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Abstract001

Translating multi-word expressions (MWEs)002
and idioms requires a deep understanding of the003
cultural nuances of both the source and target004
languages. This challenge is further amplified005
by the one-to-many nature of idiomatic trans-006
lations, where a single source idiom can have007
multiple target-language equivalents depending008
on cultural references and contextual variations.009
Traditional static knowledge graphs (KGs) and010
prompt-based approaches struggle to capture011
these complex relationships, often leading to012
suboptimal translations. To address this, we013
propose an IdiomCE, an adaptive graph neural014
network (GNN) based methodology that learns015
intricate mappings between idiomatic expres-016
sions, effectively generalizing to both seen and017
unseen nodes during training. Our proposed018
method enhances translation quality even in019
resource-constrained settings, facilitating im-020
proved idiomatic translation in smaller models.021
We evaluate our approach on multiple idiomatic022
translation datasets using reference-less met-023
rics, demonstrating significant improvements024
in translating idioms from English to various025
Indian languages.026

1 Introduction027

In linguistic terms, idiom is a multi-word expression028

(MWE) whose meaning cannot be derived from the029

literal meanings of its individual parts. Idioms have030

key properties such as noncompositionality, fixed-031

ness, and cultural specificity (Nunberg et al., 1994).032

They are integral to everyday language, enhancing033

expressiveness and communicative vividness. They034

often originate from diverse cultural, historical, and035

situational contexts, making them unique to spe-036

cific languages or regions (Vula and Tyfekçi, 2024;037

Yagiz and Izadpanah, 2013).038

With advancements in large language models039

(LLMs), neural machine translation (NMT) has sig-040

nificantly improved in handling complex linguis-041

tic phenomena, which led to research interest in042
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complex linguistic tasks such as translating idioms 043

across multiple languages (Li et al., 2023a; Reza- 044

eimanesh et al., 2024a; Castaldo and Monti, 2024). 045

However, despite these advancements, idiomatic 046

translation remains a major challenge due to the 047

inherent properties of idioms. Traditional NMT 048

systems, both statistical and neural, struggle with 049

noncompositionality, as they primarily process text 050

at the word or phrase level rather than capturing 051

an idiom’s holistic meaning. This often leads to 052

literal translations, distorting the intended meaning 053

of the source text (Baziotis et al., 2023; Raunak 054

et al., 2023; Dankers et al., 2022). 055

Recent efforts to address idiomatic translation 056

have primarily relied on (1) idiom dictionary-based 057

substitution (Salton et al., 2014) and (2) prompting 058

techniques, such as chain-of-thought (CoT) rea- 059

soning or explicitly providing figurative meanings 060

in prompts (Castaldo and Monti, 2024; Li et al., 061

2023b; Rezaeimanesh et al., 2024b). Although 062

these methods have shown improvements in id- 063

iomatic translation, they still fail to overcome key 064

challenges. As shown in Figure 1, these methods of- 065

ten overlook cultural factors that shape idioms and 066
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influence their mappings across languages (Chal-067

lenge I). Additionally, they fail to address the one-068

to-many nature of idioms, where a single source-069

language idiom may have multiple valid transla-070

tions in the target language, with the optimal choice071

depending on the source sentence’s context (Reza-072

eimanesh et al., 2024a) (Challenge II). Moreover,073

knowledge graph (KG)-based approaches are in-074

herently constrained by the availability of idiom075

resources, leading to translation gaps when encoun-076

tering idioms not present in the KG (Peng et al.,077

2023) (Challenge III). These challenges pose a crit-078

ical research question:079

How can cultural nuances be effectively integrated080

into many-to-many idiomatic translation to en-081

hance model performance?082

To address this challenge, one possible approach083

is to first analyze the cultural dependencies of id-084

ioms and identify the specific cultural elements085

that shape idiomatic expressions across languages.086

Recent studies in NLP (Liu et al., 2024) (Pawar087

et al., 2024) introduce a comprehensive taxonomy088

of cultural and sociocultural elements, highlight-089

ing the need for culturally adaptive models as well090

as efforts to incorporate cultural awareness. How-091

ever, even with a structured understanding of these092

cultural elements, capturing their intricate relation-093

ships and effectively leveraging them for one-to-094

many idiomatic translation remains a significant095

challenge.096

This paper introduces IdiomCE, an inductive097

graph-based approach that models the relationships098

between source and target idioms by leveraging099

complex cultural element mappings, as illustrated100

in Figure 1, where source is an English idiom and101

target are Hindi idioms. Using link prediction, our102

method facilitates one-to-many idiomatic transla-103

tion while preserving cultural relevance across lan-104

guages. Furthermore, IdiomCE is adaptable, en-105

abling the translation of unseen idioms by lever-106

aging the inductive capabilities of GNNs, effec-107

tively addressing the limitations of noisy and lim-108

ited knowledge bases. Our key contributions are109

summarized as follows:110

• We propose a cultural element-based data cre-111

ation method that generates multiple target112

idioms for a given source idiom.113

• We develop an Inductive GNN trained on this114

graphical data, leveraging link prediction to115

enable one-to-many idiomatic translation (ad-116

dressing Challenge I and II).117

• We design an adaptable pipeline that extends 118

to unseen idioms using the inductive capabili- 119

ties of GNNs (addressing Challenge III). 120

• Using English as a pivot language, we extend 121

our approach to facilitate idiomatic transla- 122

tion across Indic languages without needing to 123

train GNN models between all possible pairs 124

of languages. 125

2 Related works and Motivation 126

Idiomatic Text Translation: Previous studies have 127

explored various strategies to enhance NMT per- 128

formance for idiomatic translation. (Salton et al., 129

2014) introduced a substitution-based method, 130

where source-side idioms are replaced with their 131

literal meanings before translation and reinstated 132

post-translation to improve accuracy. (Zaninello 133

and Birch, 2020) demonstrated that augmenting 134

training data with idiomatic translations enhances 135

model performance on both source and target sides. 136

Beyond direct translation techniques, researchers 137

have focused on learning non-compositional em- 138

beddings and automatically identifying idioms, 139

as explored by (Weller et al., 2014), (Hashimoto 140

and Tsuruoka, 2016), and (Tedeschi et al., 2022). 141

More recently, prompting techniques and Chain- 142

of-Thought (CoT) reasoning have been investi- 143

gated in Large Language Models (LLMs) for id- 144

iomatic translation (Castaldo and Monti, 2024; 145

Rezaeimanesh et al., 2024b). IdiomKB (Li et al., 146

2023a) further introduced a contextual approach, 147

using figurative meanings as additional context to 148

improve translation quality in LLMs. 149

Idiomatic Translation for Indic languages: In- 150

dic languages exhibit significant linguistic diver- 151

sity and deeply rooted cultural nuances, making 152

idiomatic translation a complex challenge. De- 153

spite this, research on idiomatic translation in the 154

Indic language setting remains limited. (Shaikh, 155

2020) proposes Idiom Identification using gram- 156

matical rule based approach.(Modh and Saini, 157

2020) proposes a identification of Gujarati idioms 158

and translation of them using contextual informa- 159

tion. (Agrawal et al., 2018) present a multilingual 160

parallel idiom dataset encompassing seven Indian 161

languages and English. While these studies offer 162

valuable contributions, the challenge of many-to- 163

many idiomatic translation across Indic languages 164

remains largely under-explored. 165

Motivation for Cultural significance in Idioms 166

As discussed previously, most of the past studies 167
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either use a dictionary-based approach for idiom168

translation, which is a one-to-one mapping, or pro-169

vide figurative meaning of the idiomatic expres-170

sion for meaningful translation. Although these171

approaches appear to perform well, they fail to ac-172

count for the cultural dependency of idioms, which173

is deeply embedded within them. This raises the174

question of how idioms can be effectively mapped175

from one language to another while considering176

this cultural dependency. Cultural dependency can177

be linked to various features, as discussed in (Liu178

et al., 2024) and (Pawar et al., 2024). Identifying179

these features that influence translation between180

languages can contribute to the development of181

more culturally appropriate idiomatic mappings182

from a source language to a target language.183

Motivation for GNN184

Using a static Knowledge Graph (KG) or185

dictionary-based approach poses several chal-186

lenges, which a Graph Neural Network (GNN)-187

based architecture can effectively address:188

Limited Generalization: KGs store only predefined189

idiomatic translations as edges between nodes,190

making them incapable of inferring translations191

for new idioms unless explicitly added. In con-192

trast, GNNs learn graph patterns, enabling them193

to predict idiomatic translations even for unseen194

idioms.195

Lack of Semantic Connectivity: KGs treat nodes196

independently, failing to capture relationships be-197

tween idioms with similar meanings unless explic-198

itly modeled. GNNs leverage neighborhood struc-199

tures and embeddings, allowing them to infer new200

translations by recognizing semantic similarities.201

Polysemy Handling: KGs require multiple nodes to202

represent idioms with multiple meanings, increas-203

ing complexity. GNNs disambiguate meanings us-204

ing context, leveraging neighborhood information205

and learned representations to differentiate between206

senses based on connectivity.207

3 Methodology208

In this section, we first present the problem state-209

ment followed by the training and inference of our210

methodology, which we call IdiomCE.211

Problem Formulation:212

We address the challenge of replacing idioms in213

a source language with culturally aware and con-214

textually appropriate multi-word expressions in the215

target language. Let S and T denote the sets of216

graph nodes representing source and target idioms,217

respectively. The combined set S ∪ T defines the 218

node set V in our framework, where each node 219

v ∈ V corresponds to an idiom. 220

Each Idiom v is embedded with cultural elements, 221

reflecting its historical, situational, or value-based 222

significance, indicating its relevance to a specific 223

language. Our goal is to identify the most relevant 224

set of target-language idioms {v̄ : v̄ ∈ T } that 225

correspond to a given source-language idiom v. We 226

denote this relationship with an edge ev,v̄. Let the 227

set of all such edges be E ≡ {ev,v̄ : v ∈ S, v̄ ∈ T } 228

Once we construct or estimate the graph G ≡ 229

(V, E), we use it to generate translations that are 230

both contextually and culturally relevant. Given 231

a sentence in the source language, our approach 232

leverages this graph G to produce a culturally and 233

semantically appropriate idiomatic translation in 234

the target language. 235

3.1 Training 236

In this section, we outline the process of construct- 237

ing the initial dataset for training our IdiomCE 238

encoder and decoder, followed by the training 239

methodology. An overview of the entire training 240

process is illustrated in Figure 2. 241

GNN Dataset Formation: We begin by extract- 242

ing idioms from the collected dataset, as detailed in 243

Section 4 (Datasets), and obtain monolingual idiom 244

sets for each language. For each idiom, we extract 245

three key cultural elements: Concepts, Values, and 246

Situational & Historical Context. These elements 247

are generated using the LLaMA-3.1-405B model 248

and defined based on the Taxonomy of Culture out- 249

lined in (Liu et al., 2024). Our observations suggest 250

that these elements are highly distinguishable and 251

effectively capture key cultural and sociocultural di- 252

mensions essential for mapping English idioms to 253

their counterparts in other languages. The prompt 254

used for generating these cultural elements is pro- 255

vided in Appendix A.4. 256

To construct the Knowledge graph (KG), we 257

first convert the generated cultural elements into 258

Embeddings (we call it cultural features) with 259

Language-agnostic BERT Sentence Embedding 260

(LaBSE) model (Feng et al., 2022). Once the cul- 261

tural features for each idiom are generated, we 262

compute the cosine similarity between the cultural 263

features of English and target (Indic) language id- 264

ioms to establish pairwise mappings, as illustrated 265

in Figure 2. Moreover, to identify the most rele- 266

vant idiom pairs for the KG, we focus on outliers 267

within the cosine similarity scores, as these indicate 268
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strong semantic relationships. Outlier detection is269

performed by calibrating thresholds based on the270

skewness and kurtosis of the data, leveraging both271

the Inter-Quartile Range (IQR) and z-score. By272

carefully selecting thresholds in these approaches,273

we ensure that only high-similarity idiom pairs are274

connected, effectively capturing the most signifi-275

cant relationships. This approach, grounded in ro-276

bust statistical techniques (Chandola et al., 2009),277

ensures that the graph reflects the most salient se-278

mantic connections.279

As a result of this process, multiple KGs are con-280

structed, each linking English idioms to idioms in281

a specific Indic language. Formally, each KG is282

represented as G ≡ (V, E), where V denotes the283

feature of each idiom/node and E represents the284

edges connecting source and target idioms.285

3.2 IdiomCE286

The proposed IdiomCE follows the widely used287

encoder-decoder architecture for GNN-based link288

prediction (Kipf and Welling, 2016) (Schlichtkrull289

et al., 2017) (Zhao et al., 2022) where a GNN en-290

coder learns node representations, and a decoder291

predicts link existence probabilities for each node292

pair. Below, we provide a detailed discussion of293

the training process for our method.294

Node Duplication Augmentation Once the above295

KG is constructed, we could encounter the cold296

start problem due to the sparsity of the dataset, 297

which consists of only a few thousand idioms. This 298

issue arises when certain nodes have few or no 299

connections, leading to under-representation in the 300

GNN during the downstream tasks (Hao et al., 301

2020; Zhang et al., 2023). To mitigate this, we 302

employ a Node Duplication strategy (Guo et al., 303

2024), which enhances node connectivity and im- 304

proves representation learning. 305

We provide a detailed explanation of our node du- 306

plication procedure. Let S and T represent the sets 307

of source and target language idioms, respectively. 308

For any node v ∈ V ≡ S ∪ T , we define its set of 309

neighbors as: 310

Nv := {v̄ : ev,v̄ or ev̄,v ∈ Nv} 311

where Nv consists of all nodes v̄ connected to v by 312

an edge. We extend the methodology of (Guo et al., 313

2024) by categorizing source nodes into two types: 314

Cold nodes (Tcold): Target nodes with fewer than δ 315

neighbors. 316

Warm nodes (Twarm): Target nodes with at least 317

δ neighbors. For our experiment we consider δ 318

equals 3 319

For each cold node v, we duplicate its neighbors 320

Nv and create new corresponding source nodes. 321

We then insert edges from v to these duplicated 322

source nodes, as illustrated in Figure 2. In this 323
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way, we obtain an augmented graph G′ with these324

newly created nodes and edges added to the origi-325

nal graph. This approach differs from (Guo et al.,326

2024), where the authors duplicate source nodes327

directly based on their degree. In contrast, we du-328

plicate source nodes based on the degree of their329

corresponding target nodes. This strategy enhances330

the sampling of under-represented cold nodes by331

leveraging their connections to source nodes.332

IdiomCE Encoder: As discussed in the previous333

section, once our augmented G′ is created, we con-334

vert G′ into the GNN training format by creating335

a feature vector of each idiom node with a BERT336

based embedding model, i.e., LaBSE (Feng et al.,337

2022). We then construct an initial bi-directional338

adjacency matrix of edge indices required for train-339

ing. To ensure generalization across potentially340

unseen idioms, we employ an inductive GNN for341

training, specifically SAGEConv (Hamilton et al.,342

2018). In SAGEConv, each node updates its repre-343

sentation by aggregating the features of its neigh-344

bors. The aggregation is done using a permutation345

invariant function. In our case, we use the mean346

aggregator, which computes the average of the fea-347

ture vectors of a node’s neighbors. This ensures348

that the order of neighbors does not affect the re-349

sult. For a given node v, let N (v) represent the set350

of neighbors and hu denote the features vectors of351

node u. The mean aggregator is defined as:352

hN (v) =
1

|N (v)|
∑

u∈N (v)

hu. (1)353

Next, the node’s updated representation is com-354

puted by concatenating its own feature vector hv355

with the aggregated neighbor features and then ap-356

plying a learnable linear transformation followed357

by a non-linear activation function as given below:358

h′
v = σ

(
W · CONCAT

(
hv,hN (v)

))
, (2)359

IdiomCE Decoder: We perform the task of link360

prediction by pairing our IdiomCE encoder with a361

Multi-Layer Perceptron (MLP) model as a decoder.362

Given a source node i with GNN embeddings hi363

and target node j with GNN embeddings hj from364

the Encoder, we first concatenate their embeddings,365

then pass it through the MLP layer.366

zij = [hi ∥hj ]367

ŷij = MLP(zij)368

Once we obtain the prediction from the MLP layer, 369

we then backpropagate using BCE loss and jointly 370

train the GNN and MLP layer for the Link predic- 371

tion task defined by the loss function given below: 372

L = − 1

N

∑
(i,j)∈D

[yij log ŷij + (1− yij) log (1− ŷij)]

(3) 373

3.3 Dealing with Unseen nodes 374

One of the key properties of inductive GNNs is 375

their ability to generalize to unseen nodes, such as 376

idioms absent from the training set. To incorporate 377

an unseen idiom into a trained GNN, it must be con- 378

nected to relevant neighbors, allowing the model 379

to compute meaningful node embeddings through 380

message passing. A naïve approach is to add edges 381

by randomly selecting target nodes from the initial 382

dataset. However, this often results in dispersed 383

and suboptimal embeddings due to the lack of se- 384

mantic coherence in the connections. Therefore, 385

to generate high-quality embeddings for an unseen 386

idiom, it is essential to establish connections with 387

semantically relevant neighbors that closely align 388

with its ideal (gold) translation. Given the one-to- 389

many nature of idioms where a single target idiom 390

may correspond to multiple source idioms convey- 391

ing the same figurative meaning, it is crucial to 392

connect the unseen node to the most similar target 393

idiom neighbors. 394

To achieve this, we propose training a BERT-based 395

encoder (denoted as BCL(·)) in a contrastive learn- 396

ing setting (Cohan et al., 2020; Ostendorff et al., 397

2022). The training process leverages a triplet 398

framework designed to align with the graphical 399

structure of our GNN, i.e., ⟨anchor a, positive p, 400

negative n ⟩ where a denotes the source node repre- 401

senting the idiom in the source language, p denotes 402

the source language nodes that are connected to 403

the anchor (i.e., first-hop neighbors in our KG), 404

and n represents nodes that are disconnected (no 405

path exists) to the anchor, ensuring that they do not 406

share semantic similarity. This triplet construction 407

is used in a contrastive loss Lt that minimizes the 408

distance between the anchor and its positive exam- 409

ples while maximizing the distance to the negative 410

examples. Formally, if ha, hp, and hn are represen- 411

tations of anchor, positive and negative examples, 412

respectively, then with margin α, 413

L⊔ =
∑

(a,p,n)∈D

max(0, ∥ha − hp∥ − ∥ha − hn∥+ α) 414
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3.4 Inference415

From the trained bi-directional GNNs on English416

and specific Indic languages, we explore idiomatic417

translation through three approaches, as illustrated418

in Figure 3: seen nodes, unseen nodes and inter-419

indic. The seen nodes, refer to idioms for which420

GNN has prior knowledge, including their relation-421

ships with other idioms. On the other hand, unseen422

nodes pertain to idioms for which the GNN has423

no prior information nor any established connec-424

tions to other idioms. Lastly, inter-indic translation425

where english idioms are treated as pivot, more426

explanation in section 3.4.3. We assume idiom de-427

tection is a well-explored problem, enabling us to428

focus directly on the translation task without treat-429

ing idiom identification as an intermediate step. We430

also presume that the idiom in the source sentence431

is provided for retrieval through IdiomCE.432

3.4.1 Seen Nodes433

To infer with seen nodes, we first retrieve top-k434

target idioms using the trained GNN by link predic-435

tion by providing source idiom as input. Next, we436

refine the selection by filtering out the most con-437

textually relevant target idiom based on the source438

sentence. This is achieved by passing the retrieved439

idioms into a selection prompt as context in an440

LLM. Finally, once the most relevant target idiom441

is identified, we perform LLM-based inference by442

passing the source text, source idiom, and the se-443

lected target idiom into a translation prompt. The444

details of both prompts are provided in Appendix445

A.2 and A.3.446
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3.4.2 Unseen Nodes 447

For unseen nodes, completely isolated idioms 448

would yield no meaningful results. To address this, 449

we make the following assumption about the train- 450

ing dataset D. 451

Assumption: For any unseen node u, ∃v ∈ D 452

such that cos(BCL(u),BCL(v)) ⩾ τ , where τ ∈ 453

[0, 1]. For our experiments, we choose τ to be 0.75. 454

To infer on unseen nodes, we first retrieve the 455

most similar idioms in the source language using 456

cosine similarity based on embeddings from the 457

trained contrastive embedding model BCL. After 458

selecting the top M source language idioms, we 459

randomly select five target-language idioms linked 460

to these source idioms and connect them to the un- 461

seen idiom, incorporating them into our graphical 462

data. Once integrated, we perform link prediction 463

on the unseen node to retrieve the most suitable 464

target idiom. 465

3.4.3 Inter Indic Languages translation 466

We train the IdiomCE encoder bidirectionally be- 467

tween English and individual Indic languages. In 468

addition to direct translation from S to T , we pro- 469

pose leveraging trained GNNs for indirect transla- 470

tion. Let A1, A2 and A3 be nodes in languages 471

A1, A2 and A3 respectively. Let G12 : A1 → A2 472

and G23 : A2 → A3 be GNNs trained between 473

the respective languages. To generate a translation 474

from A1 to A3, we use A2 as the pivot language, 475

shown in Figure 3. 476

4 Experimental set up 477

Datasets: The initial knowledge graph (KG) con- 478

struction is based on the dataset from Agrawal et al. 479
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(2018) (Agrawal et al., 2018), which provides map-480

pings of idioms between English (en) and seven481

Indian languages. For our study, we utilize four482

Indic languages: Tamil (ta), Telugu (te), Bengali483

(bn), and Hindi (hi). Additionally, we incorporate484

a parallel idiomatic sentence dataset from Thakre485

et al. (2018) (Thakre et al., 2018). Beyond these486

existing resources, we also web-scraped to collect487

idioms in various Indic languages. For evaluation,488

we sample 400 sentences from the MAGPIE dataset489

(Haagsma et al., 2020) to assess translation effec-490

tiveness from English to Indic languages. To an-491

alyze performance under different conditions, we492

conduct experiments in two setups: (1) Seen Id-493

ioms, where idioms present in the training data are494

tested, and (2) Unseen Idioms, where idioms not495

encountered during training are evaluated. For the496

Inter-Indic language setting, we curate a dataset of497

200 idiomatic sentences per Indic language from498

the Samanantar dataset (Ramesh et al., 2023), en-499

suring coverage across multiple language pairs.500

Evaluation Metrics: Most automatic evaluation501

metrics, like BLEU (Papineni et al., 2002; Post,502

2018) and ChrF (Popović, 2015), rely on reference503

matching but struggle with one-to-many transla-504

tion, especially idioms, where n-gram matches fall505

short. They also fail to distinguish literal from fig-506

urative translations. While CometKiwi (Rei et al.,507

2022) improves on traditional metrics by being508

reference-less and semantic-focused, it still strug-509

gles to reward high-quality idiomatic translations.510

Hence, for our evaluation, we adopt the GPT-4o-511

based evaluation method proposed by (Li et al.,512

2023a) as our primary metric, as it is an LLM-513

based approach specifically designed for assessing514

idiomatic translations we call it here LLM-eval and515

use WMT22-CometKiwi-DA as a supplementary516

evaluation metric.517

Models: We test the effectiveness of our approach518

by using base LLMs of varying sizes like Gemma2519

9B (Team et al., 2024), Llama-3.1 8B, Llama-3.2520

3B (Grattafiori et al., 2024) and GPT-4o mini (Ope-521

nAI et al., 2024) in our methodology. We also eval-522

uate our method by comparing them with transla-523

tions generated from traditional NMT systems like524

NLLB 3.3B (Team et al., 2022) and IndicTrans2525

(Gala et al., 2023). In our experiments Direct526

represents either directly prompting the LLM to527

translate the given source sentence, or passing the528

sentence through the NMT model for generating529

translation prompt can we referred from Appendix530

A.1. Specific training details and performanceof531

GNN and MLP layer with other experimental pa- 532

rameters are added in Table 4 in Appendix. 533

5 Results 534

Results on Mixed Dataset: This dataset contains 535

a mix of idioms, both seen and unseen during 536

training. We conducted experiments on English- 537

to-Hindi, Bengali, Tamil, and Telugu translation 538

directions. The results in Table 1 show: 1) Id- 539

iomCE, our approach that retrieves target idioms 540

based on English idioms, outperforms the direct 541

prompting method, highlighting the effectiveness 542

of our retrieval-based training for idiomatic trans- 543

lation. 2) Among smaller models, Gemma2 9B 544

achieves the best performance, even with direct 545

prompting, demonstrating its strong capabilities 546

in idiomatic translation. 3) With IdiomCE, very 547

small models like Llama 3.2 3B perform compa- 548

rably to the Directly Prompted larger Llama 3.1 549

8B variant. 4) Even for larger models like GPT-4o, 550

IdiomCE improves performance, proving its effec- 551

tiveness across different model sizes. 5) Founda- 552

tional models like NLLB and IndicTrans2 struggle 553

with idiomatic translation, showing low scores in 554

LLM-eval. On average, IdiomCE improves LLM- 555

eval scores by 18.51% for en-hi, 14.71% for en-bn, 556

6.45% for en-ta, and 10.33% for en-te. We have 557

also provided example translation in Appendix B. 558

Results on Seen and Unseen Dataset: In Figure 559

4, we have shown on average LLM evaluation for 560

different models on various methods across lan- 561

guages. Notably, results for the IdiomKB baseline 562

are shown only for the seen dataset, as IdiomKB 563

supports only idioms present in the training set. 564

On average, the Gemma2 9B model demonstrates 565

the best performance among open-source LLMs 566

on both seen and unseen datasets. Compared to 567

IdiomKB and Direct Method, our approach, Id- 568

iomCE outperform them by 14.28% and 21.78%, 569

respectively, across open-source LLMs for seen 570

dataset. Similarly, for unseen dataset, IdiomCE 571

achieves 5.67% improvement over direct method. 572

Even with GPT-4o results, our approach shows sig- 573

nificant improvements for both seen and unseen 574

datasets. Further details on language-specific per- 575

formance can be found in the Appendix in Table 5 576

and 6 577

Results on Inter-Indic Languages: Table 2 578

presents the average performance across Indic lan- 579

guages. Our findings indicate: 1)Using English as 580

a pivot to retrieve idioms for translation between 581
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Model Methods en-hi en-bn en-ta en-te

LLM-eval COMET LLM-eval COMET LLM-eval COMET LLM-eval COMET

NLLB-200 Direct 1.3 0.70 1.43 0.769 1.18 0.691 1.1 0.643

Indictrans2 Direct 1.247 0.74 1.275 0.77 1.243 0.769 1.24 0.747

LLama-3.2-3B IdiomCE 1.34 0.59 1.2 0.6 1.105 0.51 1.18 0.51
Direct 1.12 0.62 1.05 0.6 1.04 0.52 1.07 0.52

Gemma2-9b-it IdiomCE 1.88 0.68 1.7 0.68 1.63 0.67 1.56 0.62
Direct 1.6 0.73 1.44 0.71 1.56 0.71 1.46 0.67

LLama-3.1-8B IdiomCE 1.655 0.63 1.40 0.63 1.25 0.57 1.3 0.54
Direct 1.27 0.68 1.23 0.67 1.16 0.62 1.12 0.59

GPT-4o IdiomCE 2.39 0.70 2.25 0.69 1.87 0.67 1.83 0.66
Direct 2.14 0.73 1.99 0.764 1.741 0.72 1.67 0.71

Table 1: Performance Metrics of Various Models on Mixed Dataset; COMET range [0,1]

Model Methods hi-xx bn-xx ta-xx te-xx

LLM-eval COMET LLM-eval COMET LLM-eval COMET LLM-eval COMET

NLLB-200 Direct 1.85 0.79 1.70 0.78 1.84 0.77 1.81 0.78

Indictrans2 Direct 1.92 0.81 1.78 0.81 2.01 0.77 1.97 0.77

LLama-3.2-3B IdiomCE 1.263 0.5663 1.23 0.5867 1.2567 0.53867 1.273 0.5493
Direct 1.1867 0.589 1.17 0.6163 1.253 0.572 1.1867 0.609

Gemma2-9b-it IdiomCE 1.8233 0.7283 1.783 0.727 1.9867 0.7267 2.02 0.724
Direct 1.4833 0.75 1.49 0.775 1.563 0.755 1.5467 0.773

LLama-3.1-8B IdiomCE 1.42 0.616 1.46 0.6404 1.533 0.5993 1.493 0.626
Direct 1.34 0.6533 1.367 0.688 1.25 0.6393 1.25 0.677

Table 2: Performance Metrics of Various Models For Inter-Indic languages; COMET range [0,1]

Hits @k Without NodeDup With NodeDup
Hits@5 81.33 ± 2.36 85.28 ± 2.99
Hits@10 90.00 ± 2.36 96.28± 1.37
Hits@20 100.00 ± 0.00 100.00 ± 0.00
Hits@50 100.00 ± 0.00 100.00 ± 0.00

AUC 95.32 96.33

Table 3: Ablation on Node Duplication module

Indic languages improves LLM performance com-582

pared to direct prompting, highlighting the flexibil-583

ity of our approach. 2) Gemma2 9B consistently584

performs well in inter-Indic translation settings, sig-585

nificantly outperforming other LLMs. 3) Interest-586

ingly, in some language pairs like hi-xx and ta-xx,587

IndicTrans2 achieves strong results, even surpass-588

ing other models. Overall, IdiomCE demonstrates589

significant improvements in LLM evaluation, with590

a 12.5% performance gain for hi-xx, 11.2% for591

bn-xx, 17.5% for ta-xx, and 19.9% for te-xx trans-592

lations over Direct prompting.593

Ablation Studies To justify the use of the Node594

Duplication procedure (see Sec 3.2), we conduct an595

ablation experiment comparing performance with596

and without the NodeDup module in Table 3. We597

report Hits@k (Chen et al., 2020) for the en-hi598

translation task, which includes 8,233 nodes ( 4.6K599

Hindi target nodes), with 1.1K cold target nodes. 600

Our results show that incorporating the NodeDup 601

module improves Hits@k by 4.85% for k = 5 and 602

6.97% for k = 10, demonstrating its effectiveness 603

in enhancing target node retrieval. 604

6 Conclusion 605

In this work, we addressed the challenges of id- 606

iomatic translation by introducing IdiomCE, an 607

adaptive GNN-based approach that effectively cap- 608

tures the complex relationships between idiomatic 609

expressions across languages. Our method gener- 610

alizes to seen and unseen idioms, improves trans- 611

lation quality even in smaller models, and enables 612

translation via a pivot language through the GNN 613

framework. Experimental results across multiple 614

Indian languages demonstrate that our approach 615

outperforms traditional static knowledge graphs 616

and prompt-based methods, significantly improv- 617

ing idiomatic translation. By leveraging GPT-4 618

as an evaluation metric, we show that our model 619

better preserves meaning and cultural nuances in 620

translation. Future work can extend this approach 621

to more languages and richer contextual signals. 622
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Limitations623

While our work shows significant improvements624

in idiomatic translation, we mention some of the625

limitations of our work. Our approach heavily de-626

pends on the synthetically generated cultural ele-627

ments (features). Noisy features, especially in low-628

resource languages, might affect the performance629

of our method. Secondly, as mentioned before,630

although our model captures idiomatic mappings,631

some idioms rely heavily on a deep contextual un-632

derstanding of the surrounding sentences and not633

just on the training data used, which can limit the634

model’s performance.635
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A Prompt used in Experiment 891

A.1 Direct Prompt 892

Translate the Following {src_lang}

Sentence to {tgt_lang}. Only provide

final translation as output, Do not

provide any explainations. 

{src_lang} Sentence: {sent}

A.2 Selection Prompt 893

You are a linguistic researcher on

idioms and good at {tgt_lang} and

{src_lang}. Choose the best

{tgt_lang} idiom matching the

{src_lang} idiom and Context of

Source Sentence in which it is used

in. Only Provide Best macthing

{tgt_lang} Idiom Do not provide any

explaination. 

{src_lang} idiom: {en_idm} 

Source Sentence: {sent}

Options: {tgt_lang idioms}

A.3 Translation Prompt 894

You are a linguistic researcher on

idioms and are good at {tgt_lang} and

{src_lang}. {en_idm} means {hi_idm}.

Given the above knowledge, translate

the following sentence to {tgt_lang}:

{sent}. 

Only provide final translation as

output, Do not provide any

Explainations.
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A.4 Cultural element generation prompt895

You are a linguistic expert with deep

knowledge of {tgt_lang} idioms,

including their cultural and socio-

cultural contexts. For the given

idiom, provide a detailed analysis

covering the following key aspects.

Ensure each point has only a brief,

single-sentence description:

1. **Idiom:** - {idiom}

2. **Concepts:** - Explain the basic

meaning and underlying concepts of

the idiom.

3. **Values:** - Describe the beliefs

or desirable outcomes that the idiom

reflects.

4. **Situational Context:** -

Describe typical scenarios where the

idiom is used.

5. **Historical Context:** - Provide

any relevant historical background

influencing the idiom's usage.

Training Details: We train the GNN using a896

2-layer SAGEConv architecture, mapping input897

states from 768 to a hidden dimension of 64. The898

hidden representation then passes through an MLP899

with two linear layers and ReLU activation. The900

model is trained for 50 epochs over 5 runs. For901

Node Duplication Augmentation, each target node902

is duplicated twice, and the distinction threshold903

(δ) between cold and warm nodes is set to 3. α904

used as margin for Contrastive Training is set to 1905

B Examples 906

B.1 Translation Example en-hi direction 907

Source: Close call, though.

Direct: �1O- ;V L)�3 �0Km

IdiomCE: +O�K �P AK, <K3K_L�...

Source: Well, it's all Greek to me, but so

long as it keeps him happy.

Direct: ãK, 0< /V1V L3� ;- �O� <W, 3VL�) �- %�

0< �;V �P8 1�%K <Wm
IdiomCE: �K<V 7Z /P�V ;/� ) ��, +1 �- %� �;V �P8

1�%K <Wm

Source: Other women took one look at them, and

went green with envy.

Direct: 'Q ;1O /L<3K�a )V ��n �� �3� /n 'V�K �1 ��Kh

;V <1K 1a� <Z �0Km

IdiomCE: 'Q ;1O /L<3K�a )V ��n �� �3� /n 'V�K �1 �3
.Q) ��am  

Source: You're chasing an impossible rainbow.

Direct: �+ ;a.7 �a�()P: �K +O�K �1 1<V <qm
IdiomCE: %P/ �0K3O +P3K7 +�K 1<V <Zm

Source: And for God's sake bury the hatchet.

Direct: �1 .�7K) �O �ðK ;V, %37K1Za �Z ',)K 'Zm

IdiomCE: �1 .�7K) �V  L3� 8�P%K �� �1 'Zm  
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B.2 Translation Example en-bn direction 908

Source: A bottom drain is something which has

stood the test of time too.

Direct: এক�ট বটম ��নও বহ� কাল ধিরয়া িবদ�মান।
IdiomCE: এক�ট বটম ��নও সমেয়র �িতবােদ ি�িতশীল।

Source: I hope you will soon find your feet

again.

Direct: আিম আশা কির ত� িম শী�ই পা পাতা �নওয়া।
IdiomCE: আিম আশা কির, ত� িম শী�ই আবার �তামার

আধার �পেয় যােব।

Source: We are not joined at the hip, Cabochon

said, and smiled bitterly.

Direct: আমরা হােতর কােছ হাত বািড়েয় �নওয়া নই,

ক�ােবাচন বেলিছল, এবং �ু� হািস িদেয়।
IdiomCE: আমরা িহেপ যু� নই, ক�ােবাচন বেলিছল, এবং
�ু� হািস িদেয়।

Source: After all, charity begins at home.

Direct: অবশ�ই, দান িনেজর ঘেরর �দখা তারপর পেরর
ঘর।
IdiomCE: অবেশেষ, দান বািড়র �থেক �� হয়।

Source: Youd both have got on like a house on

fire.

Direct: আপনারা উভয় খুব বাড় বাড়া হেয়িছল।
IdiomCE: আপিন দুজেনই খুব ভােলা িমেলত।
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B.3 Translation Example en-ta direction909

Source: I had to face the music, I had to face

myself.

Direct: «¿¬Ï  �Ñ�Ñ° ��±ÏÏ�¿ Ḯ´

Ð¶«Ï ���«Ï¬�, «¿¬Ï  �¬ÏÑ¬¬Ï ¬¿Ð¬
��±ÏÏ�¿ Ḯ´ Ð¶«Ï ���«Ï¬�.

IdiomCE: «¿¬Ï  �¿¬ ¿� �¶¬²Ï� ��

Ð¶«Ï ���«Ï¬�, «¿¬Ï  �¬ÏÑ¬ �«Ï��Ï�
Ð¶«Ï ���«Ï¬�.

Source: If I had to sweat blood it would be

done.

Direct: �¬�Ï� �±¬Ï¬ Ï̄ �«Ï�¬¿� Ï̄, ��
��«Ï��� Ï̄.

IdiomCE: ��Ñ±�Ï Ï�¿�¬Ï� �Ñµ¬Ï¬¿� Ï̄
��¬Ï���Ð¶¬Ï .

Source: As Crilly is taken back into the

cells, he catches my eyes.

Direct: �±À� Ï�³Ï �«Ï � Ï̄ Ï�¿«Ï �
Ï�³Ï³Ï� Ï̄ Ð¿�, �¬Ï  �«Ï �Ñ´Ï
��¬Ï��ÏÏ�¿ Ḯ�²¿±Ï.

IdiomCE: �±À³Ï� �«Ï � Ï̄ �Ñ²�Ï�¿�Ï�²Ï�
�Ñµ¬Ï��Ï Ï�³Ï� Ï̄ Ð¿�, �¶±Ï �¬Ï
�¶¬¬ÏÑ¬ �±Ï�Ï��²¿±Ï.

Source: Why should he suddenly have

materialized out of the blue?

Direct: �¶¬Ï  ��Ï±¬Ï� �Ï� ¯Ñ²«Ï�
Ð¿¬¿¬Ï ?

IdiomCE: �¶¬Ï  ��Ï±¬Ï� �Ï� Ð¬¿¬Ï²
��� Ï̄?

Source: In a nutshell Yes.

Direct: Ï�¿³Ï³ÏÐ¿¬¿³Ï, � Ï̄.

IdiomCE: ���Ï�¯¿� Ï�¿³Ï¶Ï¬¬Ï²¿³Ï � Ï̄.
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B.4 Translation Example en-te direction 910

Source: You just have to try to keep your head

above water.

Direct: �� �వలం � తల ��� ఉం��వ���
�పయ�� ం��.
IdiomCE: �� ��వం� �పయత� ం ���.

Source: In every country, intellectuals, too,

have jumped on the nationalist bandwagon.

Direct: �ప� �శం�, ��
IdiomCE: �ప� �శం�, ��� ం�� �� ��య�ద

బం�� �ల �ల ����� �.

Source: Keep your chin up, girl, were not lost

yet.

Direct: �ఖం ఎ��, అ�� �, �� ఇం�

��� య��.

IdiomCE: తల ఎ���� ఉం�, అ�� �, �� ఇం�
��� య��.

Source: Poor old British Rail were between the

devil and the deep blue sea.

Direct: �ధప�న �త ���� �� �వ�ం�ల మధ�
ఉం�.

IdiomCE: గ��� ���న ���� �� �ం� ���
�నక ��� � ఉ�� �.

Source: Close, but no cigar.

Direct: స�పం� ఉ�� , �� ��� ��.

IdiomCE: దగ �ర� వ�� � దక� ��.
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Language Hits@5 Hits@10 Hits@20 Hits@50 AUC

hindi 85.28 ± 2.99 96.28 ± 1.37 100.00 ± 0.00 100.00 ± 0.00 96.33 ± 0.28
Telugu 82.50 ± 8.54 95.83 ± 2.95 100.00 ± 0.00 100.00 ± 0.00 95.32 ± 0.37
Tamil 76.06 ± 3.98 88.45 ± 2.09 98.59 ± 1.00 100.00 ± 0.00 93.27 ± 0.73

Bengali 79.29 ± 5.30 95.00 ± 4.07 99.29 ± 1.60 100.00 ± 0.00 96.10 ± 0.12

Table 4: Performance on GNN Link Prediction task for each language

Model Methods en-hi en-bn en-ta en-te

GPT-4 COMET GPT-4 COMET GPT-4 COMET GPT-4 COMET

NLLB-200 Direct 1.34 0.70 1.45 0.77 1.21 0.69 1.14 0.64

Indictrans2 Direct 1.24 0.74 1.27 0.78 1.26 0.76 1.21 0.74

LLama-3.2-3B
IdiomCE 1.42 0.58 1.26 0.59 1.15 0.52 1.24 0.51
Direct 1.12 0.62 1.06 0.60 1.03 0.51 1.09 0.54

IdiomKB 1.25 0.61 1.05 0.59 1.07 0.52 1.11 0.52

Gemma2-9b-it
IdiomCE 2.08 0.69 1.84 0.69 1.76 0.68 1.68 0.63
Direct 1.63 0.73 1.50 0.71 1.60 0.72 1.45 0.68

IdiomKB 1.875 0.70 1.64 0.70 1.65 0.68 1.50 0.64

LLama-3.1-8B
IdiomCE 1.89 0.62 1.54 0.63 1.29 0.57 1.41 0.53
Direct 1.27 0.68 1.22 0.67 1.16 0.62 1.14 0.58

IdiomKB 1.40 0.67 1.19 0.67 1.20 0.60 1.21 0.59

GPT-4o
IdiomCE 2.48 0.71 2.30 0.69 1.90 0.69 1.89 0.68
Direct 2.17 0.74 2.059 0.77 1.72 0.73 1.73 0.72

IdiomKB 2.38 0.711 2.19 0.74 1.83 0.68 1.80 0.67

Table 5: Performance Metrics of Various Models on Seen Dataset; COMET range [0,1]

Model Methods en-hi en-bn en-ta en-te

LLM-eval COMET LLM-eval COMET LLM-eval COMET LLM-eval COMET

NLLB-200 Direct 1.26 0.70 1.41 0.77 1.17 0.69 1.06 0.64

Indictrans2 Direct 1.25 0.74 1.28 0.78 1.22 0.76 1.27 0.74

LLama-3.2-3B IdiomCE 1.25 0.58 1.14 0.59 1.06 0.52 1.13 0.51
Direct 1.12 0.62 1.05 0.60 1.05 0.51 1.05 0.53

Gemma2-9b-it IdiomCE 1.68 0.68 1.56 0.67 1.50 0.68 1.49 0.66
Direct 1.57 0.72 1.39 0.70 1.53 0.72 1.4 0.68

LLama-3.1-8B IdiomCE 1.42 0.63 1.27 0.62 1.21 0.59 1.19 0.53
Direct 1.28 0.68 1.23 0.67 1.16 0.62 1.11 0.55

GPT-4o IdiomCE 2.31 0.72 2.01 0.74 1.72 0.68 1.70 0.67
Direct 2.12 0.74 1.92 0.77 1.76 0.73 1.61 0.71

Table 6: Performance Metrics of Various Models on Unseen Dataset; COMET range [0,1]
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