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ABSTRACT

Existing Multimodal Large Language Models (MLLMs) process a large num-
ber of visual tokens, leading to significant computational costs and inefficiency.
Instruction-related visual token compression demonstrates strong task relevance,
which aligns well with MLLMSs’ ultimate goal of instruction following. Previous
works generally assume that visual tokens achieve better vision-language align-
ment in the shallow layers of LLMs, which have led to task-related token compres-
sion being primarily applied in intermediate LLM layers. In contrast, our study
reveals that with proper selection, task-related token compression is feasible at
the input stage of LLM with negligible performance loss. This new paradigm sig-
nificantly reduces task-irrelevant visual tokens and its model-agnostic design en-
ables application without modifying the LLM architecture. Specifically, we sug-
gest that explainability methods for transformer-based architechtures can evaluate
the global importance of each visual token with respect to the given instruction,
which can effectively guide the task-related token compression for MLLMs. Fur-
thermore, we propose to learn a mapping from the attention map of the first LLM
layer to the explanation results, thereby avoiding the need for a full inference pass.
Interestingly, this mapping can be learned using a simple and lightweight convolu-
tional network, whose training is efficient and independent of MLLMs. Extensive
experiments on 11 image and video benchmarks across three leading MLLMs
(Qwen2-VL, LLaVA-OneVision, and VILA1.5) demonstrate the remarkable ef-
fectiveness and strong generalization of our approach. Additionally, our new com-
pression paradigm achieves faster inference with reductions in both prefilling time
and KV-cache memory.

1 INTRODUCTION

With large language models (LLMs) providing a strong foundation [Brown et al.| (2020); OpenAl
(2023); [Touvron et al.| (2023); Bi et al.| (2024), research on multimodal large language models
(MLLMs) has gained significant momentum |Liu et al.|(2023)); (Chen et al.| (2023);|Zhu et al.| (2024);
Bai et al.| (2023). Considerable progress has been achieved in various image- and video-related
tasks [Chen et al.| (2024d); |Anil et al| (2023). A common paradigm among existing MLLMs is to
jointly feed visual tokens (generated by a vision encoder) and textual tokens into the LLM for cross-
modal alignment and integration|Liu et al.|(2023);[Zhu et al.|(2024); Li et al.|(2023b). This paradigm
introduces substantial memory and computational overhead due to the high volume of visual tokens,
which grows rapidly with higher resolutions or frame rates|Wang et al.|(2024b);|Zhang et al.|(2024a).
Consequently, there is a pressing need for effective token compression techniques.

Previous exploration of visual token compression methods can be roughly divided into two cat-
egories. The first aims to obtain more compact and fewer visual representations (especially for
videos) in a task/instruction-agnostic manner (independent of LLM) Bolya et al.|(2023);|Yang et al.
(2024); Shen et al.| (2025b); [Wang et al.| (2025)); |Shen et al.| (2025a)). We argue that visual represen-
tations are an integral part of MLLMs and serve as the foundation for achieving strong performance
and generalization. Many state-of-the-art(SOTA) MLLM:s already incorporate built-in, task-agnostic
compression mechanisms (e.g., spatial and temporal pooling) instead of relying on separate com-
pression techniques applied afterward |Wang et al.[(2024bja)); Li et al.|(2024c)). The second category



Under review as a conference paper at ICLR 2026

focuses on selecting visual tokens that are most relevant to the given instruction. FastV |Chen et al.
(2024b)) is a pioneering work that highlights the importance of retaining all shallow-layer visual
tokens in LLMs for lossless compression. While this assumption has been adopted by many subse-
quent studies [Zhang et al.| (2024b); |[Zhao et al.| (2024)); Xing et al.| (2024); Tan et al.| (2025); Huang
et al. (2024); |Wen et al.| (2025), we believe it remains open to question: Are all visual tokens in the
shallow layers of LLM truly indispensable for task-related compression?

This paper seeks to answer the question of whether an effective task-related token compression
approach prior to the LLM exists but remains undiscovered, or whether it is inherently infeasible.
To the best of our knowledge, our work is among the earliest efforts to investigate this issue. We
first explore the use of explainability methods to assess visual token importance with respect to the
instruction. Explainability methods for transformer-based architecture generally iteratively update a
relevance map across layers using gradient-weighted multi-head attentions (Chefer et al.| (202 1bjal),
which effectively captures the global relevance scores of visual tokens. Relevance scores indicating
the contributions of input tokens to output can be used to rank and prune less important visual tokens
for compression. Comprehensive experiments conducted on both image and video data across three
representative MLLMs demonstrate the effectiveness of such a compressor. The results indicate that,
with proper selection, pruning tokens that are not relevant to the task at the LLM input stage is indeed
feasible. Moreover, unlike previous works motivated by observations derived from specific network
architectures (e.g., LLaVA) |Chen et al.|(2024b); [Tan et al.|(2025), which limits their generality and
transferability, our explainability-based approach is broadly applicable. Rather than relying on the
behaviors of specific models, it leverages the inherent characteristics of the applied model.

After validating that the explanation results are effective compression indicators, a lightweight
model capable of generating an alternative to the relevance map is further needed to enable effi-
cient and practical deployment. Interestingly, this goal can be achieved by training a simple fully
convolutional network that predicts relevance based on the first-layer attention map of the LLM. The
training process is highly efficient (e.g., training a 5-layer network using only 10K image data) and
does not involve any changes to the MLLM itself. Using the predicted relevance, token compression
can be performed prior to the prefill phase with negligible extra computational cost. As a result, both
computational and memory overhead during inference are significantly reduced, with no modifica-
tions required to either the prefill or decode phases. Last but not least, our approach generalizes well
across various architectures, benefiting from the broadly applicable nature of explainability methods
and the MLLM-agnostic design of the auxiliary training.

To thoroughly assess the capability of our approach, we apply it to three prominent models with dif-
ferent architectures and visual representations: VILA1.5, LLaVA-OneVision, and Qwen2-VL. We
include 11 widely used image and video benchmarks that span a wide range of visual complexities
and tasks, ensuring a comprehensive evaluation. Notably, our method achieves significant compres-
sion by pruning 75% of video tokens while retaining more than 97% of the original performance
across all benchmarks for both VILA1.5 and LLaVA-OneVision. It also performs well on image
tasks, where up to 50% of image tokens can be removed with only a minimal performance drop:
maintaining over 96% of baseline performance for Qwen2-VL and LLaVA-OneVision.

In summary, the contributions of the work are threefold: (i) reveal that explainability methods can
well evaluate the importance of visual tokens, enabling effective token compression. (ii) propose
a highly efficient token compressor by learning from explanation results. It allows token compres-
sion to be performed before the LLM, significantly reducing inference costs at both the prefill and
decode phases. (iii) Validate the effectiveness and generalization of our method through extensive
experiments on a wide range of image and video benchmarks across different leading MLLMs.

2 RELATED WORK

Multimodal Large Language Models. Benefiting from advancements in large language models
(LLMs) |OpenAll (2023); [Touvron et al.| (2023)); Bi et al.| (2024)), multimodal large language models
(MLLMs) have gained considerable attention due to the powerful ability in multi-modal understand-
ing and reasoning [Liu et al.| (2023); (Chen et al.| (2023); Bai et al.| (2023)); |Chen et al.|(2024d); |Anil
et al.| (2023). Recent advances |Li et al|(2024a); |Wang et al.| (2024b); Zhang et al.| (2024a) tend to
handle images with higher resolution and videos with more frames, which significantly increases
the number of visual tokens and thus the computational burden. This reveals the necessity for to-
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Figure 1: Overview of our method. The top portion illustrates the details of our explainability-
based compression approach: an explainability method can reveal the important visual tokens (first
row, Section [3.2)); a lightweight model can then be trained to approximate this explainability and
serve as a compression indicator (second row, Section [3.3). The bottom portion shows a general
inference framework for MLLMs, where the resulting compressor is applied at the LLM input stage.

ken compression strategies that can balance efficiency and effectiveness. Our work proposes a new
token compression paradigm, which removes task-irrelevant visual tokens at the LLM input stage,
significantly reducing computational costs without sacrificing performance.

Visual Token Compression. Existing visual token compression methods for MLLMs can be
broadly categorized into: task/instruction-agnostic compression [Bolya et al.| (2023); |Yang et al.
2024); Shen et al.| (2025b); |Alvar et al.[(2025)) and task/instruction-related compression (Chen et al.
2024b); Xing et al.| (2024); [Huang et al.| (2024); Wen et al. (2025). The first category of meth-

ods typically introduces additional modules to merge redundant visual tokens based on similarity,
addressing the limitations of existing models. However, many recent works have developed tech-
niques to obtain more compact visual representations when building MLLMs [Wang et al.| (2024D);
Chen et al.| (2024a). Notably, task/instruction-related compression can further reduce the number
of visual tokens on models already incorporate built-in compression mechanisms, offering greater
potential for efficiency gains. FastV [Chen et al| (2024b)) represents a typical method of the second
category, which rely on shallow-layer attention maps of the LLM for compression. In this work,
we explores the feasibility of an effective task-related token compression prior to the LLM, which
functions independently of the architecture and can be applied broadly across different MLLMs.

3 METHOD

3.1 BACKGROUND AND MOTIVATION

Current Multimodal Large Language Models (MLLMs) typically follow a framework in which a vi-
sion encoder is incorporated to encode visual signals into a sequence of tokens|Liu et al.| (2023);
let al| (2023));/Chen et al.| (2023)). Specifically, multiple frames or patches are sampled from a video or
an image, and their corresponding visual tokens are encoded. These visual tokens are then flattened
and concatenated with textual prompt tokens before being fed into a Large Language Model (LLM)
to generate a response. Formally, let V' be the video or image, and let VM and LM represent the
vision encoder and the language model, respectively. The visual token embeddings F, can be rep-
resented as F,, = VM(V) € RNv*C where N, is the number of visual tokens and C' is the feature
dimension. El Let B, € RV<*C and B, € RV+XC denote the token embeddings of the system

'A cross-modal projector is commonly employed in such architectures. For notational simplicity, we denote
both the vision encoder and the projector by VIML.
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Figure 2: Visualization of R, obtained via the explainability method (left) and the correspond-
ing token pruning results (right). Based on R,, the top 50% of visual tokens are retained and the
rest masked in white. Given the instruction querying the “three curved lines”, R, highlights the
regions corresponding to the “three curved lines”, guiding the selective retention of the associated
visual tokens. All three MLLMs generate the correct answer using only the retained tokens. More
visualization cases are presented in Appendix [A]

prompt and user instruction, respectively. By feeding E, together with E; and E,, into the LLM,
a textual response is generated, i.e., Y = LM(E, FE,, F,). An additional compression module
Comp can be introduced to prune visual tokens, while keeping the MLLM architecture—including
both the VM and the LM—unchanged during this pruning process.

E, can be considered as general-purpose representations of visual signals that are task/instruction-
agnostic. Recent advances have developed techniques to reduce the number of visual tokens to
obtain a more compact F, when building MLLMs Wang et al| (2024bfa); [Li et al.| (2024c). There-
fore, instead of further compressing F,, in isolation (namely task-agnostic compresssion methods
like [Bolya et al.|(2023)); \Shen et al.|(2025a)), our objective is to assess the importance of each token
in F,, with respect to a given instruction, and subsequently prune those that are less essential. More-
over, we investigate how to perform token compression prior to LLM computation, i.e., compressing
E,t0 E, = Comp(FE,|E,) € RYv*C and then computing Y = LM(E;, E,, E,), where N, is
much smaller than V,,. In contrast to previous methods|Chen et al.|(2024b)); Huang et al.| (2024)), our
method does not require any modifications to the prefill and decode phases during inference, and
computational and memory overhead can be significantly reduced in both phases.

The details of our approach are presented below. In Section[3.2] we introduce explainability methods
to assess the importance of visual tokens and guide token compression. A learning mechanism is
then proposed to predict the explanation results in Section [3.3] which ultimately enables effective
token compression at the LLM input stage.

3.2 TOKEN COMPRESSION WITH EXPLAINABILITY

To reduce task-related redundancy at the token level, we need to estimate the contribution of each
visual token to the model response. Explainability methods for LLMs facilitate this goal by gen-
erating a relevance map through the integration of attention weights and corresponding gradients,
effectively revealing where the model genuinely focuses. The resulting relevance map highlights the
contributions, enabling us to rank and prune these visual tokens accordingly. The pipeline for this
section is shown in the first row of Figure [T}

Relevance Maps by Explainability Method. We adopt a generic explainability method similar
to [Yao et al (2024); [Chefer et al] (2021b) to compute the relevance of the response-to-vision.
The relevance values reveal the distribution of importance across visual tokens utilized by the LLM.
Without loss of generality, assume that the LLM in an MLLM has L layers, and denote the generated
sequence of textual tokens as Y = {yo,y1,...,yr—1}. Specifically, we trace back the semantic
relevance flow from generated tokens to raw visual inputs. For each y, at the ¢-th generation step,
the relevance map R; is first initialized as an identity matrix and then iteratively updated across
layers. Denote A} and V AL as the multi-head attention map and the corresponding gradients in the
l-th layer, obtained during the forward and backward passes, respectively. R, is updated as:

R =R, +E, (Al o VAY - Ry, (1)
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where © represents Hadamard product, and [Ej, is the mean across the heads dimension. The update
is performed from the O-th layer to the last layer. In the end, the relevance of y; to visual signals
can be extracted by indexing the corresponding positions in the last row of Ry, that is, R;[—1, Ny :
Ns + N,|. Finally, we aggregate visual relevance across all time steps ¢ by averaging, obtaining
the overall visual relevance scores R, € RN with respect to the current response. This well-
grounded importance assessment R, can then be used to rank and select visual tokens.

Visual Token Compression Using Relevance Scores. The importance of visual tokens related to
the instruction can be ranked according to R,,. We can prune the less important visual tokens down

to a target count of N,, resulting in compressed token embeddings E, as LLM input.

Observation. We visualize R, and the corresponding token pruning results for LLaVA-OneVision,
Qwen2-VL, and VILA1.5 in Figure 2] While visualizations from different MLLMs show varying
appearances due to differences in how each model processes visual input, they exhibit clear com-
mon patterns — R, for each model consistently highlights the regions corresponding to the “three
curved lines” in the video, demonstrating the robustness of our method. Moreover, experimental
results show that retaining 50% of the original visual tokens based on R, preserves over 98% of
the performance on image benchmarks and 99% on video benchmarks (see Section[d.2] for details).
We draw the following conclusion: the explanation results faithfully capture the visual information
essential for the MLLM to answer the question, and retaining only the corresponding visual tokens
does not compromise model performance.

3.3 EXPLAINABILITY-BASED COMPRESSOR LEARNING

The relevance map offers valuable insights into achieving token compression at the LLM input level.
However, its practical application is limited by the fact that R,, is derived post-hoc — only after the
model has already generated the output. To address this limitation, we propose to approximate R,
using a standalone module trained independently of the MLLM. By learning to capture attention
patterns and generate relevance estimates R,,, this module enables token compression prior to LLM
without modifying or retraining the MLLM. Importantly, this module prioritizes efficiency: it is
lightweight, requires a small amout of training data, and can be trained quickly, making it practically
applicable. The pipeline for this section is shown in the second row of Figure[I]

Model Architecture. As shown in Eq. [l] the relevance map is essentially obtained by aggregat-
ing attention maps, suggesting that learning a mapping from attention maps to relevance maps is
promising. Interestingly yet reasonably, we find in practice that a simple convolutional network
applied to the first-layer attention suffices, which guarantees the compressor’s efficiency in terms of
model size, training time, and computation (implementation details and efficiency analysis can be
found in Appendix and Appendix . Formally, let A° be the first-layer attention map. Similar
to/Chen et al.| (2024b); Zhao et al.|(2024), we focus specifically on the attention scores that visual to-
kens receive from textual instruction tokens. Accordingly, we extract the submap A%, € RNuxNv
by indexing the corresponding positions. We then average the IV, scores for each visual token to
obtain a compact representation, resulting in A% € R!*Nv E] This averaged attention vector AY is
subsequently fed into a 1D convolutional model fy to predict visual relevance:

R, = fo(AD). )
Note that a softmax operation is applied at the end of fy, making R, a probability distribution. In

addition, a separate instance of fy is used for each MLLM, because it is trained to approximate the
explainability patterns specific to that particular MLLM.

Training Objectives. We process R, into the training label R} by masking the bottom 50% val-
ues (Gu et al|(2021) and normalizing the remainder into a probability distribution. Instead of soft-
max—which yields near-uniform values due to the closeness of raw scores—we normalize by di-
viding each score by the total, thereby preserving relative differences. Finally, given R}, and R,, the
Kullback-Leibler (KL) divergence is used to measure the difference, defining the loss function:

Lk = KL(R}||Ry). 3)

Oberservation. The learned fy can be seamlessly integrated into the MLLM inference pipeline
to generate R,,, which can guide the token compression. As shown in Figure |1} a visualization of

>We omit the head dimension for notational simplicity.
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Table 1: The relevance R, effectively guides token compression under different retention ra-
tios. Avg. means the average of performance preservation ratios across all image/video benmarks.

Method Retention Image Benchmark Video Benchmark

. Avg.(%) Avg.(%)
Ratio MME MMStar MM Vet Video-MME MVBench MMBench-V
LLaVA-OneVision 100% 1997.7 60.5 48.7 100 53.6 41.2 0.41 100
LLaVA-OneVision 50% 1974.2 59.7 472 98.1 54.3 41.1 0.40 99.5
w/GAE-Based Compressor 25% 1977.3 59.3 47.0 97.8 53.8 40.9 0.40 99.1
Qwen2-VL 100% 2295.1 60.4 54.0 100 50.4 51.0 1.23 100
Qwen2-VL 50% 2297.1 60.3 53.2 99.5 51.0 50.7 1.19 99.1
w/GAE-Based Compressor 25% 2299.1 58.7 51.7 97.7 50.3 49.7 1.17 97.5
VILAL.S 100% 1700.3 38.7 39.3 100 473 34.0 129 100
VILALS 50% 1740.5 37.2 38.0 98.4 479 34.2 1.26 99.8
w/GAE-Based Compressor 25% 1722.1 35.7 35.6 94.7 47.1 35.1 1.28 100.7

R, and R, is given in the first and second rows, along with their corresponding pruning results,
respectively. One can see that R, closely resembles R,. Important visual regions related to the
question are highlighted in both maps. This observation provides evidence that the lightweight
model fy can indeed be efficiently and effectively trained to approximate R,, allowing lossless
token compression at the LLM input stage. Quantitative experimental results further support this
conclusion (see Section[d.3]for details).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. Experiments are conducted on three MLLMs with different architectures for extensive
validation, i.e., LLaVA-OneVision-7B |Li et al,| (2024a)), Qwen2-VL-7B |Wang et al.| (2024b) and
VILA1.5-8B|Liu et al.|(2024)). These models exemplify recent advances in handling high-resolution
and long visual inputs. LLaVA-OneVision and Qwen2-VL support arbitrary resolution/length,
with Qwen2-VL further introducing dynamic resolution and token aggregation for compact vi-
sual representations. VILA1.5 applies spatial token compression when processing images or video
frames. They thus provide a strong basis for evaluating our task-related compression, which reduces
instruction-related redundancy beyond their built-in instruction-agnostic compression.

Evaluation Tasks. We thoroughly evaluate our method on 11 widely used image and video bench-
marks. For image tasks, MME |Fu et al.|(2023) (all-round capability), MMStar [Chen et al.| (2024c])
(data contamination), MM Vet|Yu et al.|(2024) (subjective evaluation), SEED-Bench Li et al.|(2023a))
(all-round capability), and POPE [Li et al.| (2023c) (hallucination evaluation) are included, covering
various aspects of MLLM performance. For video evaluation, we select Video-MME(wo sub.) |[Fu
et al.| (2024), MVBench Li et al|(2024b), MMBench-Video Fang et al.| (2024)), NExT-QA [Xiao et al.
(2021), and ActivityNetQA [Yu et al.| (2019), providing comprehensive coverage of video under-
standing abilities across different tasks and video durations. For comparison, we take existing SOTA
task-related token compression methods such as FastV |Chen et al.| (2024b)), PyramidDrop Xing et al.
(2024), DartWen et al.| (2025) as the primary baselines, which perform compression in the LLM in-
termediate layers on visual tokens fused with textual information in the shallow layers.

Implementation Details. We conducted all experiments on A100 GPUs (80GB) and used
VLMEvalKit Duan et al.| (2024) for benchmarking. Implementation details, including R, gener-
ation, the training data and procedure of fy, and inference settings are provided in Appendix
Following prior works |Chen et al.|(2024b); Ye et al.| (2025)), we report FLOPs as the primary metric
for evaluating inference efficiency. For a fair comparison, we configure baselines for comparable
FLOPs (e.g., pruning at the 2nd layer for FastV). Our method achieves a significant reduction in
inference cost with only negligible additional computation. We provide a comprehensive analysis
of FLOPs of our method, please refer to Appendix

4.2 EFFECTIVENESS OF COMPRESSION WITH EXPLAINABILITY

We conduct experiments to verify whether the explanation results can guide token compression, i.e.,
compressing F, to E, according to I, and then feeding E, into LM to generate a response. To
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Table 2: Compare explainability-based compressor on image benchmarks. Values marked with
* in Retention Ratio denote the average retention ratio across LLM layers due to multi-stage com-
pression in PDrop.

Method Rel;::it:’“ FLOPs MME  MMStar MMVet SEED  POPE | Avg.(%)
LLaVA-OneVision 100% 1.00x 1997.7 60.5 48.7 76.7 87.4 100
LLaVA-OneVision w/ FastV 50% 0.51x 679.2 42.7 28.8 60.1 10.8 50.9
LLaVA-OneVision w/ Pdrop 51%* 0.51x 1974.7 554 41.7 74.8 87.0 94.6
LLaVA-OneVision w/ Dart 50% 0.51x 1977.5 55.2 423 74.3 85.8 94.4
LLaVA-OneVision w/ OQurs 50% 0.48 x 1980.8 57.5 46.2 75.3 86.2 97.2
LLaVA-OneVision w/ FastV 25% 0.27x 527.7 41.5 20.6 56.1 10.6 44.5
LLaVA-OneVision w/ PDrop 25%* 0.25x 1888.3 50.1 34.7 70.4 79.6 86.3
LLaVA-OneVision w/ Dart 25% 0.27x 1905.0 48.7 36.7 69.5 80.9 86.9
LLaVA-OneVision w/ Ours 25% 0.24 % 1965.9 52.1 41.8 72.7 81.3 91.6
Qwen2-VL 100% 1.00x 2295.1 60.4 54.0 75.8 87.5 100
Qwen2-VL w/ FastV 50% 0.51x 1489.3 414 34.4 56.0 83.0 73.2
Qwen2-VL w/ PDrop 51%* 0.51x 2288.1 55.4 46.3 73.0 86.3 94.4
Qwen2-VL w/ Dart 50% 0.51x 2290.0 55.5 494 72.4 86.6 95.5
Qwen2-VL w/ Ours 50% 0.49 x 2288.3 55.9 51.9 73.2 86.4 96.7
Qwen2-VL w/ FastV 25% 0.27x 1415.3 37.6 314 51.4 77.6 67.7
Qwen2-VL w/ PDrop 25%* 0.25x 2216.3 51.1 42.3 67.4 83.2 88.7
Qwen2-VL w/ Dart 25% 0.27x 2184.5 51.3 45.6 68.2 84.3 90.2
Qwen2-VL w/ Ours 25% 0.24 x 2280.9 51.8 47.3 67.9 84.8 91.8

assess effectiveness and generalization, we apply the method to three state-of-the-art MLLMs and
test them on three image and three video benchmarks.

Table [T] reports the results under retention ratios of 50% and 25%. The strong performance across
multiple models and benchmarks demonstrates the effectiveness and broad applicability of such
an explainability-based token compressor. For Qwen2-VL, reducing visual tokens by 50% still
preserves over 99% of the original performance on both image and video tasks. LLaVA-OneVision
retains 99.1% of its video performance even with only 25% of tokens. VILA reduces visual tokens
to 98 per image or frame at 50% retention, while maintaining 98% of the original image performance
and nearly unchanged video performance. These observations indicate that token compression based
on relevance R, effectively preserves the visual tokens essential for MLLMs to answer the question.

4.3 EFFECTIVENESS OF EXPLAINABILITY-BASED COMPRESSOR LEARNING

The performance of the R, -guided token compressor is evaluated in this section. R, is generated by
the learned fy, and the token pruning is performed accordingly before the LLM computation. Five
image and six video benchmarks are included for evaluation.

Performance Comparison. Table[2]presents the results of LLaVA-OneVision and Qwen2-VL under
different token compression retention ratios on image benchmarks. We exclude VILA here because
it uses a fixed and relatively small number of image tokens, making compression less meaningful.
As shown in the table, at a retention rate of 50%, our compressor demonstrates overall superiority
over the baselines at comparable FLOPs, achieving average improvements of 2.6% and 1.2% across
all benchmarks for LLaVA-OneVision and Qwen2-VL, respectively. When the retention rate is
further reduced to 25%, the performance gains increase to 4.7% and 1.6%, highlighting the enhanced
robustness of our method under higher compression rates.

In TableE], we evaluate the compression performance of LLaVA-OneVision, Qwen2-VL, and VILA
on video benchmarks. We make several observations. First, our compressor consistently outper-
forms baselines at comparable FLOPs, regardless of the model and retention ratio. Both LLaVA-
OneVision and VILA are able to maintain 100% performance when 50% of the visual tokens are
pruned. Second, VILA exhibits the smallest performance drop, while Qwen2-VL shows the largest,
likely due to its attention patterns being harder to capture. Importantly, our task-related compres-
sion can still further reduce token redundancy on both Qwen2-VL and VILA, demonstrating that it
complements the task-agnostic compression already presented in these models. Finally, comparing
the results in Tables and [3| the performance degradation from the R,-guided compressor to
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Table 3: Compare explainability-based compressor on video benchmarks. As videos generally
exhibit greater visual redundancy, we also evaluate a lower retention ratio 10% to further assess
compression robustness, with detailed results reported in the Appendix

Method Retention| gy opg | yideo-MME MVBench MMBench- Next-QA Activity-QA | Avg.(%)
Ratio Video multi-choice open-ended
LLaVA-OV 100% 1.00x 53.6 41.2 0.41 79.2 49.0 56.9 100
LLaVA-OV w/ FastV 50% 0.48x 423 25.0 0.35 66.5 36.0 48.5 78.0
LLaVA-OV w/ PDrop| 50%* 0.47 % 52.7 40.2 0.36 78.4 48.2 56.0 96.6
LLaVA-OV w/ Dart 50% 0.48x 532 40.0 0.36 78.0 49.0 56.2 96.9
LLaVA-OV w/ Ours 50% 0.46 < 534 40.5 0.43 78.6 49.7 56.5 100.4
LLaVA-OV w/ FastV 25% 0.25x% 39.6 23.6 0.30 64.2 33.6 44.5 72.0
LLaVA-OV w/ PDrop| 25%%* 0.24x 50.8 38.2 0.35 76.3 48.2 53.5 93.6
LLaVA-OV w/ Dart 25% 0.25x 51.5 38.7 0.33 76.6 47.0 551 933
LLaVA-OV w/ Ours 25% 0.22x 513 39.0 0.42 77.0 49.0 54.5 97.3
Qwen2-VL 100% 1.00x 50.4 51.0 1.23 76.8 45.5 53.6 100
Qwen2-VL w/ FastV 50% 0.48x 324 36.3 0.52 439 28.3 38.2 61.4
Qwen2-VL w/ PDrop| 50%* 0.47x 489 49.6 1.14 752 454 50.8 96.6
Qwen2-VL w/Dart | 50% | 0.48x 49.6 49.4 117 76.4 44.8 52.0 97.6
Qwen2-VL w/ Ours 50% 0.46 X 50.0 49.8 1.18 75.6 459 524 98.3
Qwen2-VL w/ FastV 25% 0.25x 31.2 36.1 0.48 42.0 26.8 35.1 58.5
Qwen2-VL w/ PDrop| 25%* 0.24 % 47.3 46.2 1.11 73.9 441 47.8 92.8
Qwen2-VL w/ Dart 25% | 0.25x 47.4 47.1 1.10 74.1 4.5 492 937
Qwen2-VL w/ Ours 25% 0.22x 48.1 46.7 111 74.2 443 50.5 94.2
VILA 100% 1.00x 47.3 34.0 1.29 69.9 46.2 55.6 100
VILA w/ FastV 50% 0.49x 422 20.7 0.98 62.9 36.8 47.1 80.1
VILA w/ PDrop 50%* 0.49x 473 35.0 1.22 69.4 45.8 55.1 99.2
VILA w/ Dart 50% 0.49x 46.1 34.7 1.25 69.2 46.5 552 99.2
VILA w/ Ours 50% 0.47 x 47.6 35.2 1.25 70.3 46.4 554 100.3
VILA w/ FastV 25% 0.26x 414 20.5 0.97 61.5 36.4 46.8 79.0
VILA w/ PDrop 25%%* 0.26x 452 33.6 1.24 68.2 45.1 54.8 97.4
VILA w/ Dart 25% 0.26% 453 34.6 1.23 68.1 45.6 54.2 97.7
VILA w/ Ours 25% 0.23x 45.5 35.6 1.22 69.4 46.4 54.8 99.0

Table 4: Efficiency analysis based on Qwen2-VL on MMStar. We evaluate the inference costs in
terms of total inference time, prefilling time, FLOPs, and KV cache memory. KV cache memory is
computed with consideration of the Grouped Query Attention (GQA) used in practical inference.

Method ‘Reﬁi‘zi‘(‘)"“ FLOPs(x) ‘ Total fnference Prefiling iy Cache Sli‘:fgl'lp g;eeﬁeg‘l‘l’f MMStar
Qwen2-VL 100% 1.00x 15min24s 6min36s 71.2MB 1.00x 1.00x 61.1
Qwen2-VL w/ FastV 25% 0.27x% 12min19s 4minl4s 19.7MB 1.25% 1.56x 39.6
Qwen2-VL w/ PDrop 25%%* 0.25% 12min15s 4min10s 18.1MB 1.26% 1.58x 53.1
Qwen2-VL w/ Dart 25% 0.30% 12min20s 4minl6s 21.6MB 1.25% 1.55% 54.3
Qwen2-VL w/ Ours 25% 0.24x 12min16s 4min08s  17.8MB 1.26 x 1.60 55.8

the ]%v-guided compressor is more pronounced in image tasks. This is likely also due to the greater
redundancy in videos, which reduces the learning difficulty.

Applying to Larger Images and Longer Videos. We evaluate the generalization of directly apply-
ing the trained fy on larger images and longer videos; experimental results are shown in Figure
with configurations detailed in Appendix [B} Sub-figure(a) show the compression performance on 4
image and 6 video benchmarks based on LLaVA-OneVision and Qwen2-VL. Our method consis-
tently outperforms FastV and achieves higher average performance than its optimal configuration,
demonstrating strong generalization to larger images and longer videos than it seen during training.
Detailed comparison results on these 10 benchmarks are provided in the Appendix D} Sub-figure(b)
show the comparisons on two challenging benchmarks, i.e., MMStar and MVBench. Several strong
methods are introduced for comparison: PruneVID Huang et al.[(2024), FastVID Shen et al.|(2025a),
VisionZip |Yang et al.| (2024), and PyramidDrop Xing et al.[(2024). Our approach achieves SOTA
performance with the lowest FLOPs. Remarkably, even directly applying the trained fy to longer
videos with more frames, it still performs favorably compared to methods specifically designed
for videos (i.e., FastVID and PruneVID). Beyond superior performance, our lightweight compres-
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FastV FastVoy, config. ] Ours | Vanilla ~ Video-MME 995 993 9.1
_6.83% +038% 954 944
MVBench y MVBench
-0.54% +4.24% -7.07% i -1.78%
. 1 16.1 [ Ours
. MMBench-v = . j R [ Fastv
1199 0Tt -BAS% [ Vo ,,7/, 9 g
T : | ] b AT q7F=* O Pbrop
[ FastVID
[ PruneVID
s [ VisionZip
© FLOPS(T)
ityQA % o, o/ 0,
e trsove | AVE.-4.9% +1.6% Avg. -4.6% +0.8%
MMStar MVBench

(a) Radar charts of LLaVA-OneVision(left) and Qwen2-VL(right) with 25% visual tokens retained (b) Performance preservation(%) of methods based on LLaVA-OneVision

Figure 3: Comparison results on larger images and longer videos. Performance preservation
ratio measures the performance retained relative to Vanilla. Gray text denotes the gap from Vanilla
and green text highlights improvements over the FastVop config.-

Table 5: Ablation study on explainability methods for relevance map generation. We evaluate
two strategies for aggregating multi-head attention maps—gradient-weighted summation and simple
averaging—to generate relevance maps for token compression on video and image benchmarks.

Model Method Renta.tion Image Benchmark Video Benchmark Ave(%)
Ratio MME  MMStar MMVet | Video-MME MVBench MMBench-V

Vanilla 100% 1997.7 60.5 48.7 53.6 41.2 0.41 100
Ol;llgs,\i’s’?(;n Mean-weighted | 19745 585 459 536 408 0.39 973
Grad-weighted 1974.2 59.7 47.2 54.3 41.1 0.40 98.8
Vanilla 100% 2295.1 60.4 54.0 50.4 51.0 1.23 100
Qwen2-VL | Mean-weighted 50% 2300.6 58.2 49.2 49.9 49.9 1.15 96.3
Grad-weighted 2297.1 60.3 53.2 51.0 50.7 1.19 99.3
Vanilla 100% 1700.3 38.7 39.3 47.3 34.0 1.29 100
VILALS5 | Mean-weighted 50% 1720.8 38.0 34.2 43.0 34.1 1.20 96.9
Grad-weighted 1740.5 37.2 38.0 47.9 342 1.26 99.1

sor significantly improves MLLM inference efficiency with negligible additional cost. We follow
Dart Wen et al.[(2025) and report efficiency in terms of total inference time, prefilling time, FLOPs,
and KV cache memory, as shown in Table[d] Our compressor achieves both the best performance and
highest efficiency. The prefill-stage acceleration (1.60x) and reduced KV cache footprint (71.2MB
—17.8MB) enable efficient processing in prefill and decode stages, keeping total inference time
comparable to other methods (see Appendix [D|for more results).

4.4 ABLATION STUDY

As shown in Eq. [1] the relevance map is updated by aggregating attention maps across layers, where
the multiple heads in each layer are combined either via simple averaging or gradient-weighted
averaging (used in our approach). Table [5|shows that employing gradient-weighted aggregation to
generate R, for token compression performs consistently better than simple averaging across image
and video benchmarks. A reasonable explanation is that differing contributions of attention heads
make simple averaging prone to distorting relevance maps [Voita et al.|(2019).

5 CONCLUSION

In this work, we demonstrate the feasibility of task-related visual token compression at the LLM in-
put stage. We first demonstrate experimentally that the relevance scores derived from explainability
methods well evaluate the task-related importance of visual tokens, which can be used for effective
token compression. To enable efficient and practical deployment, we employ a simple convolutional
network to learn a mapping from the LLM first-layer attention maps to the explainability-derived
relevance scores. Using the predicted relevance scores from lightweight model, token compression
can be performed prior to the LLM. Extensive experiments demonstrate the effectiveness and gener-
alizability of our task-related token compression method. Since the relevance scores are obtained via
backward computations, their generation is resource-intensive. This poses a challenge in scaling the
compressor training to high-resolution images or long video sequences. Future work will explore
stronger compressors and the use of relevance scores to guide token compression during training.
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Reproducibility Statement. We provide the necessary information to facilitate reproducibility. Ex-
perimental settings and implementation details are described in the Section4.T|and Appendix [B] All
the datasets used in our experiments are publicly available, and the preprocessing steps of training
data are documented in Appendix [B]
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APPENDIX
A  MORE VISUALIZATION RESULTS

A.1 VISUALIZATION RESULTS ACROSS DIFFERENT MLLMS

We present visualization results for LLaVA-OneVision, Qwen2-VL, and VILA1.5 on both video and
image inputs in Figures 48] Given an input image or video V, we first show the visual relevance
scores R, with respect to the current response obtained using an explainability method. Based on
R,, we visualize the results of token pruning at 50% and 25% retention ratios (labeled as Top-50%
compressed V and Top-25% compressed V in the figures). Then, we visualize the pruning results
produced by our trained compressor (fy) under the same compression ratios (labeled as Top-50%
compressed v and Top-25% compressed V in the figures).

User Instruction: According to the video, what do the three curved lines extending from
bottom up symbolize? A. Heat flow., B. Stream., C. Vapor., D. Air. Response: C. Vapor

Input V

Top—50%
compressed V

Top—25%
compressed V

Top—50%
compressed V

Top—25%
compressed V

Figure 4: Video Input Visualizations for LLaVA-OneVision.

User Instruction: What is the highest fueling cost?
Response: The highest fueling cost, as indicated by the bar chart, is for the Ford F150, which is $130.96.

Top-50% Top-25% Top-50% Top-25%
compressed ¥ compressed ¥ compressed V. compressed

<«

Figure 5: Image Input Visualizations for LLaVA-OneVision.

13
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User Instruction: According to the video, what do the three curved lines extending from
bottom up symbolize? A. Heat flow., B. Stream., C. Vapor, D. Air.  Response: C. Vapor

Input V

Top—50%
compressed V

Top—25%
compressed V

Top—50%
compressed V

Top—25%
compressed V

Figure 6: Video Input Visualizations for Qwen2-VL.

User Instruction: What is the highest fueling cost?
Response: The highest fueling cost, as indicated by the bar chart, is for the Ford F150, which is $130.96.

Top-50% Top-25% Top-50% Top-25%
compressed ¥ compressed V compressed V. compressed

<«

Figure 7: Image Input Visualizations for Qwen2-VL.

A.2 CASE STUDY: EXPLAINABILITY REVEALS INSTRUCTION-RELATED VISUAL TOKENS

To demonstrate the effectiveness of explainability methods in identifying visual tokens that are
highly relevant to instructions, we present 2 case studies covering both video and image inputs.

Given the same input V, the explainability method generates visual relevance scores R, that se-
lectively emphasize different visual tokens according to varying user instructions. As shown in
Figure [0] when the user instruction specifically targets clothing-related information, the visual to-
kens corresponding to the person’s clothing in the video obtain higher relevance scores compared to
instructions requesting a general summary. Similarly, in Figure[I0] visual tokens relevant to the user
instruction exhibit higher relevance scores. When the user instruction specifies excluding the Ford
F150, the visual attention shifts primarily to the other two columns. In contrast, when the instruction
highlights the highest fueling cost, the Ford F150 column attracts nearly all the attention.

From a visualization standpoint, we further corroborate that the explanation results faithfully reflect
the critical visual information required by the MLLM to answer the question.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

User Instruction: According to the video, what do the three curved lines extending from
bottom up symbolize? A. Heat flow., B. Stream., C. Vapor, D. Air.  Response: C. Vapor

Input V

Top—50%
compressed V

Top—25%
compressed V

Top—50%
compressed V

Top—25%
compressed V

Input V

User Instruction: Which color of clothing is worn by the first person selling bananas in the
video? A. Blue., B. Purple., C. Black., D. Green.  Response: A. Blue

Top-50%
compressed V

User Instruction: Which summarizes the content of the video? A. Supply and demand., B.
Bananas supply., C. Business competition., D. Banana selling. Response: Supply and demand.

Top-50%
compressed V

Figure 9: Case Study 1.
B IMPLEMANTATION DETAILS.

Generating R,. To derive R,, our implementation employs eager attention, allowing access to
full-layer attention maps required by the explainability method [Chefer et al.| (2021b). Compared to
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User Instruction: What is the average total fueling User Instruction: What is the highest fueling cost?
cost excluding the Ford F150? Response: 76.55 Response: 130.96

Top-50%
compressed V

Top-50%

Input V R, compressed ¥

Figure 10: Case Study 2.
FlashAttention Dao et al.|(2022) and inference based on KV cache (2023), eager attention

requires more memory. To avoid out-of-memory errors and ensure efficient data generation, we
limit the number of visual tokens to approximately 1500 per sample. Specifically, for video inputs,
LLaVA-OneVision, VILA and Qwen2-VL are all set to sample 8 frames, resulting in 1569, 1568
and 1296 visual tokens per video, respectively. For image inputs, LLaVA-OneVision and Qwen2-
VL use similar image resolutions, resulting in 1849 and 1500 visual tokens per image, respectively.
VILA always processes an image as 196 tokens, eliminating the need for additional configuration.
The generated R, can be used directly to guide token pruning or to train fy.

Training fy. fy is implemented as a five-layer fully convolutional network with channel dimensions
of 32,64,128,256, and 512. Each layer employs a 1D depthwise separable convolution
(2017), i.e., a depthwise convolution with a kernel size of 3 followed by a pointwise convolution. An
additional pointwise convolution layer is applied at the end for channel aggregation. The network is
trained by using Adam Kingma & Ba|(2015) with default settings and a batch size of 128. Training
data is collected from open-source datasets: a subset of LLaVA-Video [Zhang et al. (2024c) for
videos and a subset of Infinity-MM |Gu et al | for images, each containing approximately 10K
samples. Note that fjp is specific to MLLM, so each MLLM generates its own A) and R, based on
the input image- or video-text pair for training. The training is performed for roughly 100 epochs,
taking about half an hour for image data and less than four hours for video data on a single A100
GPU.

Details of Data for Training fy. We train our explainability-based compressor based on subsets
sampled from high-quality open-source datasets. First, the details of the sampling are as follows:

Image Dataset. For training the compressor used in image tasks, we sample a subset of Infinity-MM
that ensures high quality and diversity. The training set primarily consists of data used during Stage
4, including 9k samples randomly sampled from the Data Generated by GPT-4 subset and 4k from
Synthetic Data.

Video Dataset. For training the compressor used in video tasks, we sample a subset of LLaVA-
Video. Specifically, we include 7k samples from LLaVA-Video, 6k from NeXT-QA and 4k from
ActivityNetQA. Note that the training sets of NeXT-QA and ActivityNetQA have no overlap with the
testing sets used in the evaluation. During sampling, since LLaVA-Video contains several parts
categorized by task type (open-ended and multi-choice) and video duration (0-30s, 30-60s, 1-2min
and 2-3min), we ensure a balanced distribution by randomly selecting an equal number of training
examples from each part.

Moreover, we assume that the visual attention distributions (R,,) associated with correct answers
exhibit higher quality than those that lead to incorrect answers. Therefore, when training fy for
a specific MLLM, the sampled data are evaluated by this MLLM, and the samples with incorrect
answers are filtered out. Only samples for which the MLLM produces correct answers are retained
and used as training data. The number of the retained samples ranges from 8K to 12K.

Inference. The learned fy can be seamlessly integrated into existing inference pipelines (no mod-
ifications are required for the prefill and decode phases of LLM inference). More interestingly, fy
is capable of processing longer A9 thanks to the fully convolution design. That is, our compres-
sion method can handle larger images and longer videos, even though the visual token number is
limited to approximately 1500 during training. Corresponding experiments have been conducted.
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In these experiments, Qwen2-VL dynamically processes both images (with ‘max_pixels’ set to half
of its default value) and videos (with ‘VIDEO_MAX_PIXELS’ and ‘FPS_MAX_FRAMES’ set to
384 x28x28 and 32, respectively). These configurations are set to accommodate hardware resource
constraints. LLaVA-OneVision also processes images dynamically with default settings, while sam-
pling 32 frames per video as in|Huang et al.[(2024) for a fair comparison. For VILA, the input image
size cannot be changed, and the number of input video frames is set to 16.

C EFFICIENCY ANALYSIS IN INFERENCE

To evaluate computational efficiency during inference, we report the FLOPs of the visual token part.
Specifically, we consider the FLOPs of the multihead attention and the feed-forward network (FFN)
modules as:

FLOPSjayer = 4nd? + 2n2d + Inm, 4)
where n is the number of visual tokens, d is the hidden state size, m is the intermediate size of
the FFN, and [ is the number of layers in the FFN. To compute the total FLOPs for the entire
LLM, we simply multiply Eq. ] by the number of Transformer layers Nz, i.e., FLOPspim =
Np(4nd? + 2n%d + Inm).

At the input stage of the LLM, our compressor introduces additional computation. First, we consider
the FLOPs introduced by the first-layer attention map:

FLOPSuttn = nd? + nd. (3)

Note that only the key projection computation for visual tokens and the attention computation from
textual tokens to visual tokens are required, corresponding to the term nd? and nd, respectively.
Only the FLOPs incurred by the visual part are included.

Next, we account for the FLOPs introduced by the 1D depthwise separable convolution:
L
FLOPScony = »_ n(Ch,k + C},Cl,,), (6)

n -~ out
=1

where C!, and C!,, denote the number of input and output channels of the I-th layer, respectively.
We ensure that the output shape of each convolutional layer remains the same as its input by applying
appropriate padding with respect to the kernel size k. As a result, the number of visual tokens n
remains constant across all layers. Then the total FLOPs is computed as the sum of the operations
across all L convolutional layers.

To intuitively understand the additional computational cost introduced by our method, we adopt a
typical parameter configuration used in MLLMs. Specifically, we set the number of visual tokens
n to 1568, the hidden dimension d to 3584, the intermediate size m to 18944, and assume 3 layers
per FEN block (I = 3). For the full LLM, we consider a 28-layer Transformer blocks (N, = 28).
For fy, we follow the configuration described in Section 4.1 (Experimental Setup). Concretely, the
convolutional network consists of 5 layers (L. = 5) with kernel size £ = 3, and channel dimensions
increasing across layers: 32, 64, 128, 256, and 512. Based on these settings, FLOPs,t,, amounts to
approximately 0.02 trillion, FLOPS.,y is approximately 0.0003 trillion, while FLOPsy 1\ reaches
approximately 11.69 trillion. It can be observed that the computational overhead introduced by our
compressor is negligible. The computational costs of these two parts account for only 0.17% and
0.0026 % of the total computational cost, respectively.

The FLOPs reported in the Table 2] Table[3] Table[d]and Figure[3|are computed using a standardized
input setting. For image input, FLOPs are computed using a 384 x 512 input image as the reference
(the number of visual tokens n is 1728 for LLaVA-OneVision and 1302 for Qwen2-VL). For video
input, LLaVA-OneVision and VILA1.5 sample 32 and 16 frames, respectively, resulting in visual
token counts n of 6272 and 3136. We fix Qwen2-VL’s input to 32 frames at 720 x 1280 resolution
(n=5824) for FLOPs calculation.

D ADDITIONAL EXPERIMENTAL RESULTS

For video tasks, we also investigate a more aggressive compression setting with a 10% retention
ratio in Table[6] as a supplement to Table 3] Our method attains the lowest FLOPs while preserving
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Table 6: Compare explainability-based compressor on video benchmarks.

Method Retention| py pg | vigeo-MME MVBench MMBench- Next-QA Activity-QA | Avg.(%)
Ratio Video multi-choice open-ended
LLaVA-OV 100% | 1.00x 53.6 412 0.41 79.2 49.0 56.9 100
LLaVA-OV w/FastV | 10% | 0.12x 37.7 2.4 027 60.3 30.6 39.9 66.5
LLaVA-OV w/ PDrop| 10%* | 0.10x 47.0 37.0 035 723 43.7 50.0 88.5
LLaVA-OV w/Dart | 10% | 0.12x 473 369 0.36 727 435 503 89.1
LLaVA-OV w/Ours| 10% | 0.09x 471 37.4 0.40 76.5 45.6 51.6 92.8
Qwen2-VL 100% | 1.00x 50.4 51.0 1.23 76.8 455 53.6 100
Qwen2-VL w/FastV | 10% | 0.12x 29.1 375 0.44 39.4 233 32,0 54.9
Qwen2-VL w/ PDrop| 10%* | 0.10x 452 403 0.82 715 418 45.1 84.1
Qwen2-VL w/ Dart 10% 0.12x 45.8 41.6 0.85 72.1 42.6 45.5 85.7
Qwen2-VLw/ Ours | 10% | 0.09% 46.1 425 1.00 72.0 433 475 88.9
VILA 100% | 1.00x 473 34.0 129 69.9 46.2 55.6 100
VILA w/ FastV 10% | 0.12x 37.8 19.5 0.88 57.9 33.9 432 732
VILA w/ PDrop 10%* | 0.11x 43.0 344 1.13 652 435 50.6 93.0
VILA w/ Dart 10% | 0.12x 429 34.8 114 64.8 43.7 S1.1 93.4
VILA w/ Ours 10% | 0.09% 43.6 35.0 114 67.0 447 53.0 95.3

Table 7: Compare generalization performance of our compressor on image benmarks.

Method Re'l'::t‘;:’“’“ FLOPs MME  MMStar MMVet SEED | Avg.(%)
LLaVA-OneVision 100% 1.00x 2002.0 62.0 52.0 76.7 100
LLaVA-OneVision w/ FastV op, Confis. 50% 051x 1990.3 573 484 75.7 95.9
LLaVA-OneVision w/ Ours 50% 0.48x 1988.0 57.8 50.2 75.4 96.8
LLaVA-OneVision W/ FastV op conie 25% 0.27x 1953.7 52.0 432 715 894
LLaVA-OneVision w/ Ours 25% 0.24x 1985.8 52,6 458 73.1 91.9
Qwen2-VL 100% 1.00x 2316.6 61.1 517 76.4 100
Qwen2-VL w/ FastVop contie. 50% 0.51x 2295.8 57.7 52.4 74.8 98.2
Qwen2-VL w/ Ours 50% 0.49x 2311.7 57.9 53.9 73.9 98.9
Qwen2-VL w/ FastVop, confie. 25% 0.27x 22882 55.0 493 711 943
Qwen2-VL w/ Ours 25% 0.24x 2283.1 55.8 50.8 71.0 95.3

competitive accuracy, achieving average improvements of 3.7%, 3.2%, and 1.9% across all bench-
marks for LLaVA-OneVision, Qwen2-VL, and VILA, respectively, compared to the best-performing
baseline. Notably, even under such extreme compression, our method consistently delivers strong
results, highlighting its robustness across different MLLMs.

We provide full tables of results corresponding to the generalization experiments shown in the Fig-
ure 3] (a) in the main text (Applying to Larger Images and Longer Videos), with detailed results for
the image and video benchmarks listed in Table[7]and Table[§] respectively. In addition, we provide
detailed comparison results shown in the Figure (b) for two challenging benchmarks, MMStar and
MVBench, in Table[9]and Table[T0]

Table[TT]exhibits the additional efficiency analysis on MM Vet. Our lightweight compressor achieves
substantial reductions in K'V-cache usage and accelerates the prefill stage, while achieving the high-
est task scores and keeping overall inference time comparable to baselines. These results demon-
strate that our approach maintains both strong task performance and computational efficiency.

E THE USE OF LARGE LANGUAGE MODELS(LLMS)

In preparing this manuscript, we used a large language model (LLM, specifically GPT-5-mini) solely
as a general-purpose writing and editing assistant. The LLM was employed to improve clarity, gram-
mar, and overall presentation of the text. All technical content, experiments results, and interpreta-
tions were generated and verified by the authors. The LLM did not contribute to research ideation,
experimental design, data analysis, or the writing of original technical content. The authors take full
responsibility for all content presented in this paper.
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Table 8: Compare generalization performance of our compressor on video benchmarks.

Method Retention| py p | Video-MME MVBench MMBench- NextQA oo o0 | \vo (%)
Ratio Video MC OE
LLaVA-OV 100% | 1.00x 593 37.1 038 809 525 584 100
LLaVA-OV w/ FastVopiconie| 50% | 0.48x 58.8 36.1 038 805 514 582 98.9
LLaVA-OV w/ Ours 50% | 0.46x 58.8 372 038 802 52.0 58.1 99.5
LLaVA-OV W/ FastVopicontie| 25% | 0.25% 57.0 354 035 797 509 572 96.2
LLaVA-OV w/ Ours 25% | 0.22x 56.5 36.9 036 792 510 580 973
Qwen2-VL 100% | 1.00x 57.1 527 142 807 495 576 100
Qwen2-VL w/ FastVop.contie. | 50% | 0.48x 554 513 140 79.6 49.0 557 97.9
Qwen2-VL w/ Ours 50% | 0.46x 55.7 514 141 795 487 56.3 98.2
Qwen2-VL w/ FastVopcontis, | 25% | 025x 53.0 496 130 786 473 520 93.6
Qwen2-VL w/ Ours 25% | 0.22x 532 48.6 130 784 476 543 94.1
VILA 100% | 1.00x 487 317 130 704 458 552 100
VILA w/ FastVop, Conis 50% | 0.49x 48.1 315 131 701 465 55.1 100.0
VILA w/ Ours 50% | 0.47x 484 343 134 700 47.0 56.0 102.4
VILA W/ FastV op. Conte. 25% | 026 46.3 318 126 69.6 456 54.6 983
VILA w/ Ours 25% | 0.23x 474 35.0 129 700 46.7 557 1015

Table 9: Efficiency and performance comparison across different methods on MMStar. Values
marked with * indicate that the retention ratio refers to the average proportion of retained tokens
across all LLM layers, due to multi-stage compression in PDrop. For FastV, the same retention ratio
corresponds to different FLOPs when compression is applied at different layers (2nd and 4th).

Metod Rt | opyr) | erormance
LLaVA-OneVision 100% 12.9 100
LLaVA-OneVision w/FastV 25.0% 42 839
LLaVA-OneVision w/FastV 25.0% 35 66.3
LLaVA-OneVision w/PDrop 30.0%* 3.8 85.2
LLaVA-OneVision w/PDrop 25.4%%* 32 80.2
LLaVA-OneVision w/Ours 25.0% 3.1 84.8
Qwen2-VL 100% 9.6 100
Qwen2-VL w/FastV 25.0% 3.1 90.0
Qwen2-VL w/Ours 25.0% 24 91.3

Table 10: Efficiency and performance comparison across different methods on MVBench. Val-
ues marked with * indicate that the retention ratio is reported from the original paper.

Method MRatio | FLOPSD) | o on(%)
LLaVA-OneVision 100% 52.7 100
LLaVA-OneVision w/FastVID 25.0% 11.7 99.3
LLaVA-OneVision w/PruneVID 17.0%* 11.9 99.1
LLaVA-OneVision w/FastV 25.0% 16.1 95.4
LLaVA-OneVision w/VisionZip 25.0% 11.7 94.4
LLaVA-OneVision w/Ours 25.0% 11.7 99.5
Qwen2-VL 100% 48.4 100
Qwen2-VL w/FastV 25.0% 149 94.1
Qwen2-VL w/Ours 25.0% 10.9 922
VILAL.5 100% 27.0 100
VILAL.5 w/FastV 25.0% 8.2 100.3
VILA1.5 w/Ours 25.0% 6.3 1104
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Table 11: Efficiency analysis based on Qwen2-VL on MM Vet. We evaluate the inference costs in
terms of total inference time, prefilling time, FLOPs, and KV cache memory. KV cache memory is
computed with consideration of the Grouped Query Attention (GQA) used in practical inference.

Method ‘Relii':i“‘)"“ FLOPs(x) ‘ Total Inference Prefilling v Cache S;‘;‘;‘}p I;Le:lg‘lflf MM Vet
Qwen2-VL 100% 1.00x 7min58s 1min30s 71.2MB 1.00x 1.00x 52.0
Qwen2-VL w/ FastV 25% 0.27x 6min50s Omin56s 19.7MB 1.17x 1.61x 33.1
Qwen2-VL w/ PDrop 25% 0.25x 6min49s Omin55s 18.1MB 1.17x 1.64x 47.0
Qwen2-VL w/ Dart 25% 0.30% 6min51s Omin57s 21.6MB 1.16x 1.58x 44.5
Qwen2-VL w/ Ours 25% 0.24 % 6min50s Omin54s 17.8MB 1.17x 1.67x 50.8
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