. Moreover, unlike previous works motivated by observations derived from specific network
architectures (e.g., LLaVA) Chen et al. (2024b); Tan et al. (2025), which limits their generality and
transferability, our explainability-based approach is broadly applicable. Rather than relying on the
behaviors of specific models, it leverages the inherent characteristics of the applied model.

After validating that the explanation results are effective compression indicators, a lightweight
model capable of generating an alternative to the relevance map is further needed to enable effi-
cient and practical deployment. Interestingly, this goal can be achieved by training a simple fully
convolutional network that predicts relevance based on the first-layer attention map of the LLM. The
training process is highly efficient (e.g., training a 5-layer network using only 10K image data) and
does not involve any changes to the MLLM itself. Using the predicted relevance, token compression
can be performed prior to the prefill phase with negligible extra computational cost. As a result, both
computational and memory overhead during inference are significantly reduced, with no modifica-
tions required to either the prefill or decode phases. Last but not least, our approach generalizes well
across various architectures, benefiting from the broadly applicable nature of explainability methods
and the MLLM-agnostic design of the auxiliary training.

To thoroughly assess the capability of our approach, we apply it to three prominent models with dif-
ferent architectures and visual representations: VILA1.5, LLaVA-OneVision, and Qwen2-VL. We
include 13 widely used image and video benchmarks that span a wide range of visual complexities
and tasks, ensuring a comprehensive evaluation. Notably, our method achieves significant compres-
sion by pruning 75% of video tokens while retaining more than 97% of the original performance
across all benchmarks for both VILA1.5 and LLaVA-OneVision. It also performs well on image
tasks, where up to 50% of image tokens can be removed with only a minimal performance drop:
maintaining over 96% of baseline performance for Qwen2-VL and LLaVA-OneVision.

In summary, the contributions of the work are threefold: (i) reveal that explainability methods can
well evaluate the importance of visual tokens, enabling effective token compression. (ii) propose
a highly efficient token compressor by learning from explanation results. It allows token compres-
sion to be performed before the LLM, significantly reducing inference costs at both the prefill and
decode phases. (iii) Validate the effectiveness and generalization of our method through extensive
experiments on a wide range of image and video benchmarks across different leading MLLMs.

2 RELATED WORK

Multimodal Large Language Models. Benefiting from advancements in large language models
(LLMs) OpenAI (2023); Touvron et al. (2023); Bi et al. (2024), multimodal large language models
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Figure 1: Overview of our method. The top portion illustrates the details of our explainability-
based compression approach: an explainability method can reveal the important visual tokens (first
row, Section 3.2); a lightweight model can then be trained to approximate this explainability and
serve as a compression indicator (second row, Section 3.3). The bottom portion shows a general
inference framework for MLLMs, where the resulting compressor is applied at the LLM input stage.

(MLLMs) have gained considerable attention due to the powerful ability in multi-modal understand-
ing and reasoning Liu et al. (2023); Chen et al. (2023); Bai et al. (2023); Chen et al. (2024d); Anil
et al. (2023). Recent advances Li et al. (2024a); Wang et al. (2024b); Zhang et al. (2024a) tend to
handle images with higher resolution and videos with more frames, which significantly increases
the number of visual tokens and thus the computational burden. This reveals the necessity for to-
ken compression strategies that can balance efficiency and effectiveness. Our work proposes a new
token compression paradigm, which removes task-irrelevant visual tokens at the LLM input stage,
significantly reducing computational costs without sacrificing performance.

Visual Token Compression. Existing visual token compression methods for MLLMs can be
broadly categorized into: task/instruction-agnostic compression Bolya et al. (2023); Yang et al.
(2024); Shen et al. (2025b); Alvar et al. (2025) and task/instruction-related compression Chen et al.
(2024b); Xing et al. (2024); Huang et al. (2024); Wen et al. (2025). The first category of meth-
ods typically introduces additional modules to merge redundant visual tokens based on similarity,
addressing the limitations of existing models. However, many recent works have developed tech-
niques to obtain more compact visual representations when building MLLMs Wang et al. (2024b);
Chen et al. (2024a). Notably, task/instruction-related compression can further reduce the number
of visual tokens on models already incorporate built-in compression mechanisms, offering greater
potential for efficiency gains. FastV Chen et al. (2024b) represents a typical method of the second
category, which rely on shallow-layer attention maps of the LLM for compression. In this work,
we explores the feasibility of an effective task-related token compression prior to the LLM, which
functions independently of the architecture and can be applied broadly across different MLLMs.

3 METHOD

3.1 BACKGROUND AND MOTIVATION

Current Multimodal Large Language Models (MLLMs) typically follow a framework in which a vi-
sion encoder is incorporated to encode visual signals into a sequence of tokens Liu et al. (2023); Bai
et al. (2023); Chen et al. (2023). Specifically, multiple frames or patches are sampled from a video or
an image, and their corresponding visual tokens are encoded. These visual tokens are then flattened
and concatenated with textual prompt tokens before being fed into a Large Language Model (LLM)
to generate a response. Formally, let V be the video or image, and let VM and LM represent the
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Figure 2: Visualization of Rv obtained via the explainability method (left) and the correspond-
ing token pruning results (right). Based on Rv , the top 50% of visual tokens are retained and the
rest masked in white. Given the instruction querying the “three curved lines”, Rv highlights the
regions corresponding to the “three curved lines”, guiding the selective retention of the associated
visual tokens. All three MLLMs generate the correct answer using only the retained tokens. More
visualization cases are presented in Appendix B.

vision encoder and the language model, respectively. The visual token embeddings Ev can be rep-
resented as Ev = VM(V ) ∈ RNv×C , where Nv is the number of visual tokens and C is the feature
dimension. 1 Let Es ∈ RNs×C and Eu ∈ RNu×C denote the token embeddings of the system
prompt and user instruction, respectively. By feeding Ev together with Es and Eu into the LLM,
a textual response is generated, i.e., Y = LM(Es, Ev, Eu). An additional compression module
Comp can be introduced to prune visual tokens, while keeping the MLLM architecture—including
both the VM and the LM—unchanged during this pruning process.

Ev can be considered as general-purpose representations of visual signals that are task/instruction-
agnostic. Recent advances have already incorporated built-in compression mechanisms (e.g., spatial
and temporal pooling) to reduce task-agnostic redundancy, enabling the construction of more com-
pact Ev when building MLLMs Wang et al. (2024b;a); Li et al. (2024c). Rather than applying
another round of task-agnostic compression to Ev (as in methods Bolya et al. (2023); Shen et al.
(2025a)), our objective is to further address task-related redundancy by evaluating the importance of
each token in Ev with respect to a given instruction and selectively pruning those that contribute less.
Recent advances have developed techniques to reduce the number of visual tokens to obtain a more
compact Ev when building MLLMs Wang et al. (2024b;a); Li et al. (2024c). Therefore, instead of
further compressing Ev in isolation (namely task-agnostic compresssion methods like Bolya et al.
(2023); Shen et al. (2025a)), our objective is to assess the importance of each token in Ev with
respect to a given instruction, and subsequently prune those that are less essential. Moreover, we
investigate how to perform token compression prior to LLM computation, i.e., compressing Ev to
Êv = Comp(Ev|Eu) ∈ RN̂v×C and then computing Y = LM(Es, Êv, Eu), where N̂v is much
smaller than Nv . In contrast to previous methods Chen et al. (2024b); Huang et al. (2024), our
method does not require any modifications to the prefill and decode phases during inference, and
computational and memory overhead can be significantly reduced in both phases.

The details of our approach are presented below. In Section 3.2, we introduce explainability methods
to assess the importance of visual tokens and guide token compression. A learning mechanism is
then proposed to predict the explanation results in Section 3.3, which ultimately enables effective
token compression at the LLM input stage.

3.2 TOKEN COMPRESSION WITH EXPLAINABILITY

To reduce task-related redundancy at the token level, we need to estimate the contribution of each
visual token to the model response. Explainability methods for LLMs facilitate this goal by gen-
erating a relevance map through the integration of attention weights and corresponding gradients,
effectively revealing where the model genuinely focuses. The resulting relevance map highlights the

1A cross-modal projector is commonly employed in such architectures. For notational simplicity, we denote
both the vision encoder and the projector by VM.
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contributions, enabling us to rank and prune these visual tokens accordingly. The pipeline for this
section is shown in the first row of Figure 1.

Relevance Maps by Explainability Method. We adopt a generic explainability method similar
to Yao et al. (2024); Chefer et al. (2021b) to compute the relevance of the response-to-vision.
The relevance values reveal the distribution of importance across visual tokens utilized by the LLM.
Without loss of generality, assume that the LLM in an MLLM has L layers, and denote the generated
sequence of textual tokens as Y = {y0, y1, . . . , yT−1}. Specifically, we trace back the semantic
relevance flow from generated tokens to raw visual inputs. For each yt at the t-th generation step,
the relevance map Rt is first initialized as an identity matrix and then iteratively updated across
layers. Denote Al

t and ∇Al
t as the multi-head attention map and the corresponding gradients in the

l-th layer, obtained during the forward and backward passes, respectively. Rt is updated as:

Rt = Rt + Eh((A
l
t ⊙∇Al

t)
+) ·Rt, (1)

where ⊙ represents Hadamard product, and Eh is the mean across the heads dimension. The update
is performed from the 0-th layer to the last layer. In the end, the relevance of yt to visual signals
can be extracted by indexing the corresponding positions in the last row of Rt, that is, Rt[−1, Ns :
Ns + Nv]. Finally, we aggregate visual relevance across all time steps t by averaging, obtaining
the overall visual relevance scores Rv ∈ R1×Nv with respect to the current response. A detailed
analysis of Eq. 1 is provided in Appendix A. This well-grounded importance assessment Rv can
then be used to rank and select visual tokens.

Visual Token Compression Using Relevance Scores. The importance of visual tokens related to
the instruction can be ranked according to Rv . We can prune the less important visual tokens down
to a target count of N̂v , resulting in compressed token embeddings Êv as LLM input.

Observation. We visualize Rv and the corresponding token pruning results for LLaVA-OneVision,
Qwen2-VL, and VILA1.5 in Figure 2. While visualizations from different MLLMs show varying
appearances due to differences in how each model processes visual input, they exhibit clear com-
mon patterns — Rv for each model consistently highlights the regions corresponding to the “three
curved lines” in the video, demonstrating the robustness of our method. Moreover, experimental
results show that retaining 50% of the original visual tokens based on Rv preserves over 98% of
the performance on image benchmarks and 99% on video benchmarks (see Section 4.2 for details).
We draw the following conclusion: the explanation results faithfully capture the visual information
essential for the MLLM to answer the question, and retaining only the corresponding visual tokens
does not compromise model performance.

3.3 EXPLAINABILITY-BASED COMPRESSOR LEARNING

The relevance map offers valuable insights into achieving token compression at the LLM input level.
However, its practical application is limited by the fact that Rv is derived post-hoc – only after the
model has already generated the output. To address this limitation, we propose to approximate Rv

using a standalone module trained independently of the MLLM. By learning to capture attention
patterns and generate relevance estimates R̃v , this module enables token compression prior to LLM
without modifying or retraining the MLLM. Importantly, this module prioritizes efficiency: it is
lightweight, requires a small amout of training data, and can be trained quickly, making it practically
applicable. The pipeline for this section is shown in the second row of Figure 1.

Model Architecture. As shown in Eq. 1, the relevance map is essentially obtained by aggregat-
ing attention maps, suggesting that learning a mapping from attention maps to relevance maps is
promising. Interestingly yet reasonably, we find in practice that a simple convolutional network
applied to the first-layer attention suffices, which guarantees the compressor’s efficiency in terms of
model size, training time, and computation (implementation details and efficiency analysis can be
found in Appendix C and Appendix D). Formally, let A0 be the first-layer attention map. Similar
to Chen et al. (2024b); Zhao et al. (2024), we focus specifically on the attention scores that visual to-
kens receive from textual instruction tokens. Accordingly, we extract the submap A0

u→v ∈ RNu×Nv

by indexing the corresponding positions. We then average the Nu scores for each visual token to
obtain a compact representation, resulting in A0

v ∈ R1×Nv .2 This averaged attention vector A0
v is

2We omit the head dimension for notational simplicity.
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subsequently fed into a 1D convolutional model fθ to predict visual relevance:

R̃v = fθ(A
0
v). (2)

Note that a softmax operation is applied at the end of fθ, making R̃v a probability distribution. In
addition, a separate instance of fθ is used for each MLLM, because it is trained to approximate the
explainability patterns specific to that particular MLLM.

Training Objectives. We process Rv into the training label R∗
v by masking the bottom 50% val-

ues Gu et al. (2021) and normalizing the remainder into a probability distribution. Instead of soft-
max—which yields near-uniform values due to the closeness of raw scores—we normalize by di-
viding each score by the total, thereby preserving relative differences. Finally, given R∗

v and R̃v , the
Kullback–Leibler (KL) divergence is used to measure the difference, defining the loss function:

LKL = KL(R∗
v||R̃v). (3)

Oberservation. The learned fθ can be seamlessly integrated into the MLLM inference pipeline
to generate R̃v , which can guide the token compression. As shown in Figure 1, a visualization of
Rv and R̃v is given in the first and second rows, along with their corresponding pruning results,
respectively. One can see that R̃v closely resembles Rv . Important visual regions related to the
question are highlighted in both maps. This observation provides evidence that the lightweight
model fθ can indeed be efficiently and effectively trained to approximate Rv , allowing lossless
token compression at the LLM input stage. Quantitative experimental results further support this
conclusion (see Section 4.3 for details).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. Experiments are conducted on three MLLMs with different architectures for extensive
validation, i.e., LLaVA-OneVision-7B Li et al. (2024a), Qwen2-VL-7B Wang et al. (2024b) and
VILA1.5-8B Liu et al. (2024c). These models exemplify recent advances in handling high-resolution
and long visual inputs. LLaVA-OneVision and Qwen2-VL support arbitrary resolution/length,
with Qwen2-VL further introducing dynamic resolution and token aggregation for compact vi-
sual representations. VILA1.5 applies spatial token compression when processing images or video
frames. They thus provide a strong basis for evaluating our task-related compression, which reduces
instruction-related redundancy beyond their built-in instruction-agnostic compression.

Evaluation Tasks. We thoroughly evaluate our method on 13 widely used image and video bench-
marks. For image tasks, MME Fu et al. (2023) (all-round capability), MMStar Chen et al. (2024c)
(data contamination), MMVet Yu et al. (2024) (subjective evaluation), SEED-Bench Li et al. (2023a)
(all-round capability), POPE Li et al. (2023c) (hallucination evaluation), TextVQA Singh et al.
(2019) (OCR reasoning), and MMBench Liu et al. (2024a) (all-round capability) are included, cov-
ering various aspects of MLLM performance. For video evaluation, we select Video-MME(wo
sub.) Fu et al. (2024), MVBench Li et al. (2024b), MMBench-Video Fang et al. (2024), NExT-
QA Xiao et al. (2021), and ActivityNetQA Yu et al. (2019), providing comprehensive coverage of
video understanding abilities across different tasks and video durations. For comparison, we take
existing SOTA task-related token compression methods such as FastV Chen et al. (2024b), Pyramid-
Drop Xing et al. (2024), Dart Wen et al. (2025) as the primary baselines, which perform compression
in the LLM intermediate layers on visual tokens fused with textual information in the shallow layers.

Implementation Details. Training fθ. fθ is implemented as a five-layer convolutional network,
with each layer employing a 1D depthwise separable convolution Chollet (2017). The training
data of fθ is collected from general-domain high-quality datasets: a subset of LLaVA-Video Zhang
et al. (2024c) for videos and a subset of Infinity-MM Gu et al. (2024) for images. To ensure high
diversity, we adopt a sampling strategy that covers a wide range of task types and video duration.
Implementation details including the sampling strategy of training data, the generation of Rv , and
the training procedure of fθ are provided in Appendix C.

Inference. We conducted all experiments on A100 GPUs (80GB) and used VLMEvalKit Duan
et al. (2024) for benchmarking. Details of the inference settings can be found in Appendix C.
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Table 1: The relevance Rv effectively guides token compression under different retention ra-
tios. Avg. means the average of performance preservation ratios across all image/video benmarks.

Method Retention
Ratio

Image Benchmark
Avg.(%)

Video Benchmark
Avg.(%)

MME MMStar MMVet Video-MME MVBench MMBench-V
LLaVA-OneVision 100% 1997.7 60.5 48.7 100 53.6 41.2 0.41 100

LLaVA-OneVision 50% 1974.2 59.7 47.2 98.1 54.3 41.1 0.40 99.5
w/GAE-Based Compressor 25% 1977.3 59.3 47.0 97.8 53.8 40.9 0.40 99.1
Qwen2-VL 100% 2295.1 60.4 54.0 100 50.4 51.0 1.23 100

Qwen2-VL 50% 2297.1 60.3 53.2 99.5 51.0 50.7 1.19 99.1
w/GAE-Based Compressor 25% 2299.1 58.7 51.7 97.7 50.3 49.7 1.17 97.5
VILA1.5 100% 1700.3 38.7 39.3 100 47.3 34.0 1.29 100

VILA1.5 50% 1740.5 37.2 38.0 98.4 47.9 34.2 1.26 99.8
w/GAE-Based Compressor 25% 1722.1 35.7 35.6 94.7 47.1 35.1 1.28 100.7

Table 2: Compare explainability-based compressor on image benchmarks. Values marked with
* in Retention Ratio denote the average retention ratio across LLM layers due to multi-stage com-
pression in PDrop.

Method Retention FLOPs MME MMStar MMVet SEED POPE TextVQA MMBench Avg.(%)
Ratio

LLaVA-OV 100% 1.00× 1997.7 60.5 48.7 76.7 87.4 69.3 80.6 100
LLaVA-OV w/ FastV 50% 0.51× 679.2 42.7 28.8 60.1 10.8 54.4 47.7 56.0
LLaVA-OV w/ Pdrop 51%* 0.51× 1974.7 55.4 41.7 74.8 87.0 64.9 79.9 95.1
LLaVA-OV w/ Dart 50% 0.51× 1977.5 55.2 42.3 74.3 85.8 65.4 79.2 95.0
LLaVA-OV w/ Ours 50% 0.48× 1980.8 57.5 46.2 75.3 86.2 66.8 80.1 97.4
LLaVA-OV w/ FastV 25% 0.27× 527.7 41.5 20.6 56.1 10.6 38.4 42.8 47.3
LLaVA-OV w/ PDrop 25%* 0.25× 1888.3 50.1 34.7 70.4 79.6 54.8 75.7 86.3
LLaVA-OV w/ Dart 25% 0.27× 1905.0 48.7 36.7 69.5 80.9 57.8 76.2 87.5
LLaVA-OV w/ Ours 25% 0.24× 1965.9 52.1 41.8 72.7 81.3 62.3 78.0 92.1
Qwen2-VL 100% 1.00× 2295.1 60.4 54.0 75.8 87.5 84.1 81.0 100
Qwen2-VL w/ FastV 50% 0.51× 1489.3 41.4 34.4 56.0 83.0 66.7 42.1 71.0
Qwen2-VL w/ PDrop 51%* 0.51× 2288.1 55.4 46.3 73.0 86.3 80.9 79.7 95.2
Qwen2-VL w/ Dart 50% 0.51× 2290.0 55.5 49.4 72.4 86.6 82.7 80.1 96.4
Qwen2-VL w/ Ours 50% 0.49× 2288.3 55.9 51.9 73.2 86.4 82.6 80.9 97.4
Qwen2-VL w/ FastV 25% 0.27× 1415.3 37.6 31.4 51.4 77.6 63.2 39.1 66.0
Qwen2-VL w/ PDrop 25%* 0.25× 2216.3 51.1 42.3 67.4 83.2 75.4 77.0 89.7
Qwen2-VL w/ Dart 25% 0.27× 2184.5 51.3 45.6 68.2 84.3 76.7 77.5 91.1
Qwen2-VL w/ Ours 25% 0.24× 2280.9 51.8 47.3 67.9 84.8 80.0 77.7 92.9

Following prior works Chen et al. (2024b); Ye et al. (2025), we report FLOPs as the primary metric
for evaluating inference efficiency. For a fair comparison, we configure baselines for comparable
FLOPs (e.g., pruning at the 2nd layer for FastV). Our method achieves a significant reduction in
inference cost with only negligible additional computation. We provide a comprehensive analysis
of FLOPs of our method, please refer to Appendix D.

4.2 EFFECTIVENESS OF COMPRESSION WITH EXPLAINABILITY

We conduct experiments to verify whether the explanation results can guide token compression, i.e.,
compressing Ev to Êv according to Rv and then feeding Êv into LM to generate a response. To
assess effectiveness and generalization, we apply the method to three state-of-the-art MLLMs and
test them on three image and three video benchmarks.

Table 1 reports the results under retention ratios of 50% and 25%. The strong performance across
multiple models and benchmarks demonstrates the effectiveness and broad applicability of such
an explainability-based token compressor. For Qwen2-VL, reducing visual tokens by 50% still
preserves over 99% of the original performance on both image and video tasks. LLaVA-OneVision
retains 99.1% of its video performance even with only 25% of tokens. VILA reduces visual tokens
to 98 per image or frame at 50% retention, while maintaining 98% of the original image performance
and nearly unchanged video performance. These observations indicate that token compression based
on relevance Rv effectively preserves the visual tokens essential for MLLMs to answer the question.
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Table 3: Compare explainability-based compressor on video benchmarks. As videos generally
exhibit greater visual redundancy, we also evaluate a lower retention ratio 10% to further assess
compression robustness, with detailed results reported in the Appendix F.

Method Retention
Ratio

FLOPs Video-MME MVBench MMBench-
Video

Next-QA Activity-QA Avg.(%)
multi-choice open-ended

LLaVA-OV 100% 1.00× 53.6 41.2 0.41 79.2 49.0 56.9 100
LLaVA-OV w/ FastV 50% 0.48× 42.3 25.0 0.35 66.5 36.0 48.5 78.0
LLaVA-OV w/ PDrop 50%* 0.47× 52.7 40.2 0.36 78.4 48.2 56.0 96.6
LLaVA-OV w/ Dart 50% 0.48× 53.2 40.0 0.36 78.0 49.0 56.2 96.9
LLaVA-OV w/ Ours 50% 0.46× 53.4 40.5 0.43 78.6 49.7 56.5 100.4
LLaVA-OV w/ FastV 25% 0.25× 39.6 23.6 0.30 64.2 33.6 44.5 72.0
LLaVA-OV w/ PDrop 25%* 0.24× 50.8 38.2 0.35 76.3 48.2 53.5 93.6
LLaVA-OV w/ Dart 25% 0.25× 51.5 38.7 0.33 76.6 47.0 55.1 93.3
LLaVA-OV w/ Ours 25% 0.22× 51.3 39.0 0.42 77.0 49.0 54.5 97.3
Qwen2-VL 100% 1.00× 50.4 51.0 1.23 76.8 45.5 53.6 100
Qwen2-VL w/ FastV 50% 0.48× 32.4 36.3 0.52 43.9 28.3 38.2 61.4
Qwen2-VL w/ PDrop 50%* 0.47× 48.9 49.6 1.14 75.2 45.4 50.8 96.6
Qwen2-VL w/ Dart 50% 0.48× 49.6 49.4 1.17 76.4 44.8 52.0 97.6
Qwen2-VL w/ Ours 50% 0.46× 50.0 49.8 1.18 75.6 45.9 52.4 98.3
Qwen2-VL w/ FastV 25% 0.25× 31.2 36.1 0.48 42.0 26.8 35.1 58.5
Qwen2-VL w/ PDrop 25%* 0.24× 47.3 46.2 1.11 73.9 44.1 47.8 92.8
Qwen2-VL w/ Dart 25% 0.25× 47.4 47.1 1.10 74.1 44.5 49.2 93.7
Qwen2-VL w/ Ours 25% 0.22× 48.1 46.7 1.11 74.2 44.3 50.5 94.2
VILA 100% 1.00× 47.3 34.0 1.29 69.9 46.2 55.6 100
VILA w/ FastV 50% 0.49× 42.2 20.7 0.98 62.9 36.8 47.1 80.1
VILA w/ PDrop 50%* 0.49× 47.3 35.0 1.22 69.4 45.8 55.1 99.2
VILA w/ Dart 50% 0.49× 46.1 34.7 1.25 69.2 46.5 55.2 99.2
VILA w/ Ours 50% 0.47× 47.6 35.2 1.25 70.3 46.4 55.4 100.3
VILA w/ FastV 25% 0.26× 41.4 20.5 0.97 61.5 36.4 46.8 79.0
VILA w/ PDrop 25%* 0.26× 45.2 33.6 1.24 68.2 45.1 54.8 97.4
VILA w/ Dart 25% 0.26× 45.3 34.6 1.23 68.1 45.6 54.2 97.7
VILA w/ Ours 25% 0.23× 45.5 35.6 1.22 69.4 46.4 54.8 99.0

4.3 EFFECTIVENESS OF EXPLAINABILITY-BASED COMPRESSOR LEARNING

The performance of the R̃v-guided token compressor is evaluated in this section. R̃v is generated by
the learned fθ, and the token pruning is performed accordingly before the LLM computation. Five
image and six video benchmarks are included for evaluation.

Performance Comparison. Table 2 presents the results of LLaVA-OneVision and Qwen2-VL under
different token compression retention ratios on image benchmarks. We exclude VILA here because
it uses a fixed and relatively small number of image tokens, making compression less meaningful.
As shown in the table, at a retention rate of 50%, our compressor demonstrates overall superiority
over the baselines at comparable FLOPs, achieving average improvements of 2.6% and 1.2% across
all benchmarks for LLaVA-OneVision and Qwen2-VL, respectively. When the retention rate is
further reduced to 25%, the performance gains increase to 4.7% and 1.6%, highlighting the enhanced
robustness of our method under higher compression rates. We conducted additional experiments on
more image benchmarks; please refer to the Appendix F.

In Table 3, we evaluate the compression performance of LLaVA-OneVision, Qwen2-VL, and VILA
on video benchmarks. We make several observations. First, our compressor consistently outper-
forms baselines at comparable FLOPs, regardless of the model and retention ratio. Both LLaVA-
OneVision and VILA are able to maintain 100% performance when 50% of the visual tokens are
pruned. Second, VILA exhibits the smallest performance drop, while Qwen2-VL shows the largest,
likely due to its attention patterns being harder to capture. Importantly, our task-related compres-
sion can still further reduce token redundancy on both Qwen2-VL and VILA, demonstrating that it
complements the task-agnostic compression already presented in these models. Finally, comparing
the results in Tables 1, 2, and 3, the performance degradation from the Rv-guided compressor to
the R̃v-guided compressor is more pronounced in image tasks. This is likely also due to the greater
redundancy in videos, which reduces the learning difficulty.
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Figure 3: Comparison results on larger images and longer videos. Performance preservation
ratio measures the performance retained relative to Vanilla. Gray text denotes the gap from Vanilla
and green text highlights improvements over the FastVOpt.Config..

Table 4: Efficiency analysis based on Qwen2-VL on MMStar. We evaluate the inference costs in
terms of total inference time, prefilling time, FLOPs, and KV cache memory. KV cache memory is
computed with consideration of the Grouped Query Attention (GQA) used in practical inference.

Method Retention
Ratio

FLOPs(×) Total Inference
Time

Prefilling
Time KV Cache Total

Speedup
Prefilling
Speedup MMStar

Qwen2-VL 100% 1.00× 15min24s 6min36s 71.2MB 1.00× 1.00× 61.1
Qwen2-VL w/ FastV 25% 0.27× 12min19s 4min14s 19.7MB 1.25× 1.56× 39.6
Qwen2-VL w/ PDrop 25%* 0.25× 12min15s 4min10s 18.1MB 1.26× 1.58× 53.1
Qwen2-VL w/ Dart 25% 0.30× 12min20s 4min16s 21.6MB 1.25× 1.55× 54.3
Qwen2-VL w/ Ours 25% 0.24× 12min16s 4min08s 17.8MB 1.26× 1.60× 55.8

Applying to Larger Images and Longer Videos. We evaluate the generalization of directly apply-
ing the trained fθ on larger images and longer videos; experimental results are shown in Figure 3,
with configurations detailed in Appendix C. Sub-figure(a) show the compression performance on 4
image and 6 video benchmarks based on LLaVA-OneVision and Qwen2-VL. Our method consis-
tently outperforms FastV and achieves higher average performance than its optimal configuration,
demonstrating strong generalization to larger images and longer videos than it seen during training.
Detailed comparison results on these 10 benchmarks are provided in the Appendix F.

Sub-figure(b) show the comparisons on two challenging benchmarks, i.e., MMStar and MVBench.
Several strong methods are introduced for comparison: PruneVID Huang et al. (2024),
FastVID Shen et al. (2025a), VisionZip Yang et al. (2024), and PyramidDrop Xing et al. (2024). Our
approach achieves SOTA performance with the lowest FLOPs. Remarkably, even directly applying
the trained fθ to longer videos with more frames, it still performs favorably compared to meth-
ods specifically designed for videos (i.e., FastVID and PruneVID). Beyond superior performance,
our lightweight compressor significantly improves MLLM inference efficiency with negligible ad-
ditional cost. We follow Dart Wen et al. (2025) and report efficiency in terms of total inference time,
prefilling time, FLOPs, and KV cache memory, as shown in Table 4. Our compressor achieves both
the best performance and highest efficiency. The prefill-stage acceleration (1.60×) and reduced
KV cache footprint (71.2MB →17.8MB) enable efficient processing in prefill and decode stages,
keeping total inference time comparable to other methods (see Appendix F for more results).

Analysis and Discussion. We find it interesting that a lightweight fθ can achieve strong perfor-
mance, thus we offer further discussion here: (i) The convolutional mapper fθ learns a structurally
matched input–output mapping. As shown in Eq. 1, the relevance map Rt is essentially an iterative
composition of attention maps Al

t with their task-specific gradients across layers. Therefore, using
A to predict R is natural and intuitively well-motivated. Visualization results in Appendix B show
that fθ exhibits task-sensitive behavior, adaptively focusing on the relevant visual regions according
to the instruction. (ii) Shallow-layer attention maps contain vital information. It has been demon-
strated in several works Chen et al. (2024b); Xing et al. (2024) that visual tokens make a greater
contribution to output generation in the shallow layers compared to the deeper layers. Our experi-
mental results are consistent with the finding. First, using the first-layer attention map as the input
of fθ already provides a strong guidance for token compression. Moreover, the attention maps from
shallow layers perform well overall; for detailed ablation results, please refer to the Appendix E.
(iii) We aim not to learn an identical Rt, but rather its relatively large values. The loss function
design in Section 3.3 masked the bottom 50% of label values, simplifying the learning task to the

9



Published as a conference paper at ICLR 2026

Table 5: Ablation study on explainability methods for relevance map generation. We evaluate
two strategies for aggregating multi-head attention maps—gradient-weighted summation and simple
averaging—to generate relevance maps for token compression on video and image benchmarks.

Model Method Rentation
Ratio

Image Benchmark Video Benchmark Avg.(%)
MME MMStar MMVet Video-MME MVBench MMBench-V

LLaVA-
OneVision

Vanilla 100% 1997.7 60.5 48.7 53.6 41.2 0.41 100
Mean-weighted

50%
1974.5 58.5 45.9 53.6 40.8 0.39 97.3

Grad-weighted 1974.2 59.7 47.2 54.3 41.1 0.40 98.8

Qwen2-VL
Vanilla 100% 2295.1 60.4 54.0 50.4 51.0 1.23 100

Mean-weighted
50%

2300.6 58.2 49.2 49.9 49.9 1.15 96.3
Grad-weighted 2297.1 60.3 53.2 51.0 50.7 1.19 99.3

VILA1.5
Vanilla 100% 1700.3 38.7 39.3 47.3 34.0 1.29 100

Mean-weighted
50%

1720.8 38.0 34.2 48.0 34.1 1.20 96.9
Grad-weighted 1740.5 37.2 38.0 47.9 34.2 1.26 99.1

distribution of the top 50%. Our goal is not to learn a precise one-to-one input–output mapping.
Instead, the learning target is only to achieve identifying which regions are relevant to the instruc-
tion, thereby enabling token pruning. One can observe the visualization results in Appendix B for
evidence. The pruning results V̂ (based on Rv) and the convolutional network’s learned ˆ̃V (based on
R̃v) are not identical, yet it retains the same task-related regions and produces correct answers.

4.4 ABLATION STUDY

As shown in Eq. 1, the relevance map is updated by aggregating attention maps across layers, where
the multiple heads in each layer are combined either via simple averaging or gradient-weighted
averaging (used in our approach). Table 5 shows that employing gradient-weighted aggregation to
generate Rv for token compression performs consistently better than simple averaging across image
and video benchmarks. A reasonable explanation is that differing contributions of attention heads
make simple averaging prone to distorting relevance maps Voita et al. (2019). We also include
ablation studies of different configurations for training fθ in Appendix E, specifically investigating
(i) the effect of varying the depth of the convolutional network and (ii) the influence of selecting
different attention layer as input for the compressor.

5 CONCLUSION

In this work, we demonstrate the feasibility of task-related visual token compression at the LLM in-
put stage. We first demonstrate experimentally that the relevance scores derived from explainability
methods well evaluate the task-related importance of visual tokens, which can be used for effective
token compression. To enable efficient and practical deployment, we employ a simple convolutional
network to learn a mapping from the LLM first-layer attention maps to the explainability-derived
relevance scores. Using the predicted relevance scores from lightweight model, token compression
can be performed prior to the LLM. Extensive experiments demonstrate the effectiveness and gener-
alizability of our task-related token compression method. Since the relevance scores are obtained via
backward computations, their generation is resource-intensive. This poses a challenge in scaling the
compressor training to high-resolution images or long video sequences. Future work will explore
stronger compressors and the use of relevance scores to guide token compression during training.

Reproducibility Statement. We provide the necessary information to facilitate reproducibility. Ex-
perimental settings and implementation details are described in the Section 4.1 and Appendix C. All
the datasets used in our experiments are publicly available, and the preprocessing steps of training
data are documented in Appendix C.
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APPENDIX

A DETAILS OF RELEVANCE PROPAGATION EQUATION

The relevance propagation in Eq. 1 follows the Generic Attention Explainability (GAE) frame-
work Chefer et al. (2021b), which is a powerful method to interpret predictions for Transformer-
based architectures. We trace the contribution of each visual token to the model’s output by leverag-
ing the self-attention modules within the GAE framework to assess token importance. Specifically,
GAE first generates a relevance map Āl for each layer l by integrating raw attention map and its
gradients with respect to the current output y:

Āl = Eh((A
l ⊙∇Al)+), (4)

where Al can be obtained through a forward pass and the related gradient ∇Al := ∂yt

∂Al can be cached
during a backward pass. GAE computes the Hadamard product of the attention map and its gradient
for the intuitive reasons that: 1) it captures how much attention each token receives from other
tokens (information from the attention map), 2) it identifies which tokens require more attention
to effectively influence the output (information from the gradient). ()+ represents the operation of
setting negative values to 0. By zeroing out negative gradient components, GAE enforces a causal
direction of influence and prevents the suppression of informative positive signals by accumulated
negative components Chefer et al. (2021a); Barkan et al. (2021). Gradient can also be viewed as
weight in the head aggregation to indicate corresponding importance Voita et al. (2019), thereby Eh

performs a gradient-weighted expectation over the head dimension.

Since the attention module is followed by a residual connection, GAE accumulate the relevance map
by adding each layer’s contribution Āl to the aggregated relevance map R:

R = R+ Āl ·R, (5)

The overall relevance map R is initialized as the identity matrix with the intuition that each input
token’s relevance score is identical in the beginning. Then the relevance propagation updates the R
from the 0-th layer to the last layer in the Transformer.

The traditional GAE method lacks a mechanism for handling the token-by-token autoregressive
outputs required by MLLMs. Therefore, we adopt the stepwise relevance computation from R-
GAE Yao et al. (2024), a GAE-derived method adapted to MLLMs. For a generated sequence of
textual tokens Y = {y0, y1, . . . , yT−1}, we obtain the overall relevance by averaging the GAE
relevance maps computed using Eq. 5 at each decoding step t.

B MORE VISUALIZATION RESULTS

B.1 VISUALIZATION RESULTS ACROSS DIFFERENT MLLMS

We present visualization results for LLaVA-OneVision, Qwen2-VL, and VILA1.5 on both video and
image inputs in Figures 4-8. Given an input image or video V , we first show the visual relevance
scores Rv with respect to the current response obtained using an explainability method. Based on
Rv , we visualize the results of token pruning at 50% and 25% retention ratios (labeled as Top-50%
compressed V̂ and Top-25% compressed V̂ in the figures). Then, we visualize the pruning results
produced by our trained compressor (fθ) under the same compression ratios (labeled as Top-50%
compressed ˆ̃V and Top-25% compressed ˆ̃V in the figures).

B.2 CASE STUDY: EXPLAINABILITY REVEALS INSTRUCTION-RELATED VISUAL TOKENS

To demonstrate the effectiveness of explainability methods in identifying visual tokens that are
highly relevant to instructions, we present 2 case studies covering both video and image inputs.

Given the same input V , the explainability method generates visual relevance scores Rv that se-
lectively emphasize different visual tokens according to varying user instructions. As shown in
Figure 9, when the user instruction specifically targets clothing-related information, the visual to-
kens corresponding to the person’s clothing in the video obtain higher relevance scores compared to
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Figure 4: Video Input Visualizations for LLaVA-OneVision.

Figure 5: Image Input Visualizations for LLaVA-OneVision.

instructions requesting a general summary. Similarly, in Figure 10, visual tokens relevant to the user
instruction exhibit higher relevance scores. When the user instruction specifies excluding the Ford
F150, the visual attention shifts primarily to the other two columns. In contrast, when the instruction
highlights the highest fueling cost, the Ford F150 column attracts nearly all the attention.

From a visualization standpoint, we further corroborate that the explanation results faithfully reflect
the critical visual information required by the MLLM to answer the question.

C IMPLEMANTATION DETAILS.

Generating Rv . To derive Rv , our implementation employs eager attention, allowing access to
full-layer attention maps required by the explainability method Chefer et al. (2021b). Compared to
FlashAttention Dao et al. (2022) and inference based on KV cache Pope et al. (2023), eager attention
requires more memory. To avoid out-of-memory errors and ensure efficient data generation, we
limit the number of visual tokens to approximately 1500 per sample. Specifically, for video inputs,
LLaVA-OneVision, VILA and Qwen2-VL are all set to sample 8 frames, resulting in 1569, 1568

15



Published as a conference paper at ICLR 2026

Figure 6: Video Input Visualizations for Qwen2-VL.

Figure 7: Image Input Visualizations for Qwen2-VL.

and 1296 visual tokens per video, respectively. For image inputs, LLaVA-OneVision and Qwen2-
VL use similar image resolutions, resulting in 1849 and 1500 visual tokens per image, respectively.
VILA always processes an image as 196 tokens, eliminating the need for additional configuration.
The generated Rv can be used directly to guide token pruning or to train fθ.

Training fθ. fθ is implemented as a five-layer fully convolutional network with channel dimensions
of 32, 64, 128, 256, and 512. Each layer employs a 1D depthwise separable convolution Chollet
(2017), i.e., a depthwise convolution with a kernel size of 3 followed by a pointwise convolution. An
additional pointwise convolution layer is applied at the end for channel aggregation. The network is
trained by using Adam Kingma & Ba (2015) with default settings and a batch size of 128. Training
data is collected from open-source datasets: a subset of LLaVA-Video Zhang et al. (2024c) for
videos and a subset of Infinity-MM Gu et al. (2024) for images, each containing approximately 10K
samples. Note that fθ is specific to MLLM, so each MLLM generates its own A0

v and Rv based on
the input image- or video-text pair for training. The training is performed for roughly 100 epochs,
taking about half an hour for image data and less than four hours for video data on a single A100
GPU.
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Figure 8: Video Input Visualizations for VILA.

Figure 9: Case Study 1.

Details of Data for Training fθ. We train our explainability-based compressor based on subsets
sampled from high-quality open-source datasets. First, the details of the sampling are as follows:
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Figure 10: Case Study 2.

Image Dataset. For training the compressor used in image tasks, we sample a subset of Infinity-MM
that ensures high quality and diversity. The training set primarily consists of data used during Stage
4, including 9k samples randomly sampled from the Data Generated by GPT-4 subset and 4k from
Synthetic Data.

Video Dataset. For training the compressor used in video tasks, we sample a subset of LLaVA-
Video. Specifically, we include 7k samples from LLaVA-Video, 6k from NeXT-QA and 4k from
ActivityNetQA. Note that the training sets of NeXT-QA and ActivityNetQA have no overlap with the
testing sets used in the evaluation. During sampling, since LLaVA-Video contains several parts
categorized by task type (open-ended and multi-choice) and video duration (0–30s, 30-60s, 1–2min
and 2-3min), we ensure a balanced distribution by randomly selecting an equal number of training
examples from each part.

Moreover, we assume that the visual attention distributions (Rv) associated with correct answers
exhibit higher quality than those that lead to incorrect answers. Therefore, when training fθ for
a specific MLLM, the sampled data are evaluated by this MLLM, and the samples with incorrect
answers are filtered out. Only samples for which the MLLM produces correct answers are retained
and used as training data. The number of the retained samples ranges from 8K to 12K.

Inference. The learned fθ can be seamlessly integrated into existing inference pipelines (no mod-
ifications are required for the prefill and decode phases of LLM inference). More interestingly, fθ
is capable of processing longer A0

v thanks to the fully convolution design. That is, our compres-
sion method can handle larger images and longer videos, even though the visual token number is
limited to approximately 1500 during training. Corresponding experiments have been conducted.
In these experiments, Qwen2-VL dynamically processes both images (with ‘max pixels’ set to half
of its default value) and videos (with ‘VIDEO MAX PIXELS’ and ‘FPS MAX FRAMES’ set to
384×28×28 and 32, respectively). These configurations are set to accommodate hardware resource
constraints. LLaVA-OneVision also processes images dynamically with default settings, while sam-
pling 32 frames per video as in Huang et al. (2024) for a fair comparison. For VILA, the input image
size cannot be changed, and the number of input video frames is set to 16.

D EFFICIENCY ANALYSIS IN INFERENCE

To evaluate computational efficiency during inference, we report the FLOPs of the visual token part.
Specifically, we consider the FLOPs of the multihead attention and the feed-forward network (FFN)
modules as:

FLOPslayer = 4nd2 + 2n2d+ lnm, (6)

where n is the number of visual tokens, d is the hidden state size, m is the intermediate size of
the FFN, and l is the number of layers in the FFN. To compute the total FLOPs for the entire
LLM, we simply multiply Eq. 6 by the number of Transformer layers NL, i.e., FLOPsLLM =
NL(4nd

2 + 2n2d+ lnm).

At the input stage of the LLM, our compressor introduces additional computation. First, we consider
the FLOPs introduced by the first-layer attention map:

FLOPsattn = nd2 + nd. (7)
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Note that only the key projection computation for visual tokens and the attention computation from
textual tokens to visual tokens are required, corresponding to the term nd2 and nd, respectively.
Only the FLOPs incurred by the visual part are included.

Next, we account for the FLOPs introduced by the 1D depthwise separable convolution:

FLOPsconv =

L∑
l=1

n(Cl
ink + Cl

inC
i
out), (8)

where Cl
in and Cl

out denote the number of input and output channels of the l-th layer, respectively.
We ensure that the output shape of each convolutional layer remains the same as its input by applying
appropriate padding with respect to the kernel size k. As a result, the number of visual tokens n
remains constant across all layers. Then the total FLOPs is computed as the sum of the operations
across all L convolutional layers.

To intuitively understand the additional computational cost introduced by our method, we adopt a
typical parameter configuration used in MLLMs. Specifically, we set the number of visual tokens
n to 1568, the hidden dimension d to 3584, the intermediate size m to 18944, and assume 3 layers
per FFN block (l = 3). For the full LLM, we consider a 28-layer Transformer blocks (NL = 28).
For fθ, we follow the configuration described in Section 4.1 (Experimental Setup). Concretely, the
convolutional network consists of 5 layers (L = 5) with kernel size k = 3, and channel dimensions
increasing across layers: 32, 64, 128, 256, and 512. Based on these settings, FLOPsattn amounts to
approximately 0.02 trillion, FLOPsconv is approximately 0.0003 trillion, while FLOPsLLM reaches
approximately 11.69 trillion. It can be observed that the computational overhead introduced by our
compressor is negligible. The computational costs of these two parts account for only 0.17% and
0.0026% of the total computational cost, respectively.

The FLOPs reported in the Table 2, Table 3, Table 4 and Figure 3 are computed using a standardized
input setting. For image input, FLOPs are computed using a 384 × 512 input image as the reference
(the number of visual tokens n is 1728 for LLaVA-OneVision and 1302 for Qwen2-VL). For video
input, LLaVA-OneVision and VILA1.5 sample 32 and 16 frames, respectively, resulting in visual
token counts n of 6272 and 3136. We fix Qwen2-VL’s input to 32 frames at 720 × 1280 resolution
(n=5824) for FLOPs calculation.

E ADDITIONAL ABLATION RESULTS

We perform additional ablation studies to validate the design choices of our method, specifically
examining (i) the depth of the convolutional network and (ii) the attention layer index used as input.
For the convolutional depth, we conduct controlled experiments on Qwen2-VL using networks of
3, 5, 7, and 10 layers, while keeping all other factors fixed, including the training data, input rep-
resentation A0, and training configurations (learning rate, batch size, and number of epochs). All
variants follow a consistent channel-growth strategy in which the network starts with 32 channels
and gradually increases capacity, with intermediate channel dimensions repeated to moderate growth
and avoid over-parameterization. The exact configurations are 3-layer: [32, 64, 128], 5-layer: [32,
64, 128, 256, 512], 7-layer: [32, 64, 128, 128, 256, 256, 512], and 10-layer: [32, 64, 128, 128, 256,
256, 512, 512, 512, 512]. For the study on attention-layer index, we train our lightweight model on
Qwen2-VL using attention maps extracted from different transformer layers as input, specifically
evaluating layers 1, 2, 4, and 6.

The results are reported in Table 6 and Table 7, respectively. Table 6 shows that the 5-layer model
achieves the best performance under retention ratios of 50% and 25%. Increasing the depth to 7 or
10 layers leads to a slight performance degradation—especially under the more challenging 25%
retention condition. This suggests that deeper networks begin to overfit or suffer from optimization
difficulties given the simplicity of the task. In contrast, the 3-layer model lacks sufficient capacity
to capture the relevance distribution. Therefore, the 5-layer architecture strikes the optimal balance
between model capacity and task complexity, which justifies our design choice.

Table 7 shows that using multi-layer attention scores as input yields only marginal gains—+0.1%
average at 50% retention (with 2 layers) and +0.6% at 25% retention (with 4 layers)—yet incurs
substantial computational overhead, with FLOPs increasing from 0.24× to 0.43× at 25% retention,
almost two times. Notably, the first-layer input achieves nearly the same performance as multi-layer

19



Published as a conference paper at ICLR 2026

Table 6: Ablation study on the depth of the convolutional network . In our work, we use a 5-layer
convolutional network as the explainability-based compressor before the LLM.

Methods Conv
Depth

Retention
Ratio

FLOPs
Image Benchmark Video Benchmark

Avg.(%)
MME MMStar MMVet Video-MME MVBench MMBench-V

Qwen2-VL - 100% 1.00× 2295.1 60.4 54.0 50.4 51.0 1.23 100

Qwen2-VL
w/ Ours

3 50% 0.49× 2265.0 55.5 50.4 49.8 49.3 1.15 95.5

5 50% 0.49× 2288.3 55.9 51.9 50.0 49.8 1.18 96.9
7 50% 0.49× 2279.4 56.1 51.9 49.8 49.4 1.17 96.5

10 50% 0.49× 2275.1 55.1 51.5 50.0 49.7 1.15 96.0

3 25% 0.24× 2297.1 60.3 53.2 51.0 50.7 1.19 90.7

5 25% 0.24× 2299.1 58.7 51.7 50.3 49.7 1.17 91.7
7 25% 0.24× 2299.1 58.7 51.7 50.3 49.7 1.17 91.1

10 25% 0.24× 2299.1 58.7 51.7 50.3 49.7 1.17 90.4

Table 7: Ablation study on the attention layer index used as input. In our work, the
explainability-based compressor takes the first-layer attention map A0 as its input.

Methods Input
Layer

Retention
Ratio

FLOPs
Image Benchmark Video Benchmark

Avg.(%)
MME MMStar MMVet Video-MME MVBench MMBench-V

Qwen2-VL - 100% 1.00× 2295.1 60.4 54.0 50.4 51.0 1.23 100

Qwen2-VL
w/ Ours

1 50% 0.49× 2288.3 55.9 51.9 50.0 49.8 1.18 96.9

2 50% 0.53× 2279.8 55.8 52.0 50.1 50.2 1.18 97.0
4 50% 0.60× 2303.0 56.3 52.2 49.3 50.1 1.15 96.6

6 50% 0.67× 2278.1 56.7 49.5 49.4 49.6 1.19 96.1

1 25% 0.24× 2280.9 51.8 47.3 48.1 46.7 1.11 91.7

2 25% 0.35× 2272.0 51.9 46.6 47.8 48.4 1.10 91.7

4 25% 0.35× 2270.2 52.1 48.0 48.0 48.1 1.11 92.3
6 25% 0.43× 2252.3 52.1 47.2 47.4 47.6 1.11 91.6

variants while being significantly more efficient. Our work aims to achieve an innovative paradigm
shift that enables task-related token compression to be applied prior to the LLM, which not only
significantly reduces computation and memory overhead during both prefill and decode phases, but
also allows deployment without modifying the LLM architecture. However, leveraging deeper-layer
attention maps as input yields only marginal improvements while contradicting our design goal.
Overall, the first-layer attention map suffices for our purpose.

F ADDITIONAL EXPERIMENTAL RESULTS

For image tasks, we further conducted evaluations across additional benchmarks, including
GQA Hudson & Manning (2019) (real-world visual reasoning), ScienceQA (SQA) Lu et al. (2022)
(scientific reasoning) , VizWiz Gurari et al. (2018) (real-world robustness), ChartQA Masry et al.
(2022) (chart reasoning), DocVQA Mathew et al. (2021) (document reasoning), OCRBench Liu
et al. (2024b) (OCR reasoning), to comprehensively assess the effectiveness of our method. The
results are presented in Table 8, our method consistently outperforms the baselines across diverse
image benchmarks, including real-world visual reasoning and OCR-related tasks.

For video tasks, we also investigate a more aggressive compression setting with a 10% retention
ratio in Table 9, as a supplement to Table 3. Our method attains the lowest FLOPs while preserving
competitive accuracy, achieving average improvements of 3.7%, 3.2%, and 1.9% across all bench-
marks for LLaVA-OneVision, Qwen2-VL, and VILA, respectively, compared to the best-performing
baseline. Notably, even under such extreme compression, our method consistently delivers strong
results, highlighting its robustness across different MLLMs.

We provide full tables of results corresponding to the generalization experiments shown in the Fig-
ure 3 (a) in the main text (Applying to Larger Images and Longer Videos), with detailed results for
the image and video benchmarks listed in Table 10 and Table 11, respectively. In addition, we pro-
vide detailed comparison results shown in the Figure 3 (b) for two challenging benchmarks, MMStar
and MVBench, in Table 12 and Table 13.
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Table 8: Compare explainability-based compressor on image benchmarks. Values marked with
* in Retention Ratio denote the average retention ratio across LLM layers due to multi-stage com-
pression in PDrop.

Method Retention FLOPs GQA SQA VizWiz ChartQA DocVQA OCRBench
Ratio

LLaVA-OneVision 100% 1.00× 63.1 95.1 33.1 71.4 73.3 54.4
LLaVA-OneVision w/ FastV 50% 0.51× 42.5 76.2 3.2 41.4 42.9 28.3
LLaVA-OneVision w/ Pdrop 51%* 0.51× 61.0 92.0 29.7 62.0 58.0 42.0
LLaVA-OneVision w/ Dart 50% 0.51× 61.7 91.7 29.8 61.0 55.3 43.2
LLaVA-OneVision w/ Ours 50% 0.48× 61.4 92.2 33.6 63.0 62.0 47.0
LLaVA-OneVision w/ FastV 25% 0.27× 39.9 70.4 2.7 21.3 22.2 13.9
LLaVA-OneVision w/ PDrop 25%* 0.25× 57.2 87.9 25.3 43.4 34.9 30.2
LLaVA-OneVision w/ Dart 25% 0.27× 57.5 89.1 27.9 46.7 39.9 34.3
LLaVA-OneVision w/ Ours 25% 0.24× 59.0 90.2 33.0 52.7 49.4 38.3
Qwen2-VL 100% 1.00× 62.2 85.7 44.3 92.7 93.1 81.5
Qwen2-VL w/ FastV 50% 0.51× 43.9 65.3 32.5 51.3 59.2 56.3
Qwen2-VL w/ PDrop 51%* 0.51× 60.8 83.5 41.9 77.0 78.5 78.8
Qwen2-VL w/ Dart 50% 0.51× 61.3 84.7 43.9 78.4 79.7 78.5
Qwen2-VL w/ Ours 50% 0.49× 61.6 85.5 44.1 80.1 81.2 79.5
Qwen2-VL w/ FastV 25% 0.27× 41.5 64.3 31.5 41.1 46.1 46.8
Qwen2-VL w/ PDrop 25%* 0.25× 57.1 83.2 40.8 61.7 58.2 63.9
Qwen2-VL w/ Dart 25% 0.27× 58.8 83.9 41.3 65.0 62.8 65.1
Qwen2-VL w/ Ours 25% 0.24× 59.3 84.3 43.1 70.9 72.1 67.8

Table 9: Compare explainability-based compressor on video benchmarks.

Method Retention
Ratio

FLOPs Video-MME MVBench MMBench-
Video

Next-QA Activity-QA Avg.(%)
multi-choice open-ended

LLaVA-OV 100% 1.00× 53.6 41.2 0.41 79.2 49.0 56.9 100
LLaVA-OV w/ FastV 10% 0.12× 37.7 22.4 0.27 60.3 30.6 39.9 66.5
LLaVA-OV w/ PDrop 10%* 0.10× 47.0 37.0 0.35 72.3 43.7 50.0 88.5
LLaVA-OV w/ Dart 10% 0.12× 47.3 36.9 0.36 72.7 43.5 50.3 89.1
LLaVA-OV w/ Ours 10% 0.09× 47.1 37.4 0.40 76.5 45.6 51.6 92.8
Qwen2-VL 100% 1.00× 50.4 51.0 1.23 76.8 45.5 53.6 100
Qwen2-VL w/ FastV 10% 0.12× 29.1 37.5 0.44 39.4 23.3 32.0 54.9
Qwen2-VL w/ PDrop 10%* 0.10× 45.2 40.3 0.82 71.5 41.8 45.1 84.1
Qwen2-VL w/ Dart 10% 0.12× 45.8 41.6 0.85 72.1 42.6 45.5 85.7
Qwen2-VL w/ Ours 10% 0.09× 46.1 42.5 1.00 72.0 43.3 47.5 88.9
VILA 100% 1.00× 47.3 34.0 1.29 69.9 46.2 55.6 100
VILA w/ FastV 10% 0.12× 37.8 19.5 0.88 57.9 33.9 43.2 73.2
VILA w/ PDrop 10%* 0.11× 43.0 34.4 1.13 65.2 43.5 50.6 93.0
VILA w/ Dart 10% 0.12× 42.9 34.8 1.14 64.8 43.7 51.1 93.4
VILA w/ Ours 10% 0.09× 43.6 35.0 1.14 67.0 44.7 53.0 95.3

Table 14 exhibits the additional efficiency analysis on MMVet. Our lightweight compressor achieves
substantial reductions in KV-cache usage and accelerates the prefill stage, while achieving the high-
est task scores and keeping overall inference time comparable to baselines. These results demon-
strate that our approach maintains both strong task performance and computational efficiency.

G THE USE OF LARGE LANGUAGE MODELS(LLMS)

In preparing this manuscript, we used a large language model (LLM, specifically GPT-5-mini) solely
as a general-purpose writing and editing assistant. The LLM was employed to improve clarity, gram-
mar, and overall presentation of the text. All technical content, experiments results, and interpreta-
tions were generated and verified by the authors. The LLM did not contribute to research ideation,
experimental design, data analysis, or the writing of original technical content. The authors take full
responsibility for all content presented in this paper.
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Table 10: Compare generalization performance of our compressor on image benmarks.

Method Rentention FLOPs MME MMStar MMVet SEED Avg.(%)
Ratio

LLaVA-OneVision 100% 1.00× 2002.0 62.0 52.0 76.7 100
LLaVA-OneVision w/ FastVOpt.Config. 50% 0.51× 1990.3 57.3 48.4 75.7 95.9
LLaVA-OneVision w/ Ours 50% 0.48× 1988.0 57.8 50.2 75.4 96.8
LLaVA-OneVision w/ FastVOpt.Config. 25% 0.27× 1953.7 52.0 43.2 71.5 89.4
LLaVA-OneVision w/ Ours 25% 0.24× 1985.8 52.6 45.8 73.1 91.9
Qwen2-VL 100% 1.00× 2316.6 61.1 51.7 76.4 100
Qwen2-VL w/ FastVOpt.Config. 50% 0.51× 2295.8 57.7 52.4 74.8 98.2
Qwen2-VL w/ Ours 50% 0.49× 2311.7 57.9 53.9 73.9 98.9
Qwen2-VL w/ FastVOpt.Config. 25% 0.27× 2288.2 55.0 49.3 71.1 94.3
Qwen2-VL w/ Ours 25% 0.24× 2283.1 55.8 50.8 71.0 95.3

Table 11: Compare generalization performance of our compressor on video benchmarks.

Method Retention
Ratio

FLOPs Video-MME MVBench MMBench-
Video

Next-QA Activity-QA Avg.(%)
MC OE

LLaVA-OV 100% 1.00× 59.3 37.1 0.38 80.9 52.5 58.4 100
LLaVA-OV w/ FastVOpt.Config. 50% 0.48× 58.8 36.1 0.38 80.5 51.4 58.2 98.9
LLaVA-OV w/ Ours 50% 0.46× 58.8 37.2 0.38 80.2 52.0 58.1 99.5
LLaVA-OV w/ FastVOpt.Config. 25% 0.25× 57.0 35.4 0.35 79.7 50.9 57.2 96.2
LLaVA-OV w/ Ours 25% 0.22× 56.5 36.9 0.36 79.2 51.0 58.0 97.3
Qwen2-VL 100% 1.00× 57.1 52.7 1.42 80.7 49.5 57.6 100
Qwen2-VL w/ FastVOpt.Config. 50% 0.48× 55.4 51.3 1.40 79.6 49.0 55.7 97.9
Qwen2-VL w/ Ours 50% 0.46× 55.7 51.4 1.41 79.5 48.7 56.3 98.2
Qwen2-VL w/ FastVOpt.Config. 25% 0.25× 53.0 49.6 1.30 78.6 47.3 52.0 93.6
Qwen2-VL w/ Ours 25% 0.22× 53.2 48.6 1.30 78.4 47.6 54.3 94.1
VILA 100% 1.00× 48.7 31.7 1.30 70.4 45.8 55.2 100
VILA w/ FastVOpt.Config. 50% 0.49× 48.1 31.5 1.31 70.1 46.5 55.1 100.0
VILA w/ Ours 50% 0.47× 48.4 34.3 1.34 70.0 47.0 56.0 102.4
VILA w/ FastVOpt.Config. 25% 0.26× 46.3 31.8 1.26 69.6 45.6 54.6 98.3
VILA w/ Ours 25% 0.23× 47.4 35.0 1.29 70.0 46.7 55.7 101.5

Table 12: Efficiency and performance comparison across different methods on MMStar. Values
marked with * indicate that the retention ratio refers to the average proportion of retained tokens
across all LLM layers, due to multi-stage compression in PDrop. For FastV, the same retention ratio
corresponds to different FLOPs when compression is applied at different layers (2nd and 4th).

Method Retention
Ratio FLOPs(T) Performance

Preservation(%)
LLaVA-OneVision 100% 12.9 100

LLaVA-OneVision w/FastV 25.0% 4.2 83.9

LLaVA-OneVision w/FastV 25.0% 3.5 66.3

LLaVA-OneVision w/PDrop 30.0%* 3.8 85.2
LLaVA-OneVision w/PDrop 25.4%* 3.2 80.2

LLaVA-OneVision w/Ours 25.0% 3.1 84.8

Qwen2-VL 100% 9.6 100

Qwen2-VL w/FastV 25.0% 3.1 90.0

Qwen2-VL w/Ours 25.0% 2.4 91.3
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Table 13: Efficiency and performance comparison across different methods on MVBench. Val-
ues marked with * indicate that the retention ratio is reported from the original paper.

Method Retention
Ratio FLOPs(T) Performance

Preservation(%)
LLaVA-OneVision 100% 52.7 100

LLaVA-OneVision w/FastVID 25.0% 11.7 99.3

LLaVA-OneVision w/PruneVID 17.0%* 11.9 99.1

LLaVA-OneVision w/FastV 25.0% 16.1 95.4

LLaVA-OneVision w/VisionZip 25.0% 11.7 94.4

LLaVA-OneVision w/Ours 25.0% 11.7 99.5
Qwen2-VL 100% 48.4 100

Qwen2-VL w/FastV 25.0% 14.9 94.1
Qwen2-VL w/Ours 25.0% 10.9 92.2

VILA1.5 100% 27.0 100

VILA1.5 w/FastV 25.0% 8.2 100.3

VILA1.5 w/Ours 25.0% 6.3 110.4

Table 14: Efficiency analysis based on Qwen2-VL on MMVet. We evaluate the inference costs in
terms of total inference time, prefilling time, FLOPs, and KV cache memory. KV cache memory is
computed with consideration of the Grouped Query Attention (GQA) used in practical inference.

Method Retention
Ratio

FLOPs(×) Total Inference
Time

Prefilling
Time KV Cache Total

Speedup
Prefilling
Speedup MMVet

Qwen2-VL 100% 1.00× 7min58s 1min30s 71.2MB 1.00× 1.00× 52.0
Qwen2-VL w/ FastV 25% 0.27× 6min50s 0min56s 19.7MB 1.17× 1.61× 33.1
Qwen2-VL w/ PDrop 25% 0.25× 6min49s 0min55s 18.1MB 1.17× 1.64× 47.0
Qwen2-VL w/ Dart 25% 0.30× 6min51s 0min57s 21.6MB 1.16× 1.58× 44.5
Qwen2-VL w/ Ours 25% 0.24× 6min50s 0min54s 17.8MB 1.17× 1.67× 50.8
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