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Abstract

Drug—drug interaction (DDI) prediction is criti-
cal for treatment safety. While large language
models (LLMs) show promise in pharmaceu-
tical tasks, their effectiveness in DDI predic-
tion remains challenging. Inspired by the well-
established clinical practice where physicians
routinely reference similar historical cases to
guide their decisions through case-based rea-
soning (CBR), we propose CBR-DDI, a novel
framework that distills pharmacological prin-
ciples from historical cases to improve LLM
reasoning for DDI tasks. CBR-DDI constructs
a knowledge repository by leveraging LLMs
to extract pharmacological insights and graph
neural networks (GNNs) to model drug asso-
ciations. A hybrid retrieval mechanism and
dual-layer knowledge-enhanced prompting al-
low LLMs to effectively retrieve and reuse rel-
evant cases. We further introduce a represen-
tative sampling strategy for dynamic case re-
finement. Extensive experiments demonstrate
that CBR-DDI achieves state-of-the-art perfor-
mance, with a significant 28.7% accuracy im-
provement over both popular LLMs and CBR
baseline, while maintaining high interpretabil-
ity and flexibility.

1 Introduction

Drug-drug interaction (DDI) prediction is critical
for pharmacology and healthcare, as it safeguards
patients from adverse drug reactions, optimizes
therapeutic efficacy, and reduces healthcare costs
(Magro et al., 2012; Roemer and Boone, 2013;
Marengoni et al., 2014). Accurately identifying
DDlIs is challenging due to the intricate potential
relationships between drugs and the diverse mech-
anisms underlying the interactions (such as the
competition for drug-metabolizing enzymes) (Shen
et al., 2024; De Vito et al., 2025). These challenges
become even more pronounced when predicting
interactions involving new drugs, where interaction
data is typically sparse or nonexistent.
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Figure 1: (a). Ilustration of using historical cases to
solve new cases in DDI task. (b). Accuracy comparison
on DrugBank dataset: our CBR-DDI shows significant
improvement over base model and Naive-CBR.

Recently, large language models (LLMs)
(Brown et al., 2020; Achiam et al., 2023; Grattafiori
et al.,, 2024; Guo et al.,, 2025) have demon-
strated impressive capabilities across various
tasks, particularly excelling at identifying hid-
den patterns in natural languages. While LLMs
have shown promise in pharmaceutical applica-
tions (Thirunavukarasu et al., 2023; Liang et al.,
2023; Inoue et al., 2024), their effective utiliza-
tion for DDI prediction remains an open research
question. Current approaches commonly enhance
LLMs by incorporating biomedical knowledge
graphs (KGs) (Xu et al., 2024; Abdullahi et al.,
2025), which provide structured knowledge about
drugs. They typically employ heuristic methods to
retrieve relevant drug information from KGs and
feed it directly into LLMs for prediction.

However, these methods fail to discover the

underlying pharmacological mechanisms that ex-
plain why certain drug interactions occur (De Vito



et al., 2025). Understanding and modeling these
mechanisms is essential not only for interpretabil-
ity but also for generalizing predictions to new
drugs (Xu et al., 2024). We observe that many
DDI cases share common interaction mechanisms
that reflect fundamental pharmacological princi-
ples among drugs. For instance, as illustrated
in Figure 1, a new case (drug pair Fosphenytoin-
Diphenhydramine) and an existing case (drug pair
Fosphenytoin-Granisetron) exhibit similar drug as-
sociations, enabling the transfer of known inter-
action mechanisms from the historical case to the
new one. Yet current methods neglect these valu-
able inter-case relationships, compromising the re-
liability and interpretability of their predictions.
This also diverges from established clinical prac-
tice (Althoff et al., 1998; Bichindaritz and Marling,
2006), where physicians routinely reference histor-
ical cases through case-based reasoning (CBR)—a
cognitive process that solves new problems by
adapting previously solutions to similar problems
(Watson and Marir, 1994; Kolodner, 2014).

Inspired by these observations, we propose CBR-
DDI, a framework that leverages CBR to enhance
LLMs’ capabilities for DDI prediction. Our ap-
proach constructs a structured knowledge reposi-
tory that stores a collection of representative cases
enriched with pharmacological insights. Each case
in the repository includes key associations of drug
pair extracted by a GNN module from KGs, and
their interaction mechanisms distilled by an LLM,
providing a structured representation of pharmaco-
logical principles. To effectively utilize the reposi-
tory, we design a hybrid retrieval strategy that iden-
tifies both semantically and structurally relevant
cases, alongside a dual-layer knowledge-enhanced
prompting to facilitate accurate and faithful rea-
soning in LLMs. Furthermore, to reduce storage
overhead, we propose a sampling strategy that dy-
namically refines the repository by retaining repre-
sentative cases. CBR-DDI achieves state-of-the-art
performance across multiple benchmarks, outper-
forming the base LLM model by 463% and surpass-
ing the Naive-CBR baseline by 28.7%. In addition,
it offers interpretable interaction mechanisms and
integrates seamlessly with off-the-shelf LLMs with-
out requiring fine-tuning or intensive interactions.
The contributions are summarized as follows:

* Inspired by the success of CBR in clinical prac-
tice, we propose CBR-DDI, a new framework
that distills pharmacological principles from his-

torical cases to enhance LLM’s reasoning for
DDI tasks.

* We propose to construct a knowledge reposi-
tory, through a collaboration between LLMs for
distilling pharmacological insights and GNNs
for extracting drug associations from biomedical
knowledge graphs.

* For the deployment of the knowledge reposi-
tory, we design a hybrid retrieval mechanism to
identify relevant cases, a dual-layer knowledge-
enhanced prompting to guide LLMs in case reuse,
and a representative sampling strategy for reposi-
tory refinement.

 Extensive experiments on DDI demonstrate CBR-
DDI achieves state-of-the-art performance while
maintaining high interpretability and flexibility.

2 Related Work

Drug-Drug Interaction Prediction. The task
of DDI prediction identifies potential adverse
interactions or synergistic effects between co-
administered medications (Magro et al., 2012; Roe-
mer and Boone, 2013). Measuring DDIs in clinical
experiments is time-consuming and costly, driv-
ing the adoption of machine learning approaches
(Shen et al., 2024; Luo et al., 2024). Feature-based
methods leverage shallow models to classify DDI
types using drug pair features (e.g., fingerprints)
(Rogers and Hahn, 2010; Ryu et al., 2018). Graph-
based methods model the drug interaction data as
a graph. Simple approaches employ embedding
techniques (Trouillon et al., 2017; Yao et al., 2022)
to learn drug representations. More advanced meth-
ods enhance prediction by incorporating biomedi-
cal KGs (Himmelstein and Baranzini, 2015; Chan-
dak et al., 2023), which represent relationships be-
tween biomedical concepts (e.g., drugs, genes, and
diseases) in a multi-relational structure. To cap-
ture structural patterns in the graph, various deep
models have been proposed, such as graph neural
networks (GNNs) (Zitnik et al., 2018; Lin et al.,
2020; Yu et al., 2021; Zhang et al., 2023) and graph
transformers (Su et al., 2024). Language model
(LM)-based methods (Zhu et al., 2024) leverage
drug descriptions to train models (e.g., ROBERTa
(Liu et al., 2019)) for prediction. Notably, another
category of methods (Chen et al., 2021; Zhong
et al., 2024; Sun et al., 2025) uses drug molecular
structures as input, whereas our approach does not,
making these methods orthogonal to ours.
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Figure 2: Comparison between Naive-CBR method and our method CBR-DDI. CBR-DDI constructs a knowledge
repository storing cases with rich pharmacological insights, and enhances LLM predictions via LLM-GNN collabo-
rative case retrieval, dual-layer knowledge-enhanced reuse, and representative sampling-based dynamic refinement.

Recently, LLMs are increasingly utilized in
biomedical applications, including drug discov-
ery (Chaves et al., 2024), repurposing (Inoue et al.,
2024), and molecular understanding (Liang et al.,
2023). Their pre-training on vast biomedical litera-
ture enables them to leverage implicit knowledge
about drug interactions (Sun et al., 2025; De Vito
et al., 2025). However, complex drug associa-
tions, diverse interaction mechanisms, and mul-
tiple interaction types pose significant challenges
for LLMs in DDI prediction. Recent approaches
heuristically retrieve drug information (e.g., paths
between drugs (Abdullahi et al., 2025), one-hop
neighbors (Xu et al., 2024)) from KGs and feed
it directly into LLMs. However, they fail to dis-
cover the underlying pharmacological mechanisms,
reducing the reliability and generalization to new
drug prediction.

Retrieval-Augmented Generation. Retrieval-
Augmented Generation (RAG) (Gao et al., 2023;
Huang and Huang, 2024; Yang et al., 2024) is a
framework that enhances the generative capabilities
of LLMs by retrieving relevant knowledge from
an external knowledge source. Recent advance-
ments have explored to retrieve from KGs to en-
hance LLMs’ reasoning (Pan et al., 2024; Agrawal
et al., 2023). These methods primarily extracting
question-relevant reasoning paths from KGs for
LLMs (LUO et al., 2023; Sun et al., 2023). How-
ever, in DDI tasks, explicit questions are absent,
and the diverse relational paths between drugs do
not directly reveal their interaction type, making

these methods challenging to adapt effectively.
Case-Based Reasoning (CBR). CBR is a problem-
solving paradigm that addresses new problems
by adapting solutions from previously resolved
cases (Slade, 1991; Watson and Marir, 1994; Kolod-
ner, 2014). Typical CBR process involves retriev-
ing similar past problems, reusing their solutions,
evaluating the effectiveness, revising the solution,
and retaining successful solutions (Watson and
Marir, 1994). Historically, CBR has been widely
applied across various domains, such as medical
diagnosis (Koton, 1988), and industrial problem-
solving (Hennessy and Hinkle, 1992). Recently,
there has been increasing interest in integrating
CBR with LLMs (Wilkerson and Leake, 2024,
Yang, 2024; Guo et al., 2024). However, applying
CBR to the DDI task is non-trivial, as it requires
carefully designed case retrieval strategies, and ex-
isting datasets typically contain only interaction
labels without in-depth pharmacological insights
as solutions that can be transferred to new cases.

3 Proposed Method

3.1 Overall Framework

In DDI prediction task, we have a set of drugs Vp
and interaction relations Rp among them. Given a
query drug pair (u, v), the goal of DDI prediction
is to determine their interaction type r € Rp. We
formulate it as a reasoning task for LLMs to select
the most likely interaction type r from the relation
set Rp. Additionally, we utilize a biomedical KG



to capture the associations of drugs.

While the diversity of interaction mechanisms
presents a significant challenge for DDI prediction,
different cases may share interaction patterns, re-
flecting universal pharmacological principles (Tum-
mino et al., 2021; Roberti et al., 2021). Inspired by
the proven success of CBR in clinical practice, we
propose CBR-DDI, a framework that distills phar-
macological principles from historical cases to en-
hance LLM’s reasoning. In contrast to naive CBR
applications (Brown et al., 2020) that rely on sim-
ple retrieval methods (e.g., fingerprint-based match-
ing (Rogers and Hahn, 2010)) and offer only inter-
action labels as solutions, CBR-DDI constructs a
knowledge repository that integrates rich pharma-
cological insights, and strengthens LL.Ms through
comprehensive case retrieval, knowledge-enhanced
reuse, and dynamic refinement of resolved cases.

As illustrated in Figure 2, the framework oper-
ates in three stages: (1) case retrieval via LLM-
GNN collaboration, (2) case reuse via dual-layer
knowledge guided reasoning, and (3) case refine-
ment via representative sampling. Given the names
of a drug pair, we first leverage the LLM to gen-
erate concise drug descriptions, which are used
both to perform semantic-level retrieval and to aug-
ment a GNN module that encodes the subgraph
of the drug pair in the KG. This enables a hy-
brid retrieval mechanism that identifies both se-
mantically and structurally relevant cases from the
knowledge repository. Then, the retrieved cases are
integrated into a dual-layer knowledge-enhanced
prompt, which combines key drug associations ex-
tracted by the GNN module with historically sim-
ilar interaction mechanisms, guiding the LLM to
generate accurate and explainable prediction. Fi-
nally, we design a sampling strategy to refine the
repository by grouping similar cases and retain-
ing representative ones, reducing redundancy and
improving adaptability to new discoveries.

3.2 Knowledge Repository

To effectively leverage the historical drug interac-
tion cases and discover important pharmacological
principles, we propose to construct a lightweight
knowledge repository that stores a collection of
representative cases enriched with pharmacological
insights. This design is inspired by the case-based
reasoning paradigm widely adopted in clinical deci-
sion support systems (Althoff et al., 1998; Bichin-
daritz and Marling, 2006), where past cases are
enriched and reused to guide new decisions. The
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<Drug Description>

1. Fosphenytoin: Fosphenytoin is a prodrug of phenytoin, an antiepileptic medication used
to treat seizures and other conditions.

2. Granisetron: Granisetron is an antiemetic medication used to prevent nausea and
vomiting caused by cancer chemotherapy, radiation therapy, and surgery.

<Drug Association>

(Fosphenytoin, binds, Gene::CYP3A4),(Granisetron, binds, Gene::CYP3A4);

(Fosphenytoin, resembles, Modafinil),(Modafinil, binds, Gene::CYP3A4), (Granisetron,
binds, Gene::CYP3A4) ......

<Interaction Mechanism>

Fosphenytoin binds to CYP3A4, and Granisetron also binds to CYP3A4. When Fosphenytoin
binds to CYP3A4, it can induce the enzyme’s activity, leading to increased metabolism of
other drugs that also bind to CYP3A4, such as Granisetron. Therefore, The metabolism of
Granisetron can be increased when combined with Fosphenytoin.

<Interaction Type>

The metabolism of Granisetron can be increased when combined with Fosphenytoin.

\.

Figure 3: Example from the knowledge repository.

repository is designed to capture both factual infor-
mation of drugs and generalizable pharmacological
patterns, thereby enabling accurate retrieval of rel-
evant cases and facilitating analogical reasoning in
predicting new drug interactions. Specifically, as
shown in Figure 3, each case C' involving a drug
pair (u, v) in the repository is a structured represen-
tation of DDIs, consisting of four key components:

¢ drug description D, = (D,,, D,): functional de-
scriptions of the drugs generated by LLM (de-
tailed in Section 3.3.1).;

e drug association H,.: structured knowledge ex-
tracted from the KG using the GNN module, rep-
resenting the relationships between drugs, with
representation h. (detailed in Section 3.3.2);

* interaction mechanism M,.: pharmacological in-
sights that explain why the drugs interact, dis-
tilled from domain knowledge and historical
cases by LLM (detailed in Section 3.3.2);

* interaction type 1;: the label of interaction;

Among these, drug descriptions and associations
provide factual grounding for retrieval, while the
interaction mechanism is the core of each case, as
it explains the underlying reason for the interaction,
providing key pharmacological principles that can
be transferred to the prediction of new drug pairs.

3.3 Reasoning Steps

3.3.1 Case Retrieval via LLM-GNN
Collaboration

Effective case retrieval is crucial for CBR, as the
relevance and quality of retrieved cases directly im-
pact the accuracy and interpretability of predictions.
Considering the diverse functions of drugs and their
varying associations, we propose a hybrid retrieval
mechanism that combines the natural language pro-
cessing capabilities of LLMs with the structured



learning abilities of GNNs, enabling retrieval of
semantically and structurally similar cases.

To retrieve relevant historical cases C’s for a
given drug pair p = (u, v), we compute a retrieval
score based on a weighted combination of semantic
similarity and structural similarity:

s(p,c¢) = A - SemanticSim(p, ¢) o
+ (1 — A) - StructSim(p, ¢),
where A € [0, 1] is a hyperparameter that balances
the contribution of the two components. The two
similarity are defined as follows:

 SemanticSim(p,c) = Sim(f(D,), f(D.)):
We prompt an LLM (i.e., Llama3.1-8B-
Instruct (Grattafiori et al., 2024)) to generate
concise functional descriptions D,, and D, for
drugs u and v, denoted as D, = (D,,D,) =
LLMges(u, v). The function f(-) denotes a text
embedding model (Liu et al., 2019). We then
compute the cosine similarity between the em-
beddings of D), and the stored case description
D,, capturing the semantic closeness of drug
functionality and pharmacological properties.

StructSim(p,c) = Sim(h,, h.): We employ
a subgraph-based GNN module with attention
mechanism (i.e., EmerGNN (Zhang et al., 2023))
to encode the subgraph connecting the drug
pair in KG, with the embeddings of LLM-
generated drug descriptions as node features,
obtaining the subgraph representation: h, =
GNN(f(Dy), f(Dy)). Cosine similarity is then
computed between h,, and the stored case repre-
sentations h., reflecting the structural similarity
in the association patterns between drug pairs.

We rank all cases in the repository based on
s(p, c) and select the top-K most relevant ones
for subsequent reasoning. By integrating semantic
drug descriptions with graph-structured relational
knowledge, this hybrid approach enables a com-
prehensive case retrieval process, capturing phar-
macologically similar drug pairs while preserving
structural association relevance.

3.3.2 Case Reuse via Dual-layer Knowledge
Guided Reasoning

Although relevant cases reflect potential interaction
mechanisms, they do not provide sufficient factual
information for the given drug pair. To address
this, we design a dual-layer knowledge-enhanced

prompt that integrates both external factual knowl-
edge (i.e., drug associations) and internal regularity
knowledge (i.e., historical interaction mechanisms)
to guide the LLM’s reasoning process.

Specifically, the prompt comprises the key drug
associations of given pair extracted by the attention-
based GNN module, and relevant interaction mech-
anisms contained in historical similar cases. The
LLM is then prompted to synthesize these two com-
plementary sources of knowledge, generating the
interaction mechanism M), and type 7T},. The pre-
diction process is formalized as:

Mpv Tp - LLMpre(TDv {Ci}ililu Hp7 Ap)7 2)

where T'D is the task description, {C;}X, are the
top-K retrieved cases, H,, denotes the extracted
drug association facts, and A, is the filtered candi-
date interaction types. We detail the two types of
knowledge as follows:

» External factual knowledge (i.e., drug associ-
ations H,): To capture essential associations
between drugs, we employ the attention-based
GNN module to extract high-quality relational
paths that connect them. Unlike prior work (Ab-
dullahi et al., 2025) that retrieves triplets heuris-
tically, we scores triplets along the paths by at-
tention weights during GNN propagation. We
then select the top- P paths with the highest aver-
age attention as H, which are incorporated into
the prompt as structured, high-quality factual
evidence (e.g., Fosphenytoin Lbinds cyp3a4 b,
Diphenhydramine).

* Internal regularity knowledge (i.e., interaction
mechanisms within historical cases {C;}X, ):
The retrieved cases (in Section 3.3.1) contain
interaction mechanisms M, that reflect general-
ized pharmacological patterns observed in sim-
ilar drug pairs. They can guide the LLLM to per-
form analogical reasoning, drawing parallels be-
tween the current drug pair and previously known
interaction regularity.

By structuring the prompt in this manner, we
enhance the interpretability and reliability of LLM-
generated predictions, as the historical cases offer
relevant pharmacological principles, while the fac-
tual drug associations provide the evidence base.
Furthermore, to reduce the complexity introduced
by numerous interaction types, we pre-filter candi-
date answers A, based on the scores of GNN mod-
ule, retaining only top-/V candidates. This focuses



Methods \ WFT ITP DAA IMA
TextDDI X X X X
DDI-GPT X v X X
Naive-CBR v X X X
K-Paths v v Ve X

CBRDDI | v v v

Table 1: Comparison of different methods using LMs.
WEFT: Without Fine-Tuning; ITP: Interpretability; DAA:
Drug Association Augmentation; IMA: Interaction
Mechanism Augmentation.

the LLM’s attention on the most plausible options
and reduces noise from irrelevant candidates.

3.3.3 Case Refinement via Representative
Sampling

To ensure both the quality and size control of our
knowledge repository, we propose a dynamic re-
finement strategy that updates cases in the knowl-
edge repository. Specifically, for each LLM-
generated prediction, we verify its correctness
against ground truth label (e.g., from training data
or expert feedback), and prompt revisions for errors
based on the correct label. Furthermore, to control
the growth of the repository while preserving its
expressive power, we group semantically similar
cases within each DDI category using the text em-
beddings of their interaction mechanisms M. Our
case-based design allows for simple yet effective
clustering methods to retain only the most represen-
tative cases—filtering out redundancy while pre-
serving diversity in pharmacological scenarios (de-
tails are shown in Appendix A.1). This approach
keeps the repository compact and efficient while
allowing for new discoveries.

3.4 Comparison with Existing Works

As shown in Table 1, TextDDI (Zhu et al., 2024)
and DDI-GPT (Xu et al., 2024) rely on fine-tuning
small language models (e.g., RoBERTa (Liu et al.,
2019)) as classifiers, which limits their compatibil-
ity with off-the-shelf LLMs. Specifically, TextDDI
relys solely on individual drug descriptions. DDI-
GPT retrieves one-hop neighbors from KGs for
binary classification and applies an attention mech-
anism for limited interpretability. Naive-CBR
method (Brown et al., 2020) retrieves structurally
similar drug pairs based on fingerprint features, pro-
viding only case labels for LLMs without deeper
pharmacological insight. K-Paths (Abdullahi et al.,
2025) uses heuristic methods to extract diverse
paths between drugs and directly feeds them into
LLMs. In contrast, CBR-DDI uniquely integrates
both drug association knowledge and interaction

mechanism knowledge to augment LLLM reason-
ing, enabling accurate and interpretable predic-
tion, while offering plug-and-play flexibility across
LLMs without requiring fine-tuning.

4 Experiment

4.1 Experimental Setup

Datasets. We conduct experiments on two widely
used DDI datasets: (1) DrugBank (Wishart et al.,
2018), a multi-class dataset that contains 86
types interactions between drugs. (2) TWO-
SIDES (Tatonetti et al., 2012), a multi-label dataset
that records 200 side effects between drugs.
Experimental Settings. Following (Zhang et al.,
2023; Abdullahi et al., 2025; Dewulf et al., 2021),
we evaluate our model on two challenging set-
tings: S1 and S2. For S1 setting, the task is to
predict the interaction type between an emerging
drug—one that has no interaction records in the
training set—and an existing drug. For S2 setting,
the goal is to predict the interaction type between
two emerging drugs. We also provide experimental
results for SO setting in Appendix B.1.
Evaluation Metrics. For the DrugBank dataset,
where each drug pair corresponds to a single inter-
action type, we adopt Accuracy and F1 Score as
evaluation metrics. For the TWOSIDES dataset,
where a drug pair may involve multiple interaction
types, we treat it as a recommendation task and use
Recall@5 and NDCG @5 as the evaluation metrics.
Experiment Details. We follow the settings of
(Zhang et al., 2023) to train the GNN module and
use HetioNet (Himmelstein and Baranzini, 2015)
as the external KG. Considering the plug-and-play
convenience of CBR-DDI, we use three LLMs
in experiments: Llama3.1-8B-Instruct (Grattafiori
et al., 2024), Llama3.1-70B-Instruct (Grattafiori
et al., 2024), and DeepSeek-V3 (Liu et al., 2024).
We typically set number of reference cases K as
5, the number of paths in drug associations P as 3,
and vary the number of candidate answers among
{3,5,10}. Other details are shown in Appendix A.3.
Baseline Methods. We consider the following
baseline methods for comparison: (1) traditional
methods without using LLMs: MLP (Gardner
and Dorling, 1998), ComplEx (Trouillon et al.,
2017), MSTE (Yao et al., 2022), Decagon (Zit-
nik et al., 2018), SumGNN (Yu et al., 2021),
EmerGNN (Zhang et al., 2023), TIGER (Su et al.,
2024), TextDDI (Zhu et al., 2024); (2) LLM-based
methods: Base model, Naive-CBR (retrieve 10 sim-



DrugBank TWOSIDES
Type Method S1 S1 S2 Agug
Acc F1 Acc F1 Recall NDCG Recall NDCG
Feature-based \ MLP \ 57.77 4253 39.85 20.15 \ 12.70 14.88 3.60 5.95 \ 6.42 1
ComplEx 4.02 1.74  4.32 1.77 2.30 3.61 1.62 1.81 32.06 1
MSTE 54.66 40.57 32.88 493 5.12 7.37 2.78 3.12 11.02 1
Graph-based Decagon 3241 28.56 2247 6.12 4.48 6.36 2.38 3.61 19.54 1
p SumGNN 57.04 5477 2528 17.85 | 4.08 5.24 2.11 3.48 13.03 1
EmerGNN | 68.10 65.78 44.84 3422 | 13.79 16.06 3.01 4.93 24571
TIGER 60.11 5721 3346 19.78 | 11.72  14.33 2.69 3.90 7.81 1
LM-based \ TextDDI \ 66.75 66.53 4423 32.79 \ 9.88 13.24 4.16 6.04 \ 3351
Base 871 410 730 394 0.04 0.06 0.02 0.03 28.92 1
Llama3.1-8B Naive-CBR | 47.88 42.38 15.02 8.70 3.60 4.47 0.27 0.50 16.24 1
’ K-Paths 17.62 9.06 1229 17.34 0.25 0.38 0.07 0.08 25.38 1
CBR-DDI 68.52 61.57 4494 3243 | 13.89 1545 4.38 7.04 -
Base 8.93 437 8.02 4.12 0.05 0.06 0.03 0.03 30.21 1
Llama3.1-70B Naive-CBR | 48.09 50.62 2122 13.04 | 4.54 5.46 0.68 0.84 15.84 1
’ K-Paths 31.35 1643 31.12 14.87 | 2.09 3.18 1.01 1.42 18.08 1
CBR-DDI 71.36 70.85 4743 36.88 | 1440 16.97 4.68 7.32 -
Base 1262 9.61 12.12 6.78 0.03 0.04 0.03 0.05 28.82 1
DeepSeek-V3 | Naive-CBR | 55.20 47.24 2226 1546 | 3.18 4.22 0.32 0.47 14.78 1
-671B K-Paths 3452 18.17 32.33 1541 1.73 2.21 1.19 1.66 17.58 1
CBR-DDI 71.05 7438 4945 40.69 | 14.85 16.56 4.73 6.60 -

Table 2: Performance comparison of different methods for DDI. A,,,, denotes the average improvement in accuracy

and recall (in percent) on two datasets.

ilar labeled cases based on fingerprint similarity
as few-shot prompting (Brown et al., 2020)), K-
Paths (Abdullahi et al., 2025).

4.2 Performance Comparison

As shown in Table 2, among LLM-based base-
lines, Naive-CBR achieves notable performance
improvements, highlighting the importance of his-
torical cases in prediction. By providing similar
drug pairs with their interaction labels, it demon-
strates that past interaction patterns offer valuable
knowledge for guiding LLLM predictions. How-
ever, Naive-CBR relies on untrained and simple
feature similarity metrics, which fail to capture
complex relationships between cases or provide
in-depth pharmacological insights. Consequently,
it can not outperform other advanced deep learning
approaches that are specifically trained for DDI.
In contrast, our proposed method, CBR-DDI, sig-
nificantly outperforms all baseline methods across
multiple benchmarks, especially when paired with
powerful LLMs like Llama3.1-70B or DeepSeek.
Even with smaller models such as Llama3.1-8B,
our method achieves superior results over state-
of-the-art methods. Compared to heuristic-based
approaches like K-Paths, which may introduce ir-
relevant or redundant information, CBR-DDI ef-
fectively leverages historical cases to extract valu-
able pharmacological insights, and enhances LLM

CBR DrugBank TWOSIDES
_DDI S1 S2 S1 S2
Acc Fl1 Acc Fl |Rec NDCG Rec NDCG
full [71.4 709 474 369|144 170 47 7.3
w.o.case |[68.3 68.4 46.0 335139 151 34 52
w.0.as80 [69.4 68.9 46.5 342(14.1 164 44 7.0

Table 3: Comparison of different variants of CBR-DDI-
Llama3.1-70B.

TWOSIDES
S1 S2 S1 S2
Acc #Case Acc #Case| Rec #Case Rec #Case

DrugBank
CBR-DDI

w.o.samp |71.36 35255 47.38 3056 |14.32 4684 4.68 808
w.samp |71.05 2139 47.43 398 [14.40 1639 4.48 504

Table 4: Influence of representative sampling strategy.

outputs by integrating both factual drug associa-
tion knowledge and regular interaction mechanism
knowledge, thereby achieving more accurate and
reliable predictions. These results demonstrate that
CBR-DDI is the first work to effectively unlock the
potential of LLMs for DDI prediction.

4.3 Ablation Study

4.3.1 Influence of Dual-Layer Knowledge
Augmentation

To validate the necessity of both factual knowledge
(i.e., drug associations) and regularity knowledge
(i.e., interaction mechanisms derived from cases),
we conduct ablation studies under three configu-
rations: (i) the full prompt, (ii) factual-only (w.o.
case), and (iii) regularity-only (w.0. asso). As
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Figure 4: Impact of hybrid retriever’s hyperparameter.

shown in Table 3, removing either knowledge layer
leads to a performance drop. These results confirm
that factual knowledge provides evidence base for
reasoning, while regularity knowledge facilitates
mechanistic generalization. Notably, the retrieved
cases play a more critical role, as drug associa-
tions from KGs do not directly determine interac-
tion types. Accurate prediction demands deeper
insights into pharmacological mechanisms derived
from historical cases, highlighting the importance
of case-based reasoning.

4.3.2 Effectiveness of Hybrid Case Retriever

We evaluate the effectiveness of the hybrid retriever
by varying the similarity weight A between seman-
tic and structural components in (1). Specifically,
we measure the retrieval accuracy by selecting the
top-K cases (K = 1,5) under different \ values
and assigning the majority label among them to
the test sample. As shown in Figure 4, retrieval
accuracy first increases and then decreases as A
changes, suggesting that a balanced combination
of semantic and structural similarity yields optimal
performance. This demonstrates that our hybrid
retriever effectively integrates both drug functional
descriptions and structural associations, enabling
the retrieval of cases that are not only pharmaco-
logically similar but also share interaction patterns,
thereby improving the accuracy of predictions.

4.3.3 Influence of Representative Sampling

Table 4 demonstrates the impact of our represen-
tative sampling strategy for case refinement. By
replacing individual cases with representative clus-
ter centroids, we significantly reduce the size of the
case repository—by over 90% in DrugBank—thus
greatly enhancing scalability. Notably, reducing
the case volume does not compromise performance,
while still achieving comparable or even improved
results. These results indicate the representative
sampling strategy optimizes system efficiency and
computational resource usage while filtering out
noisy or redundant cases, leading to more represen-
tative and informative case selection.

/<Query drug pair-Answer> \

Rifabutin, Zopiclone — The metabolism of Zopiclone can be increased when combined with Rifabutin.
<Input Task Description>

You are a medical expert. Your task is to predict the interaction between a pair of drugs. There are some
examples for your reference before the given question. You can refer to the interaction mechanisms in the
provided examples. You should answer the given question based on the candidate answers, correct
probability, related facts and your own knowledge. Please end your reply with “The interaction is <your
answer>'.

<Input Reference Cases>

Example: What is the interaction between Fosphenytoin and Cytarabine?

Related Facts:

(Fosphenytoin, binds, Gene::CYP2C19), (Glucosamine, binds, Gene::CYP2C19), (Glucosamine, resembles,

Cytarabine);
(Fosphenytoin, binds, Gene::CYP3A4), (Cytarabine, binds, Gene::CYP3A4);

dafinil, F in), (The ism of inil can be decreased when combined
with Gluc (Glucosamine, r Cytarabine);

Answer: The given facts suggest that Fosphenytoin binds to CYP2C19 and CYP3A4, and Cytarabine also
binds to CYP3A4. Since Glucosamine resembles Cytarabine, it is likely that Cytarabine also binds to
CYP2C189. Fosphenytoin's binding to CYP2C19 can lead to increased metabolism of Cytarabine, therefore,
The metabolism of Cytarabine can be increased when combined with Fosphenytoin.
<Input question, drug associations and candidate answers>
Question: What is the interaction between Rifabutin and Zopiclone?
Candidate Answers:
The serum concentration of Zopiclone can be decreased when it is combined with Rifabutin. (correct
probability: 0.251)
The metabolism of Zopiclone can be increased when combined with Rifabutin. (correct probability: 0.233)
The risk or severity of adverse effects can be increased when Rifabutin is combined with Zopiclone.
(correct probability: 0.211)
Related Facts:
(Rifabutin, resembles, Rifapentine), (Rifapentine, binds, Gene::CYP2C9), (Zopiclone, binds, Gene::CYP2C9);
(Rifabutin, resembles, Rifapentine), (Rifapentine, binds, Gene::CYP3A4), (Zopiclone, binds, Gene::CYP3A4);
(Rifabutin, resembles, Rifapentine),(The metabolism of Eszopiclone can be increased when combined with
Rifapentine),(Zopiclone, resembles, Eszopiclone);
<Output by CBR-DDI-Llama3.1-70B>
The given facts suggest that Rifabutin resembles Rifapentine and Rifampicin, which increase the

bolism of i adrug that This implies that Rifabutin may have a similar
effect on Zopiclone, increasing its metabolism. Additionally, Rifapentine binds to CYP2C9, and CYP3A4
enzymes, and Zopiclone also binds to these enzymes. This suggests that Rifabutin may induce these
enzymes, leading to increased metabolism of Zopiclone. Considering these facts, the most likely
interaction between Rifabutin and Zopiclone is that the metabolism of Zopiclone can be increased when
combined with Rifabutin.
The interaction is: The metabolism of Zopiclone can be increased when combined with Rifabutin.

J

Figure 5: One case study from DrugBank.
4.4 Case Study

We present a case study in Figure 5, which shows
the query drug pair, input task description, one of
the retrieved cases, extracted drug associations, fil-
tered candidate answers, and the final output of the
LLM. As shown, the retrieved case exhibits simi-
lar drug associations and interaction mechanisms
to those of the query pair, providing strong rea-
soning evidence. The LLM leverages its powerful
in-context learning capabilities to analyze the pro-
vided knowledge, generating accurate predictions
and explanations, which provides useful insights
for medical practitioners. This example illustrates
how CBR-DDI effectively enhances the LLM’s rea-
soning by incorporating valuable pharmacological
knowledge from historical cases and KGs, resulting
in accurate and faithful outcomes.

5 Conclusion

In this work, we introduced CBR-DDI, a novel
framework that leverage CBR to enhance LLMs
for DDI tasks. CBR-DDI constructs a knowledge
repository by distilling pharmacological principles
by LLM from historical cases and integrating struc-
tured knowledge extracted by GNN from KGs. The
framework employs comprehensive case retrieval,
knowledge-enhanced case reuse, and dynamic case
refinement, achieving accurate predictions, while
maintaining high interpretability and flexibility.



Limitations

In our approach, the prediction relies solely on tex-
tual information, without incorporating the drug
molecular structures. This limits the model’s abil-
ity to perform fine-grained interaction analysis at a
molecular level. In future work, it is worthy explor-
ing how molecular structural data can be integrated
into our framework, enabling more precise case
retrieval and offering deeper pharmacological ex-
planations of interaction mechanism.
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A Implementation Details

A.1 Details of Knowledge Repository

Repository Initialization. To initialize the knowl-
edge repository, we randomly sample a subset of
instances from the training data and use them to
construct the initial set of cases. For each selected
drug pair, we provide the LLM (e.g., Llama3.1-8B-
Instruct) with the correct interaction type and rele-
vant drug association facts, prompting it to generate
a clear and accurate explanation of the underlying
mechanism.

Repository Update. Whenever the number of
cases in the knowledge base exceeds the threshold,
or when a certain number of new cases (e.g., 1000)
are added, we execute our representative sampling
case refinement method. Specifically, we apply
the K-Medoids clustering algorithm (Park and Jun,
2009) within each DDI category to group seman-
tically similar cases, using the text embeddings of
their interaction mechanisms M.. The number of
clusters is pre-specified based on the overall sam-
ple size (e.g., retaining 5% of the cases or at least
10 cases per category). Within each cluster, only
the medoid—the most central and representative
case—is retained, while redundant or overly sim-
ilar cases are removed. This approach not only
reduces storage and computational overhead but
also ensures that the retained cases reflect diverse
pharmacological scenarios.

A.2  Algorithms for GNN module.

Following (Zhang et al., 2023), we present the al-
gorithms of the GNN module. Given a drug pair
p = (u,v), we implicitly encode the pair-wise sub-
graph representations with Algorithm 1, and use
beam search to find the top- P paths between them
with Algorithm 2.

A.3 Details of Experiments

Datasets. We conduct experiments on two widely
used DDI datasets: (1) DrugBank (Wishart et al.,
2018), a multiclass DDI prediction dataset that
contains 86 types of pharmacological interactions
between drugs. (2) TWOSIDES (Tatonetti et al.,
2012), a multilabel DDI prediction dataset that
records 200 side effects between drugs. We use
HetioNet (Himmelstein and Baranzini, 2015) as
for the external biomedical knowledge graph. Ta-
ble 5 and 6 display the statistics of the datasets and
knowledge graph, where V’s represent the sets of

12

Algorithm 1 Pair-wise subgraph representation
learning with flow-based GNN.

Require: p (u,v),fu f(DU)7fU
f(D'U), L7 67 g, {W(Z)v 'LU([) }Z:l.”L}y g
{p = (u,v): drug pair; {fu, fv}: the embeddings
of drug descriptions; L: the depth of path-based sub-
graph; 0: activation function; o: sigmoid function;
(WO w®1Y,_,  }: learnable parameters; G: biomed-
ical KG.}

: initialize the u — v pair-wise representation as h%,e
fu if e = u, otherwise hg,e =0;

: initialize the v — wu pair-wise representation as h?,,e =
fv if e = v, otherwise hg,e =0;

3: for { < 1to L do
4:  for e € Vp do {This loop can work with matrix opera-
tions in parallel. }
5: message for u — v:
h. = 6(W“> > o ()it f])-
(e’,r,e)END
(h¢0 e h(f)))
6: message for v — wu:
ni=s(WO S o ()i ).
(e’,r,e)END
(e hm))
7:  end for
8: end for
9: Return h, = [h{%); b2

nodes, R’s represent the sets of interaction types,
and N’s represent the sets of edges.

Evaluation metrics. For the DrugBank dataset,
there is one interaction between a pair of drugs.
Hence, we evaluate the performance in a multi-
class setting, which estimates whether the model
can correctly predict the interaction type for a pair
of drugs. We consider the following metrics:

* Accuracy: the percentage of correctly predicted
interaction type compared with the ground-truth
interaction type.

_ 1 2P, R; ,
* Fl(macro) = Tl Z,LEID iR where P; and

R; are the precision and recall for the interaction
type %, respectively. The macro F1 aggregates the
fractions over different interaction types.

In the TWOSIDES dataset, there may be mul-
tiple interactions between a pair of drugs, such as
anaemia, nausea and pain. Hence, we treat it as a
recommendation task, where the LLM is prompted
to recommend 5 possible interactions for given
drug pair. We use Recall@5 and NDCG@5 as the

s

s



S1 S2

Dat. t -train -vali -tes -train

ataset Vouin| Voaial Vosesl [Rol Noaminl 05, il |V [Wbata] IWoesd
DrugBank 1,461 79 161 86 137,864 17,591 32,322 536 1,901
TWOSIDES 514 30 60 200 185,673 3,570 6,698 106 355

Table 5: Statistics of datasets.

Algorithm 2 Path extractor.

Require: (u,v), L, P

1: initialize openList[0] +— w;

2: set Vﬁ% = {u}, Vfﬁ,) ={v};

3: obtain the set V) = {e : d(e,u) = £,d(e,v) = L —

£}, =1,..., L with bread-first-search;

4: for { < 1to L do

5. setcloseList[¢] + 0, pathList[¢] < 0;

6:  foreachedgein {(¢’,r,e) : ¢’ € openList[{ —1],e €

Vﬁﬂ,} do
7 compute the attention weights ay) =
o (i) [fus £2]):
8: compute score(u, €', e) = score(u, €) + ag);
9: closeList[¢].add((e, score(u, €', €)));
10: end for
11:  for (u, €, e) €topp(clostList[]) do
12: openList[¢].add(e), pathList[¢].add((e’, , €));
13: end for
14: end for

15: Return: join(pathList[1]. . . pathList[L]).

KG
HetioNet

Vs|  [Rs|
34,124 23

3|
1,690,693

Table 6: Statistics for knowledge graph.

evaluation metrics:
|Ri5 NT|
T
S0 I(R; € T)Yogy(i+1)
gTGT"E’) 1/1ogs (i+1)

where R is a list of recommended interactions for
the given pair, T’ is the ground-truth list, and indica-
tor function I(x) = 1 if z is true and O otherwise.

Hyperparameters. For the training of the
GNN module, we follow EmerGNN (Zhang
et al., 2023)’s hyperparameter settings. We
use three LLMs in experiments: Llama3.1-8B-
Instruct (Grattafiori et al., 2024), Llama3.1-70B-
Instruct (Grattafiori et al., 2024), and DeepSeek-
V3 (Liu et al., 2024). The training of GNN mod-
ule and the inference of Llama3.1-8B are on an
RTX 3090-24GB GPU, while the inference for
Llama3.1-70B runs on two A100-80GB GPUs.
DeepSeek is accessed via API calls. We set the
number of reference cases K to 5, maintain P = 5
paths in drug associations, and limit candidate an-
swers to 3 for DrugBank and 10 for TWOSIDES.

Recall@5 = 3)

NDCG@5 =

NG

Baseline Methods. We consider following base-
line methods for performance comparison:
(1) traditional methods without using LLMs:

* MLP (Gardner and Dorling, 1998) uses mul-
tilayer perceptron to map the fingerprint fea-
tures of drugs to the interaction types between
them.

* ComplEx (Trouillon et al., 2017) converts KG
in to a complex matrix and predict DDI based
on the decomposition of the matrix.

* MSTE (Yao et al., 2022) is an embedding-
based method that learns on KG to predict the
possibility of whether a relation exists.

* Decagon (Zitnik et al., 2018) utilizes drug,
genes and diseases information to learn drug
representation and predict DDI with a graph
convolutional network.

* SumGNN (Yu et al., 2021) samples a sub-
graph from KG for drug pair and designs a
summarization scheme to generate reasoning
path in the subgraph.

* EmerGNN (Zhang et al., 2023) designs a flow-
based GNN on the KG to learn the representa-
tion of subgraph between drugs for prediction.

* TIGER (Su et al., 2024) uses graph trans-
former to encode the molecular structure and
biomedical KG to learn dual-channel repre-
sentation for drugs.

e TextDDI (Zhu et al., 2024) trains an LM as
predictor with an RL-based information selec-
tor for extracting relevant drug descriptions.

(2) LLM-based methods:

* Base model is a zero-shot method which di-
rectly prompts LLMs to select the most likely
interaction type r from the relation set Rp.

* Naive-CBR (Brown et al., 2020) retrieves 10
similar labeled cases based on fingerprint sim-
ilarity as few-shot prompting.
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DrugBank TWOSIDES
Type Method Acc F1 Recall NDCG
Feature-based | MLP | 81.22 6156 | 2521  27.78
Decagon 87.10 58.61 | 1247 14.92

Graph-based | EmerGNN | 9648 9544 | 26.84  30.22
TIGER 95.57 9389 | 21.54 2536

LM-based | TextDDI | 96.04 94.53 | 14.07 17.64
Base 917 479 | 0.06 0.07

Naive-CBR | 57.92 54.26 | 7.05 8.74

Llama3-1-70B | ¢ pahs | 2375 1527 | 087 138
CBR-DDI | 96.98 95.95 | 27.18 31.04

Table 7: Performance comparison of different methods
for DDI on SO setting.

» K-Paths (Abdullahi et al., 2025) employs a
diversity-aware adaptation of Yen’s algorithm
to retrieve the K shortest paths between drugs
for LLM’s prediction.

B Supplementary Experiments

B.1 Performance on S0 Setting

We present the performance of different methods
under the SO setting (predicting interactions be-
tween existing drugs) in Table 7. As can be seen,
our method still achieves the best performance.
However, the advantage is not as pronounced as
in the S1 and S2 settings, since our approach pri-
marily targets the scenario of new drug prediction.
Under the SO setting, existing methods can mem-
orize possible interaction types between known
drugs through training, whereas our method does
not fine-tune LLMs and thus lacks this advantage.

B.2 Effect of Case Number

We investigate how the number of retrieved cases
K affects model performance. As shown in Fig-
ure 6, increasing K generally improves accu-
racy for both the Llama3.1-8B and 70B models.
These results suggest that incorporating more cases
enhances LLM’s reasoning by providing richer
phamacological insights, but overly large K may
introduce redundancy or noise. Specifically, incor-
porating case information can significantly enhance
the performance of smaller LLMs (i.e., Llama3.1-
8B), as their weaker reasoning capabilities make
it difficult to delve beyond superficial drug asso-
ciations to uncover underlying interaction mecha-
nisms and consequently make accurate predictions.

B.3 Effect of Drug Association Knowledge

We also analyze the impact of the number of ex-
tracted drug association paths P on model perfor-
mance. As shown in Figure 7, prediction accuracy
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Figure 6: Impact of the number of retrieved cases on
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Figure 7: Impact of retrieved drug associations on
DrugBank-S1 of CBR-DDI-Llama3.1-70B.

initially improves with increasing P, as additional
paths provide more factual evidence for mechanis-
tic reasoning. However, beyond an optimal point,
performance gradually declines as excessive paths
introduce irrelevant or conflicting relationships that
obscure core interaction mechanisms.

Furthermore, the Figure compares our attention-
based GNN retriever with the random retriever (i.e.,
heuristic retrieval used in existing methods). The
results demonstrate that our GNN retriever achieves
superior performance, as the attention mechanism
enables the model to learn and prioritize more high-
quality relationship paths, thereby providing a more
effective foundation for reasoning. In contrast,
heuristic retrieval methods lack this discriminative
capability to identify the critical pharmacological
relationships.

B.4 Effect of Hybrid Retriever

We present the most relevant cases retrieved by dif-
ferent retrievers for the same query drug pair. As
shown in Figure 8, using either the semantic-based
retriever (A = 1) or the structure-based retriever
(A = 0) alone fails to effectively retrieve cases with



the same interaction type as the test case, thus un-
able to provide valuable interaction mechanisms
for the LLM. In contrast, our proposed hybrid re-
triever combines semantic similarity and structural
similarity, capturing relevant pharmacological ef-
fects and drug associations to deliver meaningful
pharmacological insights. Note that we do not dis-
play the interaction mechanisms in the cases here,
as they are not involved in the retrieval process.

C Case Study

We present two more representative cases from
DrugBank and TWOSIDES in Figure 9 and Fig-
ure 10. Each case includes LLM-generated drug
descriptions, key drug associations extracted by the
GNN module, mechanistic explanations generated
by the LLM based on both external and internal
knowledge, and the ground truth interaction label.
These cases are constructed to capture both factual
evidence and underlying pharmacological princi-
ples of drug interactions, thereby supporting accu-
rate retrieval and interpretable reasoning for new
prediction tasks.
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( Query Drug Pair \
<Drug Description>
1. Maprotiline: Maprotiline is a tetracyclic antidepressant (TeCA) used to treat major depressive disorder. It works by
increasing the levels of certain neurotransmitters in the brain .......
2. Cinacalcet: Cinacalcet is a calcimimetic agent used to treat secondary hyperparathyroidism in patients with chronic
kidney disease on dialysis, as well as to treat hypercalcemia in patients with parathyroid carcinoma.
<Drug Association>
(Maprotiline, binds, Gene::CYP2D6), (Cinacalcet, binds, Gene::CYP2D6);
(Maprotiline, binds, Gene::CYP1A2), (Cinacalcet, binds, Gene::CYP1A2);
(Maprotiline, binds, Gene::CYP3A4), (Cinacalcet, binds, Gene::CYP3A4) ......
<Interaction Type>
The metabolism of Cinacalcet can be decreased when combined with Maprotiline.
Retrieved Case with Hybrid Retriever

<Drug Description>
1. Maprotiline

2. Cimetidine: Cimetidine is a histamine H2-receptor antagonist that is used to treat ulcers and gastroesophageal reflux
disease (GERD) by reducing stomach acid production.

<Drug Association>

(Maprotiline, binds, Gene::CYP2D6), (Cimetidine, binds, Gene::CYP2D6);
(Maprotiline, binds, Gene::CYP1A2), (Cimetidine, binds, Gene::CYP1A2);
(Maprotiline, binds, Gene::ABCB1), (Cimetidine, binds, Gene::ABCB1)......
<Interaction Type>

The metabolism of Cimetidine can be decreased when combined with Maprotiline. u
Retrieved Case with Semantic Retriever

<Drug Description>
1. Maprotiline

2. Pomalidomide: Pomalidomide is an immunomodulatory drug used in the treatment of multiple myeloma, a type of blood
cancer. It works by inhibiting the growth of cancer cells and enhancing the immune system's ability to attack cancer cells.
<Drug Association>

(Maprotiline, binds, Gene::ABCB1), (Pomalidomide, binds, Gene::ABCB1);

(Maprotiline, binds, Gene::CYP1A2), (Pomalidomide, binds, Gene::CYP1A2);

(Maprotiline, resemble, Desiparamine), (Desipramine, binds, Gene::ABCB1), (Pomalidomide, binds, Gene::ABCB1) ......
<Interaction Type>

The risk or severity of adverse effects can be increased when Maprotiline is combined with Pomalidomide.°

Retrieved Case with Structure Retriever

<Drug Description>
1. Maprotiline
2. Desvenlafaxine: Desvenlafaxine is a serotonin-norepinephrine reuptake inhibitor (SNRI) used to treat major depressive
disorder and generalized anxiety disorder.
<Drug Association>
(Maprotiline, binds, Gene::CYP3A4), (Desvenlafaxine, binds, Gene::CYP3A4);
(Maprotiline, binds, Gene::CYP2D6), (Desvenlafaxine, binds, Gene::CYP2D6);
(Maprotiline, binds, Gene::SLC6A2), (Desvenlafaxine, binds, Gene::SLC6A2) ......
<Interaction Type>
\The risk or severity of adverse effects can be increased when Maprotiline is combined with Desvenlafaxine.e

J

Figure 8: Retrieved cases of different retrievers on DrugBank-S1.

<Drug Description>

1. Betaxolol: Betaxolol is a beta-blocker medication used to treat high blood pressure and glaucoma.

2. Salmeterol: Salmeterol is a long-acting beta-2 adrenergic receptor agonist (LABA) used to treat asthma and chronic
obstructive pulmonary disease (COPD).

<Drug Association>

(Betaxolol, binds, Gene::ADRB2),(Salmeterol, binds, Gene::ADRB2);

(Betaxolol, binds, Gene::ADRB1), (Propafenone, binds, Gene::ADRB1),(Propafenone, resembles, Salmeterol);

(Betaxolol, binds, Gene::ADRB1), (Arbutamine, binds, Gene::ADRB1), (Arbutamine, resembles, Salmeterol);

(Betaxolol, binds, Gene::ADRB2), (Salbutamol, binds, Gene::ADRB2), (Salbutamol, resembles, Salmeterol);

(Betaxolol, binds, Gene::CYP2D6),(Labetalol, binds, Gene::CYP2D6),(Salmeterol, resembles, Labetalol).

<Interaction Mechanism>

The given facts suggest that Betaxolol binds to both ADRB1 and ADRB2 receptors. Salmeterol also binds to ADRB2 receptors,
which are responsible for bronchodilation. Since Betaxolol binds to ADRB1 and ADRB2 receptors, it can potentially block the
action of Salmeterol on ADRB2 receptors, leading to decreased bronchodilatory activities of Salmeterol. Therefore, Betaxolol
may decrease the bronchodilatory activities of Salmeterol.

<Interaction Type>

Betaxolol may decrease the bronchodilatory activities of Salmeterol.

Figure 9: One case from DrugBank.
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f<Drug Description>

1. Loratadine: Loratadine is a non-sedating antihistamine used to treat allergies, such as hay fever, and skin conditions like hives.
2. Nifedipine: Nifedipine is a calcium channel blocker used to treat high blood pressure and angina (chest pain).

<Drug Association>

(Loratadine, resemmbles, Azatadine), (Azatadine, resembles, Cyproheptadine),(Cyproheptadine, upregulates,
Gene::ADO),(Nifedipine, upregulates, Gene::ADO);

(Loratadine, resemmbles, Azatadine), (Azatadine, resembles, Cyproheptadine),(Cyproheptadine, upregulates,
Gene::RRP8),(Nifedipine, upregulates, Gene::RRP8);

(Loratadine, resemmbles, Azatadine), (Azatadine, resembles, Cyproheptadine),(Cyproheptadine, upregulates,
Gene::RRS1),(Nifedipine, upregulates, Gene::RRS1)

<Interaction Mechanism>

The given facts suggest that Loratadine and Nifedipine may interact through their effects on certain genes, including Gene::ADO,
Gene::RRP8, and Gene::RRS1. While the exact mechanisms are unclear, we can make some educated guesses about the potential
side effects. The upregulation of these genes by both Loratadine (via its resemblance to Cyproheptadine) and Nifedipine may
lead to increased expression of certain proteins involved in inflammation and vascular regulation. This could contribute to the
development of acne rosacea, a condition characterized by inflammation and increased blood flow to the skin. The interaction
between Loratadine and Nifedipine may also affect blood pressure regulation, leading to increased pressure in the portal vein,
which could cause portal hypertension. Finally, the upregulation of Gene::ADO, Gene::RRP8, and Gene::RRS1 may also affect the
urinary system, leading to changes in urine production and composition, which could result in pyuria (the presence of pus in the
urine). Therefore, when Loratadine and Nifedipine are used together, the side effects are [acne rosacea, portal hypertension,
pyuria].

<Interaction Type (Side Effects)>

[acne rosacea, portal hypertension, pyuria]

Figure 10: One case from TWOSIDES.
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