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ABSTRACT

Multimodal deception detection is increasingly important for security, justice, and
human-AI interaction. However, prevailing systems still depend on contact-based
sensing or elaborate handcrafted feature pipelines and exhibit limited generalization
beyond their training domains. Typical approaches learn shallow unimodal cues
(e.g., surface spatio-temporal patterns) and fuse modalities by simple concatenation
or attention; these choices induce sensitivity to positional dependencies and to dis-
tribution shift. This work presents SPOT-JS, a frequency-domain framework aimed
at cross-domain transfer. It standardizes inputs, improves unimodal representations,
and performs fusion with distribution-aware alignment grounded in established the-
ory. Concretely, a Temporal Deception Alignment Module (TDAM) first provides
unified preprocessing and audio-visual synchronization to eliminate reliance on
specialized facial/vocal features or invasive signals. We then propose a Learnable
Chebyshev Spectrum Filter (LCSF) that operates on power spectra to emphasize
task-relevant bands and suppress noise by embedding a learnable Chebyshev basis
into the spectral transformation. Next, an Optimal Transport-based Cross-Modal
Fusion (OTCF) module computes an entropic-regularized transport plan between
spectral components of audio and video, enabling fine-grained, bidirectional corre-
spondence and residual fusion in a shared latent space. Fourth, a Jensen-Shannon
Guided Alignment (JS-Align) module measures cross-modal posterior similarity
via JS divergence and adaptively reweights the fused representation, mitigating
sensitivity to positional mismatches and improving stability under shift. Finally,
we introduce the Chebyshev Spectrum-guided Knowledge Transfer (CSKT) Mod-
ule, which leverages spectral filtering to enhance cross-domain facial knowledge
transfer. On standard benchmarks (Real Life Trial, DOLOS, and Box of Lies),
SPOT-JS surpasses strong unimodal, fusion, and transfer baselines in both intra-
and cross-domain settings, with higher F1/ACC/AUC and especially large gains
when training on one dataset and testing on another.

1 INTRODUCTION

Truthful Deceptive

Raw Data Raw DataSpectrogram Spectrogram

Figure 1: Two examples from the BOL dataset are shown
as spectrograms. The spectra display centrally concentrated
energy and clear structural patterns.

Deception detection is the inference,
based on verbal, non-verbal, and/or
physiological indicators (e.g. speech
content and prosody, facial expres-
sion, body motion, gestures, etc.),
combined with situational context, of
whether a communicator is intention-
ally misrepresenting the truth. It is a
core problem in security, justice and
human-AI interaction. Real-world de-
ceptive behavior has grown more frequent and complex with social change, which makes accurate
detection harder. Early practice relied on psychological experts who observed body language, gaze,
and facial movement; this approach is informative but requires substantial expertise. Later work
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added contact-based measures such as skin conductance, heart rate, and EEG, but these methods
require specialized equipment and raise ethical concerns due to their invasiveness.

Traditional data processing pipelines are also too complex. For example, recent work Guo et al.
(2024) combines facial frames, OpenFace features (action units and gaze), EmoNet affect metrics
(five emotions plus valence-arousal), and both mel spectrograms and raw audio; This choice increases
the size of the dataset from roughly 260-2 GB to 20-40 GB.

Automated deception detection using AI and machine learning has become prominent because
it scales well, but several obstacles remain: (1) high-accuracy detection still depends on expert
knowledge, contact-based physiological signals, or intricate handcrafted features; (2) models transfer
poorly to unseen domains due to large scenario differences; (3) unimodal representations are often
shallow, emphasizing spatial or temporal cues with limited discriminative power; and (4) multimodal
fusion is frequently limited to simple concatenation or attention, which cannot capture fine-grained
interactions and is sensitive to positional dependence.

This paper presents SPOT-JS (Fig. 2), a frequency-domain framework for cross-domain multimodal
deception detection. As shown in Fig. 1, spectrograms exhibit centrally concentrated components
and discernible patterns, which motivate our frequency-domain design. First, a Temporal Deception
Alignment Module (TDAM) standardizes preprocessing and enforces temporal synchronization
between audio and visual streams. Second, a Learnable Chebyshev Spectrum Filter (LCSF) operates
on power spectra; a trainable Chebyshev basis highlights task-relevant bands and reduces noise during
the spectral transform. Third, an Optimal Transport-based Cross-Modal Fusion (OTCF) module is
designed to compute an entropy-regularized transport plan between audio and video spectra to build
bidirectional correspondences and perform residual fusion in a shared latent space. Fourth, a Jensen-
Shannon Guided Alignment (JS-Align) module adjusts fusion weights according to cross-modal
posterior similarity, which improves robustness under complex dependencies. Finally, we introduce
the Chebyshev Spectrum-guided Knowledge Transfer (CSKT) Module, which leverages spectral
filtering to enhance cross-domain facial knowledge transfer.

This work comprises four technical and an evaluation contributions:

• TDAM supplies a unified preprocessing pipeline that removes the reliance on hand-made
features or physiological signals and enforces consistent temporal alignment across modali-
ties.

• LCSF forms unimodal representations with learnable Chebyshev spectral filtering; it high-
lights task-relevant frequency bands and suppresses noise in the spectral domain. Building
on this, we further develop a CSKT module to achieve more effective cross-domain facial
knowledge transfer.

• OTCF conducts cross-modal fusion in the frequency domain by computing an entropy-
regularized transport plan between audio and visual spectra, which yields complementary
correspondences and residual fusion in a shared latent space.

• JS-Align adjusts fusion weights according to the posterior similarity of the cross-modal and
thus reduces the sensitivity to positional dependence.

• Experiments on Real Life Trial, DOLOS, and Box of Lies show gains in both intra-domain
and cross-domain tests, with higher F1/ACC/AUC and stable performance under distribution
shift.

2 RELATED WORK

2.1 MULTIMODAL DECEPTION DETECTION

Early research on deception detection examined physiological and behavioral cues under the as-
sumption that fabricating a plausible account taxes cognition. Studies analyzed body language,
facial expressions, response patterns, reaction latencies, and pupil dilation (Fitch, 2014; Vrij, 2008).
Work on physiological and neural signals used functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG) to capture state changes linked to deceptive behavior (Karnati et al.,
2021).
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Figure 2: Overall architecture of the proposed method SPOT-JS.

Automated deception detection (ADD) has shifted toward standardized visual toolkits. OpenFace
(Amos et al., 2016; Hu et al., 2025b) is now common for video analysis; it uses deep models for
facial landmark localization, action unit (AU) prediction (Karimi et al., 2018; Avola et al., 2019),
and head pose estimation. Among visual cues, gaze dynamics and facial expression patterns remain
central to video-based analysis (Stathopoulos et al., 2020; Mathur & Matarić, 2020; Yildirim et al.,
2023; Gallardo Antolı́n & Montero, 2021).

In speech-based detection, methods extract acoustic markers by examining prosody, pitch contour,
and speaking rate. Representative tools include STRAIGHT (Kawahara et al., 2009), voice activity
detection (VAD) (Tan & Lindberg, 2010), and openSMILE (Eyben et al., 2010); Mel-frequency
cepstral coefficients (MFCCs) (Mermelstein, 1976; Davis & Mermelstein, 1980) are widely used
features.

For multimodal fusion, Guo et al. (2023) introduced a dataset and framework leveraging audio-visual
complementarity for deception detection. Li et al. (2024) achieved synchronized integration by
aligning temporal embeddings, while Ji et al. (2025) advanced knowledge transfer with a hierarchical
optimal transport approach using large-scale facial expression priors.

2.2 FREQUENCY DOMAIN LEARNING

Recent studies move feature learning into the frequency domain. Xu et al. (2020) reported a learning-
based filter that removes trivial frequency components and improves image classification. In text
classification, Lee-Thorp et al. (2022) applied the Fourier transform for token mixing. In time-
series forecasting, Yang & Hong (2022) introduced Bilinear Time-Spectral Fusion, which models
time-frequency pairs and uses spectral-to-temporal and temporal-to-spectral aggregation to update
representations. In the field of rumor detection, Lao et al. (2024) proposed a novel dual contrastive
learning-based spectral representation and fusion network.

3 PROBLEM DEFINITION

Multimodal deception detection is formulated as a binary classification task with modalities t ∈ {a, v}
for audio (a) and video (v). Given a multimodal deception dataset D = {X ,Y}, each instance is
denoted as a two-tuple (x, y) ∈ D, where x ∈ X and y ∈ Y . Specifically, x can be represented as
x = {xa, xv}. The label space is defined as y = {0, 1}, where y = 1 denotes a deceptive sample and
y = 0 a truthful one. The goal of this work is to learn a decision function f : X → Y that effectively
utilizes multimodal features to predict the deception label ŷ ∈ {0, 1}.

3
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4 METHOD

4.1 TEMPORAL DECEPTION ALIGNMENT MODULE (TDAM)

The Temporal Deception Alignment Module (TDAM) preprocesses raw video and audio to give
temporal consistency and a common feature format before downstream analysis. TDAM has two
components.

Video preprocessing. For a raw video sequence xv of duration T , TDAM applies uniform temporal
sampling to obtain N key frames:

fi = xv

(
τ0 + i · T

N

)
(1)

where xv(τ) denotes the frame at timestamp τ , τ0 is the start time, and τ ∈ [0, T ]. Each sampled frame
fi is converted from BGR to RGB and mapped to a PIL image via ϕ(·). A proposed transformation
T (·) then standardizes the frame sequence, producing a normalized video tensor:

x̂v = T
(
{ϕ(fi)}Ni=1

)
, x̂v ∈ RB×3×H×W . (2)

Audio preprocessing. From the same video, TDAM extracts the audio track and resamples it to
align with the visual stream:

x̂a = R
(
A(xv), f ′

s

)
, f ′

s =
N

T
· fs (3)

where A(·) extracts the raw audio,R(·) denotes resampling, and fs and f ′
s represent the original and

adjusted sampling rates, respectively.

The two-stream preprocessing yields temporally coherent modalities and a standardized input for
subsequent training and inference.

4.2 FEATURE ENCODING

After TDAM, the normalized video tensor x̂v and the resampled audio signal x̂a are passed to
pretrained backbones for feature encoding. For the visual stream, we employ VideoMAE-Base (Tong
et al., 2022), which encodes the sampled video frames into spatio-temporal representations:

xv = VideoMAE(x̂v) (4)

For the audio stream, we adopt Wav2Vec2-Base (W2V2) (Baevski et al., 2020), which transforms the
waveform into a sequence of latent speech features:

xa = W2V2(x̂a) (5)

Accordingly, let xt denote the encoded sequence for modality t ∈ {a, v}. These sequences are then
fed into the subsequent spectral modules (LCSF, OTCF, JS-Align and CSKT).

4.3 SPECTRUM REPRESENTATION

Spatial features are transformed into spectrum features via the Discrete Fourier transform (DFT). The
spectra of the video and audio embeddings are given by

Xt[k] = Fseq(x
t[i]) =

N−1∑
i=0

xt[i]e−j(2π/N)ki (6)

where Xt ∈ CB×N×D for t ∈ {a, v} is a complex-valued tensor, Xt[k] denotes the spectrum of
xt[i] at frequency 2πk/N , Fseq(·) is the 1-Dimension (1D) DFT along the sequence dimension, and
j is the imaginary unit.

4
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4.4 LEARNABLE CHEBYSHEV SPECTRUM FILTER (LCSF) MODULE

We present a new unimodal spectral filter module derived from the Chebyshev formulation, referred
to as Learnable Chebyshev Spectrum Filter (LCSF). For a spectrum Xt with t ∈ {a, v}, the power
spectrum |Xt|2 is first computed to focus on primary intra-modal patterns. A learnable Chebyshev
coefficient set Ct = [Ct

1, C
t
2, . . . , C

t
k] is combined with a filter bank Kt = [kt

1,k
t
2, . . . ,k

t
k] to form

the transformed representation:

X̂t =

k∑
i=1

|Xt|2 ⊙ kt
i C

t
i , (7)

where ⊙ indicates element-wise multiplication. The coefficients are defined from the Chebyshev
formulation as:

Ct
i = cos

(
(2i− 1) θbase

)
, θbase = softplus(α) · π

2k , (8)
with α as a trainable parameter. This design embeds the Chebyshev structure into the spectral trans-
formation, allowing the model to adaptively adjust the spectral basis and capture more discriminative
unimodal information in the frequency domain.

4.5 OPTIMAL TRANSPORT-BASED CROSS-MODAL FUSION (OTCF) MODULE

Optimal Transport Theory. Optimal transport (OT) (Peyré & Cuturi, 2019) seeks a minimal-cost
map from one probability distribution to another. Let p =

∑n
i=1 aiδXAi

and q =
∑m

j=1 bjδXBj
be

n and m dimensional discrete probability distributions for two finite sets XA = {XAi
}ni=1,XB =

{XBj
}mj=1 respectively, where a ∈ ∆n and b ∈ ∆m, ∆n and ∆m are the probability simplex of Rn

and Rm, and δX∗ refers to a point mass located at coordinate X∗ ∈ Rd. Denoting M ∈ Rn×m
+ as

the cost matrix with Mi,j =M(XAi ,XBj ), which means the cost to transport one unit of mass
between elements of the sets. Then, the transport plan matrix T is obtained by solving:

OT(p, q) = min
T∈Π(p,q)

⟨T,M⟩F (9)

where ⟨·, ·⟩F is the Frobenius dot-product. The constraint Π(p, q) := {T ∈ Rn×m
+ |

∑n
i=1 Ti,j =

bj ,
∑m

j=1 Ti,j = ai} enforces T to have p, q as its marginals. It should be noted that T can be
interpreted as the probabilistic correspondence between the elements of p and q. If the transport cost
Mi,j between XAi

and XBj
is high, then a low correlation Ti,j should be obtained. Eq. (9) is a

linear assignment problem, which is expensive to solve. Fortunately, an entropy-regularized OT has
been developed as follows:

OT(p, q) = min
T∈Π(p,q)

⟨T,M⟩F − ϵH(T), (10)

whereH(T) = −
∑

i,j Ti,j logTi,j is the entropic regularization. Eq. (10) can be solved efficiently
by the log-domain Sinkhorn algorithm Cuturi (2013).

OTCF Module. For clarity, audio features are treated as target and video features as source; the
reverse direction is symmetric. OTCF maps X̂v and X̂a to a shared latent space via two linear
projections:

X̃v = X̂vWs, X̃a = X̂aWt, Ws,Wt ∈ RD×D, X̃v, X̃a ∈ RB×N×D (11)

The ground cost uses cosine distance between the projected sequences:

M = 1− cos(X̃v, X̃a) (12)

computed with a cosine-similarity kernel.

For each batch element, the entropic OT in Eq. (10) is solved by log-stabilized Sinkhorn iterations.
Solving Eq. (10) yields the transport plan T, which is then used in subsequent steps. The plan
T provides a soft, mass-conserving alignment from source to target. OTCF forms a fused source
representation by transporting and aggregating target features and then adding a residual term:

zv = TX̃a + X̃v (13)

5
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In the full model, OTCF is applied in both directions (visual→audio and audio→visual) with the
same formulation and independent projection parameters.

Finally, we employ inverse discrete Fourier transform (IDFT, F−1
seq) to convert the spectral representa-

tions of audio and video back into the spatial domain:

Zt ← F−1
seq(z

t), t ∈ {a, v} (14)

4.6 JENSEN-SHANNON GUIDED ALIGNMENT (JS-ALIGN) MODULE

With audio and visual representations refined by optimal transport-based cross-modal fusion (OTCF),
the distributions of the two modalities are compared using the JensenShannon (JS) divergence to
guide the subsequent fusion step. The distributional divergence is

J = JS(Zv||Za) = 1
2 KL(Zv ∥M) + 1

2 KL(Za ∥M) (15)

where JS(·) denotes the JS divergence, KL(·) represents the KL divergence, M = 1
2 (Z

v + Za) is
the mean distribution, and J serves as a similarity score between modalities.

The multimodal representation is then obtained as:

f = (1− J)(WaZa +WvZv) + JZa + JZv (16)

with Wa and Wv trainable parameters. Here J is computed from the JS divergence, so the fusion
weights reflect cross-modal similarity. In unimodal settings, only Eqs. (6) to (8) and (14) are used;
the complete procedure applies in multimodal settings.

4.7 CHEBYSHEV SPECTRUM-GUIDED KNOWLEDGE TRANSFER (CSKT) MODULE

The fused or single-modality features are passed to the Chebyshev Spectrum-guided Knowledge
Transfer (CSKT) module. CSKT extends Hierarchical Optimal Transport Knowledge Transfer (H-
OTKT) (Ji et al., 2025) with the Learnable Chebyshev Spectrum Filter (LCSF) and uses the Sample-
specific Re-weighting Knowledge Bank (SRKB) from Ji et al. (2025) to transfer facial knowledge
Xs distilled from DFEW (Jiang et al., 2020). Further details appear in Appendix Section C.

Xfused = CSKT(f ,Xs) (17)

5 CLASSIFICATION

The final classification layer contains one MLP with softmax, which takes Xfused as input and
outputs the predicted label ŷ ∈ Rn×Lt

:

ŷ = F3(X
fused) (18)

Here, F3 is the MLP classifier. With ground truth label y = [y1, . . . , yn], the classification loss
function is formulated as:

Lce(y, ŷ) = −Ey[log ŷ] (19)

where E is expectation. To reduce the difference between distribution spaces from source and target
domain in H-OTKT, and further improve the final prediction, another loss function is defined based
on the Sinkhorn divergence (Feydy et al., 2019) to obtain the space discrepancy between class average
of Xs and f

′
(Nguyen & Luu, 2022):

Lot(f
′
,Xs) = dsOT(P,Q)− 1

2dsOT(P,P)− 1
2dsOT(Q,Q) (20)

where dsOT(·, ·) is the total OT cost between two distributions solved by the regular OT (Eq. (9)) with
cosine similarity as cost function. Then the total loss function is formulated as:

L = Lce + ηLot (21)

In Eq. (21), the Lce term optimizes the whole network to improve the classification performance
while the Lot term is used for reducing the discrepance between the source feature space and the
target feature space.

6
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Table 1: Results in Real Life Trial (RLT) dataset and DOLOS dataset

(a) Results with visual modality.

Target RLT DOLOS
Method F1 score ACC AUC F1 score ACC AUC

OpenFace + SVM 0.2253 0.5293 0.5571 0.6975 0.5355 0.5430
OpenFace + Decision Tree 0.5553 0.5303 0.5303 0.5358 0.5058 0.5058

OpenFace + Random Forest 0.6033 0.6033 0.5997 0.6175 0.5367 0.5466
OpenFace + AdaBoost 0.5199 0.5303 0.5766 0.5536 0.5057 0.5035

AU + SVM 0.4562 0.5043 0.4670 0.6813 0.5276 0.5242
AU + Decision Tree 0.4466 0.4643 0.4643 0.5453 0.5173 0.5173

AU + Random Forest 0.5534 0.5463 0.5330 0.5808 0.5045 0.5157
AU + AdaBoost 0.5130 0.4877 0.4835 0.5295 0.4876 0.4735

OpenFace + LSTM 0.5241 0.5623 0.5952 0.5928 0.5628 0.5854
AU + LSTM 0.4888 0.6197 0.6760 0.6343 0.5646 0.5868

ResNet18 + LSTM 0.4996 0.6117 0.6387 0.6415 0.5972 0.5668
PECL(only visual) 0.5880 0.6528 0.6734 0.7010 0.6387 0.6770

FreeLunch 0.7663 0.8173 0.8712 0.6961 0.6228 0.6459
ADC 0.7793 0.8173 0.8677 0.6938 0.6716 0.7206

Cr-KD-NCD 0.7805 0.7200 0.6928 0.7056 0.6091 0.6013
AFFAKT 0.8760 0.8670 0.8789 0.7102 0.6764 0.7212

SPOT-JS(Ours) 0.9600 0.9600 0.9948 0.9643 0.9649 0.9692
+8.40% +9.30% +11.59% +25.41% +28.85% +24.80%

(b) Results with audio modality.
Target RLT DOLOS

Method F1 ACC AUC F1 ACC AUC
MFCC + MLP 0.5226 0.6367 0.7030 0.5963 0.5810 0.6134

OpenSMILE + MLP 0.6885 0.6597 0.5926 0.6867 0.5537 0.5325
W2V2 + MLP 0.6117 0.6780 0.6106 0.4383 0.5421 0.5369

PECL(only audio) 0.7121 0.7100 0.6962 0.6777 0.6119 0.6281
FreeLunch 0.6432 0.6850 0.6944 0.6589 0.5991 0.6196

ADC 0.6402 0.6767 0.6858 0.6196 0.6058 0.6040
AFFAKT 0.7316 0.7440 0.7396 0.6982 0.6198 0.6391

SPOT-JS(Ours) 0.8571 0.8333 0.8715 0.7463 0.7143 0.7659
+12.55% +8.93% +13.19% +4.81% +9.45% +12.68%

(c) Results with fused modalities.
Target RLT DOLOS

Method F1 ACC AUC F1 ACC AUC
OpenFace ⊕ OpenSMILE 0.6895 0.6781 0.6212 0.6124 0.5986 0.5863
ResNet18 ⊕ OpenSMILE 0.6283 0.6853 0.6598 0.5863 0.6152 0.6485

PECL 0.7102 0.6939 0.7424 0.7084 0.6597 0.6353
FreeLunch 0.7695 0.8093 0.8547 0.6807 0.6289 0.6574

ADC 0.7493 0.8093 0.8446 0.6997 0.6746 0.7307
AFFAKT 0.8412 0.8427 0.8563 0.7149 0.6810 0.7289

SPOT-JS(Ours) 0.9630 0.9600 0.9679 0.9474 0.9474 0.9846
+12.18% +11.73% +11.16% +23.25% +26.64% +25.57%

Table 2: Results in Box of lies(BOL) dataset.

(a) Results with visual modalities.
Target Box of lies

Method F1 ACC AUC
CMFL 0.5584 0.4403 0.4907

SE-Concat 0.5606 0.5678 0.5657
Prompt 0.6785 0.5451 0.6143
PECL 0.6832 0.5705 0.6476

AVA+CUFMCL 0.6953 0.5947 0.6743
SPOT-JS(Ours) 0.9333 0.9111 0.9551

+23.80% +31.64% +28.08%

(b) Results with audio modalities.
Target Box of lies

Method F1 ACC AUC
CMFL 0.5812 0.5308 0.5406

SE-Concat 0.5694 0.5530 0.5638
Prompt 0.6684 0.5673 0.5799
PECL 0.6726 0.5828 0.6122

AVA+CUFMCL 0.6972 0.5987 0.6456
SPOT-JS(Ours) 0.9310 0.9111 0.9131

+23.38% +31.24% +26.75%

(c) Results with fused modalities.
Target Box of lies

Method F1 ACC AUC
CMFL 0.6568 0.5350 0.5635

SE-Concat 0.6721 0.5919 0.6109
Prompt 0.6891 0.5954 0.6256
PECL 0.6723 0.6078 0.6433

AVA+CUFMCL 0.6920 0.6256 0.6667
SPOT-JS(Ours) 0.9153 0.8889 0.9393

+22.33% +26.33% +27.26%

6 EXPERIMENTS

6.1 DATASETS

Datasets. To validate the effectiveness, generalizability, and robustness of SPOT-JS, evaluation is
performed on three benchmark datasets: (1) Real Life Trial (Pérez Rosas et al., 2015), (2) Box of
Lies (BOL)(Soldner et al., 2019), (3) DOLOS (Guo et al., 2023). For detailed information about the
dataset, please refer to Appendix Section G.1.

6.2 COMPARISON METHODS

Machine learning methods typically employ visual features (OpenFace, gaze and action units) and
acoustic features (MFCC) for deception detection. Standard classifiers such as SVM and Decision
Tree process the visual features, while MLP handles the acoustic features (Mathur & Matarić, 2020;
Avola et al., 2019; Yang et al., 2021a).

Deep learning approaches include several architectures: KNN (Chebbi & Jebara, 2023),
FFCSN (Ding et al., 2019b), ResNet18+LSTM (Karnati et al., 2022; Ding et al., 2019a; Guo
et al., 2023), W2V2+MLP (Guo et al., 2023; Karnati et al., 2022; Krishnamurthy et al., 2018),
ResNet18⊕OpenSMILE (Krishnamurthy et al., 2018; Guo et al., 2023), CLBF (Camara et al., 2024),
and PECL (Guo et al., 2023).

Fusion methods include: Concat, SE-Concat (Hu et al., 2018), CMFL (George & Marcel, 2021),
Prompt (Jia et al., 2022), and AVA (Li et al., 2024).

Transfer learning methods include: FreeLunch (Yang et al., 2021b), ADC (Guo et al., 2022),
PECL (Guo et al., 2023), Cr-KD-NCD (Gu et al., 2023), and AFFAKT (Ji et al., 2025).

6.3 COMPARISON RESULTS

Experiments were conducted on three datasets-Real Life Trial (RLT), DOLOS, and Box of Lies
(BOL) under visual, audio, and fused modalities. Performance was measured by F1, ACC, and AUC
with 5-fold cross-validation. Our method achieved significant improvements: on the RLT dataset,
ACC improved by 8.93%–11.73% and on the DOLOS dataset, ACC increased by 9.45%–28.85% in
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Tables 1a to 1c; and on the Box of Lies dataset, ACC saw a gain of 26.33%–31.64% in Tables 2a
to 2c.The same tables show consistent increases in F1 and AUC across all three datasets.

Cross-domain evaluations report ACC; the remaining metrics appear in Appendix Section E. As
shown in Tables 3a to 3c, the results exceed strong baselines across modalities. For the visual stream,
training on RLT (R) and testing on BOL (B) gives a 25.76% gain over prior methods. For the audio
stream under the same setup, the gain is 23.76%. For the fused modality, training on BOL and testing
on RLT yields 35.61%. Similar margins appear in other transfer directions. These results indicate
robust cross-domain performance of the proposed approach.

Table 3: Cross-domain results on RLT (R), BOL (B), and DOLOS (D) using ACC. Detailed results
are provided in Appendix Section E. Abbreviations: Ff, face frames; Mel, Mel spectrogram.

(a) Results with visual modality.

Method R to D D to B R to B D to R B to R B to D
AU+LSTM 0.4992 0.4997 0.5886 0.5233 0.5489 0.5046
Gaze+MLP 0.4998 0.5011 0.5998 0.5308 0.5519 0.5008

AU+Gaze+MLP 0.5125 0.5137 0.6535 0.5479 0.5563 0.5153
Affect+MLP 0.5132 0.5108 0.5842 0.5458 0.5587 0.5226

AU+Gaze+Affect+MLP 0.5238 0.5025 0.5941 0.5541 0.5633 0.5289
Ff+ResNet18 0.5275 0.5133 0.6139 0.5452 0.5645 0.5238

Ff+ResNet18+GRU 0.5254 0.5236 0.6337 0.5480 0.5688 0.5278
Ff+ResNet18+KNN 0.5337 0.5148 0.6315 0.5536 0.5609 0.5308
Ff+ResNet18+SVM 0.5415 0.5028 0.6328 0.5636 0.5709 0.5382

Ff+FFCSN 0.5387 0.5319 0.6288 0.5685 0.5682 0.5408
CLBF 0.5283 0.5136 0.4409 0.5458 0.5864 0.5538
PECL 0.5516 0.5307 0.6399 0.5532 0.5277 0.5509

SPOT-JS(Ours) 0.7143 0.7778 0.9111 0.7200 0.7083 0.6140
+16.27% +24.59% +25.76% +15.15% +12.19% +6.02%

(b) Results with audio modality.
Method R to D D to B R to B D to R B to R B to D

Acoustic + Prosodic+MLP 0.4558 0.5022 0.5218 0.5038 0.5126 0.4947
Mel+ResNet18 0.5001 0.5386 0.5347 0.5343 0.5256 0.4907

Mel+ResNet18+KNN 0.4882 0.5238 0.5402 0.5317 0.5346 0.4899
Mel+ResNet18+SVM 0.4905 0.5398 0.5402 0.5425 0.5391 0.5006
Waveform+Wave2Vec 0.5021 0.5365 0.4851 0.5355 0.5309 0.5087

PECL 0.5197 0.5368 0.5392 0.5915 0.5447 0.5125
SPOT-JS(Ours) 0.6429 0.6889 0.7778 0.6400 0.7083 0.6316

+12.32% +14.91% +23.76% +4.85% +16.36% +11.91%

(c) Results with fused modality.
Method R to D D to B R to B D to R B to R B to D
Average 0.5385 0.5822 0.5842 0.5338 0.4907 0.5089
Concat 0.5393 0.5832 0.5842 0.5625 0.4982 0.5103

SE-Concat 0.5339 0.5945 0.6040 0.5695 0.5069 0.5169
Cross-Atten 0.5411 0.5941 0.6139 0.5733 0.5166 0.5237
MLP-Mixer 0.5497 0.6042 0.5743 0.5754 0.5283 0.5369

PECL 0.5601 0.6136 0.5967 0.5617 0.5319 0.5427
Atten-Mixer 0.5635 0.6337 0.6040 0.5877 0.5256 0.5433

SPOT-JS(Ours) 0.7018 0.7333 0.7556 0.7500 0.8880 0.6491
+13.83% +9.96% +14.17% +16.23% +35.61% +10.08%

6.4 IMPLEMENTATION DETAILS

Experiments ran on an NVIDIA RTX 4090 GPU (24GB VRAM). For video and fused modalities
across DOLOS, RLT, and BOL, the batch size was 16; for the audio modality, a batch size of 64 was
used due to lower memory demand. The learning rate was fixed at 1× 10−5 throughout. Additional
implementation notes appear in Appendix Section G.2.

6.5 ABLATION STUDIES

Our ablation study systematically validates the effectiveness of the proposed spectral representation
and fusion method. As shown in the table, we design three experimental scenarios for comprehensive
evaluation.

Case A. As a purely baseline setting, our first ablation excludes all key innovations, retaining only
the standard H-OTKT and SRKB modules. As shown in Table 4, the baseline version exhibits a
pronounced performance degradation compared to the full model.

Case B. To validate the effectiveness of TDAM, we introduce this module on top of Method A.
The experimental results show that all three modalities achieve significant improvements. These
findings demonstrate that: (1) preserving inter-frame continuity in video sequences is essential; and
(2) minimizing noise while maintaining temporal consistency plays a crucial role in enhancing the
model‘s robustness and generalization ability.

Case C. Building upon Case B, we incorporate the LCSF module. As shown in Table 4, all three
modalities achieve substantial improvements over the baseline model. This demonstrates that LCSF
effectively highlights task-relevant frequency bands while suppressing noise through learnable
Chebyshev spectral filtering.

Case D. Building upon Method C, we replace H-OTKT with our modified CSKT. The experimental
results reveal significant improvements across all three modalities, indicating that the previous direct
knowledge transfer approach was rather coarse. With the introduction of our CSKT module, facial
knowledge is transferred more effectively, which further substantiates the effectiveness of the LCSF
module.

Case E. Building on Case D, we integrate the OTCF module into the multimodal setting. The
experimental results demonstrate that, compared with the mixed-modal scheme in Case D, adopting
the OTCF approach leads to improved model performance.
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Case F. Building on Case D, we integrate the JS-Align module into the multimodal setting. The
experimental results show that, compared with the mixed-modal scheme in Case D, adopting the
JS-Align method consistently enhances model performance.

Due to space limitations, additional ablation results are provided in the Appendix Section F.

Table 4: Ablation studies results. ① TDAM module, ② LCSF module, ③ CSKT module, ④ OTCF
module, ⑤ JS-Align module.

Target RLT DOLOS BOL

Case Method modality F1 ACC AUC F1 ACC AUC F1 ACC AUC
① ② ③ ④ ⑤

A ✗ ✗ ✗ ✗ ✗

Visual 0.8760 0.8670 0.8789 0.7054 0.6764 0.7212 0.7302 0.6889 0.7377
Audio 0.7267 0.7270 0.7218 0.6822 0.6198 0.6391 0.7347 0.6444 0.7141
Fused 0.8162 0.8180 0.8381 0.7073 0.6810 0.7226 0.7119 0.6667 0.7279

B ✓ ✗ ✗ ✗ ✗

Visual 0.9071 0.9024 0.9248 0.8000 0.8020 0.8255 0.7838 0.7898 0.8333
Audio 0.8064 0.7630 0.8078 0.6964 0.6491 0.6562 0.7714 0.7333 0.7664
Fused 0.8462 0.8438 0.8628 0.7692 0.7708 0.7743 0.7647 0.7600 0.7886

C ✓ ✓ ✗ ✗ ✗

Visual 0.9375 0.9375 0.9635 0.9057 0.9123 0.9295 0.8816 0.8636 0.9289
Audio 0.8333 0.8160 0.8420 0.7292 0.6964 0.7236 0.8710 0.8750 0.8677
Fused 0.9167 0.9200 0.9143 0.8525 0.8772 0.8524 0.8421 0.8222 0.8494

D ✓ ✓ ✓ ✗ ✗

Visual 0.9600 0.9600 0.9948 0.9643 0.9649 0.9692 0.9333 0.9111 0.9551
Audio 0.8571 0.8333 0.8715 0.7463 0.7143 0.7659 0.9310 0.9111 0.9131
Fused 0.9375 0.9312 0.9248 0.9091 0.8958 0.9183 0.8621 0.8444 0.8919

E ✓ ✓ ✓ ✓ ✗ Fused 0.9479 0.9477 0.9419 0.9231 0.9167 0.9401 0.8909 0.8710 0.9037
F ✓ ✓ ✓ ✗ ✓ Fused 0.9408 0.9383 0.9455 0.9286 0.9200 0.9312 0.8814 0.8667 0.9146

6.6 CASE STUDY

Fused 

information

Before our model

After our model

෩Xt෡Xt

Audio

Xt

Figure 3: Interpretable Case Visualization.

By our model:

By Resnet50:

Figure 4: Visualization Examples of the Model’s Attentional Regions.

To show how the model learns spectral representations and fusion, Fig. 3 visualizes features from the
three modalities at three stages: the original state, after LCSF, and after OTCF. As training proceeds,
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the feature distributions become more structured and support stronger discrimination. Early epochs
show weakly differentiated spectra with near-uniform coloration; later epochs exhibit clearer band
separation and greater variation in spectral energy.

A comparison of multimodal features before and after training is also provided. In Fig. 3, the
untrained model attends to irrelevant regions, whereas the trained model focuses on facial areas,
especially ocular motion, which is widely reported as a cue in deception detection.

To interpret model behavior, attention maps are visualized in Fig. 4. The model frequently attends to
the pupils, a cue associated with deception through involuntary dilation, which aligns with domain
reports. This contrasts with the irrelevant regions highlighted by a pre-trained ResNet50 and helps
explain why ResNet-based baselines underperform on this task. Additional examples appear in
Appendix Section H.

7 CONCLUSION

SPOT-JS is presented as a frequency-domain method for multimodal deception detection under
domain shift. The system couples unified preprocessing and audiovisual synchronization (TDAM), a
power-spectrumbased Learnable Chebyshev Spectrum Filter (LCSF), bidirectional fusion via entropy-
regularized optimal transport (OTCF), and JS-Align for JensenShannonguided posterior matching.
This design reduces reliance on invasive signals and handcrafted features, improves unimodal
encodings, and provides principled multimodal alignment and fusion. A Chebyshev Spectrum-guided
Knowledge Transfer (CSKT) module further transfers facial knowledge. Experiments show reduced
dependence on traditional physiological cues and competitive accuracy across datasets.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed a large language model solely for the purpose of polishing the written paragraphs to
enhance their fluency and readability. Beyond this textual refinement, no other aspects of the work
utilized large language models.

B ETHICS STATEMENT

As developers create deception detection systems, it must be a priority to uphold privacy, minimize
psychological harm, and prevent discrimination. Potential misuse of such technology could impose
significant negative impacts on society. If deployed without consent, these systems risk infringing on
personal privacy by collecting and analyzing sensitive individual data-such as speech patterns, facial
expressions, and body language-without adequate safeguards. Researchers must adhere to applicable
regulations throughout the development and deployment of deception detection systems.

C CHEBYSHEV SPECTRUM-GUIDED KNOWLEDGE TRANSFER (CSKT)
MODULE

Having obtained the fused multimodal representation f , we provide further details of the Hierarchical
Optimal Transport Knowledge Transfer (H-OTKT) componentJi et al. (2025), which serves as the
foundation of our proposed CSKT module. H-OTKT transfers affective prior knowledge Xs from
large-scale Visual Facial Expression Recognition (VFER) datasets (e.g., DFEW Jiang et al. (2020))
to enhance the discriminative power for deception detection.

Before performing knowledge transfer, we first employ Eq. (6) to transform the knowledge Xs to
be transferred into the frequency domain. We then apply the LCSF module for filtering, thereby
enabling more effective and informative feature transmission:

Xso = LCSF(Xs) (22)

where LCSF(·) denotes the Learnable Chebyshev Spectrum Filter (LCSF) Module in our framework.

f is firstly mapped into f ′ = F1(f) ∈ Rn×d by an MLP F1, such that the feature spaces between
source and target domain could be the same, where n is the batch size. Let Q =

∑Ls

k=1
1
Ls δQk as

the discrete uniform distribution over Ls classes of VFER dataset, Qk is the representation vector of
k-th class. And P =

∑n
i=1

1
nδfi′ is the discrete uniform distribution over n target deception samples.

Then, according to Eq. (10), the entropic regularized OT between P and Q is:

OThigh(P,Q) = min
T∈Π(P,Q)

< T,M >F −ϵH(T) (23)

where T ∈ Rn×Ls

and M ∈ Rn×Ls

are the transport plan and the cost matrix between facial
expression classes and target deception samples. Each element Ti,k indicates the importance of the
k-th class in VFER dataset for the i-th sample in deception mini-batch, determining which class and
how much of knowledge should be transferred. Besides, T should satisfy the following constraint:

Π(P,Q) :=

{
n∑

i=1

Ti,k =
1

Ls
,

Ls∑
k=1

Ti,k =
1

n

}
(24)

It is evident that the solution T relies on the cost matrix M. Simply applying cosine similarity
between the features of samples from a deception mini-batch and the mean features of each class in
the VFER dataset may lead to a sub-optimal solution. Moreover, the contribution of different samples
in each class may vary. Therefore, they adopt another optimal transport formulation to obtain the
optimal M. According to Guo et al. (2022), the empirical distribution of the k-th class is expressed as
Qk =

∑Jk

j=1 p
k
j δXs,k

j
, where the importance pkj of the j-th sample in the k-th source class is obtained

by the logistic regression score. Based on this formulation, a low-level entropic regularized OT is
further defined as follows:

OTlow(P,Qk) = min
Tlow,k∈Π(P,Qk)

< Tlow,k,Mlow,k >F −ϵH(Tlow,k) (25)
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Π(P,Qk) :=
{∑Jk

j Tlow,k
i,j pkj = 1

n ,
∑n

i T
low,k
i,j

1
n = pkj

}
is the constrain, and Tlow,k is the trans-

port plan between each sample in mini-batch and samples in the k-th source domain class.
Mlow,k ∈ Rn×Jk is determined by cosine similarity, i.e., Mlow,k

i,j = 1 − cos(fi
′, X̂s

j). The cost
matrix M in high-level OT of Eq. (23) will be replaced by the total OT distance between each target
deception sample and all sample in each class of VFER dataset, i.e., M:,k =< Tlow,k,Mlow,k >F.

For the optimization, both Eq. (23) and Eq. (25) are solved by Sinkhorn algorithm Cuturi (2013)
hierarchically. Using the OT distance calculated from low-level OT as the cost M of high-level OT
adaptively, CSKT is able to obtain the transport weight T between deception samples and facial
expression classes, which is the potential correlation mapping of facial expression classes for target
samples.

Once we obtained correlation mapping T by solving Eq. (23), knowledge transformation can be
performed. For each sample in deception domain, more knowledge from highly associated classes
should be transferred, while knowledge from uncorrelated classes should not be transferred. To
realize it, the transferred knowledge Xtrans ∈ Rn×d is represented as follows:

Xtrans
i = F2

n ·
Ls∑
k=1

Ti,k

 1

Jk

Jk∑
j=1

X̂s
j

 , i = 1, · · · , n (26)

where 1
Jk

∑Jk

j=1 X̂
s
j denotes the average feature of samples belonging to the k-th class in source

domain; Ti,k quantifies the correlation weight between the k-th source class and i-th deception
sample; n is used for scaling due to the constraint in high-level OT. And F2 is an MLP.

After obtaining Xtrans, we transform it back into the spatial domain using Eq. (14) for subsequent
processing:

Xtrans ← F−1
seq(X

trans) (27)

In order to integrate the transferred knowledge Xtrans with features f
′

extracted from target samples,
the fused representation of deception detection samples are calculated as:

Xfused = ξ′Xtrans + (1− ξ′)f
′

(28)

where ξ′ is the weight of transferred feature Xtrans. Since it’s hard to learn excellent f
′

at the
beginning of the training phase, a curriculum learning strategy (Kumar et al., 2010; Wang et al., 2021)
is adopted as ξ′ = ξ

2 ×
(
1− cos

(
e−1
Ne
× π

))
, where e is the current training epoch number and Ne

is the total training epoch number. As ξ′ is gradually increased, a better f
′

is gained for H-OTKT.

C.1 SAMPLE-SPECIFIC RE-WEIGHTING KNOWLEDGE BANK (SRKB) MODULE

Since we do not make any modifications to the Sample-specific Re-weighting Knowledge Bank
(SRKB) Module, we refer the reader to Ji et al. (2025) for further details, and do not elaborate on it
here.

D DETAILED DESCRIPTION ABOUT COMPARISON METHODS

In this section, we will give more detailed descriptions about the comparison methods.

D.1 TRADITIONAL MACHINE LEARNING BASED DECEPTION DETECTION METHODS

Firstly, we would like to introduce the statistical features that are used in our experiments.

• Visual: OpenFace (Baltrusaitis et al., 2018) is an open source tool for extracting facial
statistical features, such as landmarks, action units. Some of the action units also show high
association with deception (Şen et al., 2020). Following the previous researches (Mathur &
Matarić, 2020; Krishnamurthy et al., 2018; Avola et al., 2019; Yang et al., 2021a), we also
employ OpenFace as our visual feature extractor to obtain visual statistical features.
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• Audio: Mel-scale Frequency Cepstral Coefficients (MFCC) (Abdul & Al-Talabani, 2022)
and OpenSMILE (Eyben et al., 2010) are two mostly used acoustic statistical features for
detecting deception.

Not that the features extracted by OpenFace are frame-wise, since different video clips may contains
different number of frames, we normalize the dimension of one video clip by OpenMM (Morales
et al., 2017), which calculates the 11 statistical functionals for each feature at view label (Rill-Garcı́a
et al., 2019).

For classification, we employ SVM, Decision Tree Random Forest, and AdaBoost as our classifier.
The statistical features are fed to each classifier to perform classification.

D.2 DEEP LEARNING BASED DECEPTION DETECTION METHODS

In this paper, we make comparisons with several deep learning methods. These methods can be
separated by their backbone structure: Long Short-Term Memory (LSTM) (Graves & Graves, 2012)
based, ResNet (He et al., 2016) based, and Transformer (Vaswani et al., 2017) based.

• LSTM based: LSTM is known as the sequence encoder, which is able to capture the
contextual information of a given sequence. In this case, LSTM is employed to handle
the contextual information aggregation at temporal dimension. Several researches adopt
LSTM as the temporal encoder to obtain the temporal information (Mathur & Matarić, 2020;
Krishnamurthy et al., 2018; Guo et al., 2023).

• ResNet based: ResNet is a common image encoder, which is built upon convolutional neural
networks. In these works (Karnati et al., 2022; Ding et al., 2019a; Krishnamurthy et al.,
2018; Guo et al., 2023), they use ResNet to automatically extract the visual features instead
of using OpenFace or other manual approaches. In our experiments, ResNet with 18 layers
(ResNet18) is employed to extract the visual features of each video frames.

• Transformer based: With the great success of Transformer (Vaswani et al., 2017), encoders
with more parameters based on Transformer architecture have been proposed to encode video
clips or audio sequences automatically with rich semantic information. W2V2 (Baevski
et al., 2020) is typical audio encoder based on Transformer architecture, and VideoMAE
(Tong et al., 2022) is able to directly encode the given video clip to a fixed length vector.

In our experiment, we make comparisons with the following researches.

• ResNet18 + LSTM (Karnati et al., 2022; Ding et al., 2019a; Krishnamurthy et al., 2018;
Guo et al., 2023): In these methods, ResNet18 was adopted to extract video frame features
of a video. Then sequential information of all frame features was formulated by an LSTM.
Then an MLP performed classification using the last output feature of the sequence.

• W2V2 + MLP (Guo et al., 2023; Karnati et al., 2022; Krishnamurthy et al., 2018): In these
methods, W2V2 model was used to extract audio features. Then an MLP was used to make
classification.

• ResNet18 ⊕ OpenSMILE (Gogate et al., 2017; Krishnamurthy et al., 2018; Guo et al.,
2023): These methods took both visual and audio modalities into account, and performed
late fusion from each single modality branch.

• Face frames+FFCSN (Ding et al., 2019b): These methods address the challenge of deception
detection in unconstrained videos. To facilitate joint deep feature learning from facial
expressions and body movements, a Facial-Focused Cross-Stream Network (FFCSN) was
proposed to handle the temporal misalignment between these cues. Additionally, meta-
learning and adversarial learning were incorporated into the model training framework.

D.3 TRANSFER LEARNING BASED METHODS

There have been a small number of researches that tried to transfer knowledge from other related
dataset to enhance the detection performance with deep learning based methods. Therefore, we adapt
several common kinds of transfer learning strategy to the deception detection task.
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• Optimal Transport based: Free Lunch (Yang et al., 2021b) achieved knowledge transfer
by estimating the weight of each base class and perform distribution calibration with the
statistics of base classes, which directly used the distance of class average feature and
support feature as the measurement. Similar to FreeLunch, ADC (Guo et al., 2022) also
aimed to transfer knowledge via quantifying the weight of each source class and target
sample and perform distribution calibration. The optimal transport plan represents the
importance (or correlation) between the base classes and the novel samples. In AFFAKT
(Ji et al., 2025), the relation between deception sample and each facial expression class is
estimated by these two methods in the forward process, which play roles with the H-OTKT
and SRKB modules.

• Pre-train & Fine-tune based: The transfer learning methods of this kind are more likely to
be adopted in large models, such as PECL (Guo et al., 2023). It tried to transfer knowledge
from the pre-trained dataset and checkpoint to the target dataset.

• Knowledge Distillation based: Knowledge distillation is also known as a typical transfer
learning method. In (Gu et al., 2023), knowledge distillation was used for discover novel
class samples given a model pre-trained on a source dataset. The key idea of (Gu et al.,
2023) is to distill knowledge according to the class realtion.

D.4 FUSION METHODS

Fusion methods employ various approaches for multimodal integration. Channel-wise feature
concatenation (Concat) provides lightweight fusion, while SE-Concat enhances this process through
squeeze-and-excitation modules (Hu et al., 2018) for modality-specific refinement. CMFL (George &
Marcel, 2021) introduces adaptive channel weighting via cross-modal focal loss. The Prompt method
(Jia et al., 2022) learns task-specific visual tokens while keeping transformer blocks frozen. AVA
(Li et al., 2024) achieves synchronized feature integration by aligning temporal embeddings across
visual and auditory modalities.

• SE-Concat: Squeeze-and-excitation(SE) module is utilized in each independent modality
branch first. With the channel-wise self-calibration via the SE module, the refined features
are then concatenated.

• CMFL: Cross-modal focal loss is used to modulate the loss contribution of each channel as
a function of the confidence of individual channels.

• Prompt: Visual Prompt Tuning method introduces a small amount of task-specific learnable
tokens while freezing the entire pretrained transformer blocks during deception detection
training.

• AVA: This work introduces a novel Transformer-based framework incorporating Audio-
Visual Adapter modules and Cross Uni- and Fused Modal Contrastive Loss (CUFMCL) for
multi-modal deception detection which achieves superior performance under flexible-modal
scenarios.

E MORE EXPERIMENTS AND THE STANDARD DEVIATION REPORT BETWEEN
FOLDS

As discussed in the main text, we report here all cross-domain testing results along with more detailed
experimental findings. As shown in Tables 7 and 8, we additionally present the remaining results
for F1 and AUC. The average value and the standard deviation between different folds are shown in
Tables 5 and 6. Beside the analysis in the main text, the results in Tables 5 and 6 show that SPOT-JS is
more robust, since the evaluate metric between different folds have smaller standard deviation value.

F MORE ABLATION STUDIES

In this section, we systematically conduct ablation studies on all the proposed modules to thoroughly
demonstrate the effectiveness of each component. For clarity, when the CSKT module is excluded,
the original H-OTKT module is used instead. Likewise, when the OTCF or JS-Align modules are
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Table 5: Comparison results on RLT dataset and DOLOS dataset with F1, ACC and AUC metrics.
Both mean and standard deviation are reported (mean±std).

(a) Results with visual modality.

Target RLT DOLOS
Method F1 ACC AUC F1 ACC AUC

OpenFace + SVM 0.2253±0.2605 0.5293±0.0361 0.5571±0.0470 0.6975±0.0010 0.5355±0.0012 0.5430±0.0160
OpenFace + Decision Tree 0.5553±0.1157 0.5303±0.1048 0.5303±0.1048 0.5358±0.0303 0.5058±0.0262 0.5058±0.0262

OpenFace + Random Forest 0.6033±0.0867 0.6033±0.0559 0.5997±0.0574 0.6175±0.0193 0.5367±0.0227 0.5466±0.0272
OpenFace + AdaBoost 0.5199±0.1523 0.5303±0.0980 0.5766±0.1070 0.5536±0.0251 0.5057±0.0329 0.5035±0.0357

AU + SVM 0.4562±0.0723 0.5043±0.0726 0.4670±0.0970 0.6813±0.0194 0.5276±0.0126 0.5242±0.0089
AU + Decision Tree 0.4466±0.1577 0.4643±0.1167 0.4643±0.1167 0.5453±0.0172 0.5173±0.0137 0.5173±0.0137

AU + Random Forest 0.5534±0.0792 0.5463±0.0810 0.5330±0.0766 0.5808±0.0183 0.5045±0.0256 0.5157±0.0230
AU + AdaBoost 0.5130±0.0530 0.4877±0.0612 0.4835±0.0833 0.5295±0.0302 0.4876±0.0185 0.4735±0.0264

OpenFace + LSTM 0.5241±0.0995 0.5623±0.0834 0.5952±0.1164 0.5928±0.0342 0.5628±0.0164 0.5854±0.0152
AU + LSTM 0.4888±0.0472 0.6197±0.0419 0.6760±0.0442 0.6343±0.0084 0.5646±0.0137 0.5868±0.0098

ResNet18 + LSTM 0.4996±0.1391 0.6117±0.0718 0.6387±0.0928 0.6415±0.0124 0.5972±0.0087 0.5668±0.0136
PECL(only visual) 0.5880±0.1018 0.6528±0.0040 0.6734±0.0508 0.7010±0.0213 0.6387±0.0139 0.6770±0.0099

FreeLunch 0.7612±0.1207 0.8090±0.0782 0.8712±0.0782 0.6961±0.0147 0.6222±0.0221 0.6444±0.0221
ADC 0.7793±0.1218 0.8173±0.0942 0.8674±0.0943 0.6880±0.0163 0.6716±0.0157 0.7206±0.0157

Cr-KD-NCD 0.6957±0.1342 0.7200±0.0869 0.6928±0.0865 0.5850±0.0175 0.6091±0.0186 0.6013±0.0202
AFFAKT 0.8760±0.0516 0.8670±0.0558 0.8789±0.0516 0.7102±0.0233 0.6764±0.0199 0.7212±0.0292

SPOT-JS(Ours) 0.9600±0.0534 0.9600±0.0406 0.9948±0.0406 0.9643±0.0348 0.9649±0.0299 0.9692±0.0299
+8.40% +9.30% +11.59% +25.41% +28.85% +24.80%

(b) Results with audio modality.

Target RLT DOLOS
Method F1 ACC AUC F1 ACC AUC

MFCC + MLP 0.5226±0.2911 0.6367±0.1263 0.7030±0.0502 0.5963±0.0757 0.5810±0.0232 0.6134±0.0279
OpenSMILE + MLP 0.6885±0.1275 0.6597±0.1121 0.5926±0.0916 0.6867±0.0128 0.5537±0.0095 0.5325±0.0091

W2V2 + MLP 0.6117±0.0810 0.6780±0.0266 0.6106±0.0631 0.4383±0.0333 0.5421±0.0115 0.5369±0.0120
PECL(only audio) 0.7121±0.0748 0.7100±0.0718 0.6962±0.0796 0.6777±0.0364 0.6119±0.0200 0.6281±0.0155

FreeLunch 0.6432±0.0989 0.6850±0.0704 0.6944±0.0704 0.6589±0.0334 0.5979±0.0203 0.6196±0.0188
ADC 0.6402±0.0922 0.6767±0.0744 0.6858±0.0744 0.6196±0.0814 0.6058±0.0135 0.6040±0.0135

AFFAKT 0.7316±0.0493 0.7440±0.0707 0.7396±0.0768 0.6982±0.0210 0.6198±0.0076 0.6391±0.0184
SPOT-JS(Ours) 0.8571±0.0222 0.8333±0.0161 0.8438±0.0161 0.7463±0.0214 0.7143±0.0094 0.7659±0.0094

+12.55% +8.93% +13.19% +4.81% +9.45% +12.68%
(c) Results with fused modalities.

Target RLT DOLOS
Method F1 ACC AUC F1 ACC AUC

OpenFace ⊕ OpenSMILE 0.6895±0.0463 0.6781±0.0752 0.6212±0.0671 0.6124±0.0354 0.5986±0.0153 0.5863±0.0136
ResNet18 ⊕ OpenSMILE 0.6283±0.0498 0.6853±0.0627 0.6598±0.0763 0.5863±0.0263 0.6152±0.0175 0.6485±0.0121

PECL 0.7102±0.0215 0.6939±0.0488 0.7424±0.0569 0.7084±0.0142 0.6597±0.0114 0.6353±0.0108
FreeLunch 0.7695±0.0799 0.8093±0.0782 0.8547±0.0781 0.6807±0.0251 0.6289±0.0060 0.6669±0.0060

ADC 0.7493±0.0703 0.8093±0.0782 0.8446±0.0782 0.6997±0.0010 0.6746±0.0126 0.7307±0.0115
AFFAKT 0.8412±0.0848 0.8427±0.0768 0.8563±0.0688 0.7149±0.0099 0.6810±0.0140 0.7289±0.0092

SPOT-JS(Ours) 0.9630±0.0473 0.9600±0.0172 0.9679±0.0172 0.9474±0.0264 0.9474±0.0233 0.9846±0.0233
+12.18% +11.73% +11.16% +23.25% +26.64% +25.57%

absent, we adopt a simple baseline strategy that sums half of the video features with half of the
audio features.When TDAM is not used, we adopt the traditional method of encoding each image
individually. The results are shown in Table 9.

G DATASETS AND EXPERIMENTAL SETTINGS

G.1 DATASETS

Deception Detection Datasets. We conduct the experiments on three most widely used datasets
in deception detection task, Real Life Trial (RLT) dataset, DOLOS dataset and Box of Lies (BOL)
dataset:

• Real Life Trial (RLT) dataset is a popular real-world dataset collected from public court
trials, which consists of 121 videos including 61 deceptive and 60 truthful video clips.As
it is a real-world dataset, the Real Life Trial dataset has more noise on both the video and
audio.
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Table 6: Comparison results on BOL dataset with F1, ACC and AUC metrics. Both mean and
standard deviation are reported (mean±std).

(a) Results with visual modalities.

Target Box of lies
Method F1 ACC AUC
CMFL 0.5584±0.0508 0.4403±0.0607 0.4907±0.0512

SE-Concat 0.5606±0.0613 0.5678±0.0577 0.5657±0.0546
Prompt 0.6785±0.0512 0.5451±0.0566 0.6143±0.0483
PECL 0.6832±0.0486 0.5705±0.0511 0.6476±0.0431

AVA+CUFMCL 0.6953±0.0712 0.5947±0.0733 0.6743±0.0789
SPOT-JS(Ours) 0.9333±0.0066 0.9111±0.0088 0.9551±0.0088

+23.80% +31.64% +28.08%
(b) Results with audio modalities.

Target Box of lies
Method F1 ACC AUC
CMFL 0.5812±0.0723 0.5308±0.0755 0.5406±0.0637

SE-Concat 0.5694±0.0688 0.5530±0.0639 0.5638±0.0628
Prompt 0.6684±0.0433 0.5673±0.0487 0.5799±0.0453
PECL 0.6726±0.0311 0.5828±0.0343 0.6122±0.0289

AVA+CUFMCL 0.6972±0.0233 0.5987±0.0289 0.6456±0.0241
SPOT-JS(Ours) 0.9310±0.0066 0.9111±0.0088 0.9131±0.0088

+23.38% +31.24% +26.75%
(c) Results with fused modalities.

Target Box of lies
Method F1 ACC AUC
CMFL 0.6568±0.0763 0.5350±0.0688 0.5635±0.0873

SE-Concat 0.6721±0.0733 0.5919±0.0782 0.6109±0.0725
Prompt 0.6891±0.0655 0.5954±0.0635 0.6256±0.0689
PECL 0.6723±0.0543 0.6078±0.0509 0.6433±0.0578

AVA+CUFMCL 0.6920±0.0482 0.6256±0.0473 0.6667±0.0479
SPOT-JS(Ours) 0.9153±0.0163 0.8889±0.0243 0.9393±0.0243

+22.33% +26.33% +27.26%

• Box of Lies (BOL) is a deception dataset collected from an online gameshow, which consists
of 225 videos including 144 deceptive and 81 truthful video clips. (6 male and 20 female).
The full video set contains 29 truthful and 36 deceptive rounds of games.

• DOLOS is the largest game-show deception detection dataset recently proposed in the field,
containing rich deceptive dialogues. The dataset consists of 1,675 video clips featuring 213
subjects (141 male and 72 female participants), with each clip lasting 2-19 seconds.

Please note that the DOLOS dataset is not a publicly available dataset. If you wish to use this dataset,
you need to submit a relevant application.

Facial Expression Recognition Datasets. One in-the-wild VFER datasets (DFEW is employed in
our experiments. It contains 16372 samples with 7 expression categories. For DFEW, we only use
11697 single-labeled clips:

• DFEW is a large-scale real-world dataset collected from over 1,500 movies, consisting
of 16,372 video clips annotated with seven basic emotions (anger, disgust, fear, happy,
sad, surprise, neutral). As a real-world dataset, DFEW contains significant variations
in illumination, pose, and occlusion, making it highly challenging for facial expression
recognition tasks.

If you wish to use this dataset, you need to submit a relevant application.
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Table 7: We report cross-domain experimental results on the RLT(R), BOL(B), and DOLOS(D)
datasets using the F1 metric. Here, Ff refers to Face frames, while Mel refers to Mel spectrograms.

(a) Results with visual modality.

Method R to D D to B R to B D to R B to R B to D
AU+LSTM 0.4983 0.4979 0.5876 0.5322 0.5456 0.5124
Gaze+MLP 0.4869 0.5111 0.5948 0.5376 0.5569 0.5103

AU+Gaze+MLP 0.5089 0.5107 0.6569 0.5488 0.5516 0.5123
Affect+MLP 0.5186 0.5132 0.5869 0.5427 0.5539 0.5213

AU+Gaze+Affect+MLP 0.5257 0.5122 0.5947 0.5529 0.5563 0.5273
Ff+ResNet18 0.5283 0.5107 0.6109 0.5423 0.5674 0.5239

Ff+ResNet18+GRU 0.5238 0.5228 0.6329 0.5483 0.5613 0.5284
Ff+ResNet18+KNN 0.5329 0.5137 0.6307 0.5544 0.5689 0.5328
Ff+ResNet18+SVM 0.5428 0.5102 0.6218 0.5628 0.5719 0.5374

Ff+FFCSN 0.5328 0.5237 0.6279 0.5695 0.5673 0.5478
CLBF 0.5334 0.5134 0.4508 0.5434 0.5739 0.5428
PECL 0.5616 0.5337 0.6329 0.5528 0.5289 0.5548

SPOT-JS(Ours) 0.7188 0.8438 0.9333 0.7500 0.7059 0.6588
+15.72% +31.01% +27.64% +18.05% +13.20% +10.40%

(b) Results with audio modality.

Method R to D D to B R to B D to R B to R B to D
Acoustic + Prosodic+MLP 0.4537 0.5127 0.5319 0.5123 0.5226 0.4989

Mel+ResNet18 0.4989 0.5329 0.5384 0.5408 0.5279 0.4997
Mel+ResNet18+KNN 0.4864 0.5278 0.5467 0.5396 0.5431 0.5024
Mel+ResNet18+SVM 0.4927 0.5428 0.5427 0.5489 0.5487 0.5126
Waveform+Wave2Vec 0.5123 0.5319 0.5029 0.5499 0.5389 0.5183

PECL 0.5233 0.5307 0.5489 0.6071 0.5667 0.5237
SPOT-JS(Ours) 0.6400 0.7541 0.8333 0.6667 0.7586 0.6588

+11.67% +21.13% +28.44% +5.96% +19.19% +13.51%
(c) Results with fused modality.

Method R to D D to B R to B D to R B to R B to D
Average 0.5394 0.5843 0.5894 0.5407 0.4926 0.5128
Concat 0.5488 0.5869 0.5913 0.5659 0.4937 0.5146

SE-Concat 0.5349 0.5987 0.6157 0.5683 0.5127 0.5183
Cross-Atten 0.5429 0.6017 0.6169 0.5716 0.5186 0.5247
MLP-Mixer 0.5517 0.6149 0.5789 0.5783 0.5273 0.5383

PECL 0.5636 0.6192 0.5983 0.5639 0.5473 0.5473
Atten-Mixer 0.5689 0.6497 0.6239 0.5938 0.5429 0.5409

SPOT-JS(Ours) 0.6910 0.8125 0.8358 0.7500 0.8889 0.6506
+12.21% +16.28% +21.29% +15.62% +34.16% +10.33%

G.2 SPECIFIC EXPERIMENTAL DETAILS

Our experiments were conducted on a system running Ubuntu 22.04 and Python 3.9 with Torch 2.7.0,
utilizing one RTX 4090 24GB GPU. All experiments share the same configuration: a threshold of
1 × 10−5, a learning rate of 1 × 10−5, α set to 0.95, δ set to 0.01, ϵ set to 0.01, and the AdamW
optimizer with a weight decay of 1× 10−5. The batch size is set to 16 for video and fused modalities,
and 64 for the audio modality during the training phase. For the testing phase, the batch size is 2
across all datasets and modalities, with 5-fold cross-validation. For a detailed explanation of the
parameter symbols, please refer to Section G.3.

For the RLT dataset, the hyperparameters are configured as follows: For the video modality, we use ξ
set to 0.2 and ν set to 0.1, with training for 20 epochs. The audio modality employs ξ set to 0.5 and
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Table 8: We report cross-domain experimental results on the RLT(R), BOL(B), and DOLOS(D)
datasets using the AUC metric. Here, Ff refers to Face frames, while Mel refers to Mel spectrograms.

(a) Results with visual modality.

Method R to D D to B R to B D to R B to R B to D
AU+LSTM 0.5017 0.5042 0.5776 0.5327 0.5437 0.5027
Gaze+MLP 0.5063 0.5093 0.5889 0.5317 0.5536 0.5113

AU+Gaze+MLP 0.5173 0.5147 0.6413 0.5376 0.5482 0.5174
Affect+MLP 0.5143 0.5129 0.5836 0.5568 0.5513 0.5238

AU+Gaze+Affect+MLP 0.5243 0.5078 0.5917 0.5463 0.5523 0.5217
Ff+ResNet18 0.5216 0.5144 0.6167 0.5489 0.5673 0.5289

Ff+ResNet18+GRU 0.5233 0.5273 0.6326 0.5583 0.5603 0.5311
Ff+ResNet18+KNN 0.5319 0.5198 0.6337 0.5519 0.5617 0.5344
Ff+ResNet18+SVM 0.5397 0.5089 0.6343 0.5609 0.5779 0.5333

Ff+FFCSN 0.5361 0.5219 0.6128 0.5697 0.5571 0.5421
CLBF 0.5217 0.5136 0.4409 0.5476 0.5923 0.5567
PECL 0.5416 0.5289 0.6517 0.5573 0.5783 0.5538

SPOT-JS(Ours) 0.7063 0.8410 0.9437 0.7726 0.7344 0.6799
+16.47% +31.21% +29.20% +20.29% +14.21% +12.32%

(b) Results with audio modality.

Method R to D D to B R to B D to R B to R B to D
Acoustic + Prosodic+MLP 0.4543 0.5139 0.5228 0.5117 0.5179 0.4928

Mel+ResNet18 0.5112 0.5216 0.5333 0.5233 0.5233 0.4969
Mel+ResNet18+KNN 0.4839 0.5276 0.5444 0.5322 0.5356 0.4822
Mel+ResNet18+SVM 0.4924 0.5389 0.5416 0.5446 0.5369 0.5111
Waveform+Wave2Vec 0.5073 0.5372 0.4907 0.5333 0.5377 0.5123

PECL 0.5236 0.5366 0.5413 0.5726 0.5499 0.5169
SPOT-JS(Ours) 0.6257 0.7447 0.7946 0.6927 0.6719 0.6316

+10.21% +20.58% +25.02% +12.01% +12.20% +11.47%
(c) Results with fused modality.

Method R to D D to B R to B D to R B to R B to D
Average 0.5329 0.5843 0.5864 0.5343 0.4927 0.5128
Concat 0.5389 0.5867 0.5837 0.5639 0.4993 0.5143

SE-Concat 0.5403 0.6013 0.6133 0.5647 0.5103 0.5162
Cross-Atten 0.5489 0.5986 0.6176 0.5761 0.5123 0.5197
MLP-Mixer 0.5512 0.6007 0.5786 0.5729 0.5219 0.5286

PECL 0.5593 0.6129 0.5943 0.5623 0.5362 0.5389
Atten-Mixer 0.5673 0.6217 0.6113 0.5899 0.5346 0.5409

SPOT-JS(Ours) 0.7178 0.7580 0.7941 0.7326 0.8768 0.6000
+15.05% +13.63% +17.65% +14.27% +34.06% +5.91%

ν set to 0.05, also trained for 20 epochs. The fused modality adopts ξ set to 0.2, ν set to 0.05, with
training extended to 25 epochs.

For the DOLOS dataset: the video modality is configured with ξ set to 0.2 and ν set to 0.1, trained
for 25 epochs; the audio modality uses ξ set to 0.25 and ν set to 0.1, trained for 25 epochs; and the
fused modality employs ξ set to 0.2, ν set to 0.1, trained for 25 epochs.

For the BOL dataset: the video modality parameters include ξ set to 0.4 and ν set to 0.05, trained for
25 epochs; the audio modality uses ξ set to 0.2 and ν set to 0.1, trained for 25 epochs; and the fused
modality is configured with ξ set to 0.2, ν set to 0.1, trained for 25 epochs.
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Table 9: Ablation studies results. ① TDAM module, ② LCSF module, ③ CSKT module, ④ OTCF
module, ⑤ JS-Align module.

Target RLT DOLOS BOL

Case Method modality F1 ACC AUC F1 ACC AUC F1 ACC AUC
① ② ③ ④ ⑤

A ✗ ✗ ✗ ✗ ✗

Visual 0.8760 0.8670 0.8789 0.7054 0.6764 0.7212 0.7302 0.6889 0.7377
Audio 0.7267 0.7270 0.7218 0.6822 0.6198 0.6391 0.7347 0.6444 0.7141
Fused 0.8162 0.8180 0.8381 0.7073 0.6810 0.7226 0.7119 0.6667 0.7279

A1 ✗ ✗ ✗ ✓ ✗ Fused 0.8333 0.8352 0.8594 0.7200 0.6927 0.7536 0.7407 0.7083 0.7551
A2 ✗ ✗ ✗ ✗ ✓ Fused 0.8364 0.8393 0.8435 0.7213 0.6920 0.7552 0.7479 0.7045 0.7560
A3 ✗ ✗ ✗ ✓ ✓ Fused 0.8406 0.8444 0.8628 0.7576 0.7045 0.9312 0.7755 0.7216 0.7913

B ✓ ✗ ✗ ✗ ✗

Visual 0.9071 0.9024 0.9248 0.8000 0.8020 0.8255 0.7838 0.7898 0.8333
Audio 0.8064 0.7630 0.8078 0.6964 0.6491 0.6562 0.7714 0.7333 0.7664
Fused 0.8462 0.8438 0.8628 0.7692 0.7708 0.7743 0.7647 0.7600 0.7886

B1 ✓ ✗ ✗ ✓ ✗ Fused 0.8788 0.8750 0.8928 0.7937 0.7917 0.8158 0.7945 0.7935 0.8160
B2 ✓ ✗ ✗ ✗ ✓ Fused 0.8772 0.8800 0.8944 0.7925 0.7902 0.8198 0.8000 0.7975 0.8143
B3 ✓ ✗ ✗ ✓ ✓ Fused 0.8929 0.8977 0.9110 0.8182 0.8068 0.8499 0.8333 0.8240 0.8333

C ✗ ✓ ✗ ✗ ✗

Visual 0.8929 0.8854 0.8912 0.7600 0.7500 0.7777 0.7917 0.7586 0.8000
Audio 0.7797 0.7777 0.7761 0.6910 0.6364 0.6545 0.7500 0.7216 0.7760
Fused 0.8485 0.8519 0.8889 0.7407 0.7216 0.7630 0.7600 0.7102 0.7708

C1 ✗ ✓ ✗ ✓ ✗ Fused 0.8523 0.8693 0.8928 0.7502 0.7368 0.7743 0.7708 0.7333 0.7857
C2 ✗ ✓ ✗ ✗ ✓ Fused 0.8593 0.8600 0.8957 0.7536 0.7378 0.7785 0.7786 0.7395 0.7814
C3 ✗ ✓ ✗ ✓ ✓ Fused 0.8715 0.8767 0.9063 0.7605 0.7429 0.7857 0.7863 0.7501 0.7969

D ✗ ✗ ✓ ✗ ✗

Visual 0.9050 0.8977 0.8933 0.7760 0.7692 0.7976 0.7954 0.7981 0.8182
Audio 0.7692 0.7763 0.7857 0.6987 0.6506 0.6588 0.8523 0.8514 0.8660
Fused 0.8462 0.8438 0.8628 0.7692 0.7708 0.7743 0.7647 0.7600 0.7886

D1 ✗ ✗ ✓ ✓ ✗ Fused 0.8580 0.8571 0.8785 0.7763 0.7814 0.7891 0.7857 0.7812 0.7981
D2 ✗ ✗ ✓ ✗ ✓ Fused 0.8609 0.8593 0.8766 0.7786 0.7784 0.7857 0.7785 0.7796 0.7934
D3 ✗ ✗ ✓ ✓ ✓ Fused 0.8818 0.8800 0.8912 0.7898 0.7917 0.8021 0.7990 0.7921 0.8191

E ✓ ✓ ✗ ✗ ✗

Visual 0.9375 0.9375 0.9635 0.9057 0.9123 0.9295 0.8816 0.8636 0.9289
Audio 0.8333 0.8160 0.8420 0.7292 0.6964 0.7236 0.8710 0.8750 0.8677
Fused 0.9167 0.9200 0.9143 0.8525 0.8772 0.8524 0.8421 0.8222 0.8494

E1 ✓ ✓ ✗ ✓ ✗ Fused 0.9286 0.9261 0.9253 0.8848 0.8854 0.8848 0.8571 0.8370 0.8736
E2 ✓ ✓ ✗ ✗ ✓ Fused 0.9231 0.9271 0.9248 0.8864 0.8809 0.8928 0.8529 0.8321 0.8770
E3 ✓ ✓ ✗ ✓ ✓ Fused 0.9333 0.9323 0.9306 0.9024 0.8977 0.9120 0.8696 0.8524 0.8928

F ✓ ✗ ✓ ✗ ✗

Visual 0.9306 0.9261 0.9313 0.9120 0.9167 0.9295 0.8928 0.8696 0.9169
Audio 0.8295 0.8128 0.8389 0.7274 0.6984 0.7194 0.8693 0.8723 0.8685
Fused 0.9063 0.9091 0.9027 0.8462 0.8696 0.8517 0.8432 0.8240 0.8387

F1 ✓ ✗ ✓ ✓ ✗ Fused 0.9120 0.9164 0.9200 0.8523 0.8800 0.8656 0.8514 0.8333 0.8459
F2 ✓ ✗ ✓ ✗ ✓ Fused 0.9200 0.9184 0.9120 0.8571 0.8715 0.8609 0.8499 0.8352 0.8420
F3 ✓ ✗ ✓ ✓ ✓ Fused 0.9286 0.9261 0.9259 0.8696 0.8854 0.8750 0.8528 0.8415 0.8524

G ✗ ✓ ✓ ✗ ✗

Visual 0.9184 0.9063 0.9024 0.8977 0.8799 0.8864 0.8750 0.8523 0.8715
Audio 0.8182 0.8080 0.8295 0.7135 0.6923 0.7309 0.8696 0.8683 0.8715
Fused 0.8854 0.8715 0.8661 0.8438 0.8399 0.8333 0.8588 0.8333 0.8696

G1 ✗ ✓ ✓ ✓ ✗ Fused 0.8926 0.8799 0.8799 0.8588 0.8455 0.8409 0.8594 0.8409 0.8770
G2 ✗ ✓ ✓ ✗ ✓ Fused 0.8932 0.8848 0.8736 0.8522 0.8462 0.8455 0.8529 0.8399 0.8727
G3 ✗ ✓ ✓ ✓ ✓ Fused 0.9063 0.8928 0.8912 0.8696 0.8621 0.8594 0.8696 0.8523 0.8973

H ✓ ✓ ✓ ✗ ✗

Visual 0.9600 0.9600 0.9948 0.9643 0.9649 0.9692 0.9333 0.9111 0.9551
Audio 0.8571 0.8333 0.8715 0.7463 0.7143 0.7659 0.9310 0.9111 0.9131
Fused 0.9375 0.9312 0.9248 0.9091 0.8958 0.9183 0.8621 0.8444 0.8919

H1 ✓ ✓ ✓ ✓ ✗ Fused 0.9479 0.9477 0.9419 0.9231 0.9167 0.9401 0.8909 0.8710 0.9037
H2 ✓ ✓ ✓ ✗ ✓ Fused 0.9408 0.9383 0.9455 0.9286 0.9200 0.9312 0.8814 0.8667 0.9146

G.3 NOTATIONS IN OUR METHOD

Table 10 lists all notations that appear in our method and their corresponding descriptions.

H MORE CASE STUDY

H.1 CASE STUDY OF TDAM

Before assessing the effectiveness of TDAM, it is helpful to recall a basic premise of deception
detection: diagnostic cues rarely appear as isolated static expressions. Instead, they unfold as
temporal micro-changes-brief activations of facial muscles, blinks or pupillary dilation/constriction,
and rhythmic head movements. These cues are inherently time-dependent. However, conventional
pipelines often decompose a video into individual frames and encode them independently, a practice
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Table 10: Notations and their corresponding descriptions used in SPOT-JS.

Notations Description Notations Description
R Real number space C Complex domain for spectra

t ∈ {a, v} Modality indicator: audio (a) / video (v) y ∈ {0, 1} Class label (1 deceptive, 0 truthful)
D = {X ,Y} Multimodal dataset ŷ Predicted label
x = {xa, xv} A multimodal input pair f : X →Y Decision function

xv, xa Raw video / audio signals x̂v, x̂a Normalized/resampled inputs after TDAM
T, τ0, τ Video duration, start time, timestamp N Number of uniformly sampled key frames

fi i-th sampled frame ϕ(·) / T (·) Color conversion / normalization
transforms

B,H,W Batch size, frame height, frame width fs, f
′
s Original / adjusted audio sampling rate

xt Encoded sequence for modality t
VideoMAE/

W2V2
Visual / audio encoders

Xt[k] DFT of xt at frequency index k Fseq/F
−1
seq 1D DFT / IDFT along sequence dim.

Xt∈
CB×N×D Spectrum tensor (batch × length × dim) D Feature dimension

j Imaginary unit in DFT (e−j·) |Xt|2 Power spectrum of modality t

Ct=
[Ct

1, . . . , C
t
k]

Learnable Chebyshev coefficients Kt=
[kt1, . . . , k

t
k]

Filter bank in LCSF

α, θbase Learnable factor and base angle in LCSF ⊙ Element-wise multiplication

X̃v, X̃a Projected spectra for video/audio Ws,Wt∈
RD×D Linear projections for OTCF

M
Ground cost matrix (cosine distance

1− cos) T Entropic-regularized OT transport plan

⟨·, ·⟩F Frobenius inner product Π(p, q) Set of couplings with marginals p, q
ϵ, H(·) Entropic reg. weight and entropy zt Residually fused spectral feat. in OTCF

Zt
zt mapped back to spatial domain via

IDFT J JS divergence between Zv and Za

KL(·∥·) Kullback-Leibler divergence MJS =
1
2 (Zv + Za)

Mean distribution used in JS-Align

Wa,Wv Trainable fusion weights f Final fused representation after JS-Align
F1,F2,F3 MLPs for mapping / transfer / classification f ′ = F1(f) Mapped target features (Rn×d)

n, d Batch size and feature dim in CSKT Ls
# classes of source VFER dataset (e.g.,

DFEW)

Q, Qk Uniform dist. over Ls classes / prototype
of class k P Uniform dist. over n target samples

δ(·) Dirac measure at a point Jk # samples in source class k
Xs,k

j j-th source sample in class k (VFER) pkj Importance of sample j in class k

Tlow,k Low-level OT plan (mini-batch↔ class-k
samples) Mlow,k Low-level cost (cosine distance)

Xtrans Transferred knowledge from source
domain Xfused ξ′Xtrans + (1− ξ′)f ′

ξ, ξ′
Max / current weight of transferred

features e, Ne Current / total epochs (curriculum for ξ′)

Lt # classes in target deception task ŷ Classifier output in Rn×Lt

Lce Cross-entropy loss Lot, η Sinkhorn divergence term and its weight
∆n Probability simplex in Rn E[·] Expectation operator

that conflicts with established observational principles in deception research and risks missing cross-
frame dynamics and causal ordering. In contrast, our module adheres to this temporal nature by
operating on contiguous frame sequences, enabling the model to observe how cues evolve over time.
This design choice underpins the effectiveness of the TDAM.

H.2 FURTHER VISUALIZATION STUDY

In this section, we conduct further visual analysis to investigate the generalization capability and
effectiveness of the proposed model.

In the main text, we explored scenarios where the model was trained and tested on a single dataset.
To further evaluate its performance, we visualize the results of the model trained on the RLT dataset
and tested on the DOLOS dataset. The RLT dataset contains high-risk courtroom deception scenarios,
whereas DOLOS comprises low-risk deception scenarios from a large-scale gaming environment.
As shown in Fig. 5, even when evaluated across different domains, the model consistently identifies
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(a) (b) (c)

(d) (e) (f)

Figure 5: More visualization cases. We visualize the cases trained on the RLT dataset and tested on
the DOLOS dataset.

subtle key features. Subfigures (a) to (d) and (f) clearly demonstrate the models sustained attention
to hand gestures, which have been established in traditional deception detection as indicators of
lying. Subfigures (e) and (f) reveal that the model continues to focus on the eye region. Physio-
logical responses such as pupil dilation and blink rate are well documented cues in conventional
deception research and serve as critical indicators for deceit. These examples illustrate that our model
successfully attends to various deception clues that are empirically validated in traditional studies,
even when deployed in divergent real-world settings. Together with the case studies presented in the
main text, these visual analyses elucidate the reasons behind our model’s strong performance in both
within-domain and cross-domain deception detection, underscoring the superiority of our framework.

By our LCSF

By  Gaussian filter

Figure 6: Visualization diagrams for detailed analysis after LCSF module filtering. The upper section
shows the images processed by our LCSF module, while the lower section displays the results
obtained using Gaussian filtering.
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H.3 CASE STUDY OF LCSF MODULE

To clarify the function of the LCSF module, we visualized its filtered outputs, as shown in Fig. 6. After
processing through this module, facial details closely associated with deceptive behaviorincluding
pupil dynamics and blink patterns in the eye region, subtle facial muscle movements, skin texture
variations, and lip morphologybecome more distinct, with noticeably enhanced contrast. These
enhanced features provide critical visual evidence for deception identification. Additionally, low-
frequency behavioral patterns such as head movements are effectively extracted within the frequency
domain, clearly distinguishable from the background. This observation aligns with our earlier
visualizations showing the models focus on the head region. In comparison, although traditional
Gaussian filtering can suppress image noise and preserve low-frequency information, it tends to
blur the image overall and fails to retain discriminative subtle behavioral cues. The output lacks
sufficient detail in key regions such as the eyes, muscle movements, skin folds, and the mouth,
making it difficult to support physiological behavior-based deception analysis. This comparison
further validates the effectiveness and specificity of the LCSF module in enhancing discriminative
frequency components.

I ADDITIONAL EXPERIMENTS ON LCSF

Table 11: Performance comparison on MIntRec and MIntRec2.0 datasets.

Methods MIntRec MIntRec 2.0
ACC (%) WF1 (%) WP (%) R (%) ACC (%) WF1 (%) WP (%) R (%)

MulT (Tsai et al., 2019) 72.52 71.80 72.60 67.44 56.95 54.26 54.49 40.65
MAG-BERT (Hasan et al., 2020) 72.16 71.30 72.03 67.61 55.87 52.58 53.71 39.93
TCL-MAP (Zhou et al., 2024) 73.69 73.38 73.90 71.59 56.99 54.33 55.07 41.87
MVCL-DAF (Hu et al., 2025a) 74.72 74.61 75.07 71.94 57.80 55.05 55.82 42.03
MVCL-DAF+LCSF (Ours) 76.40 76.33 76.67 74.35 60.26 59.19 60.54 54.12
Performance Improvement +1.68 +1.72 +1.60 +2.41 +2.46 +4.14 +4.72 +12.09

To validate the effectiveness and generalization capability of the LCSF module, we conducted
additional experiments in the field of intent recognition. As shown in Table 11, the integra-
tion of our proposed LCSF module brings significant performance improvements to the MVCL-
DAF model,demonstrating the strong generalization and effectiveness of our approachOn the
MintRec (Zhang et al., 2022) dataset, our enhanced method demonstrates remarkable gains compared
to the baseline without LCSF: Accuracy (ACC) improves by 2.36%, Weighted F1-score (WF1)
increases by 2.27%, Weighted Precision (WP) rises by 2.73%, and Recall (R) enhances by 3.69%.
Similarly, evaluations on the MintRec 2.0 (Zhang et al., 2024) multi-turn emotional dialogue dataset
show substantial performance improvements: ACC increases by 2.60%, WF1 by 4.30%, WP by
4.81%, and R by 12.09%.

J ADDITIONAL EXPERIMENTS BASED ON ATTENTION

Table 12: Results with fused modalities. Comparison of our method with attention-based fusion
methods.

Target RLT DOLOS BOL
Method F1 ACC AUC F1 ACC AUC F1 ACC AUC
Attention 0.9432 0.9375 0.9410 0.9205 0.9145 0.9376 0.8864 0.8656 0.9116

SPOT-JS(Ours) 0.9630 0.9600 0.9679 0.9474 0.9474 0.9846 0.9153 0.8889 0.9393
+1.98% +2.25% +2.69% +2.69% +3.29% +4.70% +2.89% +2.33% +2.77%

To provide an intuitive comparison with attention-based fusion methods, we conducted comparative
experiments. As shown in Table 12, our fusion method demonstrates superior performance compared
to attention-based fusion approaches.
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K PSEUDO-CODE OF SPOT-JS

The pseudo-code of SPOT-JS in training phase and testing phase are shown in Algorithm 1 and
Algorithm 2, respectively.

Algorithm 1 Training Algorithm of SPOT-JS

Input: Raw video-audio sample V with synchronized streams; Source VFER knowledge Xs0

(DFEW); model params Θ
Output: Updated params Θ; prediction ŷ

1: # One iteration (minibatch)
2: § TDAM: Preprocess & Temporal Alignment
3: Sample frames and normalize: x̂v = T

(
{φ(fi)}Ni=1

)
# Eq. (1),(2)

4: Extract & resample audio aligned to video: x̂a = R(A(V), f ′
s) # Eq. (3)

5: § Feature Encoding
6: xv = VideoMAE(x̂v); xa = W2V2(x̂a) # Eq. (4),(5)
7: § DFT to Frequency Domain
8: Xt = Fseq(x

t) for t ∈ {a, v} # Eq. (6)
9: § LCSF: Learnable Chebyshev Spectrum Filter ⋆

10: Compute power spectra and filter: X̂t =
∑k

i=1 |Xt|2 ⊙ kt
i C

t
i ; Ct

i = cos((2i−1)θbase) # Eq.
(7),(8)

11: § OTCF: Entropic-OT Cross-Modal Fusion (bi-directional)
12: for (s, t) ∈ {(v, a), (a, v)} do
13: Project to shared space: X̃s = X̂sWs, X̃t = X̂tWt # Eq. (11)
14: Cost by cosine distance: M = 1− cos(X̃s, X̃t) # Eq. (12)
15: Sinkhorn to solve entropic OT, get plan T # Eq. (10)
16: Residual transport: zs = TX̃t + X̃s # Eq. (13)
17: Back to spatial: Zs = F−1

seq(zs) # Eq. (14)
18: end for
19: § JS-Align: Jensen-Shannon Guided Alignment
20: J = JS(Zv ∥Za); f = (1−J)(WaZa +WvZv) + JZa + JZv # Eq. (15),(16)
21: § CSKT: Chebyshev Spectrum-guided Knowledge Transfer ⋆
22: Filter source knowledge: Xs = LCSF(Fseq(X

s0)) # Appx Eq. (1)
23: Map target: f ′ = F1(f); build P = 1

n

∑
i δf ′i , Q = 1

Ls

∑
k δQk

24: for k = 1 to Ls do
# low-level OT to class-k

25: Mlow,k
i,j = 1− cos(f ′i ,X

s,k
j )

26: Solve Tlow,k by Sinkhorn # Appx Eq. (4)
27: M:,k = ⟨Tlow,k,Mlow,k⟩F # as cost for high-level
28: end for
29: High-level OT: T = argminT∈Π(P,Q)⟨T,M⟩F − ϵH(T ) # Appx Eq. (2)

30: Transfer & IDFT: Xtrans = F2

(
n
∑

k T:,k X
s,k

)
; Xtrans ← F−1

seq(X
trans) # Appx Eq.

(5),(6)
31: Curriculum fuse: Xfused = ξ′Xtrans + (1−ξ′)f ′ # Appx Eq. (7)
32: § SRKB bank update (adopted) ⋆
33: Update knowledge bank B (sample-specific re-weighting)
34: § Classification, Loss, Backward
35: ŷ = F3(X

fused) # Appx Eq. (8)
36: Lce = −Ey[log ŷ]; Lot = dsOT (P,Q)− 1

2d
sOT (P, P )− 1

2d
sOT (Q,Q) # Appx Eq. (9)-(10)

37: L = Lce + ηLot; Backward(L) # Appx Eq. (11)
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Algorithm 2 Testing Algorithm of SPOT-JS

Input: Raw video-audio sample V; frozen banks/backbones Θ
Output: Predicted label ŷ

1: # One iteration (inference)
2: § TDAM # Eq. (1)-(3)
3: § Feature Encoding # Eq. (4),(5)
4: § DFT # Eq. (6)
5: § LCSF # Eq. (7),(8)
6: § OTCF (bi-dir) + IDFT # Eq. (11)-(14)
7: § JS-Align to get f # Eq. (15),(16)
8: § CSKT transform & fuse (frozen SRKB) # Appx Eq. (1)-(7)
9: § Classifier ŷ = F3(X

fused) # Appx Eq. (8)

L CODE

Our codes is available: https://anonymous.4open.science/r/9BFE/
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