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ABSTRACT

Accurate spatio-temporal prediction is pivotal for optimizing transportation systems
and enhancing urban management. However, the practical application of cutting-
edge graph neural network (GNN)-based methods for these tasks encounters chal-
lenges, particularly regarding their ability to generalize. GNN-based approaches
have shown promise in capturing intricate spatial and temporal dependencies found
in traffic and crime data. They utilize graph structures to model relationships
between locations or entities, enabling the prediction of traffic patterns and crime
incidents. Nonetheless, a key challenge involves ensuring that these models can
effectively generalize to unseen scenarios and adapt to varying spatio-temporal
data distributions. To tackle this challenge, we present a lightweight and effective
prompt learning paradigm called as PromptST. This framework serves as an adap-
tation of pretrained spatio-temporal prediction models, specifically designed to
handle the dynamics of spatial and temporal distributions. In the context of spatio-
temporal prediction, our prompt tuning incorporates a simple prompt network into
the pretrained model. By automatically learning informative prompt contexts that
encapsulate the underlying spatial and temporal patterns from unseen data, the
spatio-temporal prompt network guides the pretrained model to successfully adapt
and learn from new data distributions. Our proposed prompt learning framework
has been extensively evaluated on various spatio-temporal datasets, and the results
demonstrate its effectiveness. Across multiple spatio-temporal prediction tasks, our
PromptST achieves state-of-the-art prediction accuracy while maintaining compu-
tational efficiency, showcasing its superiority in capturing complex dependencies
and adapting to varying data distributions across time and space.

1 INTRODUCTION

Spatio-temporal prediction in urban computing is a vital task that involves forecasting and estimating
future states, events, or patterns within urban environments, considering both spatial and temporal
dimensions. It has greatly enhanced the modeling of intricate dependencies and improved prediction
performance in a wide range of domains, such as traffic prediction (Lan et al., 2022), crime forecast-
ing (Li et al., 2022), and environmental monitoring (Yi et al., 2018). Recently, significant strides have
been made in the field of spatio-temporal graph neural networks (GNNs) to achieve state-of-the-art
performance in spatio-temporal prediction (Jin et al., 2023b; Wang et al., 2022). Spatio-temporal
GNNs leverage the power of graph structures by extending convolutional and attentive neural net-
works. They excel at capturing spatial relationships and effectively propagating information across
the graph, enabling them to model intricate dependencies present in spatio-temporal urban data (Shao
et al., 2022). The learning process of these models involves training on spatio-temporal data to learn
the model parameters, which are then used to make predictions on unseen testing data.

Significant progress has been made in the development of spatio-temporal graph neural architectures.
However, a fundamental challenge arises from the assumption of a consistent distribution between
the training and testing spatio-temporal data. In real-life urban scenarios, the testing distribution
often experiences uncontrolled and unknown shifts compared to the training distribution. These
shifts can be attributed to changes in urban dynamics, evolving environmental conditions, or shifts in
population behavior. For instance, traffic patterns may be influenced by infrastructure developments
or alterations in commuting habits. Additionally, unpredictable events like large-scale gatherings or
urban crimes can have a substantial impact on spatio-temporal patterns. As a result, the presence
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of these distribution shifts poses a significant obstacle to the accurate performance of existing
spatio-temporal prediction models, leading to inaccurate predictions and reduced reliability.

In this study, we present a new spatio-temporal prompt learning paradigm called PromptST, de-
signed to improve the generalization capability of spatio-temporal prediction models when dealing
with unseen data and changing distributions. Our approach draws inspiration from the successful
application of prompt-tuning techniques in the field of textual data (Wei et al., 2021; Yao et al.,
2022). Specifically, by integrating a specially designed prompt neural network into pretrained models,
PromptST enables effective adaptation and generalization to the unseen spatio-temporal prediction
context. Our paradigm allows downstream tasks to provide customized prompts that explicitly guide
the predictions of sophisticated yet computationally intensive spatio-temporal neural networks.

Our lightweight PromptST framework brings two key benefits for advancing spatio-temporal predic-
tion: i) Efficiency. It allows for fine-tuning specific prompt parameters rather than the entire model,
resulting in faster training and inference time. By updating only a subset of parameters in our simple
spatio-temporal prompt network, we effectively mitigate the risk of overfitting that can occur with
heavy, pretrained spatio-temporal neural architectures. ii) Adaptability. Our PromptST provides
a flexible mechanism to adapt the spatio-temporal model’s behavior to distribution shift. As our
prompt learning component is specifically designed to capture the relevant spatio-temporal context
and distribution characteristics from unseen data, it allows the model to align its predictions with the
shifted data distribution. In a nutshell, this work makes the following main contributions:

• This work aims to enhance the adaptability of spatio-temporal models in effectively addressing
distribution shifts, which are frequently encountered in real-world scenarios characterized by
spatial and temporal dynamics. The improved adaptability of the model enables it to maintain high
performance even when faced with changing or previously unseen data.

• This study presents PromptST, a novel spatio-temporal prompt learning paradigm that integrates a
simple prompt network with prediction models, allowing for effective adaptation and generalization
in customized spatio-temporal contexts. Additionally, in-depth analysis is provided to justify the
model’s capability in alleviating distribution shifts and achieving enhanced efficiency.

• We perform extensive experiments on a range of spatio-temporal prediction tasks using diverse
datasets to thoroughly evaluate the effectiveness, efficiency, and robustness of our proposed frame-
work. Through comparisons with numerous state-of-the-art methods, we obtain compelling results
that strongly validate the superiority of our approach. To facilitate result reproducibility, we provide
the model implementation which can be accessed at https://anonymous.4open.science/r/PromptST.

2 RELATED WORK

Spatio-Temporal Forecasting. Spatio-temporal prediction holds significant importance in a wide
range of domains, such as transportation, epidemiology, and public safety. To tackle this challenge,
considerable efforts have been devoted to developing various neural network architectures capable
of capturing complex spatial and temporal correlations across different time slots and locations.
For instance, recurrent neural networks (RNNs) (Lv et al., 2018; Ding et al., 2022), attention
mechanisms (Luo et al., 2021; Xu et al., 2020) and temporal convolutional networks (Wu et al.; Bai
et al., 2020), have been successfully employed to capture the transitional patterns present in spatio-
temporal data, further enhancing the predictive capabilities of the models. Recent advancements
have focused on designing spatio-temporal graph neural networks (GNNs) (Zhu et al.; Han & Gong,
2022; Lan et al., 2022) to effectively encode spatial correlations among different locations. These
approaches leverage the inherent graph structure of the data, allowing for the high-order modeling of
interactions between spatially connected nodes, thereby enhancing the accuracy and provide state-of-
the-art performance. However, a prevailing challenge faced by most existing spatio-temporal models
is their limited capability to handle distribution shifts in the context of spatio-temporal dynamics.

Prompt-tuning Techniques. The objective of prompt-tuning is to optimize and fine-tune prompts
in order to improve the performance and generalization of pretrained models on specific tasks or
domains. Inspired by the success of prompt-tuning in language modeling, researchers have extended
its application to various domains, such as computer vision (Jia et al., 2022; Bahng et al., 2022) and
graph neural networks (GNNs) (Sun et al., 2022; Fang et al., 2022). For example, Liu etal Fang et al.
(2022) unifies graph pre-training and downstream tasks into a common task template. Motivated
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Figure 1: Architecture Overview of the Spatio-Temporal Prompt Learning Paradigm PromptST.

by these advancements, this work introduces a spatio-temporal prompt learning framework that
leverages the success of prompt-tuning to customize and refine pretrained models, providing an
effective solution to improve their adaptability in the context of spatio-temporal dynamics.

3 METHODOLOGY

This section provides a detailed elaboration on the proposed PromptST framework, including the
spatio-temporal prediction task, the spatio-temporal prompt tuning paradigm, and in-depth theoretical
analysis on our PromptST framework. Figure 1 illustrates the overall architecture of PromptST.

3.1 SPATIO-TEMPORAL PREDICTION

Spatio-temporal (ST) prediction focuses on forecasting data that is spatially and temporally distributed
in urban scenarios. Examples of such predictions include estimating traffic volumes on roads (Pan
et al., 2019) and predicting the number of crime cases in different regions (Huang et al., 2018).

Spaio-Temporal Data. Formally, the target spatio-temporal data can be denoted by a three-way tensor
X ∈ RR×T×F , where R denotes the number of spatial regions (e.g. urban districts, road segments),
T denotes the number of time slots (e.g. quarters, hours, days), and F denotes the dimensionality of
the concerned features (e.g. the number of crime types). An element Xr,t,f ∈ R denotes the value of
the f -th feature for the r-th region in the t-th time slot. And Xt ∈ RR×F is the time-specific matrix.

Spaio-Temporal Graph. Besides the spatio-temporal data X , it is common to work with a spatio-
temporal graph that records the correlations between the regions and the time slots. This graph can be
represented as G = (V, E ,X), where V is a set of nodes representing urban regions, and E is the set
of edges that encode both the spatial interrelations and the temporal transition relations between the
region nodes. The node set V is associated with a node feature matrix X = {x1, x2, ..., x|V|} ∈ R|V|×d,
where xi ∈ Rd represents the d-dimensional feature vector of the node vi.

Task Formalization. Based on the above definitions, the spatio-temporal prediction task is to predict
the future values of the ST tensor X , with the help of the historical records of X and the ST graph G.
This can be formalized as learning a spatio-temporal model g(·) with parameter set Θg as follows:

(Xt+1,Xt+2, · · · ,Xt+T ′) = g(Xt−T+1,Xt−T+2, · · · ,Xt,G;Θg) (1)

3.2 SPATIO-TEMPORAL PROMPT TUNING

3.2.1 PRETRAINING AND TUNING PARADIGM

In real urban scenarios, spatio-temporal data typically exhibits daily variations, resulting in a dynamic
and evolving distribution. However, these variations pose a challenge for the existing ST models
trained using static method, limiting their ability to accurately predict new data that is temporally
distant from the historical training samples. To fill this gap, our PromptST framework adopts the
pretraining and tuning paradigm. It requires the ST model, pretrained on fixed historical data, to
continuously adapt to newly updated data. This enables the model to maintain its predictive accuracy
over time, effectively capturing the evolving nature of the spatio-temporal data. In this pretraining and
tuning paradigm, we split the entire ST data into three subsets X = (Xpre,Xtun,Xtst), as follows:

Xpre = Xt−T+1:t−T+Tpre
, Xtun = Xt−T+Tpre+1:t, Xtst = Xt+1:t+T ′ (2)

Here, the pretraining data Xpre, tuning data Xtun, and test data Xtst are arranged in chronological
order. The index t denotes the time slot separating the test data from the other two sets. T indicates the
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total number of time slots in the combined pretraining and tuning data, Tpre, T
′ represents the length

of the training data and the test data, respectively. Following the pretraining and tuning paradigm, ST
models are pretrained on Xpre, finetuned on the new data Xtun, and ultimately evaluated on Xtst.

A common approach following this paradigm is the pretrain-and-finetune method (Fang et al., 2022),
which involves fine-tuning a pretrained model on newly updated data for model adaptation. However,
the fine-tuning process can be computationally expensive, particularly for heavy but accurate ST
models based on GNNs. In light of the effectiveness and efficiency of prompt tuning (Sun et al., 2023)
in adapting pretrained models to unseen data, our PromptST proposes a prompt tuning approach for
ST prediction, enabling efficient adaptation. Specifically, instead of fine-tuning the entire ST model
on new data, PromptST fixes the pretrained model during the tuning process, and optimizes a prompt
network for model adaption. This prompt tuning method can be described as the objective below:

argmin
Θh

L(g(h(Xtun,G;Θh);Θg),Xtun), where Θg = argmin
Θg

L(g(Xpre;Θg),Xpre) (3)

where h(·), g(·) denote the prompt neural network and the original ST model, respectively. Their
contained parameters are referred as Θh,Θg , respectively. L(·) denotes the loss function such as the
squared mean error. This equation presents the two-step optimization process of our prompt tuning
framework. In the first phase, the original ST model g(·) is optimized using the pretraining data
Xpre. Here g(·) can be any proposed ST model. In the second phase, our PromptST optimizes the
plug-in prompt neural network h(·) using the newly updated data Xtun. It mitigates the distribution
shift of the new data Xtun by learning a transformation, adapting Xtun to the pretrained ST model
g(·) customized to the old data Xpre. Compared to fine-tuning the entire ST model f(·), our prompt
neural network g(·) is able to achieve comparable or even better performance with much less training
steps, due to its lightweight network architecture which is easier to optimize.

3.2.2 TIME-AWARE PROMPT NETWORK

To capture the essential temporal dependencies that impact the region relationships in spatio-temporal
data, we integrate a temporal convolutional network (TCN) into our prompt neural network. This
fusion introduces dynamism into the transformed features. In formal terms, the operation of our
PromptST, which combines the prompt neural network with TCN, can be described as follows:

X̃r,t = W4H̄r,t + Xr,t, H̄r = σ(W3H̃r + b2), H̃r = σ(δ(W2 ∗ Hr + b1)), Hr,t = W1Xr,t (4)

where X̃ ∈ RR×Ttun×F denotes the spatio-temporal data transformed by our prompt network, with
Ttun = T − Tpre denoting the number of time slots in the tuning data.H̄ ∈ RR×Ttun×d denotes the
intermediate embedding with hidden dimensionality d. The results of the TCN, which convolves
the original Ttun temporal dimensions into T ′

tun dimensions, are denoted by H̃ ∈ RR×T ′
tun×d. H ∈

RR×Ttun×d denotes the initial embeddings for all regions and time slots. The learnable parameters
of our prompt neural network are W4 ∈ RF×d, W3 ∈ RTtun×T ′

tun , W2 ∈ R(Ttun−T ′
tun+1)×1,

W1 ∈ Rd×F , and b1,b2 ∈ Rd. And ∗ denotes the convolution operator. σ(·), δ(·) denote the ReLU
activation and the dropout function, respectively. A skip connection is utilized in the final layer of our
prompt network, to directly utilize the original ST data. The output X̃ of our prompt network has the
same dimensionality as the original ST data X , and thus can be seamlessly used by any ST model.

3.3 IN-DEPTH DISCUSSION

This section makes further discussions to study two research questions: i) How does the prompt net-
work alleviate the distribution shift of spatio-temporal data? ii) How is the efficiency of the proposed
PromptST in comparison to the fine-tuning method and spatio-temporal prediction baselines?
Prompt Network as Data Projector. Our PromptST model leverages vanilla spatio-temporal
prediction loss functions, such as mean absolute error (MAE), to optimize and maximize the accuracy
of the final spatio-temporal (ST) prediction task. While no explicit constraints are placed on mitigating
distribution shifts, we demonstrate that our prompt network design is inherently trained to function as
a data editor for the original ST data. This is evident through the following observations:

∂L
∂θ

=
∂L
∂X̃

· ∂X̃
∂θ

=
∂L

∂(X +∇X )
· ∂∇X

∂θ
, where∇X = W4H̄ (5)
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Here ∇X denotes the adjustable output of our prompt network. By incorporating a skip connection
to include the original data X , ∇X functions as an editing component. The equation presented
decomposes the gradient of the loss function L with respect to a specific learnable parameter θ from
the prompt network into two components: the gradient of L with respect to the edited ST data, and
the gradient of the editing value with respect to the parameter θ. In essence, the training objective of
our PromptST is to learn a spatio-temporal data editor that yields improved performance.

Model Efficiency Analysis. We demonstrate the efficiency advantages of our PromptST from two
perspectives: a comparison of the number of parameters and a comparison of time complexity. Firstly,
we observed that the optimization operations in both the pretraining phase and the tuning phase are
nearly identical. The only difference lies in the parameter set used, as illustrated below:

Pretraining: θ := θ − η · ∂L
∂θ

, θ ∈ Θg; Prompt Tuning: θ := θ − η · ∂L
∂θ

, θ ∈ Θh (6)

The two phases employ the same MAE loss function L (Wu et al.) and the same learning rate η.
However, there is a significant difference in the number of parameters, as empirically |Θg| > C×|Θh|
where |Θ| denotes the number of parameters and C ≥ 10. This confers a substantial efficiency
advantage to the tuning phase of our PromptST, not only by reducing the number of optimization
operations but also by facilitating easier convergence during the optimization process.

Secondly, the pretrained model is GNN-based which has a higher time complexity due to its costly
graph information propagation paradigm. While our lightweight prompt tuning network consists of
only 2-layer TCN and 2 fully-connected layers. Specifically, the time complexity of the GNN-based
pretrained model is O(|E|×L×d), where |E| denotes the number of edges, and L denotes the number
of graph layers. In contrast, the prompt tuning neural network f(·) only requires O(L′ × d2) for
prompt training, where L′ represents the number of MLP layers, and d is the hidden dimensionality.

In conclusion, our analysis of the number of parameters and time complexity shows that the proposed
prompt learning model outperforms GNN-based ST models in terms of tuning efficiency. This makes
it a promising framework for large-scale data in real-world spatial-temporal prediction scenarios.

4 EXPERIMENTS

We assess the performance of our PromptST through evaluations on two spatio-temporal prediction
tasks: traffic prediction and crime forecasting. The experiments aim to address the following research
questions: 1) RQ1: How does our PromptST compare to various state-of-the-art baselines in terms of
performance? 2) RQ2: What is the impact of each component on the performance of our PromptST?
3) RQ3: How does the efficiency of our PromptST compare to other state-of-the-art methods? 4)
RQ4: What effects do different hyperparameter settings have on the performance of our PromptST?

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate PromptST’s performance on traffic prediction and crime prediction using a set
of real-life datasets. These datasets include 8 traffic flow datasets (PeMSD04, PeMSD07, PeMSD03,
PeMSD08, and PeMS-Bay as point-based datasets, and NYTaxi, CHIBike, and TDrive as grid-based
datasets) as well as 2 crime datasets from New York and Chicago. The traffic data is collected at
varying intervals of 5 minutes, 30 minutes, or 60 minutes. Following previous studies (Bai et al.,
2020; Diao et al., 2019), we build the urban spatial graph upon the road network for traffic datasets.
For crime prediction, four crime types are employed. Specific data statistics are presented in Table 7.

Evaluation Metrics. We closely follow the same settings in (Li et al., 2018; Chen et al., 2011; Zhu
et al.; Li & Zhu, 2021) by utilizing the same evaluation metrics and data splits. For point-based traffic
datasets, we predict the traffic in the next 12 time slots using traffic records in the previous 12 time
steps. For the grid-based traffic prediction, we adopt 2 historical time steps to predict the next 2 time
steps. Three metrics are used for evaluating both tasks, including Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and Root Mean Squared Error (MAPE). For crime prediction
task, we follow the same setting of (Xia et al., 2022) and use MAE and MAPE as metrics.

Baselines. We conduct a comparative analysis of our PromptST framework against various baselines
on two spatio-temporal prediction tasks. To ensure a fair comparison for traffic prediction, we adopt
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Table 1: Overall performance of traffic prediction on PeMSD4, PeMSD8, PeMSD3 and PeMSD7.
Models PeMSD04 PeMSD08 PeMSD03 PeMSD07 PeMS-Bay

MAE RMSE MPAE MAE RMSE MPAE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
HA 38.03 59.24 27.88% 34.86 52.04 24.07% 31.58 52.39 33.78% 45.12 65.64 24.51% 2.88 5.59 6.82%

VAR 24.54 38.61 17.24% 19.19 29.80 13.10% 23.65 38.26 24.51% 50.22 75.63 32.22% 2.32 5.25 5.61%
DSAN 22.79 35.77 17.12% 17.14 26.96 11.32% 21.29 34.55 23.21% 31.36 49.11 14.43% 2.16 4.97 5.54%

DCRNN 24.70 38.12 14.17% 17.86 27.83 11.45% 17.99 30.31 18.34% 25.22 38.61 11.82% 2.07 4.74 4.90%
STGCN 22.70 35.55 14.59% 18.02 27.83 11.40% 17.55 30.42 17.34% 25.33 39.34 11.21% 2.42 5.33 5.58%
GWN 25.45 39.70 17.29% 19.13 31.05 12.68% 19.12 32.77 18.89% 26.39 41.50 11.97% 1.95 4.52 4.63%

ASTGCN 22.93 35.22 16.56% 18.25 28.06 11.64% 17.34 29.56 17.21% 24.01 37.87 10.73% 2.10 4.77 5.30%
LSGCN 21.53 33.86 13.18% 17.73 26.76 11.30% 17.94 29.85 16.98% 27.31 41.16 11.98% 2.13 4.82 5.18%

STSGCN 21.19 33.65 13.90% 17.13 26.86 10.96% 17.48 29.21 16.78% 24.26 39.03 10.21% 2.10 4.74 5.28%
AGCRN 19.83 32.26 12.97% 15.95 25.22 10.09% 15.98 28.25 15.23% 22.37 36.55 9.12% 1.96 4.57 4.69%
STFGNN 19.83 31.88 13.02% 16.64 26.22 10.60% 16.77 28.34 16.30% 22.07 35.80 9.21% 1.83 4.33 4.19%
STGODE 20.84 32.82 13.77% 16.81 25.97 10.62% 16.50 27.84 16.69% 22.99 37.54 10.14% 2.02 4.40 4.72%

Z-GCNETs 19.50 31.61 12.78% 15.76 25.11 10.01% 16.64 28.15 16.39% 21.77 35.17 9.25% 2.03 4.38 4.71%
TAMP 19.74 31.74 13.22% 16.36 25.98 10.15% 16.46 28.44 15.37% 21.84 35.42 9.24% 2.04 4.45 4.76%

DSTAGNN 19.30 31.46 12.70% 15.67 24.77 9.94% 15.57 27.21 14.68% 21.42 34.51 9.01% 2.13 4.79 5.32%
FOGS 19.74 31.66 13.05% 15.73 24.92 9.88% 15.89 25.74 15.13% 21.28 34.88 8.95% 2.07 4.51 4.80%

PromptST 19.42 31.54 13.02% 15.52 24.69 10.06% 14.87 24.73 14.29% 20.72 33.37 8.76% 1.70 3.81 3.77%

Table 2: Performance of PromptST based on different backbones on PeMS-Bay data.
ASTGCN STGCN MTGNN AGCRN STSGCN

Mertics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
Pretrained Model 2.28 4.53 5.44% 2.43 5.47 6.01% 2.01 4.32 4.65% 1.84 4.02 4.22% 2.21 4.96 5.26%
Prompt Tuning 1.96 4.31 4.64% 2.03 4.45 4.88% 1.70 3.81 3.77% 1.72 3.79 3.83% 1.87 4.10 4.21%

the same experimental settings as described in the studies (Chen et al., 2021a; Rao et al., 2022) for
predicting point-based traffic data (i.e., PeMSD03, PeMSD04, PeMSD07, PeMSD08, PeMS-Bay)
and the research works (Yao et al., 2018; Yao et al.) for forecasting grid-based traffic data (i.e.,
NYCTaxi, T-Drive, CHIBike). For crime prediction, we select the baselines based on the same
experimental setup as presented in (Xia et al., 2021). Baseline details can be found in Appendix A.7.

4.2 OVERALL EFFECTIVENESS

We evaluate the effectiveness of our PromptST by comparing it to baselines on traffic prediction and
crime prediction. PromptST in these experiments utilizes the lightweight MTGNN as the backbone
model. We also evaluate the performance of PromptST with different backbone models. The results
are presented in Table 1 (point-based traffic prediction), Table 8 (grid-based traffic prediction), Table 3
(crime prediction), and Table 2 (impact of backbone models). We make the following observations.

• Superior performance: Our PromptST framework consistently outperforms the state-of-the-art
baseline methods across the three evaluated tasks: grid-based traffic prediction, point-based traffic
prediction, and crime prediction. This demonstrates the effectiveness of our prompt learning
network in capturing distribution shifts between the pretrained and tuning data. In contrast, existing
baselines experience a decline in performance due to the distribution gap. Furthermore, the notable
performance gain observed in the crime prediction task showcases the capability of PromptST in
handling sparse and heterogeneous spatio-temporal data, such as crimes. These advantages can be
primarily attributed to our carefully designed spatio-temporal prompt tuning paradigm with the
successful injection of spatio-temporal context distilled from the downstream data.

• Significant improvements on large-scale data: It is important to highlight that our PromptST
exhibits a considerably larger performance gap compared to the baselines when evaluated on the
large-scale dataset PeMS-Bay. This outcome can be attributed to the heightened difficulty faced by
non-adaptive baselines in handling the substantial distribution shift present in PeMS-Bay, which
encompasses a broader time range. In contrast, our PromptST effectively addresses this challenge
by adeptly adapting itself to the shifted domain through its prompt tuning network.

• Variations among different backbone models: While our prompt tuning paradigm in PromptST
effectively mitigates the distribution shift issue for all backbone models listed in Table 2, a notable
difference in performance is observed, particularly for STGCN and STSGCN compared to the
other three backbones. We attribute the larger performance gap for STGCN and STSGCN to their
relatively weaker generalization ability, as they solely rely on GNNs for spatio-temporal modeling,
making them more susceptible to overfitting the observed data. In contrast, MTGNN and AGCRN
incorporate TCN modules to capture temporal dynamics, while ASTGCN incorporates an auxiliary
temporal modeling view using the GRU network. Such diverse modeling techniques enhance the
generalization ability of these models, resulting in a smaller disparity in performance.
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Table 3: Overall oerformance of urban crime prediction on NYC and CHI datasets.

Model
New York City Chicago

Burglary Larceny Robbery Assault Theft Battery Assault Damage
MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

ARIMA 0.8999 0.6305 1.3015 0.6268 0.9558 0.5969 0.9983 0.6198 1.5965 0.5720 1.3212 0.5792 0.8691 0.6044 1.0430 0.6134
SVM 1.1604 0.7653 1.4979 0.6417 1.1278 0.6733 1.1928 0.6964 1.7711 0.5629 1.3493 0.6027 1.0879 0.6560 1.1313 0.5721

STResNet 0.8680 0.5603 1.1082 0.5329 0.8717 0.5209 0.9645 0.5749 1.3931 0.5488 1.1519 0.5719 0.7679 0.4633 0.9064 0.5018
DCRNN 0.8176 0.5324 1.0732 0.5492 0.9189 0.5532 0.9692 0.5955 1.3699 0.5770 1.1583 0.5528 0.7639 0.4600 0.8764 0.4756
STGCN 0.8366 0.5404 1.0629 0.5295 0.9035 0.5441 0.9375 0.5757 1.3628 0.5359 1.1512 0.5761 0.7963 0.4810 0.9068 0.4959
GWN 0.7993 0.5235 1.0493 0.5405 0.8681 0.5351 0.8866 0.5646 1.3211 0.5502 1.1331 0.5503 0.7493 0.4580 0.8584 0.4850

STtrans 0.8617 0.5592 1.0896 0.5478 0.8839 0.5651 0.9363 0.5679 1.3404 0.5356 1.1466 0.5684 0.7671 0.4499 0.8987 0.4842
DeepCrime 0.8227 0.5508 1.0618 0.5351 0.8841 0.5537 0.9222 0.5677 1.3391 0.5430 1.1290 0.5389 0.7737 0.4616 0.9096 0.4960

STDN 0.8831 0.5768 1.1442 0.5889 0.9230 0.5649 0.9498 0.5661 1.5303 0.6287 1.2076 0.5791 0.8052 0.4820 0.9169 0.4869
ST-MetaNet 0.8285 0.5369 1.0697 0.5627 0.9214 0.5766 0.9323 0.5702 1.3369 0.5369 1.1762 0.5748 0.7904 0.4753 0.8907 0.4756

GMAN 0.8652 0.5633 1.0503 0.5340 0.9234 0.5671 0.9338 0.5803 1.3235 0.5307 1.1442 0.5560 0.7852 0.4714 0.8823 0.4838
AGCRN 0.8260 0.5397 1.0499 0.5404 0.9013 0.5383 0.9063 0.5519 1.3281 0.5304 1.1432 0.5697 0.7669 0.4612 0.8712 0.4859
STSHN 0.8012 0.5198 1.0431 0.5291 0.8717 0.5362 0.9169 0.5682 1.3231 0.5310 1.1348 0.5544 0.7758 0.4574 0.8741 0.4747

DMSTGCN 0.8376 0.5485 1.0410 0.5464 0.8597 0.5403 0.9036 0.5601 1.3292 0.5291 1.1297 0.5552 0.8058 0.4759 0.8698 0.4877
PromptST 0.7117 0.4874 1.0404 0.5689 0.8105 0.5506 0.9005 0.6119 1.2854 0.5457 1.1531 0.6161 0.7049 0.4273 0.8398 0.4964

Table 4: Tuning time (minutes) comparison with different amount of tuning data for traffic prediction.
Datasets PeMSD04 PeMSD07 PeMSD03 PeMSD08
Time line 1 day 1 week 2 weeks 1 day 1 week 2 weeks 1 day 1 week 2 weeks 1 day 1 week 2 weeks

Time for Training Scratch 2.382 13.913 20.401 9.093 30.905 59.940 10.560 22.130 27.716 1.071 3.477 7.152
Time for Finetune 2.848 14.620 23.036 8.002 40.865 20.541 10.227 20.754 16.381 2.025 2.945 8.432

Time for Prompt Tuning 1.302 1.952 5.604 5.694 12.220 13.959 3.030 3.071 10.782 0.489 1.371 3.103
Faster x than Scratch 45.340% 85.970% 72.531% 37.380% 60.460% 76.712% 71.307% 86.123% 61.098% 54.342% 60.570% 56.614%
Faster x than Prompt 54.284% 86.648% 75.673% 50.948% 70.097% 32.043% 70.373% 85.203% 34.180% 75.852% 53.447% 63.200%

Datasets NYCTaxi T-Drive CHIBike PeMS-Bay
Time line 1 day 1 week 2 weeks 1 day 1 week 2 weeks 1 day 1 week 2 weeks 1 week 2 weeks 4 weeks

Time for Training Scratch 1.477 21.181 45.808 1.341 36.651 43.290 1.232 12.130 19.002 17.328 32.187 40.326
Time for Finetune 1.125 10.304 13.170 1.015 14.843 15.726 1.076 8.355 10.137 9.284 25.193 31.728

Time for Prompt Tuning 0.967 7.683 10.102 0.902 10.l37 11.784 0.895 6.044 8.128 6.777 21.506 27.748
Faster x than Scratch 34.529% 63.727% 77.947% 32.737% 72.342% 72.780% 27.354% 50.173% 57.226% 60.890% 33.184% 31.190%
Faster x than Prompt 14.044% 25.437% 23.295% 11.133% 31.705% 25.067% 16.822% 27.660% 19.818% 27.003% 14.635% 12.544%

4.3 EFFICIENCY COMPARISON

We study the efficiency of our PromptST framework by comparing it to two tuning techniques:
training randomly-initialized ST models on the tuning data, and fine-tuning pretrained ST models
on the tuning data. The tuning time from start to model convergence is recorded. The evaluation is
done on a server with 10 cores of Inter(R) Core(TM) i9-9820X CPU@3.30GHZ, 64GB RAM, and 4
NVIDIA Geforce RTX 3090 GPUs. In Table 4, we present the running time of tuning models with
1-day, 1-week, and 2-week tunning data. MTGNN is employed as the backbone in this experiment.
In Table 5 and Table 9, we show the tuning time of using different backbone models, using two-week
and one-week tuning data, respectively. From the results we have the following major conclusions.

1) Efficiency of prompt tuning: The advantageous tuning efficiency of our PromptST is demonstrated
by its less tuning time on different datasets. PromptST only needs to tune the smaller parameter set of
the prompt network. This not only reduces the computational overhead for optimization calculations
but also facilitates easier convergence by constraining the solution space of the model. 2) Comparing
fine-tuning to training from scratch: While both compared tuning techniques optimize the same
number of model parameters, we generally observe higher tuning efficiency with the fine-tuning
method. This can be attributed to the pretraining process, which provides better starting points for the
fine-tuning method, enabling faster convergence. However, there are instances where training from
scratch outperforms fine-tuning. These cases reflect the uncertainty of whether the pretrained model
state is advantageous or detrimental for training on the tuning data. 3) Efficiency under different
tuning data size: As the amount of tuning data increases (1 day, 1 week, and 2 weeks), the tuning
time for all three methods also increases due to the growing complexity of the data. The efficiency of
our PromptST is further confirmed by its ability to maintain and even enhance its efficiency advantage
when dealing with larger tuning sets. 4) Impact of backbone models: By referring to Table 5 and
Table 9, it becomes evident that PromptST effectively expedites the tuning process for various ST
models, irrespective of their size. This attribute holds significant value in real-world applications.
4.4 ABLATION STUDY

To assess the effectiveness of each component in our PromptST framework, we conduct ablation
experiments on both tasks. The evaluation results for traffic prediction and crime prediction can be
found in Table 6 and Figure 2, respectively. We examine the following ablated variants: 1) w/o TCN:
This variant removes the temporal convolutional network from our prompt neural network. It exhibits
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Table 5: Tuning time (minutes) comparison for different backbones with two-week tuning data.
Datasets PeMSD04 PeMSD07
Models ASTGCN STGCN MTGNN AGCRN STSGCN ASTGCN STGCN MTGNN AGCRN STSGCN

Time for Training Scratch 118.733 24.765 20.401 24.966 44.755 334.768 83.992 59.940 75.284 145.894
Time for Finetune 92.796 22.176 23.036 19.012 39.785 280.456 76.501 20.541 32.785 126.733

Time for Prompt Tuning 74.535 17.864 9.379 10.347 27.667 256.114 53.121 15.959 11.068 89.756
Faster x than Scratch 37.225% 27.866% 54.027% 58.556% 38.181% 23.495% 36.755% 52.920% 85.293% 38.479%
Faster x than Prompt 19.679% 19.444% 59.286% 45.576% 30.459% 8.679% 30.562% 22.307% 66.241% 29.177%

Table 6: Ablation study for the proposed PromptST on the large-scale traffic data PeMS-Bay.
Datasets PeMS-Bay (1 week) PeMS-Bay (2 weeks) PeMS-Bay (3 weeks) PeMS-Bay (4 weeks)
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PromptST 1.63 3.68 3.63% 1.65 3.71 3.67% 1.68 3.90 3.79% 1.70 3.81 3.77%
w/o TCN 1.65 3.70 3.66% 1.67 3.73 3.70% 1.71 3.94 3.83% 1.74 3.92 3.85%
w/o MLP 1.69 3.72 3.69% 1.70 3.76 3.72% 1.75 3.96 3.87% 1.80 4.12 3.94%

w/o data initial 1.70 3.74 3.71% 1.72 3.78 3.75% 1.78 3.99 3.91% 1.86 4.11 3.97%

significant performance decay in certain types of crime data (e.g., Burglary), highlighting the impor-
tance of explicit modeling of temporal relationships in certain spatio-temporal prediction scenarios
for our PromptST. 2) w/o MLP: In this variant, we eliminate the multiple fully-connected layers in
the prompt network. Notable performance degradation is observed in most cases, underscoring the
necessity of employing transformation layers to adapt to the distribution shift of the newly generated
data. 3) w/o Skip: This ablated model eliminates the skip connection in the final layer of our prompt
neural network. Without this design, the prompt network faces challenges in generating appropriate
input spatio-temporal data for the pretrained backbone model g(·). The evaluation results confirm
this difficulty, as this version experiences a significant performance drop in most cases.

In addition to evaluating the effectiveness of the components in our PromptST, Table 6 further
confirms that tuning data covering a larger temporal range generally results in a larger distribution
shift, leading to more pronounced performance degradation for the pretrained model. This observation
reinforces the motivation behind our PromptST, which aims to develop an effective prompt tuning
approach to adapt to temporal shifts successfully. Through comparing the ablated versions with the
full version of our PromptST, it can be concluded that the inclusion of all components in PromptST
enhances its robustness against the increase in distribution disparity.

4.5 HYPERPARAMETER STUDY

In this section, we investigate the influence of different hyperparameter settings on prediction accuracy
and tuning time. The evaluation is carried out on both traffic flow prediction using the PeMSD04
and PeMSD08 datasets, as well as crime prediction using data from New York City and Chicago.
The results, in terms of MAE, are presented in Figure 3, while results for other metrics are shown in
Figure 5. Specifically, we examine the following hyperparameters:

• Embedding dimensionality: The optimal performance for our PromptST model is achieved with
an embedding dimensionality of 32 for both tasks. When comparing the impact on performance
between the two tasks, we observe that the embedding dimensionality has a more significant effect
on the crime prediction task. This can be attributed to the periodic and noise-free characteristics of
traffic data, which mitigate the risks of severe under-fitting and over-fitting, respectively. In terms
of efficiency, a larger embedding dimensionality leads to a substantial increase in tuning time. A
model with a dimensionality of 32 strikes a balance, requiring a moderate amount of tuning time.

-TCN -MLP -Skip Ours0.6

0.7

0.8

0.9

1.0

MA
E

0.40

0.45

0.50

0.55

0.60

0.65

0.70

MA
PE

NYC-Burglary

-TCN -MLP -Skip Ours1.00

1.05

1.10

MA
E

0.50

0.52

0.54

0.56

0.58

0.60

MA
PE

NYC-Larceny

-TCN -MLP -Skip Ours0.800

0.825

0.850

0.875

0.900

MA
E

0.50

0.52

0.54

0.56

0.58

0.60

MA
PE

NYC-Robbery

-TCN -MLP -Skip Ours

0.96

0.98

1.00

MA
E

0.50

0.55

0.60

0.65

0.70

MA
PE

NYC-Assault

-TCN -MLP -Skip Ours1.1

1.2

1.3

1.4

MA
E

0.50

0.55

0.60

MA
PE

CHI-Theft

-TCN -MLP -Skip Ours1.0

1.1

1.2

MA
E

0.60

0.65

0.70

MA
PE

CHI-Battery

-TCN -MLP -Skip Ours0.65

0.70

0.75

0.80

MA
E

0.40

0.45

0.50

MA
PE

CHI-Assault

-TCN -MLP -Skip Ours0.80

0.82

0.84

0.86

0.88

MA
E

0.45

0.50

0.55

0.60

MA
PE

CHI-Damage

Figure 2: Ablation study of PromptST on crime prediction
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Figure 3: Hyperparameter study on traffic prediction and crime prediction.
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Figure 4: Case study of PromptST on PeMS-Bay to show data distribution shift

• Kernel size of TCN: This parameter determines the number of consecutive time slots considered
in the temporal relation modeling of our prompt network. Based on the results, a kernel size of 7
demonstrates performance advantages in certain cases. Similar to the embedding dimensionality, a
more pronounced impact is observed for the crime prediction task. Additionally, a kernel size of 7
proves to be highly efficient in terms of tuning time within our PromptST framework.

4.6 CASE STUDY

In this section, we assess the effectiveness of the proposed PromptST framework in mitigating
spatio-temporal distribution shifts by examining specific cases. Figure 4 illustrates the variation
in traffic flow throughout the day for two region nodes: 147 and 45. The left plot for each region
represents the training data, while the right plot represents the test data. Each plot includes three
curves: the ground truth traffic flow, the predicted values obtained using the ablated model without
prompt tuning (referred to as "Without PT"), and the predicted values obtained using the full version
of our PromptST. We summarize the key observations as follows:

In the training data, both our PromptST and the ablated model without prompt tuning exhibit high
prediction accuracy compared to the ground truth curves. However, the ground truth traffic data from
the test set for the same regions demonstrates a noticeable distribution shift. Specifically, the curve in
the red region for node 147 shows significant oscillations, while the curve in the red region for node
45 exhibits a distinct rising trend that differs from the training data. In comparison to our PromptST,
the predictions made by the ablated model without prompt tuning display clear inaccuracies. This
validates the strong capability of PromptST in addressing distribution shifts effectively.

5 CONCLUSION

In this study, we introduce a simple yet powerful spatio-temporal prompt learning paradigm aimed
at enhancing the robustness and generalization ability of spatio-temporal prediction models in the
presence of dynamic distribution shifts. Our framework incorporates prompt tuning, which involves
generating informative spatio-temporal prompt context that captures the underlying patterns and
dynamics in the downstream urban data. Through comprehensive empirical evaluations across
various spatio-temporal prediction tasks, we have demonstrated the remarkable effectiveness of our
spatio-temporal prompt learning framework. By leveraging this framework, we significantly improve
the resilience of pre-trained models to distribution shifts and enhance their adaptability to new data.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1: The PromptST Learning Algorithm
Input: The spatial-temporal graph G, the maximum epoch number E, the learning rate η;
Output: Traffic flow or crime rate H and trained parameters in Θf of Prompt neural network

and Θg of GNN-based neural network;
1 Initialize all parameters in Θg and Θf ;
2 Train the framework PromptST by Equation 3
3 for epoch = 1, 2, ..., E do
4 Split the date into train, test and prompt;
5 Train the GNN-based pretrain model via train dataset;
6 for θg ∈ Θg do
7 θg = θg − η · ∂L

∂θg

8 end
9 end

10 for epoch = 1, 2, ..., E do
11 Freeze parameters of GNN-baed pretrain model and update the prompt neural network via

Equation 3 via prompt dataset;
12 Compute the MAE loss L following Equation 3;
13 Minimize the loss L by Equation 6 using gradient decent with learning rate η;
14 for θf ∈ Θf do
15 θf = θf − η · ∂L

∂θf

16 end
17 end
18 Return H and all parameters Θg and Θf ;

The Algorithm 1 section of our framework PromptST presents specific algorithmic specifics. The
initialization of all the parameters is the first step, as seen in Algorithm 1. After then, the GNN-based
model is trained until it is proficient via updating parameters of Θg. We train the prompt tuning
neural network iteratively and fix the GNN-based model. To improve the performance of the prompt
tuning neural network, we employ the MAE loss Wu et al. in accordance with earlier studies that
are mentioned in the traffic prediction task. With this approach, the MAE loss is determined after
E 3. We tune the prompt tuning neural network 6 until it converges. Following all these steps, the
procedure ends and returns all Θg and Θf parameters.

A.2 EVALUATION METRICS AND EVALUATION PLATFORM

Following existing studies of traffic flow prediction Bai et al. (2020); Li & Zhu (2021); Fang et al.
(2021); Chen et al. (2021a;b); Rao et al. (2022); Lan et al. (2022), we adopt three widely utilized
metrics namely Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root
Mean Squared Error (RMSE) as evaluation metrics for traffic prediction of 5 point-based datasets,
namely PeMSD04, PeMSD08, PeMSD03, PeMSD07 and PeMSD-Bay in Table 1, and 3 grid-based
datasets, namely NYCTaxi, T-Drive and CHIBike. For crime prediction task, we follow the settings
in Xia et al. (2022) in terms of Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) metrics on NYC crime and Chicago crime datasets. All methods are implemented in
Python 3.9 and PyTorch 1.12.0. The experiments are conducted on a server with 10-cores of Intel(R)
Core(TM) i9-9820X CPU @ 3.30GHz 64.0GB RAM and 4 Nvidia GeForce RTX 3090 GPU.

A.3 EFFECTIVENESS

We conducted experiments on grid-based datasets, specifically NYCTaxi, T-Drive, and CHIBike, to
evaluate the performance of our model, PromptST, in terms of inflow and outflow predictions. The
results are summarized in Table 8. Upon analysis, we observe that our model consistently achieves
the best performance across most cases and demonstrates superior performance in the remaining
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Table 7: Data Description of 10 Datasets
Traffci Data Point-based Datasets Grid-based Datasets

Datasets PeMSD04 PeMSD08 PeMSD03 PeMSD07 PeMS-Bay NYTaxi CHIBike TDrive
Sensors 307 170 358 883 325 75 (15 × 5) 270 (15 × 18) 1024 (32 × 32)

Data 16,992 17,856 26,208 28,224 52,116 17,520 4,416 3,600
Interval 5 minutes 5 minutes 5 minutes 5 minutes 5 minutes 30 minutes 30 minutes 60 minutes

Crime Data NYC-Crimes Chicago-Crimes
Time Span Jan, 2014 to Dec, 2015 Jan, 2016 to Dec, 2017
Category Burglary Robbery Theft Battery

Cases 31,779 33,453 124,630 99,389
Categoty Assult Larceny Damage Assult

Cases 40,429 85,899 59,886 37,972

Table 8: Overall performance of Grid-based Datasets of Traffic Prediction
Datasets NYCTaxi T-Drive CHIBike
Metrics inflow outflow inflow outflow inflow outflow
Models MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

STResNet 14.492 14.543 24.050 12.798 14.368 20.633 19.636 17.831 34.890 19.616 18.502 34.597 4.767 31.382 6.703 4.627 30.571 6.559
DMVSTNet 14.377 14.314 23.734 12.566 14.318 20.409 19.599 17.683 34.478 19.531 17.621 34.303 4.687 32.113 6.635 4.594 31.313 6.455

DSAN 14.287 14.208 23.585 12.462 14.272 20.294 19.384 17.465 34.314 19.290 17.379 34.267 4.612 31.621 6.695 4.495 31.256 6.367
DCRNN 14.421 14.353 23.876 12.828 14.344 20.067 22.121 17.750 38.654 21.755 17.382 38.168 4.236 31.264 5.992 4.211 30.822 5.824
STGCN 14.377 14.217 23.860 12.547 14.095 19.962 21.373 17.539 38.052 20.913 16.984 37.619 4.212 31.224 5.954 4.148 30.782 5.779
GWN 14.310 14.198 23.799 12.282 13.685 19.616 19.556 17.187 36.159 19.550 15.933 36.198 4.151 31.153 5.917 4.101 30.690 5.694

STSGCN 15.604 15.203 26.191 13.233 14.698 21.653 23.825 18.547 41.188 24.287 19.041 42.255 4.256 32.991 5.941 4.265 32.612 5.879
STFGNN 15.336 14.869 26.112 13.178 14.584 21.627 22.144 18.094 40.071 22.876 18.987 41.037 4.234 32.222 5.933 4.264 32.321 5.875
STGODE 14.621 14.793 25.444 12.834 14.398 20.205 21.515 17.579 38.215 22.703 18.509 40.282 4.169 31.165 5.921 4.125 30.726 5.698

STGNCDE 14.281 14.171 23.742 12.276 13.681 19.608 19.347 17.134 36.093 19.230 15.873 36.143 4.123 31.151 5.913 4.094 30.595 5.678
STTN 14.359 14.206 23.841 12.373 13.762 19.827 20.583 17.327 37.220 20.443 15.992 37.067 4.160 31.208 5.932 4.118 30.704 5.723

GMAN 14.267 14.114 23.728 12.273 13.672 19.594 19.244 17.110 35.986 18.964 15.788 36.120 4.115 31.150 5.910 4.090 30.662 5.675
TFormer 13.995 13.912 23.487 12.211 13.611 19.522 18.823 16.910 34.470 18.883 15.674 35.219 4.071 31.141 5.878 4.037 30.647 5.638

ASTGNN 13.844 13.692 23.177 12.112 13.602 19.201 18.798 16.101 33.870 18.790 15.584 33.998 4.068 31.131 5.818 3.981 30.617 5.609
PromptST 14.123 13.762 23.569 12.103 13.316 19.462 18.173 15.456 32.417 18.342 15.407 32.293 4.021 31.103 5.875 3.745 29.017 5.398

cases as well. We attribute this success to the following factors: (1) The integration of a prompt tuning
neural network, which incorporates Temporal Convolutional Networks (TCN), proves beneficial in
capturing temporal features. This ability to capture and leverage temporal information plays a crucial
role in accurately predicting traffic flows. (2) Our model utilizes a residual paradigm, where the
initial data is added to the model. This approach ensures that our model maintains the same data
distribution as the input of the pre-trained model. This helps to preserve the integrity of the data and
contributes to the improved performance of our model. By leveraging these strategies, our model
PromptST demonstrates superior performance in traffic flow predictions. The incorporation of the
prompt tuning neural network and the residual paradigm effectively capture temporal features and
maintain data distribution, respectively, resulting in enhanced prediction accuracy.

A.4 HYPERPARAMETER STUDY

We conducted a hyperparameter study on four datasets: PeMSD04, PeMSD08, Chicago and NYC
crime datasets. The study aimed to investigate the impact of two hyperparameters on model per-
formance: the dimension, ranging from 16 to 128, and the kernel size, ranging from 5 to 11. The
evaluation metric used was Mean Absolute Percentage Error (MAPE), and the results are illustrated
in Figure 5. Upon analysis, we observed that our model achieved the best performance when the
dimension was set to 32 and the kernel size was set to 7. It is worth noting that setting a larger
dimension may lead to oversmoothing in the GNN-based backbone model, which can subsequently
degrade the performance of the prompt neural network. On the other hand, a larger kernel size may
introduce more noise from the traffic data, ultimately reducing the overall performance. By carefully
selecting the hyperparameters, we are able to optimize the performance of our model. The findings
provide valuable insights for achieving better results in traffic flow predictions.

A.5 HYPERPARAMETER SETTINGS

For fair comparison, all compared algorithms have hidden dimensionality modified from the range
[8,16,32,64] to achieve their best performance as reported results at 32. The learning rate η is
initialized as 0.003 with weight decay 0.3. For GNN-based models, the number of GCN layer is 3.
For prompt tuning network, the number of the TCN Layer is 2 and the number of MLP layer is set as
2. The kernel size of the TCN Layer is set as 7 during which our framework PromptST obtains the
best performance from the range of [5,7,9,11]. Following existing settings of traffic prediction, we
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Table 9: Comparison of Time of Different Methods (One Week) (Minutes)
Datasets PeMSD04 PeMSD07
Models ASTGCN STGCN MTGNN AGCRN STSGCN ASTGCN STGCN MTGNN AGCRN STSGCN

Time for Training Scratch 73.183 20.564 13.913 28.235 37.899 270.531 60.341 30.905 46.031 127.651
Time for Finetune 57.232 17.886 14.620 17.894 34.167 243.172 52.114 40.865 30.303 115.901

Time for Prompt Tuning 50.818 13.675 9.327 12.013 24.733 216.587 37.187 17.220 20.125 70.851
Faster x than Scratch 30.560% 33.500% 32.962% 57.454% 34.740% 19.940% 38.372% 44.281% 56.280% 44.496%
Faster x than Prompt 11.207% 23.543% 36.204% 32.866% 27.611% 10.933% 28.643% 57.861% 33.587% 38.869%
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Figure 5: Hyperparameter study on traffic prediction and crime prediction

utilize historical 12 time steps with 5 minutes a step to predict future 12 time steps on point-based
datasets (PeMSD04, PeMSD08, PeMSD03, PeMSD07 and PeMS-Bay). And we use historical 6
time steps to predict future 1 time step on grid-based datasets (NYCTaxi, CHIBike and TDrive). All
baseline methods follow their predefined settings as their papers.

A.6 EFFICIENCY OF PROMPT TUNING ON CRIME PREDICTION AND TRAFFIC PREDICTION

To evaluate the model’s ability to operate independently, we conducted efficiency experiments on
traffic predictions using several state-of-the-art baselines. The results are presented in Table 9. From
the results, we observed that our prompt tuning neural network significantly improved the efficiency
of different baselines, reducing the time cost by approximately 10% to 57%. This finding further
validates the advantage of the graph-based passing mechanism in terms of saving time. Additionally,
we evaluated the efficiency of crime prediction, as shown in Figure 6. We compared our method’s
speed in crime prediction to the fine-tuning of a GNN-based model on the New York City and
Chicago datasets. The results indicate that our method achieved a speed improvement of 23% to
28% compared to fine-tuning the GNN-based model on the New York City dataset. In the case of
the Chicago dataset, our method outperformed fine-tuning by 3% to 10%. These findings highlight
the advantage of our PromptST approach in real-life applications, particularly in the field of urban
planning. Overall, results demonstrate that our PromptST framework offers improved efficiency
across various tasks, making it highly suitable for real-life applications where efficiency is crucial.

A.7 DESCRIPTION OF BASELINES

We compare 30 baselines including many state-of-art traffic flow prediction methods and crime
prediction baselines, where are displayed as following:

• Traffic prediction methods. DSANet Huang et al. (2019): It is a method which adopts CNN for
capturing temporal correlations and utilizes self-attention mechanism for capturing dynamic spatial
information. DCRNN Li et al. (2018): To simulate spatial-temporal dependencies, a diffusion
convolutional RNN with fusion process is used. STGCN Yu et al. (2018): To represent spatial-
temporal coupling, it combines a gated temporal convolution module with a graph neural network.
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Figure 6: Time-consuming of crime prediction.

GWN Shleifer et al. (2019): It is a technique that combines 1D dilated convolutions and diffusion
graph convolutions to capture spatial and temporal changes, enhancing the effectiveness of traffic
prediction. ASTGCN Zhu et al.: It is an attention-based GCN model that additionally incorporates
STGCN for capturing dynamic spatial and temporal information with spatial-temporal attention.
LSGCN Han & Gong (2022): To capture spatial dynamics, it combines a graph attention network
with a graph convolution network. And to capture temporal dynamics, it uses a temporal convolution
network. STSGCN Song et al. (2020): By stacking numerous localized GCN layers with an
adjacent matrix on the time dimension, it captures spatial-temporal correlations. AGCRN Bai
et al. (2020): In order to capture spatial-temporal correlations, it uses learnt node embeddings in
graph convolutions. STFGNN Li & Zhu (2021): The performance of traffic prediction is improved
by using a spatial-temporal fusion graph neural network to capture spatial-temporal correlations.
STG-ODE Fang et al. (2021): To address the limitiation caused by the neural networks’ lack
of depth, it uses differential equations. Shallow GNNs are unable to capture long-range spatial
dynamics, and they ignore temporal dynamics, which are crucial for the task of traffic prediction.
Z-GCNETs Chen et al. (2021a): For predicting traffic flow, it uses zigzag persistence along with a
temporal-aware graph convolution network. TAMP Chen et al. (2021b): To capture dynamic spatial
dependencies, it employs multiple persistence to collect temporal features, which are subsequently
fed into graph convolutional networks. DSTAGNN Lan et al. (2022): The pre-defined static graph
that is typically utilized in classic graph convolution is proposed to be replaced with a new dynamic
spatial-temporal aware graph in this study that is based on a data-driven technique. Then, using an
improved multi-head attention mechanism, it designs a novel graph neural network architecture
that can not only represent dynamic spatial relevance between nodes but also acquire a wide range
of dynamic temporal dependency from multiple receptive field features using multi-scale gated
convolution. FOGS Rao et al. (2022): It is a technique that builds the association graph using the
nodes’ spatial-temporal dynamics. STResNet Zhang et al. (2017): It creates a complete STResNet
structure based on the particular characteristics of spatial-temporal data. To describe the temporal
closeness, period, and trend characteristics of crowd traffic, it specially uses the residual neural
network framework. Based on data, STResNet learns to dynamically aggregate the output of
the three residual neural networks. DMVSTNet Yao et al. (2018): To model both spatial and
temporal relations, it suggests using a Deep Multi-View Spatial-Temporal Network (DMVSTNet)
framework. This method specifically consists of three views: temporal, spatial, and semantic. The
temporal view models correlations between future demand values with nearby time points using
LSTM; the spatial view models local spatial correlation using local CNN. STGNCDE Choi et al.
(2022): It explains how to use the STGNCDE method, which stands for spatio-temporal graph
neural controlled differential equation. The concept of neural controlled differential equations
(NCDEs) for processing sequential data is revolutionary. The idea is expanded, and two NCDEs
are created: one for spatial processing and the other for temporal processing. STTN Xu et al.
(2020): To increase the precision of long-term traffic flow forecasting, it suggests a unique paradigm
of Spatial-Temporal Transformer Networks (STTNs) that concurrently use dynamical directed
spatial dependencies and long-range temporal dependencies. TFormer Jin et al. (2023a): It
suggests a brand-new model called Trafformer that combines temporal and spatial data into a single
transformer-style model. In the spatial-temporal correlation matrix, TFformer enables each node at
each timestamp to interact with each other node at each other timestamp in a single step. TFformer
can detect intricate spatial-temporal relationships thanks to this design. ASTGNN Guo et al. (2021):
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It creates a unique self-attention mechanism in the temporal dimension. In addition to enjoying
global receptive fields that are advantageous for long-term forecast, it enables the prediction model
to catch the temporal dynamics of traffic data. It creates a dynamic graph convolution module for
the spatial dimension, using self-attention to capture the spatial correlations.

• Crime prediction methods. STrans Wu et al. (2020): By stacking two layers of Transformer to
represent spatial-temporal links across spaces and time, it investigates the sparse crimes. For the
aggregation of spatial and temporal information, self-attention with query/key transformations is
used.. DeepCrime Huang et al. (2018): It is a representative baseline for crime prediction that
first encodes the temporal embeddings of crime occurrences through time using a recurrent neural
network. The next step is to further aggregate temporal representations with the attentional weights
using the attention mechanism. STDN Yao et al.: A flow gating approach is introduced in this
framework to capture the time-aware reliance between areas, and a periodic shifting attention is
suggested to learn the temporal patterns between various time periods. ST-MetaNet Xu et al.
(2018): This model is a meta-learning strategy that uses a GNN-based sequence-to-sequence
paradigm to capture various spatial correlations and extract meta information relevant to a given
location. STSHN Xia et al. (2022): This technique uses hypergraph connections between regions
to carry out spatial message transfer between various geographic regions. A stationary approach
is taken in building the region hypergraph. Two spatial path aggregation layers are chosen as the
number. DMSTGCN Han et al. (2021): With the help of this method, the graph convolutional
network is enhanced with dynamic and complex geographical and temporal data. The time-aware
graph constructor is used to capture relationships between road segments.
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