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Abstract001

Drug–drug interaction (DDI) prediction is criti-002
cal for treatment safety. While large language003
models (LLMs) show promise in pharmaceu-004
tical tasks, their effectiveness in DDI predic-005
tion remains challenging. Inspired by the well-006
established clinical practice where physicians007
routinely reference similar historical cases to008
guide their decisions through case-based rea-009
soning (CBR), we propose CBR-DDI, a novel010
framework that distills pharmacological prin-011
ciples from historical cases to improve LLM012
reasoning for DDI tasks. CBR-DDI constructs013
a knowledge repository by leveraging LLMs014
to extract pharmacological insights and graph015
neural networks (GNNs) to model drug asso-016
ciations. A hybrid retrieval mechanism and017
dual-layer knowledge-enhanced prompting al-018
low LLMs to effectively retrieve and reuse rel-019
evant cases. We further introduce a represen-020
tative sampling strategy for dynamic case re-021
finement. Extensive experiments demonstrate022
that CBR-DDI achieves state-of-the-art perfor-023
mance, with a significant 28.7% accuracy im-024
provement over both popular LLMs and CBR025
baseline, while maintaining high interpretabil-026
ity and flexibility.027

1 Introduction028

Drug-drug interaction (DDI) prediction is critical029

for pharmacology and healthcare, as it safeguards030

patients from adverse drug reactions, optimizes031

therapeutic efficacy, and reduces healthcare costs032

(Magro et al., 2012; Roemer and Boone, 2013;033

Marengoni et al., 2014). Accurately identifying034

DDIs is challenging due to the intricate potential035

relationships between drugs and the diverse mech-036

anisms underlying the interactions (such as the037

competition for drug-metabolizing enzymes) (Shen038

et al., 2024; De Vito et al., 2025). These challenges039

become even more pronounced when predicting040

interactions involving new drugs, where interaction041

data is typically sparse or nonexistent.042

Figure 1: (a). Illustration of using historical cases to
solve new cases in DDI task. (b). Accuracy comparison
on DrugBank dataset: our CBR-DDI shows significant
improvement over base model and Naive-CBR.

Recently, large language models (LLMs) 043

(Brown et al., 2020; Achiam et al., 2023; Grattafiori 044

et al., 2024; Guo et al., 2025) have demon- 045

strated impressive capabilities across various 046

tasks, particularly excelling at identifying hid- 047

den patterns in natural languages. While LLMs 048

have shown promise in pharmaceutical applica- 049

tions (Thirunavukarasu et al., 2023; Liang et al., 050

2023; Inoue et al., 2024), their effective utiliza- 051

tion for DDI prediction remains an open research 052

question. Current approaches commonly enhance 053

LLMs by incorporating biomedical knowledge 054

graphs (KGs) (Xu et al., 2024; Abdullahi et al., 055

2025), which provide structured knowledge about 056

drugs. They typically employ heuristic methods to 057

retrieve relevant drug information from KGs and 058

feed it directly into LLMs for prediction. 059

However, these methods fail to discover the 060

underlying pharmacological mechanisms that ex- 061

plain why certain drug interactions occur (De Vito 062
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et al., 2025). Understanding and modeling these063

mechanisms is essential not only for interpretabil-064

ity but also for generalizing predictions to new065

drugs (Xu et al., 2024). We observe that many066

DDI cases share common interaction mechanisms067

that reflect fundamental pharmacological princi-068

ples among drugs. For instance, as illustrated069

in Figure 1, a new case (drug pair Fosphenytoin-070

Diphenhydramine) and an existing case (drug pair071

Fosphenytoin-Granisetron) exhibit similar drug as-072

sociations, enabling the transfer of known inter-073

action mechanisms from the historical case to the074

new one. Yet current methods neglect these valu-075

able inter-case relationships, compromising the re-076

liability and interpretability of their predictions.077

This also diverges from established clinical prac-078

tice (Althoff et al., 1998; Bichindaritz and Marling,079

2006), where physicians routinely reference histor-080

ical cases through case-based reasoning (CBR)—a081

cognitive process that solves new problems by082

adapting previously solutions to similar problems083

(Watson and Marir, 1994; Kolodner, 2014).084

Inspired by these observations, we propose CBR-085

DDI, a framework that leverages CBR to enhance086

LLMs’ capabilities for DDI prediction. Our ap-087

proach constructs a structured knowledge reposi-088

tory that stores a collection of representative cases089

enriched with pharmacological insights. Each case090

in the repository includes key associations of drug091

pair extracted by a GNN module from KGs, and092

their interaction mechanisms distilled by an LLM,093

providing a structured representation of pharmaco-094

logical principles. To effectively utilize the reposi-095

tory, we design a hybrid retrieval strategy that iden-096

tifies both semantically and structurally relevant097

cases, alongside a dual-layer knowledge-enhanced098

prompting to facilitate accurate and faithful rea-099

soning in LLMs. Furthermore, to reduce storage100

overhead, we propose a sampling strategy that dy-101

namically refines the repository by retaining repre-102

sentative cases. CBR-DDI achieves state-of-the-art103

performance across multiple benchmarks, outper-104

forming the base LLM model by 463% and surpass-105

ing the Naive-CBR baseline by 28.7%. In addition,106

it offers interpretable interaction mechanisms and107

integrates seamlessly with off-the-shelf LLMs with-108

out requiring fine-tuning or intensive interactions.109

The contributions are summarized as follows:110

• Inspired by the success of CBR in clinical prac-111

tice, we propose CBR-DDI, a new framework112

that distills pharmacological principles from his-113

torical cases to enhance LLM’s reasoning for 114

DDI tasks. 115

• We propose to construct a knowledge reposi- 116

tory, through a collaboration between LLMs for 117

distilling pharmacological insights and GNNs 118

for extracting drug associations from biomedical 119

knowledge graphs. 120

• For the deployment of the knowledge reposi- 121

tory, we design a hybrid retrieval mechanism to 122

identify relevant cases, a dual-layer knowledge- 123

enhanced prompting to guide LLMs in case reuse, 124

and a representative sampling strategy for reposi- 125

tory refinement. 126

• Extensive experiments on DDI demonstrate CBR- 127

DDI achieves state-of-the-art performance while 128

maintaining high interpretability and flexibility. 129

2 Related Work 130

Drug-Drug Interaction Prediction. The task 131

of DDI prediction identifies potential adverse 132

interactions or synergistic effects between co- 133

administered medications (Magro et al., 2012; Roe- 134

mer and Boone, 2013). Measuring DDIs in clinical 135

experiments is time-consuming and costly, driv- 136

ing the adoption of machine learning approaches 137

(Shen et al., 2024; Luo et al., 2024). Feature-based 138

methods leverage shallow models to classify DDI 139

types using drug pair features (e.g., fingerprints) 140

(Rogers and Hahn, 2010; Ryu et al., 2018). Graph- 141

based methods model the drug interaction data as 142

a graph. Simple approaches employ embedding 143

techniques (Trouillon et al., 2017; Yao et al., 2022) 144

to learn drug representations. More advanced meth- 145

ods enhance prediction by incorporating biomedi- 146

cal KGs (Himmelstein and Baranzini, 2015; Chan- 147

dak et al., 2023), which represent relationships be- 148

tween biomedical concepts (e.g., drugs, genes, and 149

diseases) in a multi-relational structure. To cap- 150

ture structural patterns in the graph, various deep 151

models have been proposed, such as graph neural 152

networks (GNNs) (Zitnik et al., 2018; Lin et al., 153

2020; Yu et al., 2021; Zhang et al., 2023) and graph 154

transformers (Su et al., 2024). Language model 155

(LM)-based methods (Zhu et al., 2024) leverage 156

drug descriptions to train models (e.g., RoBERTa 157

(Liu et al., 2019)) for prediction. Notably, another 158

category of methods (Chen et al., 2021; Zhong 159

et al., 2024; Sun et al., 2025) uses drug molecular 160

structures as input, whereas our approach does not, 161

making these methods orthogonal to ours. 162
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Figure 2: Comparison between Naive-CBR method and our method CBR-DDI. CBR-DDI constructs a knowledge
repository storing cases with rich pharmacological insights, and enhances LLM predictions via LLM-GNN collabo-
rative case retrieval, dual-layer knowledge-enhanced reuse, and representative sampling-based dynamic refinement.

Recently, LLMs are increasingly utilized in163

biomedical applications, including drug discov-164

ery (Chaves et al., 2024), repurposing (Inoue et al.,165

2024), and molecular understanding (Liang et al.,166

2023). Their pre-training on vast biomedical litera-167

ture enables them to leverage implicit knowledge168

about drug interactions (Sun et al., 2025; De Vito169

et al., 2025). However, complex drug associa-170

tions, diverse interaction mechanisms, and mul-171

tiple interaction types pose significant challenges172

for LLMs in DDI prediction. Recent approaches173

heuristically retrieve drug information (e.g., paths174

between drugs (Abdullahi et al., 2025), one-hop175

neighbors (Xu et al., 2024)) from KGs and feed176

it directly into LLMs. However, they fail to dis-177

cover the underlying pharmacological mechanisms,178

reducing the reliability and generalization to new179

drug prediction.180

Retrieval-Augmented Generation. Retrieval-181

Augmented Generation (RAG) (Gao et al., 2023;182

Huang and Huang, 2024; Yang et al., 2024) is a183

framework that enhances the generative capabilities184

of LLMs by retrieving relevant knowledge from185

an external knowledge source. Recent advance-186

ments have explored to retrieve from KGs to en-187

hance LLMs’ reasoning (Pan et al., 2024; Agrawal188

et al., 2023). These methods primarily extracting189

question-relevant reasoning paths from KGs for190

LLMs (LUO et al., 2023; Sun et al., 2023). How-191

ever, in DDI tasks, explicit questions are absent,192

and the diverse relational paths between drugs do193

not directly reveal their interaction type, making194

these methods challenging to adapt effectively. 195

Case-Based Reasoning (CBR). CBR is a problem- 196

solving paradigm that addresses new problems 197

by adapting solutions from previously resolved 198

cases (Slade, 1991; Watson and Marir, 1994; Kolod- 199

ner, 2014). Typical CBR process involves retriev- 200

ing similar past problems, reusing their solutions, 201

evaluating the effectiveness, revising the solution, 202

and retaining successful solutions (Watson and 203

Marir, 1994). Historically, CBR has been widely 204

applied across various domains, such as medical 205

diagnosis (Koton, 1988), and industrial problem- 206

solving (Hennessy and Hinkle, 1992). Recently, 207

there has been increasing interest in integrating 208

CBR with LLMs (Wilkerson and Leake, 2024; 209

Yang, 2024; Guo et al., 2024). However, applying 210

CBR to the DDI task is non-trivial, as it requires 211

carefully designed case retrieval strategies, and ex- 212

isting datasets typically contain only interaction 213

labels without in-depth pharmacological insights 214

as solutions that can be transferred to new cases. 215

3 Proposed Method 216

3.1 Overall Framework 217

In DDI prediction task, we have a set of drugs VD 218

and interaction relations RD among them. Given a 219

query drug pair (u, v), the goal of DDI prediction 220

is to determine their interaction type r ∈ RD. We 221

formulate it as a reasoning task for LLMs to select 222

the most likely interaction type r from the relation 223

set RD. Additionally, we utilize a biomedical KG 224
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to capture the associations of drugs.225

While the diversity of interaction mechanisms226

presents a significant challenge for DDI prediction,227

different cases may share interaction patterns, re-228

flecting universal pharmacological principles (Tum-229

mino et al., 2021; Roberti et al., 2021). Inspired by230

the proven success of CBR in clinical practice, we231

propose CBR-DDI, a framework that distills phar-232

macological principles from historical cases to en-233

hance LLM’s reasoning. In contrast to naive CBR234

applications (Brown et al., 2020) that rely on sim-235

ple retrieval methods (e.g., fingerprint-based match-236

ing (Rogers and Hahn, 2010)) and offer only inter-237

action labels as solutions, CBR-DDI constructs a238

knowledge repository that integrates rich pharma-239

cological insights, and strengthens LLMs through240

comprehensive case retrieval, knowledge-enhanced241

reuse, and dynamic refinement of resolved cases.242

As illustrated in Figure 2, the framework oper-243

ates in three stages: (1) case retrieval via LLM-244

GNN collaboration, (2) case reuse via dual-layer245

knowledge guided reasoning, and (3) case refine-246

ment via representative sampling. Given the names247

of a drug pair, we first leverage the LLM to gen-248

erate concise drug descriptions, which are used249

both to perform semantic-level retrieval and to aug-250

ment a GNN module that encodes the subgraph251

of the drug pair in the KG. This enables a hy-252

brid retrieval mechanism that identifies both se-253

mantically and structurally relevant cases from the254

knowledge repository. Then, the retrieved cases are255

integrated into a dual-layer knowledge-enhanced256

prompt, which combines key drug associations ex-257

tracted by the GNN module with historically sim-258

ilar interaction mechanisms, guiding the LLM to259

generate accurate and explainable prediction. Fi-260

nally, we design a sampling strategy to refine the261

repository by grouping similar cases and retain-262

ing representative ones, reducing redundancy and263

improving adaptability to new discoveries.264

3.2 Knowledge Repository265

To effectively leverage the historical drug interac-266

tion cases and discover important pharmacological267

principles, we propose to construct a lightweight268

knowledge repository that stores a collection of269

representative cases enriched with pharmacological270

insights. This design is inspired by the case-based271

reasoning paradigm widely adopted in clinical deci-272

sion support systems (Althoff et al., 1998; Bichin-273

daritz and Marling, 2006), where past cases are274

enriched and reused to guide new decisions. The275

Figure 3: Example from the knowledge repository.

repository is designed to capture both factual infor- 276

mation of drugs and generalizable pharmacological 277

patterns, thereby enabling accurate retrieval of rel- 278

evant cases and facilitating analogical reasoning in 279

predicting new drug interactions. Specifically, as 280

shown in Figure 3, each case C involving a drug 281

pair (u, v) in the repository is a structured represen- 282

tation of DDIs, consisting of four key components: 283

• drug description Dc = (Du, Dv): functional de- 284

scriptions of the drugs generated by LLM (de- 285

tailed in Section 3.3.1).; 286

• drug association Hc: structured knowledge ex- 287

tracted from the KG using the GNN module, rep- 288

resenting the relationships between drugs, with 289

representation hc (detailed in Section 3.3.2); 290

• interaction mechanism Mc: pharmacological in- 291

sights that explain why the drugs interact, dis- 292

tilled from domain knowledge and historical 293

cases by LLM (detailed in Section 3.3.2); 294

• interaction type Tc: the label of interaction; 295

Among these, drug descriptions and associations 296

provide factual grounding for retrieval, while the 297

interaction mechanism is the core of each case, as 298

it explains the underlying reason for the interaction, 299

providing key pharmacological principles that can 300

be transferred to the prediction of new drug pairs. 301

3.3 Reasoning Steps 302

3.3.1 Case Retrieval via LLM-GNN 303

Collaboration 304

Effective case retrieval is crucial for CBR, as the 305

relevance and quality of retrieved cases directly im- 306

pact the accuracy and interpretability of predictions. 307

Considering the diverse functions of drugs and their 308

varying associations, we propose a hybrid retrieval 309

mechanism that combines the natural language pro- 310

cessing capabilities of LLMs with the structured 311
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learning abilities of GNNs, enabling retrieval of312

semantically and structurally similar cases.313

To retrieve relevant historical cases C’s for a314

given drug pair p = (u, v), we compute a retrieval315

score based on a weighted combination of semantic316

similarity and structural similarity:317

s(p, c) = λ · SemanticSim(p, c)

+ (1− λ) · StructSim(p, c),
(1)318

where λ ∈ [0, 1] is a hyperparameter that balances319

the contribution of the two components. The two320

similarity are defined as follows:321

• SemanticSim(p, c) = Sim(f(Dp), f(Dc)):322

We prompt an LLM (i.e., Llama3.1-8B-323

Instruct (Grattafiori et al., 2024)) to generate324

concise functional descriptions Du and Dv for325

drugs u and v, denoted as Dp = (Du, Dv) =326

LLMdes(u, v). The function f(·) denotes a text327

embedding model (Liu et al., 2019). We then328

compute the cosine similarity between the em-329

beddings of Dp and the stored case description330

Dc, capturing the semantic closeness of drug331

functionality and pharmacological properties.332

• StructSim(p, c) = Sim(hp,hc): We employ333

a subgraph-based GNN module with attention334

mechanism (i.e., EmerGNN (Zhang et al., 2023))335

to encode the subgraph connecting the drug336

pair in KG, with the embeddings of LLM-337

generated drug descriptions as node features,338

obtaining the subgraph representation: hp =339

GNN(f(Du), f(Dv)). Cosine similarity is then340

computed between hp and the stored case repre-341

sentations hc, reflecting the structural similarity342

in the association patterns between drug pairs.343

We rank all cases in the repository based on344

s(p, c) and select the top-K most relevant ones345

for subsequent reasoning. By integrating semantic346

drug descriptions with graph-structured relational347

knowledge, this hybrid approach enables a com-348

prehensive case retrieval process, capturing phar-349

macologically similar drug pairs while preserving350

structural association relevance.351

3.3.2 Case Reuse via Dual-layer Knowledge352

Guided Reasoning353

Although relevant cases reflect potential interaction354

mechanisms, they do not provide sufficient factual355

information for the given drug pair. To address356

this, we design a dual-layer knowledge-enhanced357

prompt that integrates both external factual knowl- 358

edge (i.e., drug associations) and internal regularity 359

knowledge (i.e., historical interaction mechanisms) 360

to guide the LLM’s reasoning process. 361

Specifically, the prompt comprises the key drug 362

associations of given pair extracted by the attention- 363

based GNN module, and relevant interaction mech- 364

anisms contained in historical similar cases. The 365

LLM is then prompted to synthesize these two com- 366

plementary sources of knowledge, generating the 367

interaction mechanism Mp and type Tp. The pre- 368

diction process is formalized as: 369

Mp, Tp = LLMpre(TD, {Ci}Ki=1, Hp, Ap), (2) 370

where TD is the task description, {Ci}Ki=1 are the 371

top-K retrieved cases, Hp denotes the extracted 372

drug association facts, and Ap is the filtered candi- 373

date interaction types. We detail the two types of 374

knowledge as follows: 375

• External factual knowledge (i.e., drug associ- 376

ations Hp): To capture essential associations 377

between drugs, we employ the attention-based 378

GNN module to extract high-quality relational 379

paths that connect them. Unlike prior work (Ab- 380

dullahi et al., 2025) that retrieves triplets heuris- 381

tically, we scores triplets along the paths by at- 382

tention weights during GNN propagation. We 383

then select the top-P paths with the highest aver- 384

age attention as Hp, which are incorporated into 385

the prompt as structured, high-quality factual 386

evidence (e.g., Fosphenytoin binds−−−→ CYP3A4 binds−−−→ 387

Diphenhydramine). 388

• Internal regularity knowledge (i.e., interaction 389

mechanisms within historical cases {Ci}Ki=1 ): 390

The retrieved cases (in Section 3.3.1) contain 391

interaction mechanisms Mci that reflect general- 392

ized pharmacological patterns observed in sim- 393

ilar drug pairs. They can guide the LLM to per- 394

form analogical reasoning, drawing parallels be- 395

tween the current drug pair and previously known 396

interaction regularity. 397

By structuring the prompt in this manner, we 398

enhance the interpretability and reliability of LLM- 399

generated predictions, as the historical cases offer 400

relevant pharmacological principles, while the fac- 401

tual drug associations provide the evidence base. 402

Furthermore, to reduce the complexity introduced 403

by numerous interaction types, we pre-filter candi- 404

date answers Ap based on the scores of GNN mod- 405

ule, retaining only top-N candidates. This focuses 406

5



Methods WFT ITP DAA IMA

TextDDI × × × ×
DDI-GPT × ✓ × ×

Naive-CBR ✓ × × ×
K-Paths ✓ ✓ ✓ ×

CBR-DDI ✓ ✓ ✓ ✓

Table 1: Comparison of different methods using LMs.
WFT: Without Fine-Tuning; ITP: Interpretability; DAA:
Drug Association Augmentation; IMA: Interaction
Mechanism Augmentation.

the LLM’s attention on the most plausible options407

and reduces noise from irrelevant candidates.408

3.3.3 Case Refinement via Representative409

Sampling410

To ensure both the quality and size control of our411

knowledge repository, we propose a dynamic re-412

finement strategy that updates cases in the knowl-413

edge repository. Specifically, for each LLM-414

generated prediction, we verify its correctness415

against ground truth label (e.g., from training data416

or expert feedback), and prompt revisions for errors417

based on the correct label. Furthermore, to control418

the growth of the repository while preserving its419

expressive power, we group semantically similar420

cases within each DDI category using the text em-421

beddings of their interaction mechanisms Mc. Our422

case-based design allows for simple yet effective423

clustering methods to retain only the most represen-424

tative cases—filtering out redundancy while pre-425

serving diversity in pharmacological scenarios (de-426

tails are shown in Appendix A.1). This approach427

keeps the repository compact and efficient while428

allowing for new discoveries.429

3.4 Comparison with Existing Works430

As shown in Table 1, TextDDI (Zhu et al., 2024)431

and DDI-GPT (Xu et al., 2024) rely on fine-tuning432

small language models (e.g., RoBERTa (Liu et al.,433

2019)) as classifiers, which limits their compatibil-434

ity with off-the-shelf LLMs. Specifically, TextDDI435

relys solely on individual drug descriptions. DDI-436

GPT retrieves one-hop neighbors from KGs for437

binary classification and applies an attention mech-438

anism for limited interpretability. Naive-CBR439

method (Brown et al., 2020) retrieves structurally440

similar drug pairs based on fingerprint features, pro-441

viding only case labels for LLMs without deeper442

pharmacological insight. K-Paths (Abdullahi et al.,443

2025) uses heuristic methods to extract diverse444

paths between drugs and directly feeds them into445

LLMs. In contrast, CBR-DDI uniquely integrates446

both drug association knowledge and interaction447

mechanism knowledge to augment LLM reason- 448

ing, enabling accurate and interpretable predic- 449

tion, while offering plug-and-play flexibility across 450

LLMs without requiring fine-tuning. 451

4 Experiment 452

4.1 Experimental Setup 453

Datasets. We conduct experiments on two widely 454

used DDI datasets: (1) DrugBank (Wishart et al., 455

2018), a multi-class dataset that contains 86 456

types interactions between drugs. (2) TWO- 457

SIDES (Tatonetti et al., 2012), a multi-label dataset 458

that records 200 side effects between drugs. 459

Experimental Settings. Following (Zhang et al., 460

2023; Abdullahi et al., 2025; Dewulf et al., 2021), 461

we evaluate our model on two challenging set- 462

tings: S1 and S2. For S1 setting, the task is to 463

predict the interaction type between an emerging 464

drug—one that has no interaction records in the 465

training set—and an existing drug. For S2 setting, 466

the goal is to predict the interaction type between 467

two emerging drugs. We also provide experimental 468

results for S0 setting in Appendix B.1. 469

Evaluation Metrics. For the DrugBank dataset, 470

where each drug pair corresponds to a single inter- 471

action type, we adopt Accuracy and F1 Score as 472

evaluation metrics. For the TWOSIDES dataset, 473

where a drug pair may involve multiple interaction 474

types, we treat it as a recommendation task and use 475

Recall@5 and NDCG@5 as the evaluation metrics. 476

Experiment Details. We follow the settings of 477

(Zhang et al., 2023) to train the GNN module and 478

use HetioNet (Himmelstein and Baranzini, 2015) 479

as the external KG. Considering the plug-and-play 480

convenience of CBR-DDI, we use three LLMs 481

in experiments: Llama3.1-8B-Instruct (Grattafiori 482

et al., 2024), Llama3.1-70B-Instruct (Grattafiori 483

et al., 2024), and DeepSeek-V3 (Liu et al., 2024). 484

We typically set number of reference cases K as 485

5, the number of paths in drug associations P as 5, 486

and vary the number of candidate answers among 487

{3,5,10}. Other details are shown in Appendix A.3. 488

Baseline Methods. We consider the following 489

baseline methods for comparison: (1) traditional 490

methods without using LLMs: MLP (Gardner 491

and Dorling, 1998), ComplEx (Trouillon et al., 492

2017), MSTE (Yao et al., 2022), Decagon (Zit- 493

nik et al., 2018), SumGNN (Yu et al., 2021), 494

EmerGNN (Zhang et al., 2023), TIGER (Su et al., 495

2024), TextDDI (Zhu et al., 2024); (2) LLM-based 496

methods: Base model, Naive-CBR (retrieve 10 sim- 497
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Type Method
DrugBank TWOSIDES

∆avgS1 S2 S1 S2
Acc F1 Acc F1 Recall NDCG Recall NDCG

Feature-based MLP 57.77 42.53 39.85 20.15 12.70 14.88 3.60 5.95 6.42 ↑

Graph-based

ComplEx 4.02 1.74 4.32 1.77 2.30 3.61 1.62 1.81 32.06 ↑
MSTE 54.66 40.57 32.88 4.93 5.12 7.37 2.78 3.12 11.02 ↑
Decagon 32.41 28.56 22.47 6.12 4.48 6.36 2.38 3.61 19.54 ↑
SumGNN 57.04 54.77 25.28 17.85 4.08 5.24 2.11 3.48 13.03 ↑
EmerGNN 68.10 65.78 44.84 34.22 13.79 16.06 3.01 4.93 2.45 ↑
TIGER 60.11 57.21 33.46 19.78 11.72 14.33 2.69 3.90 7.81 ↑

LM-based TextDDI 66.75 66.53 44.23 32.79 9.88 13.24 4.16 6.04 3.35 ↑

Llama3.1-8B

Base 8.71 4.10 7.30 3.94 0.04 0.06 0.02 0.03 28.92 ↑
Naive-CBR 47.88 42.38 15.02 8.70 3.60 4.47 0.27 0.50 16.24 ↑
K-Paths 17.62 9.06 12.29 7.34 0.25 0.38 0.07 0.08 25.38 ↑
CBR-DDI 68.52 61.57 44.94 32.43 13.89 15.45 4.38 7.04 -

Llama3.1-70B

Base 8.93 4.37 8.02 4.12 0.05 0.06 0.03 0.03 30.21 ↑
Naive-CBR 48.09 50.62 21.22 13.04 4.54 5.46 0.68 0.84 15.84 ↑
K-Paths 31.35 16.43 31.12 14.87 2.09 3.18 1.01 1.42 18.08 ↑
CBR-DDI 71.36 70.85 47.43 36.88 14.40 16.97 4.68 7.32 -

Base 12.62 9.61 12.12 6.78 0.03 0.04 0.03 0.05 28.82 ↑
DeepSeek-V3 Naive-CBR 55.20 47.24 22.26 15.46 3.18 4.22 0.32 0.47 14.78 ↑

-671B K-Paths 34.52 18.17 32.33 15.41 1.73 2.21 1.19 1.66 17.58 ↑
CBR-DDI 71.05 74.38 49.45 40.69 14.85 16.56 4.73 6.60 -

Table 2: Performance comparison of different methods for DDI. ∆avg denotes the average improvement in accuracy
and recall (in percent) on two datasets.

ilar labeled cases based on fingerprint similarity498

as few-shot prompting (Brown et al., 2020)), K-499

Paths (Abdullahi et al., 2025).500

4.2 Performance Comparison501

As shown in Table 2, among LLM-based base-502

lines, Naive-CBR achieves notable performance503

improvements, highlighting the importance of his-504

torical cases in prediction. By providing similar505

drug pairs with their interaction labels, it demon-506

strates that past interaction patterns offer valuable507

knowledge for guiding LLM predictions. How-508

ever, Naive-CBR relies on untrained and simple509

feature similarity metrics, which fail to capture510

complex relationships between cases or provide511

in-depth pharmacological insights. Consequently,512

it can not outperform other advanced deep learning513

approaches that are specifically trained for DDI.514

In contrast, our proposed method, CBR-DDI, sig-515

nificantly outperforms all baseline methods across516

multiple benchmarks, especially when paired with517

powerful LLMs like Llama3.1-70B or DeepSeek.518

Even with smaller models such as Llama3.1-8B,519

our method achieves superior results over state-520

of-the-art methods. Compared to heuristic-based521

approaches like K-Paths, which may introduce ir-522

relevant or redundant information, CBR-DDI ef-523

fectively leverages historical cases to extract valu-524

able pharmacological insights, and enhances LLM525

CBR
-DDI

DrugBank TWOSIDES
S1 S2 S1 S2

Acc F1 Acc F1 Rec NDCG Rec NDCG

full 71.4 70.9 47.4 36.9 14.4 17.0 4.7 7.3
w.o.case 68.3 68.4 46.0 33.5 13.9 15.1 3.4 5.2
w.o.asso 69.4 68.9 46.5 34.2 14.1 16.4 4.4 7.0

Table 3: Comparison of different variants of CBR-DDI-
Llama3.1-70B.

CBR-DDI
DrugBank TWOSIDES

S1 S2 S1 S2
Acc #Case Acc #Case Rec #Case Rec #Case

w.o.samp 71.36 35255 47.38 3056 14.32 4684 4.68 808
w.samp 71.05 2139 47.43 398 14.40 1639 4.48 504

Table 4: Influence of representative sampling strategy.

outputs by integrating both factual drug associa- 526

tion knowledge and regular interaction mechanism 527

knowledge, thereby achieving more accurate and 528

reliable predictions. These results demonstrate that 529

CBR-DDI is the first work to effectively unlock the 530

potential of LLMs for DDI prediction. 531

4.3 Ablation Study 532

4.3.1 Influence of Dual-Layer Knowledge 533

Augmentation 534

To validate the necessity of both factual knowledge 535

(i.e., drug associations) and regularity knowledge 536

(i.e., interaction mechanisms derived from cases), 537

we conduct ablation studies under three configu- 538

rations: (i) the full prompt, (ii) factual-only (w.o. 539

case), and (iii) regularity-only (w.o. asso). As 540
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(a) Acc vs λ on DrugBank-S1 (b) Acc vs λ on DrugBank-S2

Figure 4: Impact of hybrid retriever’s hyperparameter.

shown in Table 3, removing either knowledge layer541

leads to a performance drop. These results confirm542

that factual knowledge provides evidence base for543

reasoning, while regularity knowledge facilitates544

mechanistic generalization. Notably, the retrieved545

cases play a more critical role, as drug associa-546

tions from KGs do not directly determine interac-547

tion types. Accurate prediction demands deeper548

insights into pharmacological mechanisms derived549

from historical cases, highlighting the importance550

of case-based reasoning.551

4.3.2 Effectiveness of Hybrid Case Retriever552

We evaluate the effectiveness of the hybrid retriever553

by varying the similarity weight λ between seman-554

tic and structural components in (1). Specifically,555

we measure the retrieval accuracy by selecting the556

top-K cases (K = 1, 5) under different λ values557

and assigning the majority label among them to558

the test sample. As shown in Figure 4, retrieval559

accuracy first increases and then decreases as λ560

changes, suggesting that a balanced combination561

of semantic and structural similarity yields optimal562

performance. This demonstrates that our hybrid563

retriever effectively integrates both drug functional564

descriptions and structural associations, enabling565

the retrieval of cases that are not only pharmaco-566

logically similar but also share interaction patterns,567

thereby improving the accuracy of predictions.568

4.3.3 Influence of Representative Sampling569

Table 4 demonstrates the impact of our represen-570

tative sampling strategy for case refinement. By571

replacing individual cases with representative clus-572

ter centroids, we significantly reduce the size of the573

case repository—by over 90% in DrugBank—thus574

greatly enhancing scalability. Notably, reducing575

the case volume does not compromise performance,576

while still achieving comparable or even improved577

results. These results indicate the representative578

sampling strategy optimizes system efficiency and579

computational resource usage while filtering out580

noisy or redundant cases, leading to more represen-581

tative and informative case selection.582

<Query drug pair-Answer>
Rifabutin, Zopiclone — The metabolism of Zopiclone can be increased when combined with Rifabutin. 

<Input Task Description> 
You are a medical expert. Your task is to predict the interaction between a pair of drugs. There are some 

examples for your reference before the given question. You can refer to the interaction mechanisms in the 

provided examples. You should answer the given question based on the candidate answers, correct 

probability, related facts and your own knowledge. Please end your reply with `The interaction is <your 

answer>'. 

<Input Reference Cases>
Example: What is the interaction between Fosphenytoin and Cytarabine? 

Related Facts: 

(Fosphenytoin, binds, Gene::CYP2C19), (Glucosamine, binds, Gene::CYP2C19), (Glucosamine, resembles, 

Cytarabine); 

(Fosphenytoin, binds, Gene::CYP3A4), (Cytarabine, binds, Gene::CYP3A4); 

(Modafinil, resembles, Fosphenytoin), (The metabolism of Modafinil can be decreased when combined 

with Glucosamine), (Glucosamine, resembles, Cytarabine); 

Answer: The given facts suggest that Fosphenytoin binds to CYP2C19 and CYP3A4, and Cytarabine also 

binds to CYP3A4. Since Glucosamine resembles Cytarabine, it is likely that Cytarabine also binds to 

CYP2C19. Fosphenytoin's binding to CYP2C19 can lead to increased metabolism of Cytarabine, therefore, 

The metabolism of Cytarabine can be increased when combined with Fosphenytoin.

<Input question, drug associations and candidate answers> 
Question: What is the interaction between Rifabutin and Zopiclone?  

Candidate Answers:

The serum concentration of Zopiclone can be decreased when it is combined with Rifabutin. (correct 

probability: 0.251) 

The metabolism of Zopiclone can be increased when combined with Rifabutin. (correct probability: 0.233) 

The risk or severity of adverse effects can be increased when Rifabutin is combined with Zopiclone. 

(correct probability: 0.211)  

Related Facts: 

(Rifabutin, resembles, Rifapentine), (Rifapentine, binds, Gene::CYP2C9), (Zopiclone, binds, Gene::CYP2C9); 

(Rifabutin, resembles, Rifapentine), (Rifapentine, binds, Gene::CYP3A4), (Zopiclone, binds, Gene::CYP3A4);

(Rifabutin, resembles, Rifapentine),(The metabolism of Eszopiclone can be increased when combined with 

Rifapentine),(Zopiclone, resembles, Eszopiclone); 

<Output by CBR-DDI-Llama3.1-70B> 

The given facts suggest that Rifabutin resembles Rifapentine and Rifampicin, which increase the 

metabolism of Eszopiclone, a drug that resembles Zopiclone. This implies that Rifabutin may have a similar 

effect on Zopiclone, increasing its metabolism. Additionally, Rifapentine binds to  CYP2C9, and CYP3A4 

enzymes, and Zopiclone also binds to these enzymes. This suggests that Rifabutin may induce these 

enzymes, leading to increased metabolism of Zopiclone.  Considering these facts, the most likely 

interaction between Rifabutin and Zopiclone is that the metabolism of Zopiclone can be increased when 

combined with Rifabutin. 

The interaction is: The metabolism of Zopiclone can be increased when combined with Rifabutin.

Figure 5: One case study from DrugBank.

4.4 Case Study 583

We present a case study in Figure 5, which shows 584

the query drug pair, input task description, one of 585

the retrieved cases, extracted drug associations, fil- 586

tered candidate answers, and the final output of the 587

LLM. As shown, the retrieved case exhibits simi- 588

lar drug associations and interaction mechanisms 589

to those of the query pair, providing strong rea- 590

soning evidence. The LLM leverages its powerful 591

in-context learning capabilities to analyze the pro- 592

vided knowledge, generating accurate predictions 593

and explanations, which provides useful insights 594

for medical practitioners. This example illustrates 595

how CBR-DDI effectively enhances the LLM’s rea- 596

soning by incorporating valuable pharmacological 597

knowledge from historical cases and KGs, resulting 598

in accurate and faithful outcomes. 599

5 Conclusion 600

In this work, we introduced CBR-DDI, a novel 601

framework that leverage CBR to enhance LLMs 602

for DDI tasks. CBR-DDI constructs a knowledge 603

repository by distilling pharmacological principles 604

by LLM from historical cases and integrating struc- 605

tured knowledge extracted by GNN from KGs. The 606

framework employs comprehensive case retrieval, 607

knowledge-enhanced case reuse, and dynamic case 608

refinement, achieving accurate predictions, while 609

maintaining high interpretability and flexibility. 610
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Limitations611

In our approach, the prediction relies solely on tex-612

tual information, without incorporating the drug613

molecular structures. This limits the model’s abil-614

ity to perform fine-grained interaction analysis at a615

molecular level. In future work, it is worthy explor-616

ing how molecular structural data can be integrated617

into our framework, enabling more precise case618

retrieval and offering deeper pharmacological ex-619

planations of interaction mechanism.620
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A Implementation Details877

A.1 Details of Knowledge Repository878

Repository Initialization. To initialize the knowl-879

edge repository, we randomly sample a subset of880

instances from the training data and use them to881

construct the initial set of cases. For each selected882

drug pair, we provide the LLM (e.g., Llama3.1-8B-883

Instruct) with the correct interaction type and rele-884

vant drug association facts, prompting it to generate885

a clear and accurate explanation of the underlying886

mechanism.887

Repository Update. Whenever the number of888

cases in the knowledge base exceeds the threshold,889

or when a certain number of new cases (e.g., 1000)890

are added, we execute our representative sampling891

case refinement method. Specifically, we apply892

the K-Medoids clustering algorithm (Park and Jun,893

2009) within each DDI category to group seman-894

tically similar cases, using the text embeddings of895

their interaction mechanisms Mc. The number of896

clusters is pre-specified based on the overall sam-897

ple size (e.g., retaining 5% of the cases or at least898

10 cases per category). Within each cluster, only899

the medoid—the most central and representative900

case—is retained, while redundant or overly sim-901

ilar cases are removed. This approach not only902

reduces storage and computational overhead but903

also ensures that the retained cases reflect diverse904

pharmacological scenarios.905

A.2 Algorithms for GNN module.906

Following (Zhang et al., 2023), we present the al-907

gorithms of the GNN module. Given a drug pair908

p = (u, v), we implicitly encode the pair-wise sub-909

graph representations with Algorithm 1, and use910

beam search to find the top-P paths between them911

with Algorithm 2.912

A.3 Details of Experiments913

Datasets. We conduct experiments on two widely914

used DDI datasets: (1) DrugBank (Wishart et al.,915

2018), a multiclass DDI prediction dataset that916

contains 86 types of pharmacological interactions917

between drugs. (2) TWOSIDES (Tatonetti et al.,918

2012), a multilabel DDI prediction dataset that919

records 200 side effects between drugs. We use920

HetioNet (Himmelstein and Baranzini, 2015) as921

for the external biomedical knowledge graph. Ta-922

ble 5 and 6 display the statistics of the datasets and923

knowledge graph, where V’s represent the sets of924

Algorithm 1 Pair-wise subgraph representation
learning with flow-based GNN.
Require: p = (u, v),fu = f(Du),fv =

f(Dv), L, δ, σ, {W (ℓ),w(ℓ)}ℓ=1...L}, G.
{p = (u, v): drug pair; {fu,fv}: the embeddings
of drug descriptions; L: the depth of path-based sub-
graph; δ: activation function; σ: sigmoid function;
{W (ℓ),w(ℓ)}ℓ=1...L}: learnable parameters; G: biomed-
ical KG.}

1: initialize the u → v pair-wise representation as h0
u,e =

fu if e = u, otherwise h0
u,e = 0;

2: initialize the v → u pair-wise representation as h0
v,e =

fv if e = v, otherwise h0
v,e = 0;

3: for ℓ← 1 to L do
4: for e ∈ VD do {This loop can work with matrix opera-

tions in parallel.}
5: message for u→ v:

h(ℓ)
u,e = δ

(
W (ℓ)

∑
(e′,r,e)∈ND

σ
(
(w(ℓ)

r )⊤[fu;fv]
)
·

(
h

(ℓ−1)

u,e′ ⊙ h(ℓ)
r

));

6: message for v → u:

h(ℓ)
v,e = δ

(
W (ℓ)

∑
(e′,r,e)∈ND

σ
(
(w(ℓ)

r )⊤[fu;fv]
)
·

(
h

(ℓ−1)

v,e′ ⊙ h(ℓ)
r

));

7: end for
8: end for
9: Return hp = [h

(L)
u,v ;h

(L)
v,u].

nodes, R’s represent the sets of interaction types, 925

and N ’s represent the sets of edges. 926

Evaluation metrics. For the DrugBank dataset, 927

there is one interaction between a pair of drugs. 928

Hence, we evaluate the performance in a multi- 929

class setting, which estimates whether the model 930

can correctly predict the interaction type for a pair 931

of drugs. We consider the following metrics: 932

• Accuracy: the percentage of correctly predicted 933

interaction type compared with the ground-truth 934

interaction type. 935

• F1(macro) = 1
∥ID∥

∑
i∈ID

2Pi·Ri
Pi+Ri

, where Pi and 936

Ri are the precision and recall for the interaction 937

type i, respectively. The macro F1 aggregates the 938

fractions over different interaction types. 939

In the TWOSIDES dataset, there may be mul- 940

tiple interactions between a pair of drugs, such as 941

anaemia, nausea and pain. Hence, we treat it as a 942

recommendation task, where the LLM is prompted 943

to recommend 5 possible interactions for given 944

drug pair. We use Recall@5 and NDCG@5 as the 945
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Dataset |VD-train| |VD-valid| |VD-test| |RD| |ND-train| S1 S2
|ND-valid| |ND-test| |ND-valid| |ND-test|

DrugBank 1,461 79 161 86 137,864 17,591 32,322 536 1,901
TWOSIDES 514 30 60 200 185,673 3,570 6,698 106 355

Table 5: Statistics of datasets.

Algorithm 2 Path extractor.
Require: (u, v), L, P
1: initialize openList[0]← u;
2: set V(0)

u,v = {u},V(L)
u,v = {v};

3: obtain the set V(ℓ)
u,v = {e : d(e, u) = ℓ, d(e, v) = L −

ℓ}, ℓ = 1, . . . , L with bread-first-search;
4: for ℓ← 1 to L do
5: set closeList[ℓ]← ∅, pathList[ℓ]← ∅;
6: for each edge in {(e′, r, e) : e′ ∈ openList[ℓ− 1], e ∈

Vℓ
u,v} do

7: compute the attention weights α
(ℓ)
r =

σ
(
(w

(ℓ)
r )⊤[fu;fv]

)
;

8: compute score(u, e′, e) = score(u, e) + α
(ℓ)
r ;

9: closeList[ℓ].add((e, score(u, e′, e)));
10: end for
11: for (u, e′, e) ∈topP (clostList[ℓ]) do
12: openList[ℓ].add(e), pathList[ℓ].add((e′, r, e));
13: end for
14: end for
15: Return: join(pathList[1]. . . pathList[L]).

KG |VB| |RB| |NB|

HetioNet 34,124 23 1,690,693

Table 6: Statistics for knowledge graph.

evaluation metrics:946

Recall@5 =
|R1:5 ∩ T |

|T |
, (3)947

NDCG@5 =

∑5
i=1 I(Ri ∈ T )1/log2(i+1)∑min(|T |,5)

i=1
1/log2(i+1)

, (4)948

where R is a list of recommended interactions for949

the given pair, T is the ground-truth list, and indica-950

tor function I(x) = 1 if x is true and 0 otherwise.951

Hyperparameters. For the training of the952

GNN module, we follow EmerGNN (Zhang953

et al., 2023)’s hyperparameter settings. We954

use three LLMs in experiments: Llama3.1-8B-955

Instruct (Grattafiori et al., 2024), Llama3.1-70B-956

Instruct (Grattafiori et al., 2024), and DeepSeek-957

V3 (Liu et al., 2024). The training of GNN mod-958

ule and the inference of Llama3.1-8B are on an959

RTX 3090-24GB GPU, while the inference for960

Llama3.1-70B runs on two A100-80GB GPUs.961

DeepSeek is accessed via API calls. We set the962

number of reference cases K to 5, maintain P = 5963

paths in drug associations, and limit candidate an-964

swers to 3 for DrugBank and 10 for TWOSIDES.965

Baseline Methods. We consider following base- 966

line methods for performance comparison: 967

(1) traditional methods without using LLMs: 968

• MLP (Gardner and Dorling, 1998) uses mul- 969

tilayer perceptron to map the fingerprint fea- 970

tures of drugs to the interaction types between 971

them. 972

• ComplEx (Trouillon et al., 2017) converts KG 973

in to a complex matrix and predict DDI based 974

on the decomposition of the matrix. 975

• MSTE (Yao et al., 2022) is an embedding- 976

based method that learns on KG to predict the 977

possibility of whether a relation exists. 978

• Decagon (Zitnik et al., 2018) utilizes drug, 979

genes and diseases information to learn drug 980

representation and predict DDI with a graph 981

convolutional network. 982

• SumGNN (Yu et al., 2021) samples a sub- 983

graph from KG for drug pair and designs a 984

summarization scheme to generate reasoning 985

path in the subgraph. 986

• EmerGNN (Zhang et al., 2023) designs a flow- 987

based GNN on the KG to learn the representa- 988

tion of subgraph between drugs for prediction. 989

• TIGER (Su et al., 2024) uses graph trans- 990

former to encode the molecular structure and 991

biomedical KG to learn dual-channel repre- 992

sentation for drugs. 993

• TextDDI (Zhu et al., 2024) trains an LM as 994

predictor with an RL-based information selec- 995

tor for extracting relevant drug descriptions. 996

(2) LLM-based methods: 997

• Base model is a zero-shot method which di- 998

rectly prompts LLMs to select the most likely 999

interaction type r from the relation set RD. 1000

• Naive-CBR (Brown et al., 2020) retrieves 10 1001

similar labeled cases based on fingerprint sim- 1002

ilarity as few-shot prompting. 1003
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Type Method DrugBank TWOSIDES
Acc F1 Recall NDCG

Feature-based MLP 81.22 61.56 25.21 27.78

Graph-based
Decagon 87.10 58.61 12.47 14.92
EmerGNN 96.48 95.44 26.84 30.22
TIGER 95.57 93.89 21.54 25.36

LM-based TextDDI 96.04 94.53 14.07 17.64

Llama3.1-70B

Base 9.17 4.79 0.06 0.07
Naive-CBR 57.92 54.26 7.05 8.74
K-Paths 23.75 15.27 0.87 1.38
CBR-DDI 96.98 95.95 27.18 31.04

Table 7: Performance comparison of different methods
for DDI on S0 setting.

• K-Paths (Abdullahi et al., 2025) employs a1004

diversity-aware adaptation of Yen’s algorithm1005

to retrieve the K shortest paths between drugs1006

for LLM’s prediction.1007

B Supplementary Experiments1008

B.1 Performance on S0 Setting1009

We present the performance of different methods1010

under the S0 setting (predicting interactions be-1011

tween existing drugs) in Table 7. As can be seen,1012

our method still achieves the best performance.1013

However, the advantage is not as pronounced as1014

in the S1 and S2 settings, since our approach pri-1015

marily targets the scenario of new drug prediction.1016

Under the S0 setting, existing methods can mem-1017

orize possible interaction types between known1018

drugs through training, whereas our method does1019

not fine-tune LLMs and thus lacks this advantage.1020

B.2 Effect of Case Number1021

We investigate how the number of retrieved cases1022

K affects model performance. As shown in Fig-1023

ure 6, increasing K generally improves accu-1024

racy for both the Llama3.1-8B and 70B models.1025

These results suggest that incorporating more cases1026

enhances LLM’s reasoning by providing richer1027

phamacological insights, but overly large K may1028

introduce redundancy or noise. Specifically, incor-1029

porating case information can significantly enhance1030

the performance of smaller LLMs (i.e., Llama3.1-1031

8B), as their weaker reasoning capabilities make1032

it difficult to delve beyond superficial drug asso-1033

ciations to uncover underlying interaction mecha-1034

nisms and consequently make accurate predictions.1035

B.3 Effect of Drug Association Knowledge1036

We also analyze the impact of the number of ex-1037

tracted drug association paths P on model perfor-1038

mance. As shown in Figure 7, prediction accuracy1039

Figure 6: Impact of the number of retrieved cases on
DrugBank-S1.

Figure 7: Impact of retrieved drug associations on
DrugBank-S1 of CBR-DDI-Llama3.1-70B.

initially improves with increasing P , as additional 1040

paths provide more factual evidence for mechanis- 1041

tic reasoning. However, beyond an optimal point, 1042

performance gradually declines as excessive paths 1043

introduce irrelevant or conflicting relationships that 1044

obscure core interaction mechanisms. 1045

Furthermore, the Figure compares our attention- 1046

based GNN retriever with the random retriever (i.e., 1047

heuristic retrieval used in existing methods). The 1048

results demonstrate that our GNN retriever achieves 1049

superior performance, as the attention mechanism 1050

enables the model to learn and prioritize more high- 1051

quality relationship paths, thereby providing a more 1052

effective foundation for reasoning. In contrast, 1053

heuristic retrieval methods lack this discriminative 1054

capability to identify the critical pharmacological 1055

relationships. 1056

B.4 Effect of Hybrid Retriever 1057

We present the most relevant cases retrieved by dif- 1058

ferent retrievers for the same query drug pair. As 1059

shown in Figure 8, using either the semantic-based 1060

retriever (λ = 1) or the structure-based retriever 1061

(λ = 0) alone fails to effectively retrieve cases with 1062
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the same interaction type as the test case, thus un-1063

able to provide valuable interaction mechanisms1064

for the LLM. In contrast, our proposed hybrid re-1065

triever combines semantic similarity and structural1066

similarity, capturing relevant pharmacological ef-1067

fects and drug associations to deliver meaningful1068

pharmacological insights. Note that we do not dis-1069

play the interaction mechanisms in the cases here,1070

as they are not involved in the retrieval process.1071

C Case Study1072

We present two more representative cases from1073

DrugBank and TWOSIDES in Figure 9 and Fig-1074

ure 10. Each case includes LLM-generated drug1075

descriptions, key drug associations extracted by the1076

GNN module, mechanistic explanations generated1077

by the LLM based on both external and internal1078

knowledge, and the ground truth interaction label.1079

These cases are constructed to capture both factual1080

evidence and underlying pharmacological princi-1081

ples of drug interactions, thereby supporting accu-1082

rate retrieval and interpretable reasoning for new1083

prediction tasks.1084

15



----------------------------------------------------------- Query Drug Pair -----------------------------------------------------------

<Drug Description>
1. Maprotiline: Maprotiline is a tetracyclic antidepressant (TeCA) used to treat major depressive disorder. It works by 

increasing the levels of certain neurotransmitters in the brain …….

2. Cinacalcet: Cinacalcet is a calcimimetic agent used to treat secondary hyperparathyroidism in patients with chronic 

kidney disease on dialysis, as well as to treat hypercalcemia in patients with parathyroid carcinoma. 

<Drug Association> 
(Maprotiline, binds, Gene::CYP2D6), (Cinacalcet, binds, Gene::CYP2D6); 

(Maprotiline, binds, Gene::CYP1A2), (Cinacalcet, binds, Gene::CYP1A2);

(Maprotiline, binds, Gene::CYP3A4), (Cinacalcet, binds, Gene::CYP3A4) ……

<Interaction Type> 
The metabolism of Cinacalcet can be decreased when combined with Maprotiline.

--------------------------------------------- Retrieved Case with Hybrid Retriever ---------------------------------------------

<Drug Description>
1. Maprotiline

2. Cimetidine: Cimetidine is a histamine H2-receptor antagonist that is used to treat ulcers and gastroesophageal reflux 

disease (GERD) by reducing stomach acid production.

<Drug Association> 
(Maprotiline, binds, Gene::CYP2D6), (Cimetidine, binds, Gene::CYP2D6); 

(Maprotiline, binds, Gene::CYP1A2), (Cimetidine, binds, Gene::CYP1A2);

(Maprotiline, binds, Gene::ABCB1), (Cimetidine, binds, Gene::ABCB1)……

<Interaction Type> 
The metabolism of Cimetidine can be decreased when combined with Maprotiline. 

------------------------------------------- Retrieved Case with Semantic Retriever -------------------------------------------

<Drug Description>
1. Maprotiline

2. Pomalidomide: Pomalidomide is an immunomodulatory drug used in the treatment of multiple myeloma, a type of blood 

cancer. It works by inhibiting the growth of cancer cells and enhancing the immune system's ability to attack cancer cells. 

<Drug Association> 
(Maprotiline, binds, Gene::ABCB1), (Pomalidomide, binds, Gene::ABCB1);

(Maprotiline, binds, Gene::CYP1A2), (Pomalidomide, binds, Gene::CYP1A2);

(Maprotiline, resemble, Desiparamine), (Desipramine, binds, Gene::ABCB1), (Pomalidomide, binds, Gene::ABCB1) ……

<Interaction Type> 
The risk or severity of adverse effects can be increased when Maprotiline is combined with Pomalidomide.

------------------------------------------- Retrieved Case with Structure Retriever -------------------------------------------

<Drug Description>
1. Maprotiline

2. Desvenlafaxine: Desvenlafaxine is a serotonin-norepinephrine reuptake inhibitor (SNRI) used to treat major depressive 

disorder and generalized anxiety disorder.

<Drug Association> 
(Maprotiline, binds, Gene::CYP3A4), (Desvenlafaxine, binds, Gene::CYP3A4);

(Maprotiline, binds, Gene::CYP2D6), (Desvenlafaxine, binds, Gene::CYP2D6); 

(Maprotiline, binds, Gene::SLC6A2), (Desvenlafaxine, binds, Gene::SLC6A2) ……

<Interaction Type> 
The risk or severity of adverse effects can be increased when Maprotiline is combined with Desvenlafaxine.

Figure 8: Retrieved cases of different retrievers on DrugBank-S1.

Figure 9: One case from DrugBank.
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Figure 10: One case from TWOSIDES.
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