

SPOT-JS: SPECTRAL CHEBYSHEV FILTER AND OPTIMAL TRANSPORT FUSION WITH JENSEN-SHANNON ALIGNMENT FOR CROSS-DOMAIN MULTIMODAL DECEPTION DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal deception detection is increasingly important for security, justice, and human-AI interaction. However, prevailing systems still depend on contact-based sensing or elaborate handcrafted feature pipelines and exhibit limited generalization beyond their training domains. Typical approaches learn shallow unimodal cues (e.g., surface spatio-temporal patterns) and fuse modalities by simple concatenation or attention; these choices induce sensitivity to positional dependencies and to distribution shift. This work presents SPOT-JS, a frequency-domain framework aimed at cross-domain transfer. It standardizes inputs, improves unimodal representations, and performs fusion with distribution-aware alignment grounded in established theory. Concretely, a Temporal Deception Alignment Module (TDAM) first provides unified preprocessing and audio-visual synchronization to eliminate reliance on specialized facial/vocal features or invasive signals. We then propose a Learnable Chebyshev Spectrum Filter (LCSF) that operates on power spectra to emphasize task-relevant bands and suppress noise by embedding a learnable Chebyshev basis into the spectral transformation. Next, an Optimal Transport-based Cross-Modal Fusion (OTCF) module computes an entropic-regularized transport plan between spectral components of audio and video, enabling fine-grained, bidirectional correspondence and residual fusion in a shared latent space. Fourth, a Jensen-Shannon Guided Alignment (JS-Align) module measures cross-modal posterior similarity via JS divergence and adaptively reweights the fused representation, mitigating sensitivity to positional mismatches and improving stability under shift. Finally, we introduce the Chebyshev Spectrum-guided Knowledge Transfer (CSKT) Module, which leverages spectral filtering to enhance cross-domain facial knowledge transfer. On standard benchmarks (Real Life Trial, DOLOS, and Box of Lies), SPOT-JS surpasses strong unimodal, fusion, and transfer baselines in both intra- and cross-domain settings, with higher F1/ACC/AUC and especially large gains when training on one dataset and testing on another.

1 INTRODUCTION

Deception detection is the inference, based on verbal, non-verbal, and/or physiological indicators (e.g. speech content and prosody, facial expression, body motion, gestures, etc.), combined with situational context, of whether a communicator is intentionally misrepresenting the truth. It is a core problem in security, justice and human-AI interaction. Real-world deceptive behavior has grown more frequent and complex with social change, which makes accurate detection harder. Early practice relied on psychological experts who observed body language, gaze, and facial movement; this approach is informative but requires substantial expertise. Later work

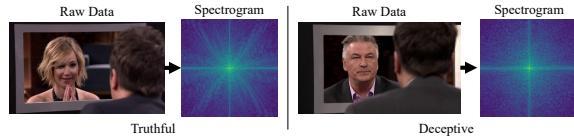


Figure 1: Two examples from the BOL dataset are shown as spectrograms. The spectra display centrally concentrated energy and clear structural patterns.

054 added contact-based measures such as skin conductance, heart rate, and EEG, but these methods
 055 require specialized equipment and raise ethical concerns due to their invasiveness.
 056

057 Traditional data processing pipelines are also too complex. For example, recent work Guo et al.
 058 (2024) combines facial frames, OpenFace features (action units and gaze), EmoNet affect metrics
 059 (five emotions plus valence-arousal), and both mel spectrograms and raw audio; This choice increases
 060 the size of the dataset from roughly 260-2 GB to 20-40 GB.

061 Automated deception detection using AI and machine learning has become prominent because
 062 it scales well, but several obstacles remain: (1) high-accuracy detection still depends on expert
 063 knowledge, contact-based physiological signals, or intricate handcrafted features; (2) models transfer
 064 poorly to unseen domains due to large scenario differences; (3) unimodal representations are often
 065 shallow, emphasizing spatial or temporal cues with limited discriminative power; and (4) multimodal
 066 fusion is frequently limited to simple concatenation or attention, which cannot capture fine-grained
 067 interactions and is sensitive to positional dependence.

068 This paper presents **SPOT-JS** (Fig. 2), a frequency-domain framework for cross-domain multimodal
 069 deception detection. As shown in Fig. 1, spectrograms exhibit centrally concentrated components
 070 and discernible patterns, which motivate our frequency-domain design. First, a Temporal Deception
 071 Alignment Module (TDAM) standardizes preprocessing and enforces temporal synchronization
 072 between audio and visual streams. Second, a Learnable Chebyshev Spectrum Filter (LCSF) operates
 073 on power spectra; a trainable Chebyshev basis highlights task-relevant bands and reduces noise during
 074 the spectral transform. Third, an Optimal Transport-based Cross-Modal Fusion (OTCF) module is
 075 designed to compute an entropy-regularized transport plan between audio and video spectra to build
 076 bidirectional correspondences and perform residual fusion in a shared latent space. Fourth, a Jensen-
 077 Shannon Guided Alignment (JS-Align) module adjusts fusion weights according to cross-modal
 078 posterior similarity, which improves robustness under complex dependencies. Finally, we introduce
 079 the Chebyshev Spectrum-guided Knowledge Transfer (CSKT) Module, which leverages spectral
 080 filtering to enhance cross-domain facial knowledge transfer.

081 This work comprises four technical and an evaluation contributions:

- 082 • **TDAM** supplies a unified preprocessing pipeline that removes the reliance on hand-made
 083 features or physiological signals and enforces consistent temporal alignment across modalities.
 084
- 085 • **LCSF** forms unimodal representations with learnable Chebyshev spectral filtering; it high-
 086 lights task-relevant frequency bands and suppresses noise in the spectral domain. Building
 087 on this, we further develop a **CSKT** module to achieve more effective cross-domain facial
 088 knowledge transfer.
- 089 • **OTCF** conducts cross-modal fusion in the frequency domain by computing an entropy-
 090 regularized transport plan between audio and visual spectra, which yields complementary
 091 correspondences and residual fusion in a shared latent space.
- 092 • **JS-Align** adjusts fusion weights according to the posterior similarity of the cross-modal and
 093 thus reduces the sensitivity to positional dependence.
- 094 • Experiments on Real Life Trial, DOLOS, and Box of Lies show gains in both intra-domain
 095 and cross-domain tests, with higher F1/ACC/AUC and stable performance under distribution
 096 shift.

099 2 RELATED WORK

101 2.1 MULTIMODAL DECEPTION DETECTION

103 Early research on deception detection examined physiological and behavioral cues under the as-
 104 sumption that fabricating a plausible account taxes cognition. Studies analyzed body language,
 105 facial expressions, response patterns, reaction latencies, and pupil dilation (Fitch, 2014; Vrij, 2008).
 106 Work on physiological and neural signals used functional magnetic resonance imaging (fMRI) and
 107 electroencephalography (EEG) to capture state changes linked to deceptive behavior (Karnati et al.,
 2021).

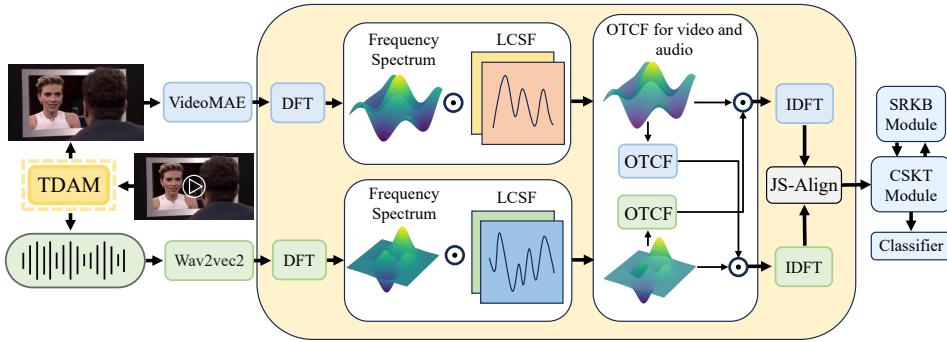


Figure 2: Overall architecture of the proposed method SPOT-JS.

Automated deception detection (ADD) has shifted toward standardized visual toolkits. OpenFace (Amos et al., 2016; Hu et al., 2025b) is now common for video analysis; it uses deep models for facial landmark localization, action unit (AU) prediction (Karimi et al., 2018; Avola et al., 2019), and head pose estimation. Among visual cues, gaze dynamics and facial expression patterns remain central to video-based analysis (Stathopoulos et al., 2020; Mathur & Matarić, 2020; Yildirim et al., 2023; Gallardo Antolín & Montero, 2021).

In speech-based detection, methods extract acoustic markers by examining prosody, pitch contour, and speaking rate. Representative tools include STRAIGHT (Kawahara et al., 2009), voice activity detection (VAD) (Tan & Lindberg, 2010), and openSMILE (Eyben et al., 2010); Mel-frequency cepstral coefficients (MFCCs) (Mermelstein, 1976; Davis & Mermelstein, 1980) are widely used features.

For multimodal fusion, Guo et al. (2023) introduced a dataset and framework leveraging audio-visual complementarity for deception detection. Li et al. (2024) achieved synchronized integration by aligning temporal embeddings, while Ji et al. (2025) advanced knowledge transfer with a hierarchical optimal transport approach using large-scale facial expression priors.

2.2 FREQUENCY DOMAIN LEARNING

Recent studies move feature learning into the frequency domain. Xu et al. (2020) reported a learning-based filter that removes trivial frequency components and improves image classification. In text classification, Lee-Thorp et al. (2022) applied the Fourier transform for token mixing. In time-series forecasting, Yang & Hong (2022) introduced Bilinear Time-Spectral Fusion, which models time-frequency pairs and uses spectral-to-temporal and temporal-to-spectral aggregation to update representations. In the field of rumor detection, Lao et al. (2024) proposed a novel dual contrastive learning-based spectral representation and fusion network.

3 PROBLEM DEFINITION

Multimodal deception detection is formulated as a binary classification task with modalities $t \in \{a, v\}$ for audio (a) and video (v). Given a multimodal deception dataset $\mathcal{D} = \{\mathcal{X}, \mathcal{Y}\}$, each instance is denoted as a two-tuple $(x, y) \in \mathcal{D}$, where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. Specifically, x can be represented as $x = \{x^a, x^v\}$. The label space is defined as $y = \{0, 1\}$, where $y = 1$ denotes a deceptive sample and $y = 0$ a truthful one. The goal of this work is to learn a decision function $f : \mathcal{X} \rightarrow \mathcal{Y}$ that effectively utilizes multimodal features to predict the deception label $\hat{y} \in \{0, 1\}$.

162 4 METHOD
163164 4.1 TEMPORAL DECEPTION ALIGNMENT MODULE (TDAM)
165166 The Temporal Deception Alignment Module (TDAM) preprocesses raw video and audio to give
167 temporal consistency and a common feature format before downstream analysis. TDAM has two
168 components.
169170 **Video preprocessing.** For a raw video sequence x^v of duration T , TDAM applies uniform temporal
171 sampling to obtain N key frames:
172

173
$$f_i = x^v \left(\tau_0 + i \cdot \frac{T}{N} \right) \quad (1)$$

174

175 where $x^v(\tau)$ denotes the frame at timestamp τ , τ_0 is the start time, and $\tau \in [0, T]$. Each sampled frame
176 f_i is converted from BGR to RGB and mapped to a PIL image via $\phi(\cdot)$. A proposed transformation
177 $\mathcal{T}(\cdot)$ then standardizes the frame sequence, producing a normalized video tensor:
178

179
$$\hat{x}^v = \mathcal{T}(\{\phi(f_i)\}_{i=1}^N), \quad \hat{x}^v \in \mathbb{R}^{B \times 3 \times H \times W}. \quad (2)$$

180

181 **Audio preprocessing.** From the same video, TDAM extracts the audio track and resamples it to
182 align with the visual stream:
183

184
$$\hat{x}^a = \mathcal{R}(\mathcal{A}(x^v), f'_s), \quad f'_s = \frac{N}{T} \cdot f_s \quad (3)$$

185

186 where $\mathcal{A}(\cdot)$ extracts the raw audio, $\mathcal{R}(\cdot)$ denotes resampling, and f_s and f'_s represent the original and
187 adjusted sampling rates, respectively.
188189 The two-stream preprocessing yields temporally coherent modalities and a standardized input for
190 subsequent training and inference.
191192 4.2 FEATURE ENCODING
193194 After TDAM, the normalized video tensor \hat{x}^v and the resampled audio signal \hat{x}^a are passed to
195 pretrained backbones for feature encoding. For the visual stream, we employ VideoMAE-Base (Tong
196 et al., 2022), which encodes the sampled video frames into spatio-temporal representations:
197

198
$$\mathbf{x}^v = \text{VideoMAE}(\hat{x}^v) \quad (4)$$

199 For the audio stream, we adopt Wav2Vec2-Base (W2V2) (Baevski et al., 2020), which transforms the
200 waveform into a sequence of latent speech features:
201

202
$$\mathbf{x}^a = \text{W2V2}(\hat{x}^a) \quad (5)$$

203 Accordingly, let \mathbf{x}^t denote the encoded sequence for modality $t \in \{a, v\}$. These sequences are then
204 fed into the subsequent spectral modules (LCSF, OTCF, JS-Align and CSKT).
205206 4.3 SPECTRUM REPRESENTATION
207208 Spatial features are transformed into spectrum features via the Discrete Fourier transform (DFT). The
209 spectra of the video and audio embeddings are given by
210

211
$$\mathbf{X}^t[k] = \mathcal{F}_{seq}(\mathbf{x}^t[i]) = \sum_{i=0}^{N-1} \mathbf{x}^t[i] e^{-j(2\pi/N)ki} \quad (6)$$

212

213 where $\mathbf{X}^t \in \mathbb{C}^{B \times N \times D}$ for $t \in \{a, v\}$ is a complex-valued tensor, $\mathbf{X}^t[k]$ denotes the spectrum of
214 $\mathbf{x}^t[i]$ at frequency $2\pi k/N$, $\mathcal{F}_{seq}(\cdot)$ is the 1-Dimension (1D) DFT along the sequence dimension, and
215 j is the imaginary unit.
216

216 4.4 LEARNABLE CHEBYSHEV SPECTRUM FILTER (LCSF) MODULE
217

218 We present a new unimodal spectral filter module derived from the Chebyshev formulation, referred
219 to as Learnable Chebyshev Spectrum Filter (LCSF). For a spectrum \mathbf{X}^t with $t \in \{a, v\}$, the power
220 spectrum $|\mathbf{X}^t|^2$ is first computed to focus on primary intra-modal patterns. A learnable Chebyshev
221 coefficient set $\mathbf{C}^t = [C_1^t, C_2^t, \dots, C_k^t]$ is combined with a filter bank $\mathbf{K}^t = [\mathbf{k}_1^t, \mathbf{k}_2^t, \dots, \mathbf{k}_k^t]$ to form
222 the transformed representation:

$$223 \hat{\mathbf{X}}^t = \sum_{i=1}^k |\mathbf{X}^t|^2 \odot \mathbf{k}_i^t C_i^t, \quad (7)$$

225 where \odot indicates element-wise multiplication. The coefficients are defined from the Chebyshev
226 formulation as:

$$227 C_i^t = \cos((2i-1)\theta_{\text{base}}), \quad \theta_{\text{base}} = \text{softplus}(\alpha) \cdot \frac{\pi}{2k}, \quad (8)$$

229 with α as a trainable parameter. This design embeds the Chebyshev structure into the spectral trans-
230 formation, allowing the model to adaptively adjust the spectral basis and capture more discriminative
231 unimodal information in the frequency domain.

232 4.5 OPTIMAL TRANSPORT-BASED CROSS-MODAL FUSION (OTCF) MODULE
233

234 **Optimal Transport Theory.** Optimal transport (OT) (Peyré & Cuturi, 2019) seeks a minimal-cost
235 map from one probability distribution to another. Let $p = \sum_{i=1}^n a_i \delta_{\mathbf{X}_{A_i}}$ and $q = \sum_{j=1}^m b_j \delta_{\mathbf{X}_{B_j}}$ be
236 n and m dimensional discrete probability distributions for two finite sets $\mathbf{X}_A = \{\mathbf{X}_{A_i}\}_{i=1}^n$, $\mathbf{X}_B =$
237 $\{\mathbf{X}_{B_j}\}_{j=1}^m$ respectively, where $\mathbf{a} \in \Delta_n$ and $\mathbf{b} \in \Delta_m$, Δ_n and Δ_m are the probability simplex of \mathbb{R}^n
238 and \mathbb{R}^m , and $\delta_{\mathbf{X}_*}$ refers to a point mass located at coordinate $\mathbf{X}_* \in \mathbb{R}^d$. Denoting $\mathbf{M} \in \mathbb{R}_+^{n \times m}$ as
239 the cost matrix with $\mathbf{M}_{i,j} = \mathcal{M}(\mathbf{X}_{A_i}, \mathbf{X}_{B_j})$, which means the cost to transport one unit of mass
240 between elements of the sets. Then, the transport plan matrix \mathbf{T} is obtained by solving:

$$241 \text{OT}(p, q) = \min_{\mathbf{T} \in \Pi(p, q)} \langle \mathbf{T}, \mathbf{M} \rangle_F \quad (9)$$

244 where $\langle \cdot, \cdot \rangle_F$ is the Frobenius dot-product. The constraint $\Pi(p, q) := \{\mathbf{T} \in \mathbb{R}_+^{n \times m} \mid \sum_{i=1}^n \mathbf{T}_{i,j} =$
245 $b_j, \sum_{j=1}^m \mathbf{T}_{i,j} = a_i\}$ enforces \mathbf{T} to have p, q as its marginals. It should be noted that \mathbf{T} can be
246 interpreted as the probabilistic correspondence between the elements of p and q . If the transport cost
247 $\mathbf{M}_{i,j}$ between \mathbf{X}_{A_i} and \mathbf{X}_{B_j} is high, then a low correlation $\mathbf{T}_{i,j}$ should be obtained. Eq. (9) is a
248 linear assignment problem, which is expensive to solve. Fortunately, an entropy-regularized OT has
249 been developed as follows:

$$250 \text{OT}(p, q) = \min_{\mathbf{T} \in \Pi(p, q)} \langle \mathbf{T}, \mathbf{M} \rangle_F - \epsilon \mathcal{H}(\mathbf{T}), \quad (10)$$

252 where $\mathcal{H}(\mathbf{T}) = -\sum_{i,j} \mathbf{T}_{i,j} \log \mathbf{T}_{i,j}$ is the entropic regularization. Eq. (10) can be solved efficiently
253 by the log-domain Sinkhorn algorithm Cuturi (2013).

254 **OTCF Module.** For clarity, audio features are treated as target and video features as source; the
255 reverse direction is symmetric. OTCF maps $\hat{\mathbf{X}}^v$ and $\hat{\mathbf{X}}^a$ to a shared latent space via two linear
256 projections:

$$259 \tilde{\mathbf{X}}^v = \hat{\mathbf{X}}^v \mathbf{W}_s, \quad \tilde{\mathbf{X}}^a = \hat{\mathbf{X}}^a \mathbf{W}_t, \quad \mathbf{W}_s, \mathbf{W}_t \in \mathbb{R}^{D \times D}, \quad \tilde{\mathbf{X}}^v, \tilde{\mathbf{X}}^a \in \mathbb{R}^{B \times N \times D} \quad (11)$$

261 The ground cost uses cosine distance between the projected sequences:

$$262 \mathbf{M} = 1 - \cos(\tilde{\mathbf{X}}^v, \tilde{\mathbf{X}}^a) \quad (12)$$

264 computed with a cosine-similarity kernel.

265 For each batch element, the entropic OT in Eq. (10) is solved by log-stabilized Sinkhorn iterations.
266 Solving Eq. (10) yields the transport plan \mathbf{T} , which is then used in subsequent steps. The plan
267 \mathbf{T} provides a soft, mass-conserving alignment from source to target. OTCF forms a fused source
268 representation by transporting and aggregating target features and then adding a residual term:

$$269 \mathbf{z}^v = \mathbf{T} \tilde{\mathbf{X}}^a + \tilde{\mathbf{X}}^v \quad (13)$$

270 In the full model, OTCF is applied in both directions (visual→audio and audio→visual) with the
 271 same formulation and independent projection parameters.
 272

273 Finally, we employ inverse discrete Fourier transform (IDFT, \mathcal{F}_{seq}^{-1}) to convert the spectral representa-
 274 tions of audio and video back into the spatial domain:

$$275 \quad \mathbf{Z}^t \leftarrow \mathcal{F}_{seq}^{-1}(\mathbf{z}^t), t \in \{a, v\} \quad (14)$$

277 4.6 JENSEN-SHANNON GUIDED ALIGNMENT (JS-ALIGN) MODULE

279 With audio and visual representations refined by optimal transport-based cross-modal fusion (OTCF),
 280 the distributions of the two modalities are compared using the JensenShannon (JS) divergence to
 281 guide the subsequent fusion step. The distributional divergence is

$$282 \quad J = JS(\mathbf{Z}^v || \mathbf{Z}^a) = \frac{1}{2} KL(\mathbf{Z}^v || M) + \frac{1}{2} KL(\mathbf{Z}^a || M) \quad (15)$$

283 where $JS(\cdot)$ denotes the JS divergence, $KL(\cdot)$ represents the KL divergence, $M = \frac{1}{2}(\mathbf{Z}^v + \mathbf{Z}^a)$ is
 284 the mean distribution, and J serves as a similarity score between modalities.
 285

286 The multimodal representation is then obtained as:

$$287 \quad \mathbf{f} = (1 - J)(\mathbf{W}^a \mathbf{Z}^a + \mathbf{W}^v \mathbf{Z}^v) + J \mathbf{Z}^a + J \mathbf{Z}^v \quad (16)$$

288 with \mathbf{W}^a and \mathbf{W}^v trainable parameters. Here J is computed from the JS divergence, so the fusion
 289 weights reflect cross-modal similarity. In unimodal settings, only Eqs. (6) to (8) and (14) are used;
 290 the complete procedure applies in multimodal settings.
 291

292 4.7 CHEBYSHEV SPECTRUM-GUIDED KNOWLEDGE TRANSFER (CSKT) MODULE

294 The fused or single-modality features are passed to the Chebyshev Spectrum-guided Knowledge
 295 Transfer (CSKT) module. CSKT extends Hierarchical Optimal Transport Knowledge Transfer (H-
 296 OTKT) (Ji et al., 2025) with the Learnable Chebyshev Spectrum Filter (LCSF) and uses the Sample-
 297 specific Re-weighting Knowledge Bank (SRKB) from Ji et al. (2025) to transfer facial knowledge
 298 \mathbf{X}^s distilled from DFEW (Jiang et al., 2020). Further details appear in Appendix Section C.

$$299 \quad \mathbf{X}^{fused} = CSKT(\mathbf{f}, \mathbf{X}^s) \quad (17)$$

301 5 CLASSIFICATION

303 The final classification layer contains one MLP with softmax, which takes \mathbf{X}^{fused} as input and
 304 outputs the predicted label $\hat{\mathbf{y}} \in \mathbb{R}^{n \times L^t}$:
 305

$$306 \quad \hat{\mathbf{y}} = \mathcal{F}_3(\mathbf{X}^{fused}) \quad (18)$$

307 Here, \mathcal{F}_3 is the MLP classifier. With ground truth label $\mathbf{y} = [y_1, \dots, y_n]$, the classification loss
 308 function is formulated as:
 309

$$310 \quad \mathcal{L}_{ce}(\mathbf{y}, \hat{\mathbf{y}}) = -\mathbb{E}_{\mathbf{y}}[\log \hat{\mathbf{y}}] \quad (19)$$

311 where \mathbb{E} is expectation. To reduce the difference between distribution spaces from source and target
 312 domain in H-OTKT, and further improve the final prediction, another loss function is defined based
 313 on the Sinkhorn divergence (Feydy et al., 2019) to obtain the space discrepancy between class average
 314 of \mathbf{X}^s and \mathbf{f}' (Nguyen & Luu, 2022):
 315

$$316 \quad \mathcal{L}_{ot}(\mathbf{f}', \mathbf{X}^s) = ds_{OT}(\mathcal{P}, \mathcal{Q}) - \frac{1}{2} ds_{OT}(\mathcal{P}, \mathcal{P}) - \frac{1}{2} ds_{OT}(\mathcal{Q}, \mathcal{Q}) \quad (20)$$

317 where $ds_{OT}(\cdot, \cdot)$ is the total OT cost between two distributions solved by the regular OT (Eq. (9)) with
 318 cosine similarity as cost function. Then the total loss function is formulated as:
 319

$$320 \quad \mathcal{L} = \mathcal{L}_{ce} + \eta \mathcal{L}_{ot} \quad (21)$$

322 In Eq. (21), the \mathcal{L}_{ce} term optimizes the whole network to improve the classification performance
 323 while the \mathcal{L}_{ot} term is used for reducing the discrepancy between the source feature space and the
 target feature space.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 1: Results in Real Life Trial (RLT) dataset and DOLOS dataset

(a) Results with visual modality.

Target Method	RLT			DOLOS		
	F1 score	ACC	AUC	F1 score	ACC	AUC
OpenFace + SVM	0.2253	0.5293	0.5571	0.6975	0.5355	0.5430
OpenFace + Decision Tree	0.5553	0.5303	0.5303	0.5358	0.5058	0.5058
OpenFace + Random Forest	0.6033	0.6033	0.5997	0.6175	0.5367	0.5466
OpenFace + AdaBoost	0.5199	0.5303	0.5766	0.5536	0.5057	0.5035
AU + SVM	0.4562	0.5043	0.4670	0.6813	0.5276	0.5242
AU + Decision Tree	0.4466	0.4643	0.4643	0.5453	0.5173	0.5173
AU + Random Forest	0.5534	0.5463	0.5330	0.5808	0.5045	0.5157
AU + AdaBoost	0.5130	0.4877	0.4835	0.5295	0.4876	0.4735
OpenFace + LSTM	0.5241	0.5623	0.5952	0.5928	0.5628	0.5854
AU + LSTM	0.4888	0.6197	0.6760	0.6343	0.5646	0.5868
ResNet18 + LSTM	0.4996	0.6117	0.6387	0.6415	0.5972	0.5668
PECL(only visual)	0.5880	0.6528	0.6734	0.7010	0.6387	0.6770
FreeLunch	0.7663	0.8173	0.8712	0.6961	0.6228	0.6459
ADC	0.7793	0.8173	0.8677	0.6938	0.6716	0.7206
Cr-KD-NCD	0.7803	0.7200	0.6928	0.7056	0.6091	0.6013
AFFAKT	0.8760	0.8670	0.8789	0.7102	0.6764	0.7212
SPOT-JS(Ours)	0.9600	0.9600	0.9948	0.9643	0.9649	0.9692
	+8.40%	+9.30%	+11.59%	+25.41%	+28.85%	+24.80%

(b) Results with audio modality.

Target Method	RLT			DOLOS		
	F1	ACC	AUC	F1	ACC	AUC
MFCC + MLP	0.5226	0.6367	0.7030	0.5963	0.5810	0.6134
OpenSMILE + MLP	0.6885	0.6597	0.5926	0.6867	0.5537	0.5325
W2V2 + MLP	0.6117	0.6780	0.6106	0.4383	0.5421	0.5369
PECL(only audio)	0.7121	0.7100	0.6962	0.6777	0.6119	0.6281
FreeLunch	0.6432	0.6850	0.6944	0.6589	0.5991	0.6196
ADC	0.6402	0.6767	0.6858	0.6194	0.6058	0.6040
AFFAKT	0.7316	0.7440	0.7398	0.6982	0.6198	0.6391
SPOT-JS(Ours)	0.8571	0.8333	0.8715	0.7463	0.7143	0.7659
	+12.55%	+8.93%	+13.19%	+4.81%	+9.45%	+12.68%

(c) Results with fused modalities.

Target Method	RLT			DOLOS		
	F1	ACC	AUC	F1	ACC	AUC
OpenFace ⊕ OpenSMILE	0.6895	0.6781	0.6212	0.6124	0.5986	0.5863
ResNet18 ⊕ OpenSMILE	0.6283	0.6853	0.6598	0.5863	0.6152	0.6485
PECL	0.7102	0.6939	0.7424	0.7084	0.6597	0.6353
FreeLunch	0.7695	0.8093	0.8547	0.6807	0.6289	0.6574
ADC	0.7493	0.8093	0.8446	0.6997	0.6746	0.7307
AFFAKT	0.8412	0.8427	0.8563	0.7149	0.6810	0.7289
SPOT-JS(Ours)	0.9630	0.9600	0.9679	0.9474	0.9474	0.9846
	+12.18%	+11.73%	+11.16%	+23.25%	+26.64%	+25.57%

Table 2: Results in Box of lies(BOL) dataset.

(a) Results with visual modalities. (b) Results with audio modalities. (c) Results with fused modalities.

Target Method	Box of lies			Target Method	Box of lies			Target Method	Box of lies		
	F1	ACC	AUC		F1	ACC	AUC		F1	ACC	AUC
CMFL	0.5584	0.4403	0.4907	CMFL	0.5812	0.5308	0.5406	CMFL	0.6568	0.5350	0.5635
SE-Concat	0.5606	0.5678	0.5657	SE-Concat	0.5694	0.5530	0.5638	SE-Concat	0.6721	0.5919	0.6109
Prompt	0.6785	0.5451	0.6143	Prompt	0.6684	0.5673	0.5799	Prompt	0.6891	0.5954	0.6256
PECL	0.6832	0.5705	0.6476	PECL	0.6726	0.5828	0.6122	PECL	0.6723	0.6078	0.6433
AVA+CUFMCL	0.6953	0.5947	0.6743	AVA+CUFMCL	0.6972	0.5987	0.6456	AVA+CUFMCL	0.6920	0.6256	0.6667
SPOT-JS(Ours)	0.9333	0.9111	0.9551	SPOT-JS(Ours)	0.9310	0.9111	0.9131	SPOT-JS(Ours)	0.9153	0.8889	0.9393
	+23.80%	+31.64%	+28.08%		+23.38%	+31.24%	+26.75%		+22.33%	+26.33%	+27.26%

6 EXPERIMENTS

6.1 DATASETS

Datasets. To validate the effectiveness, generalizability, and robustness of SPOT-JS, evaluation is performed on three benchmark datasets: (1) Real Life Trial (Pérez Rosas et al., 2015), (2) Box of Lies (BOL)(Soldner et al., 2019), (3) DOLOS (Guo et al., 2023). For detailed information about the dataset, please refer to Appendix Section G.1.

6.2 COMPARISON METHODS

Machine learning methods typically employ visual features (OpenFace, gaze and action units) and acoustic features (MFCC) for deception detection. Standard classifiers such as SVM and Decision Tree process the visual features, while MLP handles the acoustic features (Mathur & Matarić, 2020; Avola et al., 2019; Yang et al., 2021a).

Deep learning approaches include several architectures: KNN (Chebbi & Jebara, 2023), FFCNN (Ding et al., 2019b), ResNet18+LSTM (Karnati et al., 2022; Ding et al., 2019a; Guo et al., 2023), W2V2+MLP (Guo et al., 2023; Karnati et al., 2022; Krishnamurthy et al., 2018), ResNet18⊕OpenSMILE (Krishnamurthy et al., 2018; Guo et al., 2023), CLBF (Camara et al., 2024), and PECL (Guo et al., 2023).

Fusion methods include: Concat, SE-Concat (Hu et al., 2018), CMFL (George & Marcel, 2021), Prompt (Jia et al., 2022), and AVA (Li et al., 2024).

Transfer learning methods include: FreeLunch (Yang et al., 2021b), ADC (Guo et al., 2022), PECL (Guo et al., 2023), Cr-KD-NCD (Gu et al., 2023), and AFFAKT (Ji et al., 2025).

6.3 COMPARISON RESULTS

Experiments were conducted on three datasets-Real Life Trial (RLT), DOLOS, and Box of Lies (BOL) under visual, audio, and fused modalities. Performance was measured by F1, ACC, and AUC with 5-fold cross-validation. Our method achieved significant improvements: on the RLT dataset, ACC improved by 8.93%–11.73% and on the DOLOS dataset, ACC increased by 9.45%–28.85% in

Tables 1a to 1c; and on the Box of Lies dataset, ACC saw a gain of 26.33%–31.64% in Tables 2a to 2c. The same tables show consistent increases in F1 and AUC across all three datasets.

Cross-domain evaluations report ACC; the remaining metrics appear in Appendix Section E. As shown in Tables 3a to 3c, the results exceed strong baselines across modalities. For the visual stream, training on RLT (R) and testing on BOL (B) gives a 25.76% gain over prior methods. For the audio stream under the same setup, the gain is 23.76%. For the fused modality, training on BOL and testing on RLT yields 35.61%. Similar margins appear in other transfer directions. These results indicate robust cross-domain performance of the proposed approach.

Table 3: Cross-domain results on RLT (R), BOL (B), and DOLOS (D) using ACC. Detailed results are provided in Appendix Section E. Abbreviations: Ff, face frames; Mel, Mel spectrogram.

(a) Results with visual modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
AU+LSTM	0.4992	0.4997	0.5886	0.5233	0.5489	0.5046
Gaze+MLP	0.4998	0.5011	0.5998	0.5308	0.5519	0.5008
AU+Gaze+MLP	0.5125	0.5137	0.6535	0.5479	0.5563	0.5153
Affect+MLP	0.5132	0.5108	0.5842	0.5458	0.5587	0.5226
AU+Gaze+Affect+MLP	0.5238	0.5025	0.5941	0.5541	0.5633	0.5289
Ff+ResNet18	0.5275	0.5133	0.6139	0.5452	0.5645	0.5238
Ff+ResNet18+GRU	0.5254	0.5236	0.6337	0.5480	0.5688	0.5278
Ff+ResNet18+KNN	0.5337	0.5148	0.6315	0.5536	0.5609	0.5308
Ff+ResNet18+SVM	0.5415	0.5028	0.6328	0.5636	0.5709	0.5382
Ff+FFCSN	0.5387	0.5319	0.6288	0.5685	0.5682	0.5408
CLBF	0.5283	0.5136	0.4409	0.5458	0.5864	0.5538
PECL	0.5516	0.5307	0.6399	0.5532	0.5277	0.5509
SPOT-JS(Ours)	0.7143	0.7778	0.9111	0.7200	0.7083	0.6140
	+16.27%	+24.59%	+25.76%	+15.15%	+12.19%	+6.02%

(b) Results with audio modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
Acoustic + Prosodic+MLP	0.4558	0.5022	0.5218	0.5038	0.5126	0.4947
Mel+ResNet18	0.5001	0.5386	0.5347	0.5343	0.5256	0.4907
Mel+ResNet18+KNN	0.4882	0.5238	0.5402	0.5317	0.5346	0.4899
Mel+ResNet18+SVM	0.4905	0.5398	0.5402	0.5425	0.5391	0.5006
Waveform+Wave2Vec	0.5021	0.5365	0.4851	0.5355	0.5309	0.5087
PECL	0.5197	0.5368	0.5392	0.5915	0.5447	0.5125
SPOT-JS(Ours)	0.6429	0.6889	0.7778	0.6400	0.7083	0.6316
	+12.32%	+14.91%	+23.76%	+4.85%	+16.36%	+11.91%

(c) Results with fused modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
Average	0.5385	0.5822	0.5842	0.5338	0.4907	0.5089
Concat	0.5393	0.5832	0.5842	0.5625	0.4982	0.5103
SE-Concat	0.5339	0.5945	0.6040	0.5695	0.5069	0.5169
Cross-Atten	0.5411	0.5941	0.6139	0.5733	0.5166	0.5237
MLP-Mixer	0.5497	0.6042	0.5743	0.5754	0.5283	0.5369
PECL	0.5601	0.6136	0.5967	0.5617	0.5319	0.5427
Atten-Mixer	0.5635	0.6337	0.6040	0.5877	0.5256	0.5433
SPOT-JS(Ours)	0.7018	0.7333	0.7556	0.7500	0.8880	0.6491
	+13.83%	+9.96%	+14.17%	+16.23%	+35.61%	+10.08%

6.4 IMPLEMENTATION DETAILS

Experiments ran on an NVIDIA RTX 4090 GPU (24GB VRAM). For video and fused modalities across DOLOS, RLT, and BOL, the batch size was 16; for the audio modality, a batch size of 64 was used due to lower memory demand. The learning rate was fixed at 1×10^{-5} throughout. Additional implementation notes appear in Appendix Section G.2.

6.5 ABLATION STUDIES

Our ablation study systematically validates the effectiveness of the proposed spectral representation and fusion method. As shown in the table, we design three experimental scenarios for comprehensive evaluation.

Case A. As a purely baseline setting, our first ablation excludes all key innovations, retaining only the standard H-OTKT and SRKB modules. As shown in Table 4, the baseline version exhibits a pronounced performance degradation compared to the full model.

Case B. To validate the effectiveness of TDAM, we introduce this module on top of Method A. The experimental results show that all three modalities achieve significant improvements. These findings demonstrate that: (1) preserving inter-frame continuity in video sequences is essential; and (2) minimizing noise while maintaining temporal consistency plays a crucial role in enhancing the model’s robustness and generalization ability.

Case C. Building upon Case B, we incorporate the LCSF module. As shown in Table 4, all three modalities achieve substantial improvements over the baseline model. This demonstrates that LCSF effectively highlights task-relevant frequency bands while suppressing noise through learnable Chebyshev spectral filtering.

Case D. Building upon Method C, we replace H-OTKT with our modified CSKT. The experimental results reveal significant improvements across all three modalities, indicating that the previous direct knowledge transfer approach was rather coarse. With the introduction of our CSKT module, facial knowledge is transferred more effectively, which further substantiates the effectiveness of the LCSF module.

Case E. Building on Case D, we integrate the OTCF module into the multimodal setting. The experimental results demonstrate that, compared with the mixed-modal scheme in Case D, adopting the OTCF approach leads to improved model performance.

Case F. Building on Case D, we integrate the JS-Align module into the multimodal setting. The experimental results show that, compared with the mixed-modal scheme in Case D, adopting the JS-Align method consistently enhances model performance.

Due to space limitations, additional ablation results are provided in the Appendix Section F.

Table 4: Ablation studies results. ① TDAM module, ② LCSF module, ③ CSKT module, ④ OTCF module, ⑤ JS-Align module.

Case	Target					RLT			DOLOS			BOL				
	Method	①	②	③	④	⑤	modality	F1	ACC	AUC	F1	ACC	AUC	F1	ACC	AUC
A	\times	\times	\times	\times	\times	\times	Visual	0.8760	0.8670	0.8789	0.7054	0.6764	0.7212	0.7302	0.6889	0.7377
							Audio	0.7267	0.7270	0.7218	0.6822	0.6198	0.6391	0.7347	0.6444	0.7141
							Fused	0.8162	0.8180	0.8381	0.7073	0.6810	0.7226	0.7119	0.6667	0.7279
B	\checkmark	\times	\times	\times	\times	\times	Visual	0.9071	0.9024	0.9248	0.8000	0.8020	0.8255	0.7838	0.7898	0.8333
							Audio	0.8064	0.7630	0.8078	0.6964	0.6491	0.6562	0.7714	0.7333	0.7664
							Fused	0.8462	0.8438	0.8628	0.7692	0.7708	0.7743	0.7647	0.7600	0.7886
C	\checkmark	\checkmark	\times	\times	\times	\times	Visual	0.9375	0.9375	0.9635	0.9057	0.9123	0.9295	0.8816	0.8636	0.9289
							Audio	0.8333	0.8160	0.8420	0.7292	0.6964	0.7236	0.8710	0.8750	0.8677
							Fused	0.9167	0.9200	0.9143	0.8525	0.8772	0.8524	0.8421	0.8222	0.8494
D	\checkmark	\checkmark	\checkmark	\times	\times	\times	Visual	0.9600	0.9600	0.9948	0.9643	0.9649	0.9692	0.9333	0.9111	0.9551
							Audio	0.8571	0.8333	0.8715	0.7463	0.7143	0.7659	0.9310	0.9111	0.9131
							Fused	0.9375	0.9312	0.9248	0.9091	0.8958	0.9183	0.8621	0.8444	0.8919
E	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	Fused	0.9479	0.9477	0.9419	0.9231	0.9167	0.9401	0.8909	0.8710	0.9037
F	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	Fused	0.9408	0.9383	0.9455	0.9286	0.9200	0.9312	0.8814	0.8667	0.9146

6.6 CASE STUDY

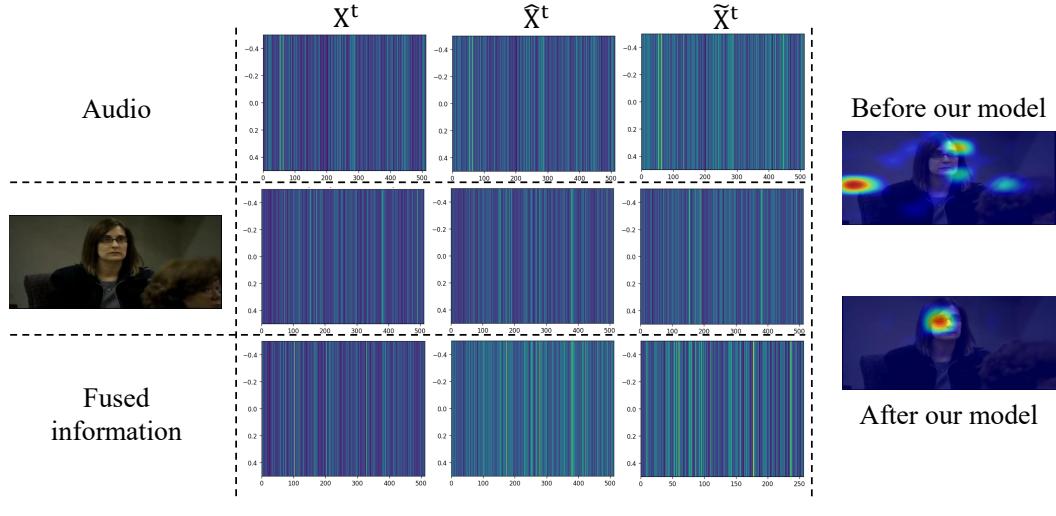


Figure 3: Interpretable Case Visualization.

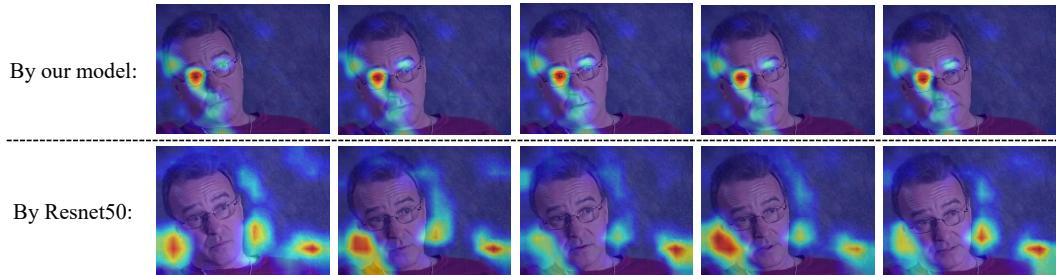


Figure 4: Visualization Examples of the Model's Attentional Regions.

To show how the model learns spectral representations and fusion, Fig. 3 visualizes features from the three modalities at three stages: the original state, after LCSF, and after OTCF. As training proceeds,

486 the feature distributions become more structured and support stronger discrimination. Early epochs
 487 show weakly differentiated spectra with near-uniform coloration; later epochs exhibit clearer band
 488 separation and greater variation in spectral energy.

489 A comparison of multimodal features before and after training is also provided. In Fig. 3, the
 490 untrained model attends to irrelevant regions, whereas the trained model focuses on facial areas,
 491 especially ocular motion, which is widely reported as a cue in deception detection.
 492

493 To interpret model behavior, attention maps are visualized in Fig. 4. The model frequently attends to
 494 the pupils, a cue associated with deception through involuntary dilation, which aligns with domain
 495 reports. This contrasts with the irrelevant regions highlighted by a pre-trained ResNet50 and helps
 496 explain why ResNet-based baselines underperform on this task. Additional examples appear in
 497 Appendix Section H.

498 7 CONCLUSION

501 SPOT-JS is presented as a frequency-domain method for multimodal deception detection under
 502 domain shift. The system couples unified preprocessing and audiovisual synchronization (TDAM), a
 503 power-spectrumbased Learnable Chebyshev Spectrum Filter (LCSF), bidirectional fusion via entropy-
 504 regularized optimal transport (OTCF), and JS-Align for JensenShannonguided posterior matching.
 505 This design reduces reliance on invasive signals and handcrafted features, improves unimodal
 506 encodings, and provides principled multimodal alignment and fusion. A Chebyshev Spectrum-guided
 507 Knowledge Transfer (CSKT) module further transfers facial knowledge. Experiments show reduced
 508 dependence on traditional physiological cues and competitive accuracy across datasets.

509 REFERENCES

510 Zrar Kh. Abdul and Abdulbasit K. Al-Talabani. Mel frequency cepstral coefficient and its applications:
 511 A review. *IEEE Access*, 10:122136–122158, 2022.

512 Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan. Openface: A general-purpose
 513 face recognition library with mobile applications. *CMU School of Computer Science*, pp. 20,
 514 2016.

515 Danilo Avola, Luigi Cinque, Gian Luca Foresti, and Daniele Pannone. Automatic deception detection
 516 in rgb videos using facial action units. In *Proceedings of international conference on distributed*
 517 *smart cameras*, pp. 1–6, 2019.

518 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
 519 for self-supervised learning of speech representations. *Advances in Neural Information Processing*
 520 *Systems*, pp. 12449–12460, 2020.

521 Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Openface 2.0: Facial
 522 behavior analysis toolkit. In *2018 13th IEEE international conference on automatic face & gesture*
 523 *recognition (FG 2018)*, pp. 59–66. IEEE, 2018.

524 Mateus Karvat Camara, Adriana Postal, Tomas Henrique Maul, and Gustavo Henrique Paetzold. Can
 525 lies be faked? comparing low-stakes and high-stakes deception video datasets from a machine
 526 learning perspective. *Expert Systems with Applications*, pp. 123684, 2024.

527 Safa Chebbi and Sofia Ben Jebara. Deception detection using multimodal fusion approaches. *Multi-*
 528 *media Tools and Applications*, pp. 13073–13102, 2023.

529 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
 530 *information processing systems*, 26, 2013.

531 Steven Davis and Paul Mermelstein. Comparison of parametric representations for monosyllabic
 532 word recognition in continuously spoken sentences. *IEEE transactions on acoustics, speech, and*
 533 *signal processing*, pp. 357–366, 1980.

- 540 Mingyu Ding, An Zhao, Zhiwu Lu, Tao Xiang, and Ji Rong Wen. Face-focused cross-stream network
 541 for deception detection in videos. In *Proceedings of the IEEE/CVF Conference on Computer*
 542 *Vision and Pattern Recognition (CVPR)*, 2019a.
- 543
- 544 Mingyu Ding, An Zhao, Zhiwu Lu, Tao Xiang, and Ji-Rong Wen. Face-focused cross-stream network
 545 for deception detection in videos. In *Proceedings of the IEEE/CVF Conference on Computer*
 546 *Vision and Pattern Recognition*, pp. 7802–7811, 2019b.
- 547 Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich versatile and fast
 548 open-source audio feature extractor. In *Proceedings of the 18th ACM international conference on*
 549 *Multimedia*, pp. 1459–1462, 2010.
- 550
- 551 Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and Gabriel
 552 Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences. In *The 22nd*
 553 *International Conference on Artificial Intelligence and Statistics*, pp. 2681–2690. PMLR, 2019.
- 554 Brian D Fitch. The truth about lying: What investigators need to know. *FBI law enforcement bulletin*
 555 (*LEB*), *FBI, Jun*, 2014.
- 556
- 557 Ascensión Gallardo Antolín and Juan M Montero. Detecting deception from gaze and speech using a
 558 multimodal attention lstm-based framework. *Applied Sciences*, pp. 6393, 2021.
- 559
- 560 Anjith George and Sébastien Marcel. Cross modal focal loss for rgbd face anti-spoofing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7882–
 561 7891, 2021.
- 562
- 563 Mandar Gogate, Ahsan Adeel, and Amir Hussain. Deep learning driven multimodal fusion for
 564 automated deception detection. In *Proceedings of the IEEE symposium series on computational*
 565 *intelligence (SSCI)*, pp. 1–6. IEEE, 2017.
- 566
- 567 Alex Graves and Alex Graves. Long short-term memory. *Supervised sequence labelling with*
 568 *recurrent neural networks*, pp. 37–45, 2012.
- 569
- 570 Peiyan Gu, Chuyu Zhang, Ruijie Xu, and Xuming He. Class-relation knowledge distillation for novel
 571 class discovery. *lamp*, pp. 17–5, 2023.
- 572
- 573 Dandan Guo, Long Tian, He Zhao, Mingyuan Zhou, and Hongyuan Zha. Adaptive distribution cali-
 574 bration for few-shot learning with hierarchical optimal transport. *Advances in Neural Information*
Processing Systems, pp. 6996–7010, 2022.
- 575
- 576 Xiaobao Guo, Nithish Muthuchamy Selvaraj, Zitong Yu, Adams Wai Kin Kong, Bingquan Shen, and
 577 Alex Kot. Audio-visual deception detection: Dolos dataset and parameter-efficient crossmodal
 578 learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 22135–22145, 2023.
- 579
- 580 Xiaobao Guo, Zitong Yu, Nithish Muthuchamy Selvaraj, Bingquan Shen, Adams Wai Kin Kong,
 581 and Alex C Kot. Benchmarking cross-domain audio-visual deception detection. *arXiv preprint*
arXiv:2405.06995, 2024.
- 582
- 583 M. K. Hasan, M. T. Rahman, M. S. Akhtar, A. Ekbal, and P. Bhattacharyya. Mag-bert: Multimodal
 584 adaptation gate bert for multimodal sentiment analysis. In *Proceedings of the International*
Conference on Computational Linguistics (COLING), pp. 3615–3626, 2020.
- 585
- 586 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 587 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 588 pp. 770–778, 2016.
- 589
- 590 B. Hu, K. Zhang, Y. Zhang, and Y. Ye. Adaptive multimodal fusion: Dynamic attention allocation for
 591 intent recognition. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, 2025a.
- 592
- 593 Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In *Proceedings of the IEEE*
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

- 594 Jiewen Hu, Leena Mathur, Paul Pu Liang, and Louis Philippe Morency. Openface 3.0: A lightweight
 595 multitask system for comprehensive facial behavior analysis. *arXiv preprint arXiv:2506.02891*,
 596 2025b.
- 597 Zihan Ji, Xuetao Tian, and Ye Liu. Affakt: A hierarchical optimal transport based method for affective
 598 facial knowledge transfer in video deception detection. In *Proceedings of the AAAI Conference on*
 599 *Artificial Intelligence*, pp. 1336–1344, 2025.
- 600 Menglin Jia, Luming Tang, Bor Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 601 Ser Nam Lim. Visual prompt tuning. In *Proceedings of the European conference on computer*
 602 *vision*, pp. 709–727. Springer, 2022.
- 603 Xingxun Jiang, Yuan Zong, Wenming Zheng, Chuangao Tang, Wanchuang Xia, Cheng Lu, and
 604 Jiateng Liu. Dfew: A large-scale database for recognizing dynamic facial expressions in the wild.
 605 In *Proceedings of the 28th ACM international conference on multimedia*, pp. 2881–2889, 2020.
- 606 Hamid Karimi, Jiliang Tang, and Yanen Li. Toward end-to-end deception detection in videos. In
 607 *Proceedings of the IEEE International Conference on Big Data*, pp. 1278–1283. IEEE, 2018.
- 608 Mohan Karnati, Ayan Seal, Anis Yazidi, and Ondrej Krejcar. Lienet: a deep convolution neural
 609 networks framework for detecting deception. *IEEE Transactions on Cognitive and Developmental*
 610 *Systems*, 2021.
- 611 Mohan Karnati, Ayan Seal, Anis Yazidi, and Ondrej Krejcar. Lienet: A deep convolution neural
 612 network framework for detecting deception. *IEEE Transactions on Cognitive and Developmental*
 613 *Systems*, pp. 971–984, 2022.
- 614 Hideki Kawahara, Toru Takahashi, Masanori Morise, and Hideki Banno. Development of exploratory
 615 research tools based on tandem-straight. In *Proceedings: APSIPA ASC 2009: Asia-pacific signal*
 616 *and information processing association, 2009 annual summit and conference*, pp. 111–120. Asia-
 617 Pacific Signal and Information Processing Association, 2009 Annual , 2009.
- 618 Gangeshwar Krishnamurthy, Navonil Majumder, Soujanya Poria, and E. Cambria. A deep learning
 619 approach for multimodal deception detection. In *Proceedings of the Conference on Intelligent Text*
 620 *Processing and Computational Linguistics*, 2018.
- 621 M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
 622 *Advances in neural information processing systems*, 23, 2010.
- 623 An Lao, Qi Zhang, Chongyang Shi, Longbing Cao, Kun Yi, Liang Hu, and Duoqian Miao. Frequency
 624 spectrum is more effective for multimodal representation and fusion: A multimodal spectrum
 625 rumor detector. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp.
 626 18426–18434, 2024.
- 627 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontañón. Fnet: Mixing tokens with
 628 fourier transforms. In *NAACL-HLT*, pp. 4296–4313. Association for Computational Linguistics,
 629 2022.
- 630 Zhaoxu Li, Zitong Yu, Xun Lin, Nithish Muthuchamy Selvaraj, Xiaobao Guo, Bingquan Shen, Adams
 631 Wai Kin Kong, and Alex Kot. Flexible-modal deception detection with audio-visual adapter. In
 632 *Proceedings of the 2024 IEEE International Joint Conference on Biometrics (IJCB)*, pp. 1–10.
 633 IEEE, 2024.
- 634 Leena Mathur and Maja J Matarić. Introducing representations of facial affect in automated multi-
 635 modal deception detection. In *Proceedings of International Conference on Multimodal Interaction*,
 636 pp. 305–314, 2020.
- 637 Paul Mermelstein. Distance measures for speech recognition, psychological and instrumental. *Pattern*
 638 *recognition and artificial intelligence*, pp. 374–388, 1976.
- 639 Michelle Renee Morales, Stefan Scherer, and Rivka Levitan. Openmm: An open-source multimodal
 640 feature extraction tool. In *INTERSPEECH*, pp. 3354–3358, 2017.

- 648 Thong Thanh Nguyen and Anh Tuan Luu. Improving neural cross-lingual abstractive summarization
 649 via employing optimal transport distance for knowledge distillation. In *Proceedings of the AAAI*
 650 *Conference on Artificial Intelligence*, volume 36, pp. 11103–11111, 2022.
- 651
- 652 Verónica Pérez Rosas, Mohamed Abouelenien, Rada Mihalcea, and Mihai Burzo. Deception detection
 653 using real-life trial data. In *Proceedings of the 2015 ACM on International Conference on*
 654 *Multimodal Interaction*, pp. 59–66, 2015.
- 655 Gabriel Peyré and Marco Cuturi. Computational optimal transport. *Foundations and Trends in*
 656 *Machine Learning*, 11(5-6):355–607, 2019.
- 657
- 658 Rodrigo Rill-García, Hugo Jair Escalante, Luis Villasenor-Pineda, and Verónica Reyes-Meza. High-
 659 level features for multimodal deception detection in videos. In *Proceedings of the IEEE/CVF*
 660 *Conference on Computer Vision and Pattern Recognition Workshops*, pp. 0–0, 2019.
- 661 M Umut Şen, Veronica Perez-Rosas, Berrin Yanikoglu, Mohamed Abouelenien, Mihai Burzo, and
 662 Rada Mihalcea. Multimodal deception detection using real-life trial data. *IEEE Transactions on*
 663 *Affective Computing*, 13(1):306–319, 2020.
- 664
- 665 Felix Soldner, Verónica Pérez Rosas, and Rada Mihalcea. Box of lies: Multimodal deception
 666 detection in dialogues. In *Proceedings of the 2019 Conference of the North American Chapter of*
 667 *the Association for Computational Linguistics: Human Language Technologies*, pp. 1768–1777,
 668 2019.
- 669 Anastasis Stathopoulos, Ligong Han, Norah Dunbar, Judee K Burgoon, and Dimitris Metaxas. De-
 670 ception detection in videos using robust facial features. In *Proceedings of the Future Technologies*
 671 *Conference*, pp. 668–682. Springer, 2020.
- 672
- 673 Zheng Hua Tan and Børge Lindberg. Low-complexity variable frame rate analysis for speech
 674 recognition and voice activity detection. *IEEE Journal of Selected Topics in Signal Processing*, pp.
 675 798–807, 2010.
- 676
- 677 Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
 678 efficient learners for self-supervised video pre-training. *Advances in neural information processing*
 679 *systems*, pp. 10078–10093, 2022.
- 680
- 681 Y.-H. H. Tsai et al. Multimodal transformer for unaligned multimodal language sequences. In
 682 *Proceedings of the ACL*, pp. 6558–6569, 2019.
- 683
- 684 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 685 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 686 *systems*, 30, 2017.
- 687
- 688 Aldert Vrij. *Detecting lies and deceit: Pitfalls and opportunities*. John Wiley & Sons, 2008.
- 689
- 690 Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. *IEEE Transactions on*
 691 *Pattern Analysis and Machine Intelligence*, 44(9):4555–4576, 2021.
- 692
- 693 Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
 694 frequency domain. In *CVPR*, pp. 1737–1746. Computer Vision Foundation / IEEE, 2020.
- 695
- 696 Jun Teng Yang, Guei Ming Liu, and Scott C H Huang. Multimodal deception detection in videos via
 697 analyzing emotional state-based feature. *arXiv e-prints*, pp. arXiv–2104, 2021a.
- 698
- 699 Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative bilinear
 700 temporal-spectral fusion. In *ICML*, volume 162 of *Proceedings of Machine Learning Research*, pp.
 701 25038–25054. PMLR, 2022.
- 702
- 703 Shuo Yang, Lu Liu, and Min Xu. Free lunch for few-shot learning: Distribution calibration. In
 704 *Proceedings of the International Conference on Learning Representations*, 2021b.
- 705
- 706 Suleyman Yildirim, Meshack Sandra Chimeumanu, and Zeeshan A Rana. The influence of micro-
 707 expressions on deception detection. *Multimedia Tools and Applications*, pp. 29115–29133, 2023.

- 702 Hanlei Zhang, Hua Xu, Xin Wang, Qianrui Zhou, Shaojie Zhao, and Jiayan Teng. Mintrec: A
703 new dataset for multimodal intent recognition. In *Proceedings of the 30th ACM International*
704 *Conference on Multimedia*, pp. 1688–1697, 2022.
- 705 Hanlei Zhang, Xin Wang, Hua Xu, Qianrui Zhou, Kai Gao, Jianhua Su, Wenrui Li, Yanting Chen, et al.
706 Mintrec2.0: A large-scale benchmark dataset for multimodal intent recognition and out-of-scope
707 detection in conversations. *arXiv preprint arXiv:2403.10943*, 2024.
- 708 Q. Zhou, H. Xu, H. Li, H. Zhang, X. Zhang, Y. Wang, and K. Gao. Token-level contrastive learning
709 with modality-aware prompting for multimodal intent recognition. In *Proceedings of the AAAI*
710 *Conference on Artificial Intelligence*, volume 38, 2024.
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756 **A THE USE OF LARGE LANGUAGE MODELS (LLMs)**
 757

758 We employed a large language model solely for the purpose of polishing the written paragraphs to
 759 enhance their fluency and readability. Beyond this textual refinement, no other aspects of the work
 760 utilized large language models.
 761

762 **B ETHICS STATEMENT**
 763

764 As developers create deception detection systems, it must be a priority to uphold privacy, minimize
 765 psychological harm, and prevent discrimination. Potential misuse of such technology could impose
 766 significant negative impacts on society. If deployed without consent, these systems risk infringing on
 767 personal privacy by collecting and analyzing sensitive individual data-such as speech patterns, facial
 768 expressions, and body language-without adequate safeguards. Researchers must adhere to applicable
 769 regulations throughout the development and deployment of deception detection systems.
 770

771 **C CHEBYSHEV SPECTRUM-GUIDED KNOWLEDGE TRANSFER (CSKT)
 772 MODULE**
 773

774 Having obtained the fused multimodal representation \mathbf{f} , we provide further details of the Hierarchical
 775 Optimal Transport Knowledge Transfer (H-OTKT) componentJi et al. (2025), which serves as the
 776 foundation of our proposed CSKT module. H-OTKT transfers affective prior knowledge \mathbf{X}^s from
 777 large-scale Visual Facial Expression Recognition (VFER) datasets (e.g., DFEW Jiang et al. (2020))
 778 to enhance the discriminative power for deception detection.
 779

780 Before performing knowledge transfer, we first employ Eq. (6) to transform the knowledge \mathbf{X}^s to
 781 be transferred into the frequency domain. We then apply the LCSF module for filtering, thereby
 782 enabling more effective and informative feature transmission:
 783

$$\mathbf{X}^{so} = \text{LCSF}(\mathbf{X}^s) \quad (22)$$

784 where $\text{LCSF}(\cdot)$ denotes the Learnable Chebyshev Spectrum Filter (LCSF) Module in our framework.
 785
 786 \mathbf{f} is firstly mapped into $\mathbf{f}' = \mathcal{F}_1(\mathbf{f}) \in \mathbb{R}^{n \times d}$ by an MLP \mathcal{F}_1 , such that the feature spaces between
 787 source and target domain could be the same, where n is the batch size. Let $\mathcal{Q} = \sum_{k=1}^{L^s} \frac{1}{L^s} \delta_{\mathcal{Q}^k}$ as
 788 the discrete uniform distribution over L^s classes of VFER dataset, \mathcal{Q}^k is the representation vector of
 789 k -th class. And $\mathcal{P} = \sum_{i=1}^n \frac{1}{n} \delta_{\mathbf{f}'_i}$ is the discrete uniform distribution over n target deception samples.
 790 Then, according to Eq. (10), the entropic regularized OT between \mathcal{P} and \mathcal{Q} is:
 791

$$\text{OT}_{high}(\mathcal{P}, \mathcal{Q}) = \min_{\mathbf{T} \in \Pi(\mathcal{P}, \mathcal{Q})} \langle \mathbf{T}, \mathbf{M} \rangle_F - \epsilon \mathcal{H}(\mathbf{T}) \quad (23)$$

792 where $\mathbf{T} \in \mathbb{R}^{n \times L^s}$ and $\mathbf{M} \in \mathbb{R}^{n \times L^s}$ are the transport plan and the cost matrix between facial
 793 expression classes and target deception samples. Each element $\mathbf{T}_{i,k}$ indicates the importance of the
 794 k -th class in VFER dataset for the i -th sample in deception mini-batch, determining which class and
 795 how much of knowledge should be transferred. Besides, \mathbf{T} should satisfy the following constraint:
 796

$$\Pi(\mathcal{P}, \mathcal{Q}) := \left\{ \sum_{i=1}^n \mathbf{T}_{i,k} = \frac{1}{L^s}, \quad \sum_{k=1}^{L^s} \mathbf{T}_{i,k} = \frac{1}{n} \right\} \quad (24)$$

800 It is evident that the solution \mathbf{T} relies on the cost matrix \mathbf{M} . Simply applying cosine similarity
 801 between the features of samples from a deception mini-batch and the mean features of each class in
 802 the VFER dataset may lead to a sub-optimal solution. Moreover, the contribution of different samples
 803 in each class may vary. Therefore, they adopt another optimal transport formulation to obtain the
 804 optimal \mathbf{M} . According to Guo et al. (2022), the empirical distribution of the k -th class is expressed as
 805 $\mathcal{Q}^k = \sum_{j=1}^{J_k} p_j^k \delta_{\mathbf{X}_j^{s,k}}$, where the importance p_j^k of the j -th sample in the k -th source class is obtained
 806 by the logistic regression score. Based on this formulation, a low-level entropic regularized OT is
 807 further defined as follows:
 808

$$\text{OT}_{low}(\mathcal{P}, \mathcal{Q}^k) = \min_{\mathbf{T}^{low,k} \in \Pi(\mathcal{P}, \mathcal{Q}^k)} \langle \mathbf{T}^{low,k}, \mathbf{M}^{low,k} \rangle_F - \epsilon \mathcal{H}(\mathbf{T}^{low,k}) \quad (25)$$

$\Pi(\mathcal{P}, \mathcal{Q}^k) := \left\{ \sum_j^{J_k} \mathbf{T}_{i,j}^{low,k} p_j^k = \frac{1}{n}, \sum_i^n \mathbf{T}_{i,j}^{low,k} \frac{1}{n} = p_j^k \right\}$ is the constrain, and $\mathbf{T}^{low,k}$ is the transport plan between each sample in mini-batch and samples in the k -th source domain class. $\mathbf{M}^{low,k} \in \mathbb{R}^{n \times J_k}$ is determined by cosine similarity, *i.e.*, $\mathbf{M}_{i,j}^{low,k} = 1 - \cos(\mathbf{f}_i', \hat{\mathbf{X}}_j^s)$. The cost matrix \mathbf{M} in high-level OT of Eq. (23) will be replaced by the total OT distance between each target deception sample and all sample in each class of VFER dataset, *i.e.*, $\mathbf{M}_{\cdot,k} = \langle \mathbf{T}^{low,k}, \mathbf{M}^{low,k} \rangle_{\mathbb{F}}$.

For the optimization, both Eq. (23) and Eq. (25) are solved by Sinkhorn algorithm Cuturi (2013) hierarchically. Using the OT distance calculated from low-level OT as the cost \mathbf{M} of high-level OT adaptively, CSKT is able to obtain the transport weight \mathbf{T} between deception samples and facial expression classes, which is the potential correlation mapping of facial expression classes for target samples.

Once we obtained correlation mapping \mathbf{T} by solving Eq. (23), knowledge transformation can be performed. For each sample in deception domain, more knowledge from highly associated classes should be transferred, while knowledge from uncorrelated classes should not be transferred. To realize it, the transferred knowledge $\mathbf{X}^{trans} \in \mathbb{R}^{n \times d}$ is represented as follows:

$$\mathbf{X}_i^{trans} = \mathcal{F}_2 \left(n \cdot \sum_{k=1}^{L^s} \mathbf{T}_{i,k} \left[\frac{1}{J_k} \sum_{j=1}^{J_k} \hat{\mathbf{X}}_j^s \right] \right), \quad i = 1, \dots, n \quad (26)$$

where $\frac{1}{J_k} \sum_{j=1}^{J_k} \hat{\mathbf{X}}_j^s$ denotes the average feature of samples belonging to the k -th class in source domain; $\mathbf{T}_{i,k}$ quantifies the correlation weight between the k -th source class and i -th deception sample; n is used for scaling due to the constraint in high-level OT. And \mathcal{F}_2 is an MLP.

After obtaining \mathbf{X}^{trans} , we transform it back into the spatial domain using Eq. (14) for subsequent processing:

$$\mathbf{X}^{trans} \leftarrow \mathcal{F}_{seq}^{-1}(\mathbf{X}^{trans}) \quad (27)$$

In order to integrate the transferred knowledge \mathbf{X}^{trans} with features \mathbf{f}' extracted from target samples, the fused representation of deception detection samples are calculated as:

$$\mathbf{X}^{fused} = \xi' \mathbf{X}^{trans} + (1 - \xi') \mathbf{f}' \quad (28)$$

where ξ' is the weight of transferred feature \mathbf{X}^{trans} . Since it's hard to learn excellent \mathbf{f}' at the beginning of the training phase, a curriculum learning strategy (Kumar et al., 2010; Wang et al., 2021) is adopted as $\xi' = \frac{\xi}{2} \times \left(1 - \cos \left(\frac{e-1}{N_e} \times \pi \right) \right)$, where e is the current training epoch number and N_e is the total training epoch number. As ξ' is gradually increased, a better \mathbf{f}' is gained for H-OTKT.

C.1 SAMPLE-SPECIFIC RE-WEIGHTING KNOWLEDGE BANK (SRKB) MODULE

Since we do not make any modifications to the Sample-specific Re-weighting Knowledge Bank (SRKB) Module, we refer the reader to Ji et al. (2025) for further details, and do not elaborate on it here.

D DETAILED DESCRIPTION ABOUT COMPARISON METHODS

In this section, we will give more detailed descriptions about the comparison methods.

D.1 TRADITIONAL MACHINE LEARNING BASED DECEPTION DETECTION METHODS

Firstly, we would like to introduce the statistical features that are used in our experiments.

- Visual: OpenFace (Baltrusaitis et al., 2018) is an open source tool for extracting facial statistical features, such as landmarks, action units. Some of the action units also show high association with deception (Şen et al., 2020). Following the previous researches (Mathur & Matarić, 2020; Krishnamurthy et al., 2018; Avola et al., 2019; Yang et al., 2021a), we also employ OpenFace as our visual feature extractor to obtain visual statistical features.

- 864 • Audio: Mel-scale Frequency Cepstral Coefficients (MFCC) (Abdul & Al-Talabani, 2022)
 865 and OpenSMILE (Eyben et al., 2010) are two mostly used acoustic statistical features for
 866 detecting deception.
 867

868 Not that the features extracted by OpenFace are frame-wise, since different video clips may contains
 869 different number of frames, we normalize the dimension of one video clip by OpenMM (Morales
 870 et al., 2017), which calculates the 11 statistical functionals for each feature at view label (Rill-García
 871 et al., 2019).

872 For classification, we employ SVM, Decision Tree Random Forest, and AdaBoost as our classifier.
 873 The statistical features are fed to each classifier to perform classification.
 874

875 D.2 DEEP LEARNING BASED DECEPTION DETECTION METHODS 876

877 In this paper, we make comparisons with several deep learning methods. These methods can be
 878 separated by their backbone structure: Long Short-Term Memory (LSTM) (Graves & Graves, 2012)
 879 based, ResNet (He et al., 2016) based, and Transformer (Vaswani et al., 2017) based.
 880

- 881 • LSTM based: LSTM is known as the sequence encoder, which is able to capture the
 882 contextual information of a given sequence. In this case, LSTM is employed to handle
 883 the contextual information aggregation at temporal dimension. Several researches adopt
 884 LSTM as the temporal encoder to obtain the temporal information (Mathur & Matarić, 2020;
 885 Krishnamurthy et al., 2018; Guo et al., 2023).
 886 • ResNet based: ResNet is a common image encoder, which is built upon convolutional neural
 887 networks. In these works (Karnati et al., 2022; Ding et al., 2019a; Krishnamurthy et al.,
 888 2018; Guo et al., 2023), they use ResNet to automatically extract the visual features instead
 889 of using OpenFace or other manual approaches. In our experiments, ResNet with 18 layers
 890 (ResNet18) is employed to extract the visual features of each video frames.
 891 • Transformer based: With the great success of Transformer (Vaswani et al., 2017), encoders
 892 with more parameters based on Transformer architecture have been proposed to encode video
 893 clips or audio sequences automatically with rich semantic information. W2V2 (Baevski
 894 et al., 2020) is typical audio encoder based on Transformer architecture, and VideoMAE
 895 (Tong et al., 2022) is able to directly encode the given video clip to a fixed length vector.
 896

897 In our experiment, we make comparisons with the following researches.
 898

- 899 • ResNet18 + LSTM (Karnati et al., 2022; Ding et al., 2019a; Krishnamurthy et al., 2018;
 900 Guo et al., 2023): In these methods, ResNet18 was adopted to extract video frame features
 901 of a video. Then sequential information of all frame features was formulated by an LSTM.
 902 Then an MLP performed classification using the last output feature of the sequence.
 903 • W2V2 + MLP (Guo et al., 2023; Karnati et al., 2022; Krishnamurthy et al., 2018): In these
 904 methods, W2V2 model was used to extract audio features. Then an MLP was used to make
 905 classification.
 906 • ResNet18 \oplus OpenSMILE (Gogate et al., 2017; Krishnamurthy et al., 2018; Guo et al.,
 907 2023): These methods took both visual and audio modalities into account, and performed
 908 late fusion from each single modality branch.
 909 • Face frames+FFCSN (Ding et al., 2019b): These methods address the challenge of deception
 910 detection in unconstrained videos. To facilitate joint deep feature learning from facial
 911 expressions and body movements, a Facial-Focused Cross-Stream Network (FFCSN) was
 912 proposed to handle the temporal misalignment between these cues. Additionally, meta-
 913 learning and adversarial learning were incorporated into the model training framework.
 914

915 D.3 TRANSFER LEARNING BASED METHODS 916

917 There have been a small number of researches that tried to transfer knowledge from other related
 918 dataset to enhance the detection performance with deep learning based methods. Therefore, we adapt
 919 several common kinds of transfer learning strategy to the deception detection task.
 920

- 918 • Optimal Transport based: Free Lunch (Yang et al., 2021b) achieved knowledge transfer
919 by estimating the weight of each base class and perform distribution calibration with the
920 statistics of base classes, which directly used the distance of class average feature and
921 support feature as the measurement. Similar to FreeLunch, ADC (Guo et al., 2022) also
922 aimed to transfer knowledge via quantifying the weight of each source class and target
923 sample and perform distribution calibration. The optimal transport plan represents the
924 importance (or correlation) between the base classes and the novel samples. In AFFAKT
925 (Ji et al., 2025), the relation between deception sample and each facial expression class is
926 estimated by these two methods in the forward process, which play roles with the H-OTKT
927 and SRKB modules.
- 928 • Pre-train & Fine-tune based: The transfer learning methods of this kind are more likely to
929 be adopted in large models, such as PECL (Guo et al., 2023). It tried to transfer knowledge
930 from the pre-trained dataset and checkpoint to the target dataset.
- 931 • Knowledge Distillation based: Knowledge distillation is also known as a typical transfer
932 learning method. In (Gu et al., 2023), knowledge distillation was used for discover novel
933 class samples given a model pre-trained on a source dataset. The key idea of (Gu et al.,
934 2023) is to distill knowledge according to the class realtion.

935 D.4 FUSION METHODS

936 Fusion methods employ various approaches for multimodal integration. Channel-wise feature
937 concatenation (Concat) provides lightweight fusion, while SE-Concat enhances this process through
938 squeeze-and-excitation modules (Hu et al., 2018) for modality-specific refinement. CMFL (George &
939 Marcel, 2021) introduces adaptive channel weighting via cross-modal focal loss. The Prompt method
940 (Jia et al., 2022) learns task-specific visual tokens while keeping transformer blocks frozen. AVA
941 (Li et al., 2024) achieves synchronized feature integration by aligning temporal embeddings across
942 visual and auditory modalities.

- 943 • SE-Concat: Squeeze-and-excitation(SE) module is utilized in each independent modality
944 branch first. With the channel-wise self-calibration via the SE module, the refined features
945 are then concatenated.
- 946 • CMFL: Cross-modal focal loss is used to modulate the loss contribution of each channel as
947 a function of the confidence of individual channels.
- 948 • Prompt: Visual Prompt Tuning method introduces a small amount of task-specific learnable
949 tokens while freezing the entire pretrained transformer blocks during deception detection
950 training.
- 951 • AVA: This work introduces a novel Transformer-based framework incorporating Audio-
952 Visual Adapter modules and Cross Uni- and Fused Modal Contrastive Loss (CUFMCCL) for
953 multi-modal deception detection which achieves superior performance under flexible-modal
954 scenarios.

955 E MORE EXPERIMENTS AND THE STANDARD DEVIATION REPORT BETWEEN 956 FOLDS

957 As discussed in the main text, we report here all cross-domain testing results along with more detailed
958 experimental findings. As shown in Tables 7 and 8, we additionally present the remaining results
959 for F1 and AUC. The average value and the standard deviation between different folds are shown in
960 Tables 5 and 6. Beside the analysis in the main text, the results in Tables 5 and 6 show that SPOT-JS is
961 more robust, since the evaluate metric between different folds have smaller standard deviation value.

962 F MORE ABLATION STUDIES

963 In this section, we systematically conduct ablation studies on all the proposed modules to thoroughly
964 demonstrate the effectiveness of each component. For clarity, when the CSKT module is excluded,
965 the original H-OTKT module is used instead. Likewise, when the OTCF or JS-Align modules are

972 Table 5: Comparison results on RLT dataset and DOLOS dataset with F1, ACC and AUC metrics.
 973 Both mean and standard deviation are reported (mean \pm std).

(a) Results with visual modality.							
Target	Method	RLT			DOLOS		
		F1	ACC	AUC	F1	ACC	AUC
OpenFace + SVM		0.2253 \pm 0.2605	0.5293 \pm 0.0361	0.5571 \pm 0.0470	0.6975 \pm 0.0010	0.5355 \pm 0.0012	0.5430 \pm 0.0160
OpenFace + Decision Tree		0.5553 \pm 0.1157	0.5303 \pm 0.1048	0.5303 \pm 0.1048	0.5358 \pm 0.0303	0.5058 \pm 0.0262	0.5058 \pm 0.0262
OpenFace + Random Forest		0.6033 \pm 0.0867	0.6033 \pm 0.0559	0.5997 \pm 0.0574	0.6175 \pm 0.0193	0.5367 \pm 0.0227	0.5466 \pm 0.0272
OpenFace + AdaBoost		0.5199 \pm 0.1523	0.5303 \pm 0.0980	0.5766 \pm 0.1070	0.5536 \pm 0.0251	0.5057 \pm 0.0329	0.5035 \pm 0.0357
AU + SVM		0.4562 \pm 0.0723	0.5043 \pm 0.0726	0.4670 \pm 0.0970	0.6813 \pm 0.0194	0.5276 \pm 0.0126	0.5242 \pm 0.0089
AU + Decision Tree		0.4466 \pm 0.1577	0.4643 \pm 0.1167	0.4643 \pm 0.1167	0.5453 \pm 0.0172	0.5173 \pm 0.0137	0.5173 \pm 0.0137
AU + Random Forest		0.5534 \pm 0.0792	0.5463 \pm 0.0810	0.5330 \pm 0.0766	0.5808 \pm 0.0183	0.5045 \pm 0.0256	0.5157 \pm 0.0230
AU + AdaBoost		0.5130 \pm 0.0530	0.4877 \pm 0.0612	0.4835 \pm 0.0833	0.5295 \pm 0.0302	0.4876 \pm 0.0185	0.4735 \pm 0.0264
OpenFace + LSTM		0.5241 \pm 0.0995	0.5623 \pm 0.0834	0.5952 \pm 0.1164	0.5928 \pm 0.0342	0.5628 \pm 0.0164	0.5854 \pm 0.0152
AU + LSTM		0.4888 \pm 0.0472	0.6197 \pm 0.0419	0.6760 \pm 0.0442	0.6343 \pm 0.0084	0.5646 \pm 0.0137	0.5868 \pm 0.0098
ResNet18 + LSTM		0.4996 \pm 0.1391	0.6117 \pm 0.0718	0.6387 \pm 0.0928	0.6415 \pm 0.0124	0.5972 \pm 0.0087	0.5668 \pm 0.0136
PECL(only visual)		0.5880 \pm 0.1018	0.6528 \pm 0.0040	0.6734 \pm 0.0508	0.7010 \pm 0.0213	0.6387 \pm 0.0139	0.6770 \pm 0.0099
FreeLunch		0.7612 \pm 0.1207	0.8090 \pm 0.0782	0.8712 \pm 0.0782	0.6961 \pm 0.0147	0.6222 \pm 0.0221	0.6444 \pm 0.0221
ADC		0.7793 \pm 0.1218	0.8173 \pm 0.0942	0.8674 \pm 0.0943	0.6880 \pm 0.0163	0.6716 \pm 0.0157	0.7206 \pm 0.0157
Cr-KD-NCD		0.6957 \pm 0.1342	0.7200 \pm 0.0869	0.6928 \pm 0.0865	0.5850 \pm 0.0175	0.6091 \pm 0.0186	0.6013 \pm 0.0202
AFFAKT		0.8760 \pm 0.0516	0.8670 \pm 0.0558	0.8789 \pm 0.0516	0.7102 \pm 0.0233	0.6764 \pm 0.0199	0.7212 \pm 0.0292
SPOT-JS(Ours)		0.9600\pm0.0534	0.9600\pm0.0406	0.9948\pm0.0406	0.9643\pm0.0348	0.9649\pm0.0299	0.9692\pm0.0299
		+8.40%	+9.30%	+11.59%	+25.41%	+28.85%	+24.80%

(b) Results with audio modality.

Target	Method	RLT			DOLOS		
		F1	ACC	AUC	F1	ACC	AUC
MFCC + MLP		0.5226 \pm 0.2911	0.6367 \pm 0.1263	0.7030 \pm 0.0502	0.5963 \pm 0.0757	0.5810 \pm 0.0232	0.6134 \pm 0.0279
OpenSMILE + MLP		0.6885 \pm 0.1275	0.6597 \pm 0.1121	0.5926 \pm 0.0916	0.6867 \pm 0.0128	0.5537 \pm 0.0095	0.5325 \pm 0.0091
W2V2 + MLP		0.6117 \pm 0.0810	0.6780 \pm 0.0266	0.6106 \pm 0.0631	0.4383 \pm 0.0333	0.5421 \pm 0.0115	0.5369 \pm 0.0120
PECL(only audio)		0.7121 \pm 0.0748	0.7100 \pm 0.0718	0.6962 \pm 0.0796	0.6777 \pm 0.0364	0.6119 \pm 0.0200	0.6281 \pm 0.0155
FreeLunch		0.6432 \pm 0.0989	0.6850 \pm 0.0704	0.6944 \pm 0.0704	0.6589 \pm 0.0334	0.5979 \pm 0.0203	0.6196 \pm 0.0188
ADC		0.6402 \pm 0.0922	0.6767 \pm 0.0744	0.6858 \pm 0.0744	0.6196 \pm 0.0814	0.6058 \pm 0.0135	0.6040 \pm 0.0135
AFFAKT		0.7316 \pm 0.0493	0.7440 \pm 0.0707	0.7396 \pm 0.0768	0.6982 \pm 0.0210	0.6198 \pm 0.0076	0.6391 \pm 0.0184
SPOT-JS(Ours)		0.8571\pm0.0222	0.8333\pm0.0161	0.8438\pm0.0161	0.7463\pm0.0214	0.7143\pm0.0094	0.7659\pm0.0094
		+12.55%	+8.93%	+13.19%	+4.81%	+9.45%	+12.68%

(c) Results with fused modalities.

Target	Method	RLT			DOLOS		
		F1	ACC	AUC	F1	ACC	AUC
OpenFace \oplus OpenSMILE		0.6895 \pm 0.0463	0.6781 \pm 0.0752	0.6212 \pm 0.0671	0.6124 \pm 0.0354	0.5986 \pm 0.0153	0.5863 \pm 0.0136
ResNet18 \oplus OpenSMILE		0.6283 \pm 0.0498	0.6853 \pm 0.0627	0.6598 \pm 0.0763	0.5863 \pm 0.0263	0.6152 \pm 0.0175	0.6485 \pm 0.0121
PECL		0.7102 \pm 0.0215	0.6939 \pm 0.0488	0.7424 \pm 0.0569	0.7084 \pm 0.0142	0.6597 \pm 0.0114	0.6353 \pm 0.0108
FreeLunch		0.7695 \pm 0.0799	0.8093 \pm 0.0782	0.8547 \pm 0.0781	0.6807 \pm 0.0251	0.6289 \pm 0.0060	0.6669 \pm 0.0060
ADC		0.7493 \pm 0.0703	0.8093 \pm 0.0782	0.8446 \pm 0.0782	0.6997 \pm 0.0010	0.6746 \pm 0.0126	0.7307 \pm 0.0115
AFFAKT		0.8412 \pm 0.0848	0.8427 \pm 0.0768	0.8563 \pm 0.0688	0.7149 \pm 0.0099	0.6810 \pm 0.0140	0.7289 \pm 0.0092
SPOT-JS(Ours)		0.9630\pm0.0473	0.9600\pm0.0172	0.9679\pm0.0172	0.9474\pm0.0264	0.9474\pm0.0233	0.9846\pm0.0233
		+12.18%	+11.73%	+11.16%	+23.25%	+26.64%	+25.57%

absent, we adopt a simple baseline strategy that sums half of the video features with half of the audio features. When TDAM is not used, we adopt the traditional method of encoding each image individually. The results are shown in Table 9.

G DATASETS AND EXPERIMENTAL SETTINGS

G.1 DATASETS

Deception Detection Datasets. We conduct the experiments on three most widely used datasets in deception detection task, Real Life Trial (RLT) dataset, DOLOS dataset and Box of Lies (BOL) dataset:

- **Real Life Trial (RLT)** dataset is a popular real-world dataset collected from public court trials, which consists of 121 videos including 61 deceptive and 60 truthful video clips. As it is a real-world dataset, the Real Life Trial dataset has more noise on both the video and audio.

1026 Table 6: Comparison results on BOL dataset with F1, ACC and AUC metrics. Both mean and
 1027 standard deviation are reported (mean \pm std).

(a) Results with visual modalities.

Target	Box of lies		
	Method	F1	ACC
CMFL	0.5584 \pm 0.0508	0.4403 \pm 0.0607	0.4907 \pm 0.0512
SE-Concat	0.5606 \pm 0.0613	0.5678 \pm 0.0577	0.5657 \pm 0.0546
Prompt	0.6785 \pm 0.0512	0.5451 \pm 0.0566	0.6143 \pm 0.0483
PECL	0.6832 \pm 0.0486	0.5705 \pm 0.0511	0.6476 \pm 0.0431
AVA+CUFMCL	0.6953 \pm 0.0712	0.5947 \pm 0.0733	0.6743 \pm 0.0789
SPOT-JS(Ours)	0.9333\pm0.0066	0.9111\pm0.0088	0.9551\pm0.0088
	+23.80%	+31.64%	+28.08%

(b) Results with audio modalities.

Target	Box of lies		
	Method	F1	ACC
CMFL	0.5812 \pm 0.0723	0.5308 \pm 0.0755	0.5406 \pm 0.0637
SE-Concat	0.5694 \pm 0.0688	0.5530 \pm 0.0639	0.5638 \pm 0.0628
Prompt	0.6684 \pm 0.0433	0.5673 \pm 0.0487	0.5799 \pm 0.0453
PECL	0.6726 \pm 0.0311	0.5828 \pm 0.0343	0.6122 \pm 0.0289
AVA+CUFMCL	0.6972 \pm 0.0233	0.5987 \pm 0.0289	0.6456 \pm 0.0241
SPOT-JS(Ours)	0.9310\pm0.0066	0.9111\pm0.0088	0.9131\pm0.0088
	+23.38%	+31.24%	+26.75%

(c) Results with fused modalities.

Target	Box of lies		
	Method	F1	ACC
CMFL	0.6568 \pm 0.0763	0.5350 \pm 0.0688	0.5635 \pm 0.0873
SE-Concat	0.6721 \pm 0.0733	0.5919 \pm 0.0782	0.6109 \pm 0.0725
Prompt	0.6891 \pm 0.0655	0.5954 \pm 0.0635	0.6256 \pm 0.0689
PECL	0.6723 \pm 0.0543	0.6078 \pm 0.0509	0.6433 \pm 0.0578
AVA+CUFMCL	0.6920 \pm 0.0482	0.6256 \pm 0.0473	0.6667 \pm 0.0479
SPOT-JS(Ours)	0.9153\pm0.0163	0.8889\pm0.0243	0.9393\pm0.0243
	+22.33%	+26.33%	+27.26%

- **Box of Lies (BOL)** is a deception dataset collected from an online gameshow, which consists of 225 videos including 144 deceptive and 81 truthful video clips. (6 male and 20 female). The full video set contains 29 truthful and 36 deceptive rounds of games.
- **DOLOS** is the largest game-show deception detection dataset recently proposed in the field, containing rich deceptive dialogues. The dataset consists of 1,675 video clips featuring 213 subjects (141 male and 72 female participants), with each clip lasting 2-19 seconds.

Please note that the DOLOS dataset is not a publicly available dataset. If you wish to use this dataset, you need to submit a relevant application.

Facial Expression Recognition Datasets. One *in-the-wild* VFER datasets (DFEW is employed in our experiments. It contains 16372 samples with 7 expression categories. For DFEW, we only use 11697 single-labeled clips:

- **DFEW** is a large-scale real-world dataset collected from over 1,500 movies, consisting of 16,372 video clips annotated with seven basic emotions (anger, disgust, fear, happy, sad, surprise, neutral). As a real-world dataset, DFEW contains significant variations in illumination, pose, and occlusion, making it highly challenging for facial expression recognition tasks.

If you wish to use this dataset, you need to submit a relevant application.

1080 Table 7: We report cross-domain experimental results on the RLT(R), BOL(B), and DOLOS(D)
 1081 datasets using the **F1** metric. Here, Ff refers to Face frames, while Mel refers to Mel spectrograms.
 1082

(a) Results with visual modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
AU+LSTM	0.4983	0.4979	0.5876	0.5322	0.5456	0.5124
Gaze+MLP	0.4869	0.5111	0.5948	0.5376	0.5569	0.5103
AU+Gaze+MLP	0.5089	0.5107	<u>0.6569</u>	0.5488	0.5516	0.5123
Affect+MLP	0.5186	0.5132	0.5869	0.5427	0.5539	0.5213
AU+Gaze+Affect+MLP	0.5257	0.5122	0.5947	0.5529	0.5563	0.5273
Ff+ResNet18	0.5283	0.5107	0.6109	0.5423	0.5674	0.5239
Ff+ResNet18+GRU	0.5238	0.5228	0.6329	0.5483	0.5613	0.5284
Ff+ResNet18+KNN	0.5329	0.5137	0.6307	0.5544	0.5689	0.5328
Ff+ResNet18+SVM	0.5428	0.5102	0.6218	0.5628	0.5719	0.5374
Ff+FFCSN	0.5328	0.5237	0.6279	<u>0.5695</u>	0.5673	0.5478
CLBF	0.5334	0.5134	0.4508	0.5434	<u>0.5739</u>	0.5428
PECL	<u>0.5616</u>	<u>0.5337</u>	0.6329	0.5528	0.5289	<u>0.5548</u>
SPOT-JS(Ours)	0.7188	0.8438	0.9333	0.7500	0.7059	0.6588
	+15.72%	+31.01%	+27.64%	+18.05%	+13.20%	+10.40%

(b) Results with audio modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
Acoustic + Prosodic+MLP	0.4537	0.5127	0.5319	0.5123	0.5226	0.4989
Mel+ResNet18	0.4989	0.5329	0.5384	0.5408	0.5279	0.4997
Mel+ResNet18+KNN	0.4864	0.5278	0.5467	0.5396	0.5431	0.5024
Mel+ResNet18+SVM	0.4927	<u>0.5428</u>	0.5427	0.5489	0.5487	0.5126
Waveform+Wave2Vec	0.5123	0.5319	0.5029	0.5499	0.5389	0.5183
PECL	<u>0.5233</u>	0.5307	<u>0.5489</u>	<u>0.6071</u>	<u>0.5667</u>	<u>0.5237</u>
SPOT-JS(Ours)	0.6400	0.7541	0.8333	0.6667	0.7586	0.6588
	+11.67%	+21.13%	+28.44%	+5.96%	+19.19%	+13.51%

(c) Results with fused modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
Average	0.5394	0.5843	0.5894	0.5407	0.4926	0.5128
Concat	0.5488	0.5869	0.5913	0.5659	0.4937	0.5146
SE-Concat	0.5349	0.5987	0.6157	0.5683	0.5127	0.5183
Cross-Atten	0.5429	0.6017	0.6169	0.5716	0.5186	0.5247
MLP-Mixer	0.5517	0.6149	0.5789	0.5783	0.5273	0.5383
PECL	0.5636	0.6192	0.5983	0.5639	<u>0.5473</u>	<u>0.5473</u>
Atten-Mixer	<u>0.5689</u>	<u>0.6497</u>	<u>0.6239</u>	<u>0.5938</u>	0.5429	0.5409
SPOT-JS(Ours)	0.6910	0.8125	0.8358	0.7500	0.8889	0.6506
	+12.21%	+16.28%	+21.29%	+15.62%	+34.16%	+10.33%

G.2 SPECIFIC EXPERIMENTAL DETAILS

Our experiments were conducted on a system running Ubuntu 22.04 and Python 3.9 with Torch 2.7.0, utilizing one RTX 4090 24GB GPU. All experiments share the same configuration: a threshold of 1×10^{-5} , a learning rate of 1×10^{-5} , α set to 0.95, δ set to 0.01, ϵ set to 0.01, and the AdamW optimizer with a weight decay of 1×10^{-5} . The batch size is set to 16 for video and fused modalities, and 64 for the audio modality during the training phase. For the testing phase, the batch size is 2 across all datasets and modalities, with 5-fold cross-validation. For a detailed explanation of the parameter symbols, please refer to Section G.3.

For the RLT dataset, the hyperparameters are configured as follows: For the video modality, we use ξ set to 0.2 and ν set to 0.1, with training for 20 epochs. The audio modality employs ξ set to 0.5 and

1134 Table 8: We report cross-domain experimental results on the RLT(R), BOL(B), and DOLOS(D)
 1135 datasets using the **AUC** metric. Here, Ff refers to Face frames, while Mel refers to Mel spectrograms.
 1136

(a) Results with visual modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
AU+LSTM	0.5017	0.5042	0.5776	0.5327	0.5437	0.5027
Gaze+MLP	0.5063	0.5093	0.5889	0.5317	0.5536	0.5113
AU+Gaze+MLP	0.5173	0.5147	0.6413	0.5376	0.5482	0.5174
Affect+MLP	0.5143	0.5129	0.5836	0.5568	0.5513	0.5238
AU+Gaze+Affect+MLP	0.5243	0.5078	0.5917	0.5463	0.5523	0.5217
Ff+ResNet18	0.5216	0.5144	0.6167	0.5489	0.5673	0.5289
Ff+ResNet18+GRU	0.5233	0.5273	0.6326	0.5583	0.5603	0.5311
Ff+ResNet18+KNN	0.5319	0.5198	0.6337	0.5519	0.5617	0.5344
Ff+ResNet18+SVM	0.5397	0.5089	0.6343	0.5609	0.5779	0.5333
Ff+FFCSN	0.5361	0.5219	0.6128	<u>0.5697</u>	0.5571	0.5421
CLBF	0.5217	0.5136	0.4409	0.5476	<u>0.5923</u>	<u>0.5567</u>
PECL	<u>0.5416</u>	<u>0.5289</u>	<u>0.6517</u>	0.5573	0.5783	0.5538
SPOT-JS(Ours)	0.7063	0.8410	0.9437	0.7726	0.7344	0.6799
	+16.47%	+31.21%	+29.20%	+20.29%	+14.21%	+12.32%

(b) Results with audio modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
Acoustic + Prosodic+MLP	0.4543	0.5139	0.5228	0.5117	0.5179	0.4928
Mel+ResNet18	0.5112	0.5216	0.5333	0.5233	0.5233	0.4969
Mel+ResNet18+KNN	0.4839	0.5276	<u>0.5444</u>	0.5322	0.5356	0.4822
Mel+ResNet18+SVM	0.4924	<u>0.5389</u>	0.5416	0.5446	0.5369	0.5111
Waveform+Wave2Vec	0.5073	0.5372	0.4907	0.5333	0.5377	0.5123
PECL	<u>0.5236</u>	0.5366	0.5413	<u>0.5726</u>	<u>0.5499</u>	0.5169
SPOT-JS(Ours)	0.6257	0.7447	0.7946	0.6927	0.6719	0.6316
	+10.21%	+20.58%	+25.02%	+12.01%	+12.20%	+11.47%

(c) Results with fused modality.

Method	R to D	D to B	R to B	D to R	B to R	B to D
Average	0.5329	0.5843	0.5864	0.5343	0.4927	0.5128
Concat	0.5389	0.5867	0.5837	0.5639	0.4993	0.5143
SE-Concat	0.5403	0.6013	0.6133	0.5647	0.5103	0.5162
Cross-Atten	0.5489	0.5986	<u>0.6176</u>	0.5761	0.5123	0.5197
MLP-Mixer	0.5512	0.6007	0.5786	0.5729	0.5219	0.5286
PECL	0.5593	0.6129	0.5943	0.5623	<u>0.5362</u>	0.5389
Atten-Mixer	<u>0.5673</u>	<u>0.6217</u>	0.6113	<u>0.5899</u>	0.5346	<u>0.5409</u>
SPOT-JS(Ours)	0.7178	0.7580	0.7941	0.7326	0.8768	0.6000
	+15.05%	+13.63%	+17.65%	+14.27%	+34.06%	+5.91%

1180 ν set to 0.05, also trained for 20 epochs. The fused modality adopts ξ set to 0.2, ν set to 0.05, with
 1181 training extended to 25 epochs.

1182 For the DOLOS dataset: the video modality is configured with ξ set to 0.2 and ν set to 0.1, trained
 1183 for 25 epochs; the audio modality uses ξ set to 0.25 and ν set to 0.1, trained for 25 epochs; and the
 1184 fused modality employs ξ set to 0.2, ν set to 0.1, trained for 25 epochs.
 1185

1186 For the BOL dataset: the video modality parameters include ξ set to 0.4 and ν set to 0.05, trained for
 1187 25 epochs; the audio modality uses ξ set to 0.2 and ν set to 0.1, trained for 25 epochs; and the fused
 1188 modality is configured with ξ set to 0.2, ν set to 0.1, trained for 25 epochs.

1188 Table 9: Ablation studies results. ① TDAM module, ② LCSF module, ③ CSKT module, ④ OTCF
1189 module, ⑤ JS-Align module.

1191 Case	1192 Target					1193 RLT			1194 DOLOS			1195 BOL				
	1196 Method	1197 ①	1198 ②	1199 ③	1200 ④	1201 ⑤	1202 modality	1203 F1	1204 ACC	1205 AUC	1206 F1	1207 ACC	1208 AUC	1209 F1	1210 ACC	1211 AUC
1212 A	1213 X	1214 X	1215 X	1216 X	1217 X	1218 X	1219 Visual	0.8760	0.8670	0.8789	0.7054	0.6764	0.7212	0.7302	0.6889	0.7377
							1220 Audio	0.7267	0.7270	0.7218	0.6822	0.6198	0.6391	0.7347	0.6444	0.7141
							1221 Fused	0.8162	0.8180	0.8381	0.7073	0.6810	0.7226	0.7119	0.6667	0.7279
1222 A1	1223 X	1224 X	1225 X	1226 X	1227 X	1228 X	1229 Fused	0.8333	0.8352	0.8594	0.7200	0.6927	0.7536	0.7407	0.7083	0.7551
							1230 Fused	0.8364	0.8393	0.8435	0.7213	0.6920	0.7552	0.7479	0.7045	0.7560
							1231 Fused	0.8406	0.8444	0.8628	0.7576	0.7045	0.9312	0.7755	0.7216	0.7913
1232 A2	1233 X	1234 X	1235 X	1236 X	1237 ✓	1238 ✓	1239 Visual	0.9071	0.9024	0.9248	0.8000	0.8020	0.8255	0.7838	0.7898	0.8333
							1240 Audio	0.8064	0.7630	0.8078	0.6964	0.6491	0.6562	0.7714	0.7333	0.7664
							1241 Fused	0.8462	0.8438	0.8628	0.7692	0.7708	0.7743	0.7647	0.7600	0.7886
1242 A3	1243 X	1244 X	1245 X	1246 ✓	1247 ✓	1248 ✓	1249 Fused	0.8788	0.8750	0.8928	0.7937	0.7917	0.8158	0.7945	0.7935	0.8160
							1250 Fused	0.8772	0.8800	0.8944	0.7925	0.7902	0.8198	0.8000	0.7975	0.8143
							1251 Fused	0.8929	0.8977	0.9110	0.8182	0.8068	0.8499	0.8333	0.8240	0.8333
1252 B	1253 ✓	1254 X	1255 X	1256 X	1257 X	1258 X	1259 Visual	0.8929	0.8854	0.8912	0.7600	0.7500	0.7777	0.7917	0.7586	0.8000
							1260 Audio	0.7797	0.7777	0.7761	0.6910	0.6364	0.6545	0.7500	0.7216	0.7760
							1261 Fused	0.8485	0.8519	0.8889	0.7407	0.7216	0.7630	0.7600	0.7102	0.7708
1262 C1	1263 X	1264 ✓	1265 X	1266 X	1267 X	1268 X	1269 Fused	0.8523	0.8693	0.8928	0.7502	0.7368	0.7743	0.7708	0.7333	0.7857
							1270 Fused	0.8593	0.8600	0.8957	0.7536	0.7378	0.7785	0.7786	0.7395	0.7814
							1271 Fused	0.8715	0.8767	0.9063	0.7605	0.7429	0.7857	0.7863	0.7501	0.7969
1272 C2	1273 X	1274 ✓	1275 X	1276 ✓	1277 ✓	1278 ✓	1279 Visual	0.9050	0.8977	0.8933	0.7760	0.7692	0.7976	0.7954	0.7981	0.8182
							1280 Audio	0.7692	0.7763	0.7857	0.6987	0.6506	0.6588	0.8523	0.8514	0.8660
							1281 Fused	0.8462	0.8438	0.8628	0.7692	0.7708	0.7743	0.7647	0.7600	0.7886
1282 C3	1283 X	1284 ✓	1285 X	1286 ✓	1287 ✓	1288 ✓	1289 Fused	0.8580	0.8571	0.8785	0.7763	0.7814	0.7891	0.7857	0.7812	0.7981
							1290 Fused	0.8609	0.8593	0.8766	0.7786	0.7784	0.7857	0.7785	0.7796	0.7934
							1291 Fused	0.8818	0.8800	0.8912	0.7898	0.7917	0.8021	0.7990	0.7921	0.8191
1292 D	1293 X	1294 X	1295 ✓	1296 X	1297 X	1298 X	1299 Visual	0.9375	0.9375	0.9635	0.9057	0.9123	0.9295	0.8816	0.8636	0.9289
							1300 Audio	0.8333	0.8160	0.8420	0.7292	0.6964	0.7236	0.8710	0.8750	0.8677
							1301 Fused	0.9167	0.9200	0.9143	0.8525	0.8772	0.8524	0.8421	0.8222	0.8494
1302 E1	1303 ✓	1304 ✓	1305 X	1306 ✓	1307 X	1308 X	1309 Fused	0.9286	0.9261	0.9253	0.8848	0.8854	0.8848	0.8571	0.8370	0.8736
							1310 Fused	0.9231	0.9271	0.9248	0.8864	0.8809	0.8928	0.8529	0.8321	0.8770
							1311 Fused	0.9333	0.9323	0.9306	0.9024	0.8977	0.9120	0.8696	0.8524	0.8928
1312 E2	1313 ✓	1314 ✓	1315 X	1316 ✓	1317 ✓	1318 ✓	1319 Visual	0.9306	0.9261	0.9313	0.9120	0.9167	0.9295	0.8928	0.8696	0.9169
							1320 Audio	0.8295	0.8128	0.8389	0.7274	0.6984	0.7194	0.8693	0.8723	0.8685
							1321 Fused	0.9063	0.9091	0.9027	0.8462	0.8696	0.8517	0.8432	0.8240	0.8387
1322 E3	1323 ✓	1324 ✓	1325 X	1326 ✓	1327 ✓	1328 ✓	1329 Fused	0.9120	0.9164	0.9200	0.8523	0.8800	0.8656	0.8514	0.8333	0.8459
							1330 Fused	0.9200	0.9184	0.9120	0.8571	0.8715	0.8609	0.8499	0.8352	0.8420
							1331 Fused	0.9286	0.9261	0.9259	0.8696	0.8854	0.8750	0.8528	0.8415	0.8524
1332 E4	1333 X	1334 ✓	1335 X	1336 X	1337 ✓	1338 ✓	1339 Visual	0.9184	0.9063	0.9024	0.8977	0.8799	0.8864	0.8750	0.8523	0.8715
							1340 Audio	0.8182	0.8080	0.8295	0.7135	0.6923	0.7309	0.8696	0.8683	0.8715
							1341 Fused	0.8854	0.8715	0.8661	0.8438	0.8399	0.8333	0.8588	0.8333	0.8696
1342 G1	1343 X	1344 ✓	1345 ✓	1346 ✓	1347 X	1348 ✓	1349 Fused	0.8926	0.8799	0.8799	0.8588	0.8455	0.8409	0.8594	0.8409	0.8770
							1350 Fused	0.8932	0.8848	0.8736	0.8522	0.8462	0.8455	0.8529	0.8399	0.8727
							1351 Fused	0.9063	0.8928	0.8912	0.8696	0.8621	0.8594	0.8696	0.8523	0.8973
1352 G2	1353 X	1354 ✓	1355 ✓	1356 X	1357 ✓	1358 ✓	1359 Visual	0.9600	0.9600	0.9948	0.9643	0.9649	0.9692	0.9333	0.9111	0.9551
							1360 Audio	0.8571	0.8333	0.8715	0.7463	0.7143	0.7659	0.9310	0.9111	0.9131
							1361 Fused	0.9375	0.9312	0.9248	0.9091	0.8958	0.9183	0.8621	0.8444	0.8919
1362 H1	1363 ✓	1364 ✓	1365 ✓	1366 ✓	1367 X	1368 ✓	1369 Fused	0.9479	0.9477	0.9419	0.9231	0.9167	0.9401	0.8909	0.8710	0.9037
							1370 Fused	0.9408	0.9383	0.9455	0.9286	0.9200	0.9312	0.8814	0.8667	0.9146

1371 H. MORE CASE STUDY

1372
H.1 CASE STUDY OF TDAM

1373
Before assessing the effectiveness of TDAM, it is helpful to recall a basic premise of deception
1374
deception detection: diagnostic cues rarely appear as isolated static expressions. Instead, they unfold as
1375
temporal micro-changes-brief activations of facial muscles, blinks or pupillary dilation/constriction,
1376
and rhythmic head movements. These cues are inherently time-dependent. However, conventional
1377
pipelines often decompose a video into individual frames and encode them independently, a practice

Table 10: Notations and their corresponding descriptions used in SPOT-JS.

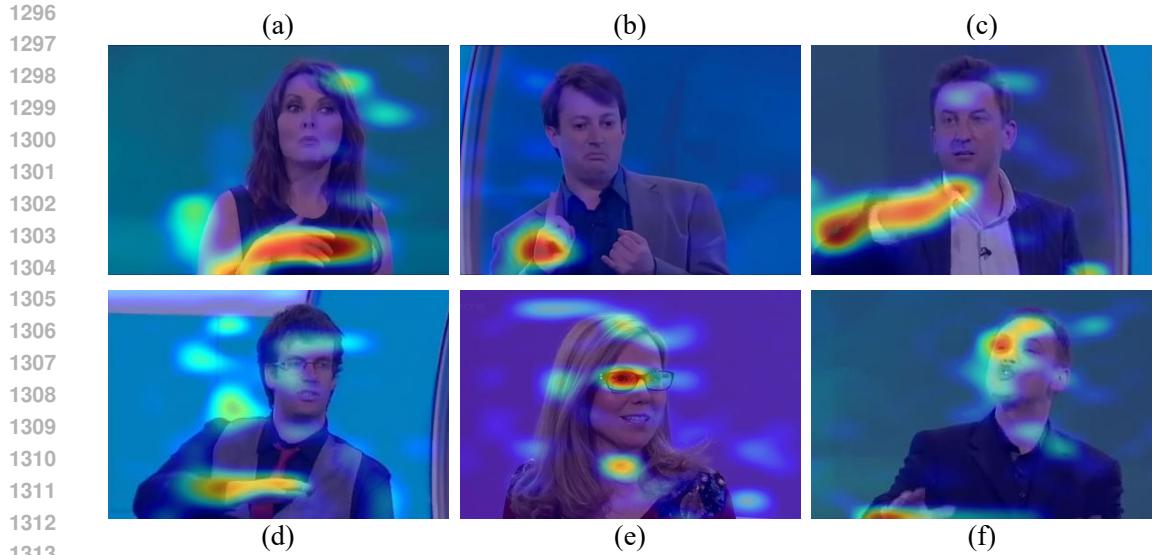
Notations	Description	Notations	Description
\mathbb{R}	Real number space	\mathbb{C}	Complex domain for spectra
$t \in \{a, v\}$	Modality indicator: audio (a) / video (v)	$y \in \{0, 1\}$	Class label (1 deceptive, 0 truthful)
$\mathbf{D} = \{\mathcal{X}, \mathcal{Y}\}$	Multimodal dataset	\hat{y}	Predicted label
$x = \{x^a, x^v\}$	A multimodal input pair	$f : \mathcal{X} \rightarrow \mathcal{Y}$	Decision function
x_v, x_a	Raw video / audio signals	\hat{x}_v, \hat{x}_a	Normalized/resampled inputs after TDAM
T, τ_0, τ	Video duration, start time, timestamp	N	Number of uniformly sampled key frames
f_i	i -th sampled frame	$\phi(\cdot) / T(\cdot)$	Color conversion / normalization transforms
B, H, W	Batch size, frame height, frame width	f_s, f'_s	Original / adjusted audio sampling rate
x_t	Encoded sequence for modality t	Videomae/ W2V2	Visual / audio encoders
$\mathbf{X}^t[k]$	DFT of x_t at frequency index k	$F_{\text{seq}} / F_{\text{seq}}^{-1}$	1D DFT / IDFT along sequence dim.
$\mathbf{X}^t \in \mathbb{C}^{B \times N \times D}$	Spectrum tensor (batch \times length \times dim)	D	Feature dimension
j	Imaginary unit in DFT ($e^{-j\cdot}$)	$ \mathbf{X}^t ^2$	Power spectrum of modality t
$\mathbf{C}^t = [C_1^t, \dots, C_k^t]$	Learnable Chebyshev coefficients	$\mathbf{K}^t = [k_1^t, \dots, k_k^t]$	Filter bank in LCSF
$\alpha, \theta_{\text{base}}$	Learnable factor and base angle in LCSF	\odot	Element-wise multiplication
$\tilde{\mathbf{X}}_v, \tilde{\mathbf{X}}_a$	Projected spectra for video/audio	$\mathbf{W}_s, \mathbf{W}_t \in \mathbb{R}^{D \times D}$	Linear projections for OTCF
\mathbf{M}	Ground cost matrix (cosine distance $1 - \cos$)	\mathbf{T}	Entropic-regularized OT transport plan
$\langle \cdot, \cdot \rangle_F$	Frobenius inner product	$\Pi(p, q)$	Set of couplings with marginals p, q
$\epsilon, \mathcal{H}(\cdot)$	Entropic reg. weight and entropy	z_t	Residually fused spectral feat. in OTCF
Z_t	z_t mapped back to spatial domain via IDFT	J	JS divergence between Z_v and Z_a
$\text{KL}(\cdot \parallel \cdot)$	Kullback-Leibler divergence	$\mathbf{M}_{JS} = \frac{1}{2}(Z_v + Z_a)$	Mean distribution used in JS-Align
$\mathbf{W}_a, \mathbf{W}_v$	Trainable fusion weights	\mathbf{f}	Final fused representation after JS-Align
$\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$	MLPs for mapping / transfer / classification	$\mathbf{f}' = \mathcal{F}_1(\mathbf{f})$	Mapped target features ($\mathbb{R}^{n \times d}$)
n, d	Batch size and feature dim in CSKT	L_s	# classes of source VFER dataset (e.g., DFEW)
$\mathcal{Q}, \mathcal{Q}^k$	Uniform dist. over L_s classes / prototype of class k	\mathcal{P}	Uniform dist. over n target samples
$\delta_{(\cdot)}$	Dirac measure at a point	J_k	# samples in source class k
$\mathbf{X}_j^{s, k}$	j -th source sample in class k (VFER)	p_j^k	Importance of sample j in class k
$\mathbf{T}^{\text{low}, k}$	Low-level OT plan (mini-batch \leftrightarrow class- k samples)	$\mathbf{M}^{\text{low}, k}$	Low-level cost (cosine distance)
$\mathbf{X}^{\text{trans}}$	Transferred knowledge from source domain	$\mathbf{X}^{\text{fused}}$	$\xi' \mathbf{X}^{\text{trans}} + (1 - \xi') \mathbf{f}'$
ξ, ξ'	Max / current weight of transferred features	e, N_e	Current / total epochs (curriculum for ξ')
L_t	# classes in target deception task	\hat{y}	Classifier output in $\mathbb{R}^{n \times L_t}$
\mathcal{L}_{ce}	Cross-entropy loss	\mathcal{L}_{ot}, η	Sinkhorn divergence term and its weight
Δ_n	Probability simplex in \mathbb{R}^n	$\mathbb{E}[\cdot]$	Expectation operator

that conflicts with established observational principles in deception research and risks missing cross-frame dynamics and causal ordering. In contrast, our module adheres to this temporal nature by operating on contiguous frame sequences, enabling the model to observe how cues evolve over time. This design choice underpins the effectiveness of the TDAM.

H.2 FURTHER VISUALIZATION STUDY

In this section, we conduct further visual analysis to investigate the generalization capability and effectiveness of the proposed model.

In the main text, we explored scenarios where the model was trained and tested on a single dataset. To further evaluate its performance, we visualize the results of the model trained on the RLT dataset and tested on the DOLOS dataset. The RLT dataset contains high-risk courtroom deception scenarios, whereas DOLOS comprises low-risk deception scenarios from a large-scale gaming environment. As shown in Fig. 5, even when evaluated across different domains, the model consistently identifies



1314 Figure 5: More visualization cases. We visualize the cases trained on the RLT dataset and tested on
1315 the DOLOS dataset.

1316
1317 subtle key features. Subfigures (a) to (d) and (f) clearly demonstrate the models sustained attention
1318 to hand gestures, which have been established in traditional deception detection as indicators of
1319 lying. Subfigures (e) and (f) reveal that the model continues to focus on the eye region. Physio-
1320 logical responses such as pupil dilation and blink rate are well documented cues in conventional
1321 deception research and serve as critical indicators for deceit. These examples illustrate that our model
1322 successfully attends to various deception clues that are empirically validated in traditional studies,
1323 even when deployed in divergent real-world settings. Together with the case studies presented in the
1324 main text, these visual analyses elucidate the reasons behind our model’s strong performance in both
1325 within-domain and cross-domain deception detection, underscoring the superiority of our framework.

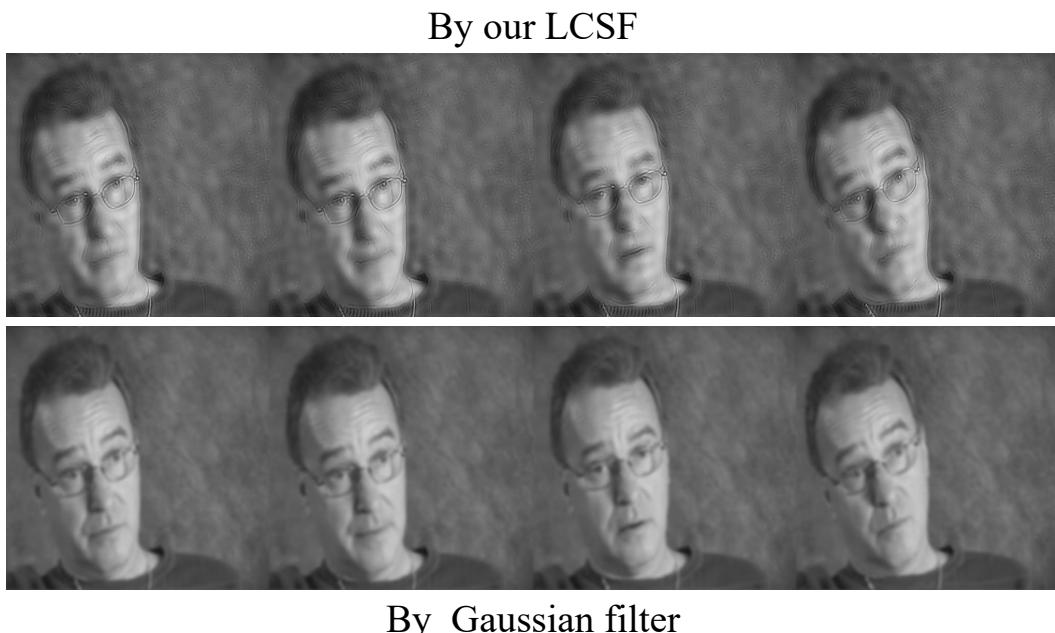


Figure 6: Visualization diagrams for detailed analysis after LCSF module filtering. The upper section
shows the images processed by our LCSF module, while the lower section displays the results
obtained using Gaussian filtering.

1350
1351

H.3 CASE STUDY OF LCSF MODULE

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366

To clarify the function of the LCSF module, we visualized its filtered outputs, as shown in Fig. 6. After processing through this module, facial details closely associated with deceptive behavior including pupil dynamics and blink patterns in the eye region, subtle facial muscle movements, skin texture variations, and lip morphology become more distinct, with noticeably enhanced contrast. These enhanced features provide critical visual evidence for deception identification. Additionally, low-frequency behavioral patterns such as head movements are effectively extracted within the frequency domain, clearly distinguishable from the background. This observation aligns with our earlier visualizations showing the models focus on the head region. In comparison, although traditional Gaussian filtering can suppress image noise and preserve low-frequency information, it tends to blur the image overall and fails to retain discriminative subtle behavioral cues. The output lacks sufficient detail in key regions such as the eyes, muscle movements, skin folds, and the mouth, making it difficult to support physiological behavior-based deception analysis. This comparison further validates the effectiveness and specificity of the LCSF module in enhancing discriminative frequency components.

1367
1368
1369
1370
1371

I ADDITIONAL EXPERIMENTS ON LCSF

Table 11: Performance comparison on MIntRec and MIntRec2.0 datasets.

Methods	MIntRec				MIntRec 2.0			
	ACC (%)	WF1 (%)	WP (%)	R (%)	ACC (%)	WF1 (%)	WP (%)	R (%)
MulT (Tsai et al., 2019)	72.52	71.80	72.60	67.44	56.95	54.26	54.49	40.65
MAG-BERT (Hasan et al., 2020)	72.16	71.30	72.03	67.61	55.87	52.58	53.71	39.93
TCL-MAP (Zhou et al., 2024)	73.69	73.38	73.90	71.59	56.99	54.33	55.07	41.87
MVCL-DAF (Hu et al., 2025a)	74.72	74.61	75.07	71.94	57.80	55.05	55.82	42.03
MVCL-DAF+LCSF (Ours)	76.40	76.33	76.67	74.35	60.26	59.19	60.54	54.12
Performance Improvement	+1.68	+1.72	+1.60	+2.41	+2.46	+4.14	+4.72	+12.09

1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389

To validate the effectiveness and generalization capability of the LCSF module, we conducted additional experiments in the field of intent recognition. As shown in Table 11, the integration of our proposed LCSF module brings significant performance improvements to the MVCL-DAF model, demonstrating the strong generalization and effectiveness of our approach. On the MintRec (Zhang et al., 2022) dataset, our enhanced method demonstrates remarkable gains compared to the baseline without LCSF: Accuracy (ACC) improves by 2.36%, Weighted F1-score (WF1) increases by 2.27%, Weighted Precision (WP) rises by 2.73%, and Recall (R) enhances by 3.69%. Similarly, evaluations on the MintRec 2.0 (Zhang et al., 2024) multi-turn emotional dialogue dataset show substantial performance improvements: ACC increases by 2.60%, WF1 by 4.30%, WP by 4.81%, and R by 12.09%.

1390
1391
1392

J ADDITIONAL EXPERIMENTS BASED ON ATTENTION

1393
1394

Table 12: Results with fused modalities. Comparison of our method with attention-based fusion methods.

Target	RLT			DOLOS			BOL		
	Method	F1	ACC	AUC	F1	ACC	AUC	F1	ACC
Attention	0.9432	0.9375	0.9410	0.9205	0.9145	0.9376	0.8864	0.8656	0.9116
SPOT-JS(Ours)	0.9630	0.9600	0.9679	0.9474	0.9474	0.9846	0.9153	0.8889	0.9393
	+1.98%	+2.25%	+2.69%	+2.69%	+3.29%	+4.70%	+2.89%	+2.33%	+2.77%

1400
1401
1402
1403

To provide an intuitive comparison with attention-based fusion methods, we conducted comparative experiments. As shown in Table 12, our fusion method demonstrates superior performance compared to attention-based fusion approaches.

1404 **K PSEUDO-CODE OF SPOT-JS**
1405

1406 The pseudo-code of SPOT-JS in training phase and testing phase are shown in Algorithm 1 and
1407 Algorithm 2, respectively.
1408

1409 **Algorithm 1** Training Algorithm of SPOT-JS
1410

1411 **Input:** Raw video-audio sample \mathbf{V} with synchronized streams; Source VFER knowledge \mathbf{X}^{s_0}
1412 (DFEW); model params Θ
1413 **Output:** Updated params Θ ; prediction \hat{y}
1414 1: # One iteration (minibatch)
1415 2: § TDAM: Preprocess & Temporal Alignment
1416 3: Sample frames and normalize: $\hat{\mathbf{x}}^v = T(\{\varphi(f_i)\}_{i=1}^N)$ # Eq. (1),(2)
1417 4: Extract & resample audio aligned to video: $\hat{\mathbf{x}}^a = R(A(\mathbf{V}), f'_s)$ # Eq. (3)
1418 5: § Feature Encoding
1419 6: $\mathbf{x}^v = \text{VideoMAE}(\hat{\mathbf{x}}^v)$; $\mathbf{x}^a = \text{W2V2}(\hat{\mathbf{x}}^a)$ # Eq. (4),(5)
1420 7: § DFT to Frequency Domain
1421 8: $\mathbf{X}^t = \mathcal{F}_{\text{seq}}(\mathbf{x}^t)$ for $t \in \{a, v\}$ # Eq. (6)
1422 9: § LCSF: Learnable Chebyshev Spectrum Filter ★
1423 10: Compute power spectra and filter: $\hat{\mathbf{X}}^t = \sum_{i=1}^k |\mathbf{X}^t|^2 \odot \mathbf{k}_i^t C_i^t$; $C_i^t = \cos((2i-1)\theta_{\text{base}})$ # Eq.
1424 (7),(8)
1425 11: § OTCF: Entropic-OT Cross-Modal Fusion (bi-directional)
1426 12: **for** $(s, t) \in \{(v, a), (a, v)\}$ **do**
1427 13: Project to shared space: $\tilde{\mathbf{X}}^s = \hat{\mathbf{X}}^s \mathbf{W}_s$, $\tilde{\mathbf{X}}^t = \hat{\mathbf{X}}^t \mathbf{W}_t$ # Eq. (11)
1428 14: Cost by cosine distance: $\mathbf{M} = 1 - \cos(\tilde{\mathbf{X}}^s, \tilde{\mathbf{X}}^t)$ # Eq. (12)
1429 15: Sinkhorn to solve entropic OT, get plan \mathbf{T} # Eq. (10)
1430 16: Residual transport: $\mathbf{z}_s = \mathbf{T} \tilde{\mathbf{X}}^t + \tilde{\mathbf{X}}^s$ # Eq. (13)
1431 17: Back to spatial: $\mathbf{Z}_s = \mathcal{F}_{\text{seq}}^{-1}(\mathbf{z}_s)$ # Eq. (14)
1432 18: **end for**
1433 19: § JS-Align: Jensen-Shannon Guided Alignment
1434 20: $J = \text{JS}(\mathbf{Z}_v \parallel \mathbf{Z}_a)$; $\mathbf{f} = (1-J)(\mathbf{W}_a \mathbf{Z}_a + \mathbf{W}_v \mathbf{Z}_v) + J \mathbf{Z}_a + J \mathbf{Z}_v$ # Eq. (15),(16)
1435 21: § CSKT: Chebyshev Spectrum-guided Knowledge Transfer ★
1436 22: Filter source knowledge: $\mathbf{X}^s = \text{LCSF}(\mathcal{F}_{\text{seq}}(\mathbf{X}^{s_0}))$ # Appx Eq. (1)
1437 23: Map target: $\mathbf{f}' = \mathcal{F}_1(\mathbf{f})$; build $P = \frac{1}{n} \sum_i \delta_{\mathbf{f}'_i}$, $Q = \frac{1}{L_s} \sum_k \delta_{\mathbf{Q}_k}$
1438 24: **for** $k = 1$ **to** L_s **do**
1439 # low-level OT to class- k
1440 25: $\mathbf{M}_{i,j}^{low,k} = 1 - \cos(\mathbf{f}'_i, \mathbf{X}_j^{s,k})$
1441 26: Solve $\mathbf{T}^{low,k}$ by Sinkhorn # Appx Eq. (4)
1442 27: $\mathbf{M}_{:,k}^{low,k} = \langle \mathbf{T}^{low,k}, \mathbf{M}^{low,k} \rangle_F$ # as cost for high-level
1443 28: **end for**
1444 29: High-level OT: $\mathbf{T} = \arg \min_{T \in \Pi(P, Q)} \langle T, \mathbf{M} \rangle_F - \epsilon H(T)$ # Appx Eq. (2)
1445 30: Transfer & IDFT: $\mathbf{X}^{trans} = \mathcal{F}_2\left(n \sum_k T_{:,k} \overline{\mathbf{X}}^{s,k}\right)$; $\mathbf{X}^{trans} \leftarrow \mathcal{F}_{\text{seq}}^{-1}(\mathbf{X}^{trans})$ # Appx Eq.
1446 (5),(6)
1447 31: Curriculum fuse: $\mathbf{X}^{fused} = \xi' \mathbf{X}^{trans} + (1-\xi') \mathbf{f}'$ # Appx Eq. (7)
1448 32: § SRKB bank update (adopted) ★
1449 33: Update knowledge bank \mathbf{B} (sample-specific re-weighting)
1450 34: § Classification, Loss, Backward
1451 35: $\hat{y} = \mathcal{F}_3(\mathbf{X}^{fused})$ # Appx Eq. (8)
1452 36: $\mathcal{L}_{ce} = -\mathbb{E}_y[\log \hat{y}]$; $\mathcal{L}_{ot} = d^{sOT}(P, Q) - \frac{1}{2} d^{sOT}(P, P) - \frac{1}{2} d^{sOT}(Q, Q)$ # Appx Eq. (9)-(10)
1453 37: $\mathcal{L} = \mathcal{L}_{ce} + \eta \mathcal{L}_{ot}$; **Backward**(\mathcal{L}) # Appx Eq. (11)
1454

1458 **Algorithm 2** Testing Algorithm of SPOT-JS

1459 **Input:** Raw video-audio sample \mathbf{V} ; frozen banks/backbones Θ

1460 **Output:** Predicted label \hat{y}

1461 1: # One iteration (inference)

1462 2: \mathcal{S}_{TDAM} # Eq. (1)-(3)

1463 3: $\mathcal{S}_{Feature\ Encoding}$ # Eq. (4),(5)

1464 4: \mathcal{S}_{DFT} # Eq. (6)

1465 5: \mathcal{S}_{LCSF} # Eq. (7),(8)

1466 6: $\mathcal{S}_{OTCF\ (bi-dir)} + \mathcal{S}_{IDFT}$ # Eq. (11)-(14)

1467 7: $\mathcal{S}_{JS-Align\ to\ get\ \mathbf{f}}$ # Eq. (15),(16)

1468 8: $\mathcal{S}_{CSKT\ transform\ \&\ fuse\ (frozen\ SRKB)}$ # Appx Eq. (1)-(7)

1469 9: $\mathcal{S}_{Classifier}$ $\hat{y} = \mathcal{F}_3(\mathbf{X}^{fused})$ # Appx Eq. (8)

1470

1471

1472 L CODE

1473

1474 Our codes is available: <https://anonymous.4open.science/r/9BFE/>

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511