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Abstract

Chest X-ray analysis in medical imaging has largely focused on single-view methods. How-
ever, recent advancements have led to the development of multi-view approaches that
harness the potential of multiple views for the same patient. Although these methods have
shown improvements, it is especially difficult to collect large multi-view labeled datasets
owing to the prohibitive annotation costs and acquisition times. Hence, it is crucial to
address the multi-view setting in the low data regime. Pre-training is a critical component
to ensure efficient performance in this low data regime, as evidenced by its improvements in
natural and medical imaging. However, in the multi-view setup, such pre-training strate-
gies have received relatively little attention and ImageNet initialization remains largely the
norm. We bridge this research gap by conducting an extensive benchmarking study illus-
trating the efficacy of 10 strong supervised and self-supervised models pre-trained on both
natural and medical images for multi-view chest X-ray classification. We further examine
the performance in the low data regime by training these methods on 1%, 10%, and 100%
fractions of the training set. Our best models yield significant improvements compared to
existing state-of-the-art multi-view approaches, outperforming them by as much as 9.9%,
8.8% and 1.6% on the 1%, 10%, and 100% data fractions respectively. We hope this bench-
mark will spur the development of stronger multi-view medical imaging models, similar to
the role of such benchmarks in other computer vision and medical imaging domains. As
open science, we make our code publicly available to aid in the development of stronger
multi-view models.
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1. Introduction

Medical imaging analysis has benefited significantly from improvements in deep learning and
computer vision in recent years (Rajpurkar et al., 2020, 2021). These developments have
been largely enabled by the availability of large chest X-ray datasets. However, most existing
methods (Rajpurkar et al., 2017, 2018; Li et al., 2018; Cohen et al., 2019) still largely rely
on a single view (e.g. frontal) for chest X-ray analysis. In clinical practice, however, some
structures and pathologies are more readily distinguishable from a lateral X-ray (Bertrand
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et al., 2019). Hence, it is particularly appealing to develop methods that utilize multiple
views, such as frontal (PA) and lateral (L) views. To this end, recently methods have been
developed that exploit multiple views to improve chest X-ray recognition. For instance,
DualNet (Rubin et al., 2018) observed an improvement of 3% mean AUC by utilizing both
PA and L views. Similarly, Hashir et al. (Hashir et al., 2020) studied various methods of
combining PA and L views, resulting in improvements on 32 pathologies.

However, due to the challenges associated with obtaining large labeled datasets for med-
ical imaging in general and multi-view imaging in particular, it is especially pertinent to
focus on the low data regime in the multi-view setting. In such low data regimes, transfer
learning via either supervised or self-supervised pre-training has shown significant improve-
ments in both natural imaging (Xu et al., 2022; He et al., 2020; Chen et al., 2020b) and
medical imaging (Azizi et al., 2022) settings. For instance, Taher et al. (Hosseinzadeh Taher
et al., 2021) recently presented a thorough study illustrating the efficacy of various super-
vised and self-supervised learning methods for single-view medical imaging. However, in
the multi-view setup, such pre-training strategies have received relatively little attention
and ImageNet initialization remains largely the norm.

We bridge this gap by providing an extensive study of various pre-training methods for
multi-view chest X-ray classification in the low data regime. While the efficacy of super-
vised and self-supervised pre-training in medical imaging is known, our work addresses the
research gap of its applicability in the multi-view setting. Our focus on low-data regimes,
pertinent due to the high creation costs of multi-view datasets, highlights our study’s prac-
tical value, offering insights that are immediately relevant to current healthcare settings.
Specifically, we investigate the low data regime by training on 1%, 10%, and 100% fractions
of the training set. We evaluate strong supervised and self-supervised learning methods
that have demonstrated significant performance enhancements across a range of domains,
including computer vision and medical imaging.

Concretely, we study four transfer learning strategies (Fig. 1) – 1) supervised learning
on natural images, 2) self-supervised learning on natural images, 3) supervised learning
on medical images, and 4) self-supervised learning on medical images. We fine-tune these
pre-trained models for multi-view chest X-ray classification on the PadChest dataset and
achieve improvements of as much as 9.9% in the low data regime compared to existing state-
of-the-art methods. To summarize, we provide a timely benchmarking study investigating
several strong pre-training methods for multi-view chest X-ray recognition.

Briefly, our main contributions are:

• We present the first extensive multi-view benchmarking study illustrating the efficacy
of 10 strong supervised and self-supervised methods pre-trained on both natural as
well as medical images.

• We are the first to systematically study multi-view chest X-ray classification in a low-
data regime by training on various different data fractions. This data-efficient setting
is of significant practical importance owing to the huge data acquisition times and
annotation costs associated with collecting large multi-view labeled datasets.

• Our best models yield significant improvements compared to existing state-of-the-art
multi-view approaches, outperforming them by as much as 9.9%, 8.8% and 1.6% on
the 1%, 10% and 100% data fractions respectively.
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2. Related Work

Although chest radiography has been investigated extensively in the medical imaging com-
munity, most methods have relied on a single (i.e. the frontal) view. Many of these works
(Yao et al., 2017; Rajpurkar et al., 2017; Guan et al., 2018; Kumar et al., 2018; Guan et al.,
2018; Baltruschat et al., 2019) use the frontal posteroanterior (PA) view of chest x-rays
to classify different diseases. Recently, however, multiple views (frontal and lateral) have
also been used, emulating the usual radiology practice where multiple views are taken into
account for diagnosis of chest X-rays. For instance, (Rubin et al., 2018) proposed DualNet
that used two separate branches for frontal and lateral views to predict diseases. (Bertrand
et al., 2019; Hashir et al., 2020) demonstrated that including lateral views with frontal
views enhances performance on 32 PadChest labels. Building on DualNet, they introduced
a revised architecture with auxiliary losses and curriculum learning.

Recently, (Hosseinzadeh Taher et al., 2021) presented a benchmarking analysis of several
strong transfer learning techniques for medical imaging. However, in contrast to (Hossein-
zadeh Taher et al., 2021) who investigate single-view tasks, we study these pre-training
techniques for multi-view chest X-ray analysis since it is not clear a-priori that the same
trends translate to the multi-view setting owing to the unique training dynamics of multi-
view systems (Wu et al., 2020, 2022). Moreover, we focus on the data-efficient multi-view
setting, which is of great clinical relevance but has not yet been explored. Hence, our
work bridges these gaps by extensively evaluating various supervised and self-supervised
pre-training strategies for data-efficient multi-view chest X-ray analysis. More details on
related multi-view methods and pre-training methods can be found in Appendix A.

3. Methods

Fig. 1 shows an overview of our approach. In the first stage, we pre-train our networks using
one of the following three approaches: 1) Supervised learning on natural images, (2) Self-
supervised learning on natural images, or (3) Supervised learning on medical images and 4)
Self-supervised learning on medical images. In the second stage, for downstream fine-tuning
in the multi-view setting, we select the pre-trained backbone and use it to initialize both
the frontal (PA) and lateral (L) view models. This multi-view model is then fine-tuned with
the downstream data on the PadChest dataset.

Implementation Details We use the pre-trained backbones from the official imple-
mentations, using the code provided by (Hosseinzadeh Taher et al., 2021) to pre-process and
load the models. All our experiments use a ResNet50 backbone except for self-supervised
methods in the medical domain where densenet121 is the de-facto standard. We applied a
standardized set of hyperparameters across models for comparable results. All the multi-
view models are implemented in PyTorch and are trained for 100 epochs with an Adam
optimizer, a batch size of 8, and a learning rate of 1e−4 on an NVIDIA V100 GPU.

3.1. Dataset

In the past, most publicly accessible chest X-ray datasets only offered one view (frontal)
(Rajpurkar et al., 2017, 2018; Li et al., 2018; Cohen et al., 2019). However, recently, with the
availability of large chest X-ray datasets (Irvin et al., 2019; Johnson et al., 2019; Bustos et al.,
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Figure 1: Left: Four pre-training strategies – 1) Supervised learning on natural images,
2) Self-supervised learning on natural images, 3) Supervised learning on medical
images and 4) Self-supervised learning on medical images. Right: Supervised
fine-tuning with pre-trained encoders on paired frontal and lateral chest X-rays.

2020) with paired frontal and lateral views, it has become feasible to investigate the efficacy
of paired multi-view data for chest X-ray analysis. For this study, the PadChest dataset
(Bustos et al., 2020), which contains 160,868 chest x-ray images including paired frontal
(PA) and lateral views, is utilized. We selected PadChest for our benchmarking effort due to
its comprehensive annotations and diverse multi-view chest X-ray images. We prepare the
multi-view dataset using the same setup as that followed by (Hashir et al., 2020). Distinct
from prior multi-view models, we introduce a method to evaluate the efficacy of our models
on different training data fractions. To this end, we devise the following three fractions of
the train set of the PadChest multi-view dataset described above: 1%, 10%, and 100%. In
creating the 1% and 10% data fractions, we aimed to maintain a distribution of conditions
that closely mirrors the full dataset. This process involved random sampling of images to
roughly preserve the pathology distribution for each subset. This setup helps us evaluate
how decreasing dataset size affects multi-view chest X-ray classification performance. For
a fair comparison with prior works (Hashir et al., 2020), we use the same 60/20/20 split for
train, validation and test respectively, and use the AUC (Area under the ROC) metric for
evaluation. We conduct each experiment three times, with each run representing a different
randomly selected training split to obtain more accurate results.

3.2. Pre-training

For pre-training, we experiment with 10 different methods (see Fig. 2) which can be catego-
rized into the following: 1) supervised learning on natural images, 2) self-supervised learning
on natural images, 3) supervised learning on medical images, and 4) self-supervised learning
on medical images.
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Figure 2: Mean AUC of models fine-tuned on 1%, 10%, and 100% data fractions across 64
conditions compared: 5 models pre-trained on natural images and 4 on medical
images versus a random baseline (Scratch). Pre-training methods outperform
Scratch, especially in data-efficient settings (1% and 10% fractions).

Scratch refers to the baseline method, where we train the multi-view model starting
from a random initialization. For the first category, for supervised learning on natural im-
ages, we use the standard ImageNet dataset (Deng et al., 2009). Secondly, we employ the
following four strong self-supervised learning methods on natural images: MoCov2 (Chen
et al., 2020c), SimCLRv2 (Chen et al., 2020b), BYOL (Grill et al., 2020), and Barlow
Twins (Zbontar et al., 2021). These methods are representative of major seminal works
in the self-supervised domain. Thirdly, for supervised pre-training on medical images, we
leverage the Chest X-ray14 (Wang et al., 2017) which is the de-facto dataset for Chest X-
ray classification. Lastly, for self-supervised learning on the medical domain, we experiment
with MoCo-v2 (Chen et al., 2020c) and Masked Auto Encoder (MAE) (He et al., 2022) that
are pre-trained on medical data in a self-supervised fashion (Xiao et al., 2023). Further-
more, we also experiment with Robust and Efficient Medical Imaging with Self-Supervision
(REMEDIS) (Azizi et al., 2022) which is the state-of-the-art method in self-supervised
medical imaging that combines supervised transfer learning with self-supervised learning.

3.3. Multi-view Downstream Fine-tuning

For the downstream task, we use the pre-trained encoder (Fig. 1) and use it to initialize both
the frontal and lateral backbones, which are shared during training. The representations
of both these backbones are combined before finally yielding the classification prediction.
This multi-view network is trained and evaluated on the PadChest dataset, containing
paired frontal and lateral views, described above.

4. Results

In this section, we present extensive results and analyses illustrating the efficacy of various
pre-training methods for multi-view chest X-ray analysis. Concretely, we study supervised
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Table 1: Mean AUC for models fine-tuned on 1%, 10%, and 100% of multi-view labeled
data across 64 conditions, comparing 10 methods against a random initialization
baseline. Pre-training methods generally outperform the baseline, especially in
low data regimes (1% and 10% data fractions).

Domain Type Method AUC (1%) AUC (10%) AUC (100%)

- - Scratch 58.4 ± 0.98 64.2 ± 0.48 78.3 ± 0.35

Natural

Supervised ImageNet 59.7 ± 0.06 67.3 ± 0.67 79.7 ± 0.34

Self-supervised

MoCov2 64.0 ± 2.06 66.3 ± 1.26 79.2 ± 0.06
SimCLRv2 61.8 ± 1.09 65.3 ± 0.79 80.0 ± 0.45
Barlow Twins 48.9 ± 0.34 49.6 ± 0.971 76.2 ± 0.28
BYOL 54.1 ± 1.07 59.8 ± 3.45 75.7 ± 0.48

Medical

Supervised ChestX-ray14 64.4 ± 0.92 70.4 ± 1.49 80.5 ± 0.24

Self-supervised
MAE 60.8 ± 2.66 65.1 ± 1.99 81.0 ± 0.39
MoCov2 66.7 ± 0.65 67.5 ± 0.98 80.7 ± 0.53
REMEDIS 64.5 ± 3.82 71.3 ± 1.87 82.0 ± 0.35

and self-supervised learning methods trained on both natural and medical imaging domains.
Sec. 4.1 presents the benchmark of 10 different pre-training methods for data-efficient multi-
view learning. This is followed by a fine-grained analysis of the effect of different pre-training
strategies on multi-view classification in Sec. 4.2. Lastly, Sec. 4.3 compares the performance
of these pre-trained models against current SOTA multi-view methods, where it surpasses
them by significant margins, especially in the low data regime. We further delve into
the clinical effectiveness of the aforementioned pre-training methods, conducting a detailed
analysis on the 14 commonly occuring diseases featured in the ChestXray14 dataset (see
Appendix C).

4.1. Multi-view Chest X-ray Classification Benchmark

Here, we provide a thorough benchmark of 10 different methods, including 5 pre-trained on
natural images and 4 pre-trained on medical images, as illustrated in Fig. 2. For complete-
ness, we compare all the methods against a random initialization baseline. Within both the
natural and medical imaging pre-training settings, 1 method is pre-trained via supervised
learning whereas others are pre-trained via self-supervised learning owing to the superiority
of self-supervised learning witnessed in recent years. Table 1 shows the mean AUC (on 64
pathologies) across 3 labeled fractions (1%, 10% and 100%) of the multi-view PadChest
dataset (Bustos et al., 2020).

Observe that 100% here corresponds to ∼19k labeled pairs of (PA+L) views which is
especially difficult to collect, requiring years of acquisition time and hundreds of clinical
annotation hours. This issue is exacerbated for multi-view data acquisition and annotation.
Hence, it is pertinent to focus on the data-efficient fractions in the multi-view setting.

Table 1 demonstrates the significant gains achieved by leveraging supervised and self-
supervised pre-training for multi-view chest X-ray diagnosis. Except for Barlow Twins and
BYOL, all of the pre-training methods surpass the random initialization baseline used in
prior works (Rubin et al., 2018; Hashir et al., 2020) across all 3 data fractions, highlighting
the efficacy of these pre-training methods. The underperformance of Barlow Twins and

6



Supervised and Self-supervised Pre-training on Multi-view Chest X-ray Classification

BYOL suggests their optimization strategies might not be fully compatible with the intri-
cacies of multi-view chest X-ray data. Specifically, the Barlow Twins’ focus on reducing
feature redundancy could remove essential, nuanced details vital for accurate X-ray classi-
fication. Similarly, BYOL relies on an asymmetrical architecture where the online network
predicts the target network’s representation. This setup might not effectively capture the
nuanced differences between multiple views of chest X-rays. The similarity in performance
between supervised pre-training with ChestXray14 and self-supervised pre-training with
REMEDIS is notable and highlights the advantage of domain-specific pre-training. How-
ever, it is crucial to note that such direct, condition-specific supervision is often unfeasible
in real-world applications. Hence, in cases where such large labeled datasets are not readily
available, effective SSL methods like REMEDIS are pivotal.

The advantages of pre-training methods become evident in the low data regime. For
instance, in the data-efficient setting of 1% and 10%, the best methods, MoCov2 (medical)
and REMEDIS, surpass the random baseline by big margins of 8.3% and 7.1% respectively.
Hence, self-supervised and supervised pre-training is highly effective for multi-view chest
X-ray diagnosis. Given these significantly improved performances, we hope practitioners
will switch to using these pre-trained models as an alternative to random initialization.

4.2. Comparative Analysis of Pre-trained Models

To decouple the effects of different pre-training strategies and datasets on downstream
multi-view chest X-ray diagnosis, we compare the random initialization baseline against the
best performing models from the following pre-training strategies – 1) supervised learning
on natural images, 2) self-supervised learning on natural images, 3) supervised learning on
medical images, and 4) self-supervised learning on medical images.

Supervised or Self-supervised: Overall, we observe that self-supervised pre-training
tends to outperform supervised pre-training across both the natural and medical imaging
domains (see Fig. 3). This trend aligns well with the recent works (Azizi et al., 2022; Chen
et al., 2020b,c; Zbontar et al., 2021) in computer vision and medical imaging which show
the superiority of self-supervised approaches over supervised pre-training.

Natural or Medical: Across both supervised and self-supervised methods, in-domain
pre-training on medical images yields better representations for the downstream multi-view
chest X-ray classification task, as evidenced by the results in Fig. 3. This highlights the
efficacy of in-domain pre-training and emphasizes the importance of acquiring more data,
especially in the multi-view setting in the medical imaging domain.

Importance of Medical Pre-training: To show that the performance gains in our
study are primarily due to pre-training rather than the specific method used, we conduct an
ablation study with SimCLR v2 (Chen et al., 2020b) and SimCLR v2 + Medical-Pretraining
(REMEDIS) (Azizi et al., 2022). Table 2 demonstrates that the performance of REMEDIS
is largely attributed to pre-training on medical data. Specifically, the REMEDIS framework,
which builds upon SimCLR v2 by incorporating additional pre-training on various medical
datasets, demonstrates marked improvements. These results indicate that pre-training on
medical data leads to significant performance improvements. Furthermore, we conduct
additional ablation experiments to explicitly delineate the benefits of pre-training with
medical data. Detailed experimental setup and results are provided in Appendix B.
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Method Pre-train AUC (1%) AUC (10%) AUC (100%)

DualNet ✗ 52.7 62.4 80.1
Hemis ✗ 48.8 62.5 80.3
Stacked ✗ 54.0 61.7 80.4
AuxLoss ✗ 54.6 62.2 80.3

REMEDIS ✓ 64.5 ± 3.82 71.3 ± 1.87 82.0 ± 0.35

Figure 3: Left: Comparison of best-performing models across four categories. Self-
supervised pre-training on medical data outperforms all methods, significantly
exceeding the random baseline, notably in low data scenarios. Right: Compar-
ison with SOTA multi-view chest X-ray classification methods across three data
fractions (for 64 conditions). Our best pre-training model outperforms SOTA by
huge margins of 9.9%, 8.8% and 1.6% on the 1%, 10% and 100% data fractions.

4.3. Comparison with SOTA Multi-view Methods

In this section, we compare our best performing method against state-of-the-art multi-
view chest X-ray classification algorithms. As illustrated in Fig. 3, our best performing
model REMEDIS outperforms the state-of-the-art methods by huge margins of 9.9%, 8.8%
and 1.6% on the 1%, 10% and 100% data fractions. Perhaps even more strikingly, our best
performing model does not leverage any of the specialized techniques employed by the other
SOTA methods such as using auxiliary losses (Hashir et al., 2020) or combining multiple
views by computing pixel-wise statistics of the two branches (Havaei et al., 2016).

5. Conclusion

Multi-view methods are more appealing compared to single-view methods since some patholo-
gies are more readily identifiable from a particular view. However, owing to the challenges
associated with collecting large multi-view labeled datasets, it is imperative to focus on the
data-efficient setting when developing multi-view models. Pre-training is critical to yield
good performance in such low data regimes. Hence, we present the first thorough bench-
marking study illustrating the efficacy of 10 strong supervised and self-supervised models
pre-trained on both natural and medical images for multi-view chest X-ray classification.
Our best models yield significant improvements compared to existing state-of-the-art multi-
view approaches, outperforming them by as much as 9.9%, 8.8% and 1.6% on the 1%, 10%
and 100% data fractions respectively. Moreover, we observe that self-supervised learning on
medical images, followed by supervised fine-tuning on single-view chest X-ray classification,
provides the most optimal transfer learning strategy for multi-view chest X-ray analysis.
We hope this benchmark will act as a catalyst for the development of stronger multi-view
medical imaging models, analogous to the role of similar benchmarks in other domains of
computer vision and medical imaging.
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Appendix A. Detailed Related Works

A.1. Multi-view Methods

In medical imaging, multiple views have been employed for various tasks. For instance,
(Setio et al., 2016) proposed a multi-view CNN architecture that fuses candidates from
three different pulmonary nodules for detection. (Shachor et al., 2020) introduced Mixture of
Views in which they combined different views for classification of breast microcalcifications.
(Geras et al., 2017) proposed a multi-view deep CNN that takes in different views of each
breast for breast cancer screening. (Carneiro et al., 2017) used unregistered multi-view
mammograms for classification of breast cancer. MVMT (mult-view multi-task) (Kyono
et al., 2019) presented a CNN architecture to predict patient features that are related with
cancer. Similarly, (Khan et al., 2019) proposed Multi-View Feature Fusion that fused four
views in order to classify mammograms. (Bermejo-Peláez et al., 2018) employed different
views of pulmonary segment tissue for full lung classification. (Kitamura et al., 2019) utilized
multiple views for ankle fracture detection. MVP-Net (Li et al., 2019) used a multi-view
FPN (feature pyramid network) for lesion detection whereas (Lopez et al., 2022) learnt
correlations between four views of mammograms using hypercomplex neural networks for
cancer classification.

A.2. Pre-training Methods

Self-supervised and supervised learning methods trained on both natural and medical imag-
ing domains are generally used for pre-training downstream networks. Self-supervised
Learning (SSL) is a type of representation learning method where unlabeled data is lever-
aged to learn meaningful representations. Following (Hosseinzadeh Taher et al., 2021), we
analyze the several types of pre-training methods. One of the seminal works from these
methods, SimCLR (Chen et al., 2020a) showed that composing different augmentations,
using an extra non-linear projection head, and (3) using bigger batch sizes improves perfor-
mance in the SSL domain. MoCo (He et al., 2020) bypassed the need for large batch sizes
by introducing a novel dynamic dictionary that saves the encoded keys in a queue. BYOL
(Grill et al., 2020) introduced a novel method where the online network tries to predict
the representation of the target network when each network is given a different augmented
input image. Unlike the previous methods, this does not require any negative pairs. Barlow
Twins (Zbontar et al., 2021) outperformed the previous methods by proposing a simple
mechanism in which the cross-correlation matrix of two embedded representations of the
distorted images is calculated and is then made as close to the identity matrix. Masked
Autoencoders (MAE) (He et al., 2022) is a self-supervised technique in which the input
image is divided into patches, and the network is trained to predict the masked parts of
the image. Particularly, the decoder component of the network is provided with the input
containing the masked segments to reconstruct the original image, while the encoder is not
fed with the masked parts. By training the network to predict the masked parts of the
image, MAE essentially learns to extract meaningful representations from the image, which
can then be used for downstream tasks. Specifically, for self-supervised learning in the
medical domain, (Azizi et al., 2022) introduced Robust and Efficient Medical Imaging with
Self-Supervision (REMEDIS), a strategy that improves the robustness and data efficiency
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in medical imaging domain. By integrating large-scale supervised transfer learning with
self-supervised learning, REMEDIS minimizes the need for task-specific adjustments.

For supervised pre-training on natural images, ImageNet pre-training (Deng et al., 2009)
has been the de-facto standard. In the medical imaging domain, it is customary to employ
pre-trained networks on the widely recognized ChestX-ray14 dataset (Wang et al., 2017)
for conducting chest X-ray analysis.

In our work, by leveraging the previously mentioned prominent methods in super-
vised and self-supervised learning, we analyze the efficacy of 10 strong supervised and
self-supervised models pre-trained on both natural and medical images for multi-view chest
X-ray classification.

Appendix B. Importance of Pre-training

Table 2 shows the importance of medical pre-training as indicated by the superior perfor-
mance of SimCLR v2 + Medical-Pretraining (REMEDIS) compared to SimCLR v2.

Table 2: Ablation study showing the impact of pre-training on medical data.
Method AUC (1%) AUC (10%) AUC (100%)

Scratch 60.7 ± 1.02 67.1 ± 0.43 81.2 ± 0.837
SimCLR v2 65.3 ± 1.67 69.4 ± 1.60 81.3 ± 0.381
SimCLR v2+Med-Pretrain (REMEDIS) 69.0 ± 3.67 73.7 ± 1.26 84.3 ± 2.39

To further investigate the impact of fine-tuning on single-view medical data, we conduct
additional experiments using the MoCo-v2 and MAE methods. These experiments aim to
isolate the benefits of pre-training by comparing performance before and after fine-tuning
on single-view medical images. The results of these experiments are shown in Table 3 below.

Table 3: Ablation study showing the impact of fine-tuning on single-view medical data.
Method (Medical) AUC (1%) AUC (10%) AUC (100%)

MoCo-v2 66.7 ± 0.65 67.5 ± 0.98 80.7 ± 0.53
MoCov2-FT 70.3 ± 0.74 69.2 ± 0.78 82.2 ± 0.32
MAE 60.8 ± 2.66 65.1 ± 1.99 81.0 ± 0.39
MAE-FT 70.0 ± 0.42 69.2 ± 0.94 81.5 ± 0.18

For this study, we first experiment with the MoCo-v2 and MAE models that are pre-
trained on medical image datasets. Furthermore, we also experiment with MoCo-v2 and
MAE, first pre-trained on medical images and then finetuned on single-view NIH Chest
X-ray data. We refer to these fine-tuned models as MoCov2-FT and MAE-FT, respectively.

Since multi-view labeled data can be hard to acquire, we investigated whether it is
beneficial to fine-tune the self-supervised pre-trained models on single-view classification
before fine-tuning them further for multi-view classification. Comparing the results of MAE
with MAE-FT and MoCo-v2 with MoCov2-FT, we clearly observe that additional fine-
tuning on single-view classification is greatly beneficial and significantly improves the multi-
view classification performance.
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Table 4: Mean AUC (across 14 conditions) of models fine-tuned on 1%, 10%, and 100%
fractions of the multi-view labeled data. 10 different methods are compared against
a random initialization baseline. The pre-training methods generally outperform
the random baseline, with the largest gains on low data regime (1% and 10% data
fractions).

Domain Type Method AUC (1%) AUC (10%) AUC (100%)

- - Scratch 60.7 ± 1.02 67.1 ± 0.43 81.2 ± 0.837

Natural

Supervised ImageNet 60.4 ± 3.43 70.9 ± 0.95 81.5 ± 0.022

Self-supervised

MoCo v2 65.4 ± 4.11 69.2 ± 0.28 81.3 ± 0.473
SimCLR v2 65.3 ± 1.67 69.4 ± 1.60 81.3 ± 0.381
Barlow Twins 47.8 ± 2.14 47.9 ± 1.80 79.6 ± 0.441
BYOL 56.0 ± 0.51 59.0 ± 0.04 77.9 ± 0.841

Medical

Supervised ChestX-ray14 70.4 ± 0.07 76.7 ± 1.40 84.1 ± 0.026

Self-supervised
MAE 61.1 ± 4.03 68.4 ± 1.52 83.5 ± 0.100
MoCo-v2 -Med 70.0 ± 1.24 71.3 ± 1.04 82.6 ± 1.194
REMEDIS 69.0 ± 3.67 73.7 ± 1.26 84.3 ± 2.39

As presented in Table 3, the results show the benefits of fine-tuning on medical data.
Both MoCov2-FT and MAE-FT outperform their respective base models (MoCo-v2 and
MAE) across all AUC metrics.

Appendix C. Detailed Results Across 14 Clinically Relevant Diseases

Here, we investigate the clinical efficacy of the aforementioned pre-training methods by
performing a fine-grained analysis on the 14 common diseases covered in ChestX-ray14.
In contrast to the 64 conditions studied earlier, some of which might not be very clinically
relevant (e.g. electrical device), Table 4 and Fig. 4 compare the AUC scores when evaluated
on these 14 clinically relevant diseases. In addition, we also compare the results for these
14 clinically relevant diseases with state-of-the-art methods, as detailed in Table 5.

For reference, the 14 clinically relevant diseases are: Atelectasis, Cardiomegaly, Consoli-
dation, Emphysema, Hernia, Infiltrates, Mass, Nodule, Pleural Effusion, Pleural Thickening,
Pneumonia, Pneumothorax, Pulmonary Edema, and Pulmonary Fibrosis.
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Figure 4: Mean AUC (across 14 clinically relevant conditions) of models fine-tuned on 1%,
10% and 100% fractions of the multi-view labeled data. 10 different models are
evaluated including 5 pre-trained on natural images and 4 pre-trained on medical
images which are compared against a random initialization baseline. The pre-
training methods consistently outperform the baseline, with the largest gains on
the data-efficient settings.

Table 5: Comparison with SOTA multi-view chest X-ray classification algorithms across
three labeled fractions (for clinically relevant 14 conditions). Our best pre-trained
model outperforms the SOTA methods by significant margins.

Method AUC (1%) AUC (10%) AUC (100%)

DualNet 52.4 64.5 82.8
Hemis 50.4 66.1 82.6
Stacked 56.7 63.0 83.3
AuxLoss 56.1 62.9 82.4
REMEDIS 69.0 ± 3.67 73.7 ± 1.26 84.3 ± 2.39
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