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ABSTRACT

Knowledge distillation (KD) is a powerful strategy for training deep neural net-
works (DNNs). Although it was originally proposed to train a more compact
“student” model from a large “teacher” model, many recent efforts have focused on
adapting it to promote generalization of the model itself, such as online KD and self
KD. Here, we propose an accessible and compatible strategy named Spaced KD
to improve the effectiveness of both online KD and self KD, in which the student
model distills knowledge from a teacher model trained with a space interval ahead.
This strategy is inspired by a prominent theory named spacing effect in biological
learning and memory, positing that appropriate intervals between learning trials can
significantly enhance learning performance. With both theoretical and empirical
analyses, we demonstrate that the benefits of the proposed Spaced KD stem from
convergence to a flatter loss landscape during stochastic gradient descent (SGD).
We perform extensive experiments to validate the effectiveness of Spaced KD in
improving the learning performance of DNNs (e.g., the performance gain is up to
2.31% and 3.34% on Tiny-ImageNet over online KD and self KD, respectively)P_-]

1 INTRODUCTION

Knowledge distillation (KD) is a powerful technique to transfer knowledge between deep neural
networks (DNNs) (Gou et al., [2021; Wang & Yoon, 2021)). Despite its extensive applications to
construct a more compact “student” model from a converged large “teacher” model (aka offline KD),
there have been many recent efforts using KD to promote generalization of the model itself, such
as online KD (Zhang et al.l 2018} Zhu et al., |2018}]; |Chen et al.l [2020) and self KD (Zhang et al.,
2019; Mobahi et al.,|2020). Specifically, online KD simplifies the KD process by training the teacher
and the student simultaneously, while self KD involves using the same network as both teacher and
student. However, as these paradigms can only moderately improve learning performance, how to
design a more desirable KD paradigm in terms of generalization remains an open question.

Compared to DNNGs, biological neural networks (BNNs) are advantageous in learning and general-
ization with specialized adaptation mechanisms and effective learning procedures. In particular, it
is commonly recognized that extending the interval between individual learning events can consid-
erably enhance the learning performance, known as the spacing effect (Ebbinghaus, {2013} Smolen
et al.,[2016). This highlights the benefits of spaced study sessions for improving the efficiency of
learning compared to continuous sessions, and has been described across a wide range of species
from invertebrates to humans (Beck et al., [2000; |Pagani et al.|[2009; Menzel et al., 2001; /Anderson
et al.,|2008}; Bello-Medina et al., 2013} Medin, |1974}; Robbins & Bushl|1973)).Taking human learning
as an example, the spacing effect could enhance skill and motor learning (Donovan & Radosevich
1999; |Shea et al., 2000), classroom education (Gluckman et al.,|2014; Roediger & Byrne, 2008} [Sobel
et al.| 2011), and the generalization of conceptual knowledge in children (Vlach} 2014).

Inspired by biological learning, we propose to incorporate such spacing effect into KD (referred
to as Spaced KD, see Fig. [I)) as a general strategy to promote the generalization of DNNs (see
Fig.[2). We first provide an in-depth theoretical analysis of the potential benefits of Spaced KD.

'Our code is included in Supplementary Materials for examination and will be released upon acceptance.
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Figure 1: Diagram of Spaced KD. In online KD, the teacher and student are two individual networks.
In self KD, we follow the prior work (Zhang et al.,[2019) that distills knowledge from the deepest
layer to the shallower layers of the same network. In Spaced KD, we train a teacher network with a
controllable space interval steps ahead and then distill its knowledge to the same student network.

Compared to regular KD strategies, the proposed Spaced KD helps DNNss find a flat minima during
stochastic gradient descent (SGD) (Sutskever et al.| 2013)), which has proven to be closely related to
generalization. We then perform extensive experiments to demonstrate the effectiveness of Spaced
KD, across various benchmark datasets and network architectures. The proposed Spaced KD achieves
strong performance gains (e.g., up to 2.31% and 3.34% on Tiny-ImageNet over regular KD methods
of online KD and self KD, respectively) without additional training costs. We further demonstrate the
robustness of the space interval, the critical period of the spacing effect, and its plug-in nature to a
broad range of advanced KD methods.

Our contributions can be summarized as follows: (1) We draw inspirations from the paradigm of
biological learning and propose to incorporate its spacing effect to improve online KD and self
KD; (2) We theoretically analyze the potential benefits of the proposed spacing effect in terms
of generalization, connecting it with the flatness of loss landscape; and (3) We conduct extensive
experiments to demonstrate the effectiveness and generality of the proposed spacing effect across a
variety of benchmark datasets, network architectures, and baseline methods.

2 RELATED WORK

Knowledge Distillation (KD). Representative avenues of KD can be generally classified into
offline KD, online KD, and self KD, based on whether the teacher model is pre-trained and remains
unchanged during the training process. Offline KD involves a one-way knowledge transfer in a
two-phase training procedure. It primarily focuses on optimizing various aspects of knowledge
transfer, such as designing the knowledge itself (Hinton et al., 2015} [Adriana et al 2015), and
refining loss functions for feature matching or distribution alignment (Huang & Wang, [2017} [Asif]
letal] [2019;Mirzadeh et al.}[2020b). In contrast, online KD simplifies the KD process by training both
teacher and student simultaneously and often outperforms offline KD. For instance, DML
implements bidirectional distillation between peer networks. For self KD, the same
network is used as both teacher and student (Zhang et al.,[2019; [Das & Sanghavil, 2023;[Mobahi et al
[2020). In this paper, the self KD we refer to is the distillation between different layers within the
same network (Zhang et al.| 2019} [Yan et al, 2024). However, existing methods for online KD and
self KD often fail to effectively utilize high-capacity teachers over time, making it an intriguing topic
to further explore the relationships between teacher and student models in these environments.

Adaptive Distillation. Recent studies have found that the difference in model capacity between a
much larger teacher network and a much smaller student network can limit distillation gains
et al, [20204; [Cho & Hariharan, 2019} [Liu et al, 2020b). Current efforts to address this gap fall
into two main categories: training paradigms (Gao et al.,[2018)) and architectural adaptation
et al},[2020; [Gu & Tresp}, 2020). For instance, ESKD (Cho & Hariharan|, [2019) suggests stopping the
training of the teacher early, while ATKD (Mirzadeh et al.,|2020a) employs a medium-sized teacher
assistant for sequential distillation. SHAKE 2022)) introduces a shadow head as a proxy
teacher for bidirectional distillation with students. However, existing methods usually implement
adaptive distillation by adjusting teacher-student architecture from a spatial level. In contrast, Spaced
KD provides an architecture- and algorithm-agnostic way to improve KD from a temporal level.




Under review as a conference paper at ICLR 2025

Flatness of Loss Landscape. The loss landscape around a parameterized solution has attracted
great research attention (Keskar et al., 2016} [Hochreiter & Schmidhuber, |1994; [zmailov et al.,
2018; Dinh et al.,2017; |He et al., 2019). A prevailing hypothesis posits that the flatness of minima
following network convergence significantly influences its generalization capabilities (Keskar et al.|
2016). In general, a flatter minima is associated with a lower generalization error, which provides
greater resilience against perturbations along the loss landscape. This hypothesis has been empirically
validated by studies such as He et al.|(2019). Advanced advancements have leveraged KD techniques
to boost model generalization (Zhang et al.l [2018}; [Zhao et al.| 2023} |[Zhang et al., [2019). Despite
these remarkable advances, it remains a challenging endeavor to fully understand the impact of
KD on generalization, especially in assessing the quality of knowledge transfer and the efficacy of
teacher-student architectures.

3 PRELIMINARIES

In this section, we first present the problem setup and some necessary preliminaries of KD. Then we
describe the spacing effect in biological learning and discuss how it may inspire the design of KD.

3.1 PROBLEM SETUP

We describe the problem setup with supervised learning of classification tasks as an example. Given
N training samples Dyain = { (i, ;) Y., where z; € R? and y; € R¢, the neural network model
fo(*) : R? — R€ with parameters € € RP is optimized by minimizing the empirical risk over Dy,
and evaluated over the test dataset Di.g. Using the SGD optimizer (Sutskever et al., 2013)), fo(-) is
updated for each mini-batch of training data B; = {(x;, ¥i) € Duain }iez,> Zt € {1,2,---N}:

O =0~ 5 > VoLi(6), )
i€Zs

where L;(0) = lsk(fo(x;), y;) is a task-specific supervision loss. 7 and B = |Z;| denote the learning
rate and batch size, respectively. KD supports various kinds of interaction between multiple neural
networks. The teacher-student framework we refer to here consists by default of a teacher network
9o (+) and a student network fy(-), where the flow of knowledge transfer is often one-direction: the
learning of f is guided by the output of g, but not vice versa. The loss of student network f in
KD is bi-component as a weighted sum of task-specific and distillation loss (I, and lxp), where a
hyperparameter « controls the impact of teacher guidance:

LEP0,0) = (1 = a)luac(fo(2:), y:) + adio(fo(2:), g5 (2:))- @
In many applications, the teacher network g is often different from and much larger than the student
network to obtain a more compact model. Meanwhile, there is an increasing number of efforts
to implement KD to improve generalization for one particular architecture, where the teacher and
student may share a common framework but differ in the random seeds for initialization. Some
KD methods even treat different parts within one single network as teacher and student. Below we
describe two representative methods:

Online KD. Though traditional KD assumes the teacher network g as a pre-trained and powerful
model, there exist scenarios where obtaining such a teacher is costly or impractical. Online KD is
proposed to learn from an on-the-fly teacher network, allowing for dynamic adaptation during student
training. In online KD, the updating of g is aligned with f for every mini-batch B; with Z; (see Alg.

in Appendix [A.10)) ﬂ
77 eacher 7)
b1 =0 — 5 D VLI (d) = b — 5 > Viohas(g, (@), v:). 3)

1€Ly 1€y

The design of an online teacher is quite demand-oriented, it could be simply a copy of the student
network (Li et al.,2022b; |Wu & Gongl [2021). But to maintain a valid knowledge gap between student
and teacher, they are often initialized using different random seeds in practice. Besides, the training
process of teacher network could also be intervened by auxiliary loss from students through reverse
distillation (L1 & Jin, 2022; |Qian et al., 2022; [Shi et al., [2021).

2For clarity, we use the same notation 77, B and I to describe the training of g and f, although they may
select different training algorithms and hyperparameter values in practice.
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Figure 2: Alignment of spaced learning in BNNs and DNNs. (a) Computational cognitive model
of spaced learning, modified from [Landauer (1969). (b) Overall performance of Spaced KD from
different networks and benchmarks. R18: ResNet-18; R50: ResNet-50; R101: ResNet-101; C100:
CIFAR-100; T200: Tiny-ImageNet. (¢) Quadratic polynomial fitting of all performance from (b).

Self KD. As an alternate approach to a pre-trained teacher, self KD utilizes the hidden information
within the student network to guide its learning process. Instead of relying on a large external model,
self KD achieves multiple knowledge alignments by introducing auxiliary blocks or creating different
representations of the same encoded data. For a block-wise network, fo = fg, o fo, 0--- 0 fp, that
is composed of m consecutive modules, the whole network fy is regarded as teacher while shallower
blocks fo, . = fo, © -0 fo, (1 <k < m) are students. Following the common setting (Zhang|
, 0 is updated with multiple task supervision and cross-layer distillation, which in fact
can be formulated in terms of L€' in Eq.[8|land L in Eq.[2] (see Alg.[3]in Appendix [A.10):

m—1
9t+1 =0; — % Z AV L;teacher)(a) + }; LEKD)(elwk,e):| ) 4)

1€Tt

3.2 SPACING EFFECT IN BIOLOGICAL LEARNING

Originally discovered by [Ebbinghaus| (2013)), the biological spacing effect highlights that the
distribution of study sessions across time is critical for memory formation. Then, its functions
have been widely demonstrated in various animals and even humans (see Sec.[I)). Many cognitive
computing models have proposed the concept of spaced learning and described its dynamics, positing
an optimal inter-trial interval during memory formation (Landauer} [1969; [Peterson| [1966; Wickelgren,
[1972). These studies motivate us to further investigate if a proper space interval could benefit KD of
possible data variability across training batches. Here we provide more detailed explanations of the
interdisciplinary connections:

In machine learning, KD aims to optimize the parameters of a student network with the help of a
teacher network by regularizing their outputs to be consistent in response to similar inputs. As shown
in a pioneering theoretical analysis (Allen-Zhu & Li}, [2020)), KD shares a similar mechanism with
ensemble learning (EL) in improving generalization from the training set to the test set. In particular,
online KD performs this mechanism at temporal scales, and self KD can be seen as a special case
of online KD. In comparison, the biological spacing effect can also be generalized to a kind of EL
at temporal scales, as the brain network processes similar inputs with a certain time interval and
updates its synaptic weights based on previous synaptic weights, which allows for stronger learning

performance at test time (Pagani et al.}, 2009} [Smolen et al ., 2016).

The proposed Spaced KD draws inspirations from the biological spacing effect and capitalizes on the
underlying connections between KD and EL. It incorporates a space interval between teacher and
student to improve generalization. In particular, we hypothesize that an optimal interval may exist
between the learning paces of teacher and student in DNNGs, as in BNNs.

4 SPACED KD

In this section, we describe how Spaced KD is implemented into online KD and self KD, and include
a pseudo code for each in Appendix[A-T0] We then theoretically analyze the benefit of the proposed
spacing effect in improving generalization.
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4.1 INCORPORATING SPACING EFFECT INTO KD

By applying spaced learning in the pipeline of KD, more precisely in the context of online KD, we
implement a process of alternate learning between teacher and student. The teacher network updates
itself several steps in advance, and then it helps the student network train on the same set of batches.
Formally, we define a hyperparameter Space Interval denoted as s to represent the gap between the
teacher’s and student’s learning pace. Spaced KD is described as follows (see Fig.[I):

1. First, we train the teacher g, (-) for s steps (from B; to B;4,—1) according to the learning
rule in Eq. [3] l obtaining an advanced teacher gy, . () identical to that of online KD.

2. Then, we freeze the parameters ¢, s of our teacher g, and start to transfer knowledge from
it to the student fp, () that lags behind over the same batches of training data By.t4s—1:

t+571
0t+s - et - E 2 Z VOLEKD)(OJW ¢t+5)7 (5)
j=t ZEIJ'
where LEKD) is the same as Eq. but using fixed teacher parameters ¢y ;.

Intrinsically, Spaced KD is a special case of online KD. The main difference that sets Spaced KD
apart from online KD is the less frequent updates of the teacher network, which provides a relatively
stable learning standard for the student network and potentially contributes to its better generalization
ability than the online setting. In practice, we initialize the teacher in Spaced KD using the same
random seed as the student. To take a closer look, we theoretically illustrate the impact of the
proposed spacing effect on KD with step-by-step mathematical derivations in the next section.

4.2 THEORETICAL ANALYSIS

To understand why Spaced KD might provide better generalization than online K]ﬂ we analyze the
Hessian matrix of the loss function for the student network in both scenarios. The Hessian matrix
plays a crucial role in understanding the curvature of the loss landscape. In literature, various metrics
related to the Hessian matrix have been adopted to evaluate the flatness of a loss minimum after
training convergence, reflecting the generalization ability of the trained model (Krizhevsky et al.|
2009; Blanc et al., 2020; [Damian et al., 2021} [Zhou et al.| 2020). Here we choose the Hessian trace
as a representative for convenience. A smaller Hessian trace indicates a flatter loss landscape, which
has also been proved to be related to the upper bound of test set generalization error.

Setup. For simplicity we set the dimension of class space as ¢ = 1, and the extension of ¢ > 1 is
straightforward. Let the mean square error (MSE) be the task-specific loss. The KD loss characterizes
the distance between two distributions § and y: luk(9,y) = lkp (9, y) = 3(7 — y)*.

Hessian Matrix. For KD loss at the i-th data sample that follows Eq.[2] the Hessian matrix at a
point 0 of student fy(-) with respect to its teacher g,4(-) can be calculated as the second-derivative of

the empirical risk L*P) (0, ¢) = + Zfil LEP)(9, ¢). Tt could be easily verified that:

N
5 D [Vodolw)Vasolwn)™ + BG,0,6)V3 ()] ©

7,:1

where (i, 0, ¢) = (1 — a)(fo(zi) — yi) + a(fo(z;) — go(x:)), and in fact VoLEP(9,¢) =
B(i,0,0)Vgfo(x;). At arbitrary time stamp ¢ during the supervised training process, the teacher
model’s parameters for student ¢; in online KD is ¢;. In Spaced KD it should be ¢y with
k(t) = ([t/s])s where [-] denotes ceiling operation. Notice that for online KD, the loss function
constantly changes due to the update of the teacher, but when we focus on the loss curve for a

particular ¢, the differentiability of LEKD) are preserved, allowing us to continue the discussion.

Hy(0) = Vo L™ (6

Definition 4.1 (Local linearization.). Let 6* be a local minimizer of loss function w.r.t fo(-), we call
the local linearization of fp(-) at 0 around 0* as: fo(x) = fo= () + (0 — 0, Vo fo- (2)).

3For all theoretical analysis and conclusions in this section, we treat self KD as a special case of online KD
since they share the same teacher-student relations. In the later Sec.[3] our experiments empirically support this
argument as they behave similarly.
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For both teacher and student networks, this linearized model in Def. 4.1 provides an applicable
approximation of the local dynamic behavior around a converged point. We denote ¢* and 6* as
the local minimizer of teacher and student, respectively. Without loss of generality, we assume that
after enough learning steps, Vz;, g4+ (x;) = fo~(z;) = y; which means both models follow the
over-parameterized setting so that their training set accuracy eventually become 100%. Therefore,
when the student network fy(-) converges to a local minimizer #* in both online KD and Spaced KD,
its corresponding teacher network g, (+) should also be close to ¢* :

B(i,0%,¢) = (1 — ) (for (x:) — vi) + afo- (i) — g ()
= ap — ¢, Vogsr (i) = alAd' Vge- (2:),

where A¢ = ¢ — ¢*. [ directly reflects the difference in the teacher model updating between online
KD and Spaced KD. We then demonstrate how the combination of mini-batch training and space
interval affects the role of the teacher model under the KD framework.

(N

Definition 4.2 (Teacher model gap). For a teacher model g, (-) trained with SGD using the updating
rule in Eq. | we define current prediction error over training dataset as the performance gap between

¢ and loss minima ¢*: u(¢) = + Eivzl AP TV 494 (:)].

At a training step t close to convergence (a global time stamp) of the student model, considering the
randomness brought by mini-batch sampling, we denote u; = E[u(¢;)] for online KD, and ;) =

E [u ((;Sk(t))] for Spaced KD (with space interval s) as the parameter gap of their corresponding
teacher models, respectively.

Lemma 4.3 (Lower risk of spaced teacher). ;) < uy.

Proof. 1t is straightforward that the teacher with ¢ (;) in Spaced KD is an advanced model which
has undergone several updating iterations ahead of the student at step ¢t. Namely, by definition
t < k(t) = ([t/s])s < t + s. Thus, given the fact that SGD eventually selects a loss minima
with linear stability (Wu et al), ie., E[L(%h) (¢, )] < E[L(*heD)(¢,)] around ¢*, we have

Ug(r) < Ut O]

Theorem 4.4. [f the student model fy(-) converges to a local minimizer 0* at step t of SGD, let
ng) (6*) and H, f: (6*) be the Hessian of online KD and Spaced KD, then

E(Tr(HS? ()] < BT (H (6%)].

The comparison between the Hessian trace for Spaced KD and online KD finally settles in the
difference between a spaced but advanced teacher and a frequently updated teacher. Detailed proof
of Theorem 4] are provided in Appendix [A:T]with the help of Lemma[4.3] indicating a flatter loss
landscape and thus potentially better generalization ability for the student network of Spaced KD.

Discussion. The above analysis reveals key distinctions between Spaced KD, offline KD, and online
KD. Spaced KD guides the student f with a well-defined trajectory established by the teacher g
that is slightly ahead in training [Shi et al.| (2021)); |Rezagholizadeh et al.| (2021)), thereby ensuring
low errors along such informative direction to improve generalization. With an ideal condition
where g and f converge to the same local minima, offline KD and Spaced KD should perform
identically best. However, this ideal condition hardly exists in practice, especially given the nature of
over-parameterization in advanced DNNs and the complexity of real-world data distributions. These
two challenges result in a highly non-convex loss landscape of both g and f with a large number of
local minima. Therefore, using a well-trained teacher in offline KD tends to be sub-optimal since g
and f can easily converge to different local minima with SGD. In comparison, the limitation of online
KD lies in its narrow, constant interval between g and f, restricting the exploration of informative
directions. By maintaining an appropriate spaced interval, Spaced KD allows for broader explorations
and encourages convergence to a more desirable region of the loss landscape, empirically validated in
the following section.

5 EXPERIMENT

In this section, we first describe experimental setups and then present experimental results.
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5.1 EXPERIMENTAL SETUPS

Benchmark. We evaluate the proposed spacing effect on both ResNet-based architectures (He et al.,
2016)) such as ResNet-18, ResNet-50 and ResNet-101, and transformer-based architectures (Doso-
vitskiy et al.,|2020) such as DeiT-Tiny (Touvron et al.|2021)) and PiT-Tiny (Heo et al.,[2021)). We
consider four commonly used image classification datasets: CIFAR-100 (Krizhevsky et al., [2009),
Tiny-ImageNet, ImageNet-100, and ImageNet-1K (Russakovsky et al 2015). CIFAR-100 is a
well-known image classification dataset of 100 classes and the image size is 32 x 32. Tiny-ImageNet
consists of 200 classes and the image size is 64 x 64. ImageNet-100 and ImageNet-1K contain 100
and 1000 classes of images, respectively, and the image size is 224 x 224.

Implementation. For ResNet-based architectures, we use an SGD optimizer (Sutskever et al.
2013) with 0.9 momentum, 128 batch size, 80 epochs, and a constant learning rate of 0.01. For
KD-related hyperparameters (Zhang et al.,|2019), we use a distillation temperature of 3.0, a feature
loss coefficient of 0.03, and a KL-Divergence loss weight of 0.3. For transformer-based architectures,
we use an AdamW optimizer (Loshchilov & Hutter, 2017a) of batch size 128 and epoch number 300
(warm-up for 20 epochs). Besides, a cosine learning rate decay policy (Loshchilov & Hutter, 2017b)
is utilized with initial learning rate 5e — 4 and final 5e — 6, following the training pipeline of previous
works (Liu et al., 2021} L1 et al.,[2022a}; |Sun et al., [ 2024)).

For Spaced KD, we manually control a sparse interval s in terms of epochs, which is proportional to
the total number of samples in the training set (e.g., s = 0.5 denotes half of the training set). To avoid
potential bias, the training set is shuffled and both teacher and student receive the same data flow. In
online KD, the teacher employs the same network architecture as the student if not specified, distilling
both response-based (Hinton et al.,2015) and feature-based (Adriana et al., | 2015) knowledge. In self
KD, the teacher is the deepest layer of the network and the students are the shallow layers along with
auxiliary classifiers (Zhang et al.,[2019). Specifically, ResNet-based architectures consist of 4 blocks
so 3 students correspond to the three shallower blocks. The number of students for transformers
depends on the network depth, namely, 11 in our setup. Auxiliary alignment layers and classifier
heads are utilized to unify the dimensions of feature and logit vectors produced by students from
different depths for distillation. Unless otherwise specified, all results are averaged over three repeats.

5.2 EFFECTIVENESS AND GENERALITY OF SPACING EFFECT

Overall Performance. Our proposed Spaced KD outperforms traditional online KD [I] and self
KD [2] across different datasets and networks. The performance of different intervals can be seen
in Fig.[2]and Tab.[6] Compared to vanilla online KD and self KD, the enhancement of accuracy is
2.14% on average, with moderate variations from a minimum of 1.19% on ResNet-101 / CIFAR-100
to a maximum of 3.44% on ResNet-101 / Tiny-ImageNet. For the larger dataset ImageNet-1K, our
Spaced KD improves the performance for ResNet-18 and ViT networks by up to 5.08% (see Fig.[5]

Tab.[7]of Appendix [A-4).

Teacher-Student Gap Considering that capacity gaps between teacher and student for their different
architectures or training progress would affect distillation gains (see Sec. [J), we further evaluate
various teacher-student pairs across model sizes and architectures, and Spaced KD remains effective
in all cases (see Tab. [8|and Tab.0]in Appendix [A23). Interestingly, if we train the teacher ahead of the
student by s steps at the beginning and then distill its knowledge to the student maintaining a constant
training gap, there is no significant improvement over the online KD (see Tab.[T0). This indicates the
particular strength of Spaced KD, which applies in the later stage rather than the early stage.

Different KD Losses. To evaluate generality, we implement Spaced KD with representative loss
functions, such as L1, smooth L1, MSE (reduction=mean), MSE (reduction=sum), and cross-entropy.
As shown in Tab. 3| Spaced KD applies to different loss functions with consistent improvements.

Different KD Methods. We combine our Spaced KD with other more advanced KD methods,
including (1) traditional KD such as BAN (Furlanello et al., [2018) and TAKD (Mirzadeh et al.|
2020a)), (2) online KD such as DML (Zhang et al.,[2018) and SHAKE (Li & Jin, |2022), and (3) self
KD such as DLB (Shen et al.|, [2022)) and PSKD (Kim et al., [2021) (see Appendix @ for details).
As shown in Tab. ] Spaced KD brings significant improvements to a wide range of KD methods.
The above results suggest that the benefits of Spaced KD arise from the fundamental properties of
parameter optimization in deep learning, consistent with our theoretical analysis in Sec. 4.4}



Under review as a conference paper at ICLR 2025

Table 1: Overall performance of online KD (%). Here are the results for online KD with an interval
of 1.5 epochs. The performance of different intervals can be seen in Fig.[2]and Tab.[6] A indicates
Spaced KD’s performance gain w.r.t online KD.

Dataset Network w/o KD  w/oOurs w/OQOurs A
ResNet-18 68.12 71.05 72.43 +1.38
ResNet-50 69.62 71.85 73.77 +1.92
CIFAR-100 ResNet-101 70.04 72.03 73.22 +1.19
DeiT-Tiny 64.77 65.67 67.30 +1.63
PiT-Tiny 73.45 74.14 75.55 +1.41
ResNet-18 53.08 59.19 60.75 +1.56
ResNet-50 56.41 60.99 63.30 +2.31
Tiny-ImageNet ResNet-101 56.99 61.29 63.76 +2.47
DeiT-Tiny 50.23 51.82 54.20 +2.38
PiT-Tiny 57.89 58.25 60.25 +2.00
ResNet-18 77.82 78.73 80.39 +1.66
ResNet-50 77.95 79.78 82.43 +2.65
DeiT-Tiny 70.52 70.72 73.34 +2.62
PiT-Tiny 76.10 76.60 78.34 +1.74

Table 2: Overall performance of self KD (%). Here are the results for self KD with an interval of 4.0
epochs. A indicates Spaced KD’s performance gain w.r.t self KD.

ImageNet-100

Dataset Network w/o KD  w/o Ours w/Ours A
ResNet-18 68.12 73.29 75.73 +2.44
CIFAR-100 ResNet-50 69.62 75.73 78.73 +3.00
ResNet-101 70.04 76.16 79.24 +3.08
Deit-Tiny 64.77 65.24 68.26 +3.02
ResNet-18 53.08 61.08 62.83 +1.75
Tiny-ImageNet  ResNet-50 56.41 63.58 65.80 +2.22
ResNet-101 56.99 63.35 66.79 +3.44
Deit-Tiny 50.17 49.73 53.59 +3.86
ImageNet-100  ResNet-18 77.82 76.21 79.27 +3.06
Deit-Tiny 69.52 70.50 73.46 +2.96

5.3 EXTENDED ANALYSIS OF SPACING EFFECT

Sensitivity of Space Interval. Through extensive investigation (see Fig. 2] and Tab. [6] in Ap-
pendix [A.2)), the space interval s is relatively insensitive and s = 1.5 results in consistently strong
improvements. Therefore, we selected it as the default choice to obtain the performance of our Spaced
KD in all comparisons. This property also largely avoids the computational cost and complexity of
model optimization imposed by the new hyperparameter.

Critical Period of Spaced KD. In order to better understand the underlying mechanisms of Spaced
KD, we empirically investigate the critical period of implementing the proposed spacing effect. As
shown in Fig. 3] we control the start time of spaced distillation throughout the training process, and
discover that initiating Spaced KD in the later stage of training is more beneficial than the early
stage for performance improvements of the student network. This suggests that in KD, not only
the interval between learning sessions but also the timing of spaced learning are important. Unlike
previous understandings that attribute the KD efficacy to the knowledge capacity gap between the
teacher and the student (where Spaced KD should be more effective in the early stage of training,
see Sec. [2)), our results point out a novel direction for KD research from a temporal perspective.
Specifically, the “right time to learn” is critical for the student, and the teacher could influence the
student’s convergence to a better solution by intervening during the later training stage.

Learning Rate and Batch Size. As described in previous works, the learning rate and batch size
influence the endpoint curvature and the whole trajectory (Frankle et al.; Lewkowycz et al., [2020;
Xie et al.} 2020). The learning rate corresponds to the parameters’ updating step length, and batch
size would affect the total number of updating iterations which directly relates to the choice of space
interval s. Therefore, we further validate the impact of learning rate and batch size. As shown in Fig.[f]
of Appendix we summarize the results: (i) Spaced KD proves effective w.r.t naive online KD
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Table 3: Performance of Spaced KD on ResNet-18 / CIFAR-100 using different loss functions.

Loss Function L1 Smooth L1  MSE (mean) MSE (sum) Cross-Entropy

w/o 69.54 68.96 69.34 71.05 70.38
w/s=15 69.30 69.45 69.45 72.43 72.04
A -0.24 +0.49 +0.11 +1.38 +1.66

Table 4: Performance of Spaced KD on ResNet-18 / CIFAR-100 using more recent KD methods.

Method ] w/oKD w/KD w/Ours
BAN (Furlanello et al.|[2018) 56.75 60.56 61.83
TAKD (Mirzadeh et al.|[2020a) 61.37 61.82 63.48

DML (Zhang et al.|[2018) 68.92 70.31 71.80
SHAKE (Li & Jin)[2022) 69.02 72.02 72.64
DLB (Shen et al.|[2022) 68.80 68.87 69.31
PSKD (Kim et al.{[2021) 74.92 75.20 75.38
| online KD | online KD
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Figure 3: Impact of different initiating times of Spaced KD (s = 1.5), which is introduced (a) for
constant 10 training epochs or (b) till the end of training.

across different learning rates; (ii) Spaced KD exhibits its advantages when training with a relatively
large batch size (greater than 64). These observations also align with previous research (Jastrzebski
et al2019; Wu et al.) regarding a small batch size limiting the maximum spectral norm along the
convergence path found by SGD from the beginning of training.

5.4 GENERALIZATION OF SPACED KD

Flat Minima. To verify whether Spaced KD could converge to a flat minima, we conduct experi-
ments to observe the model robustness that reflects the flatness of loss landscape around convergence,
following previous works (Zhang et al.l[2018;2019). We first train ResNet-18/50/101 networks on
CIFAR-100 with traditional online KD (w/ o) and our Spaced KD (w/ 1. 5, the interval is 1.5 epochs).
Then Gaussian noise is added to the parameters of those models to evaluate their training loss and
accuracy over the training set at various perturbation levels, which are plotted in Fig.[d] The results
show that the model trained with Spaced KD maintains a higher accuracy and lower loss deviations
than naive KD under gradient noise level. Furthermore, after applying this interference, the training
loss of the independent model significantly increases, whereas the loss of the Spaced KD model rises
much less. These results suggest that the model with Spaced KD has found a much wider minima,
which is likely to result in better generalization performance.

Noise Robustness. In addition to manipulating network parameters, we conduct an extra exper-
iment to evaluate the model’s generalization ability to multiple transformations that create out-of-
distribution images. Specifically, we apply 6 representative operations of image corruption (Michaelis
et al.l [2019) (i.e., impulse_noise, zoom_blur, snow, frost, jpeg_compression and
brightness, see their visualization in Fig.[7]of Appendix. to the images of the CIFAR-100
test set. The test accuracy at noise intensity 1.0 is recorded in Tab. [5|and results of other intensity
levels can be found in Tab. [TT]of Appendix[A.8] It is clear that in most cases with different corruption
types and network architectures, our proposed Spaced KD helps the student network resist noise
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Table 5: Comparison of accuracy under image corruption attack (%). A indicates Spaced KD’s
performance gain w.r.t online KD. The intensity of noise is 1.0 and the results of other intensities
(i.e., 3.0, 5.0) can be seen in Tab. @of Appendix. @
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Figure 4: Impact of Gaussian noise on performance. Under the same noise perturbations, the network
trained with Spaced KD exhibits lower loss changes and higher accuracy.

attacks, which reflects its superior robustness to unseen inference situations. Besides, we test robust
accuracy using a representative adversarial attack method called BIM (Kurakin et al.|[2017)), and our
Spaced KD is more robust across different architectures (see Tab.[T2]in Appendix [A.9). The above
results empirically offer evidence for the generalization promotion brought by the spacing effect.

6 CONCLUSION

In this paper, we present Spaced Knowledge Distillation (Spaced KD), a bio-inspired strategy that
is simple yet effective for improving online KD and self KD. We theoretically demonstrate that the
spaced teacher helps the student model converge to flatter local minima via SGD, resulting in better
generalization. With extensive experiments, Spaced KD achieves significant performance gains across
a variety of benchmark datasets, network architectures and baseline methods, providing innovative
insights into the learning paradigm of KD from a temporal perspective. Since we also reveal a
possible critical period of spacing effect and provide its potential theoretical implications in DNNs,
our findings may offer computational inspirations for neuroscience. By exploring more effective
spaced learning paradigms and investigating detailed neural mechanisms, our work is expected to
facilitate a deeper understanding of both biological learning and machine learning.

Although our approach has achieved remarkable improvements, it also has potential limitations:
Our results suggest a relatively insensitive optimal interval (s = 1.5) for Spaced KD, yet remain
under-explored its theoretical foundation and an adaptive strategy for determining it. Additionally,
our results indicate that the timing of Spaced KD is important. The effectiveness of adaptive adjusting
the space interval and the timing of distillation remains to be validated and analyzed in subsequent
research. In future work, we would actively explore the application of such spacing effect for a
broader range of scenarios, such as curriculum learning, continual learning, and reinforcement
learning. Because this work is essentially a fundamental research on machine learning, its potential
social impact is not clear at the current stage.

10



Under review as a conference paper at ICLR 2025

Reproducibility For our proposed method Spaced KD and experiments in the main manuscript, we
have included all the source code and envrionment setup instructions in the supplmentary material.
And we will release them upon acceptance.
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A APPENDIX

A.1 PROOF OF THEOREM [4.4]

Proof. For a general KD loss, we have the trace of its Hessian matrix at global minimizer 6*:
N
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Substituting the above inequality into Eq.[9]and Eq. [I0]completes the proof. O

A.2 PERFORMANCE OF DIFFERENT INTERVALS FOR ONLINE KD

Table 6: Overall performance of different intervals for Fig.[2|and Tab.

Dataset Network Baseline w/o w/0.5 w/1.0 w/1.5 w/2.0 w/max
ResNet-18 68.12 71.05 72.02 7203 7243 72.18 7222

ResNet-50 69.62 71.85 7339 7325 7377 7328 7335

CIFAR-100 ResNet-101 70.04 72.03  73.11 7322 7291 7322 74.01
DeiT-Tiny 64.77 65.67 66.03 6622 6730 6645 65.69

PiT-Tiny 73.45 74.14 75.55 7550 7527 75.12  74.07

ResNet-18 53.08 59.19 59.62 59.68 60.75 59.52 59.34

ResNet-50 56.41 60.99 62.13 6227 6330 62.55 6247

Tiny-ImageNet  ResNet-101 56.99 6129 62770 62.64 63.76 62.80 63.10
DeiT-Tiny 50.23 51.82 5420 53.55 5292 5348 5221

PiT-Tiny 57.89 58.25 5945 59.77 60.25 59.75 58.23

A.3 IMPLEMENTATION OF SOTA METHODS WITH SPACED KD

For traditional KD methods (BAN (Furlanello et al [2018), TAKD (Mirzadeh et all, [2020a))) and
online KD methods (DML and SHAKE (Li & Jin| [2022))), we preserve their basic

training frameworks for reproducing results in w/o KD (raw ResNet-18 training) and KD (ResNet-18
with the corresponding method) columns and delay the students’ supervised learning and distillation
by a space interval of 1.5 epochs for w/ Ours. For self KD methods (DLB [2022) and
PSKD [2021)), we initiate a student network identical to the teacher. We train the teacher
model utilizing PSKD or DLB, and the student model is trained either online or in a spaced style
with an interval of 1.5 epochs. Specifically, the results w/o KD of PSKD and DLB in Tab. ] are
the performance of the teacher model, w/ XD is the performance of online students, and w/ Ours
corresponds to spaced students. Because we follow the exact training pipeline (including learning
rate scheduler, optimizer, and dataset transformation, etc) of those works when reproducing their
results, which is different from that of Tab. [[Jand Tab. 2} the baselines without KD may be different.
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A.4 PERFORMANCE OF SPACED KD ON IMAGENET-1K

Table 7: Performance of Deit-Tiny on ImageNet-1k Dataset. (space interval 1.5 epochs)

Epoch (epoch) 100 200 300

w/o KD 71.05 70.67 70.85
online KD 58.18 6593 72.04
online KD w/ ours  58.47 66.54 72.34
self KD 58.81 6637 72.39

self KD w/ ours 60.82 67.27 73.69

Test/best_acc

0.4
0.3

0.2

Step

200k 400k 600k 800k

Figure 5: Training curve of ResNet-18 and ImageNet-1k. (space interval 1.5 epochs)

A.5 PERFORMANCE OF SPACED KD ON DIFFERENT TEACHER-STUDENT ARCHITECTURES

Table 8: Overall performance of student networks distilled from different teachers on CIFAR-100.
We use ResNet-18 as the student.(space interval 1.5 epochs)

Teacher Baseline  Online KD  Spaced KD

ResNet-18x2 69.40 71.77 72.77
Width ResNet-18 x4 70.75 72.17 73.11
ResNet-18x8 70.77 72.03 73.52
ResNet-50 69.21 72.18 73.49

Depth
ResNet-101 69.54 71.61 73.04
. DeiT-Tiny 64.65 78.61 79.38

Architecture

PiT-Tiny 73.78 77.13 78.77

Table 9: Comparison of Spaced KD and offline KD from different teacher-student pairs on CIFAR-
100. We use ResNet-18 as the student.

Teacher Offline KD  Spaced KD
ResNet-18x2 72.53 72.77
Size ResNet-18x4 72.83 73.11
ResNet-18x8 73.04 73.52
Architecture DeiT-Tiny 78.80 79.38
Pit-Tiny 78.50 78.77
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A.6 PERFORMANCE OF STUDENT DISTILLED FROM A CONSTANT AHEAD TEACHER

Table 10: Performance of ResNet-18 on CIFAR-100 distilled from trained teacher with a constant s
step ahead. There are no significant improvements over the online KD.

Interval (epoch) 0 0.5 1 1.5 2 2.5
CIFAR-100 71.05 70.67 70.85 70.69 71.04 70.78

Here we consider a naive baseline of implementing the proposed spacing effect. Specifically, we first
train the teacher model for s steps and then transfers knowledge to the student model at each step
during the following training time. In other words, the teacher model keeps constant s steps ahead of
the student model. However, such a naive baseline exhibits no significant improvement over online
KD (see Table[I0), consistent with our empirical analysis (see Fig.[3)) and theoretical analysis (see
Sec.[E2): The teacher model of Spaced KD can provide a stable informative direction for optimizing
the student model after each s steps, whereas the teacher model of the naive baseline fails in this
purpose due to its ongoing changes when optimizing the student model. Such different effects also
suggest that the implementation of spacing effect is highly non-trivial and requires specialized design
as in our Spaced KD.

A.7 PERFORMANCE OF SPACED KD USING DIFFERENT LEARNING RATE AND BATCH SIZE

R 72 S - —e- -w/o
S = 7~ —o—w/0.5
< S ~ < 3 w/1.0
3 =70 o —e—w/1.5
© S \ —o—w/2.0
3 5 \ w/2.5
o Q 68 \
< <L(’ »

66 1 1 1 J

32 64 128 256 512
(a) Learning rate (b) Batch size

Figure 6: Hyperparameter validation for Spaced KD. Accuracy of different learning rate (a) and
batch size (b) of gradient intervals for Spaced KD.

A.8 PERFORMANCE OF SPACED KD ON DIFFERENT IMAGE CORRUPTION ATTACKS

Here we visualize 6 representative image corruption operations (Michaelis et al, [2019) applied to
the images from the CIFAR-100 dataset (Krizhevsky et al [2009) to assess our models’ robustness
and generalization ability in Fig.[7] The accuracy under adversarial attacks with more noise intensity
levels is listed in Tab. [Tl

Table 11: Comparison of accuracy under image corruption attack (%). A indicates Spaced KD’s
increased performance based on online KD. The results of 1.0 intensity can be seen in Tab. El

. . ResNet-18 ResNet-50 ResNet-101
Attack Noise Intensity
w/o Ours  w/ Ours A w/o Ours  w/ Ours A w/o Ours ~ w/ Ours A
. . 3.0 34.19 35.33 1.14 35.41 36.53 1.12 37.56 38.16 0.60
impulse_noise
5.0 12.54 12.04  -0.50 10.49 10.57 0.08 12.08 1139 -0.69
3.0 64.73 65.29 0.56 65.04 66.45 1.41 64.5 64.98 0.48
zoom_blur
5.0 61.02 61.53 0.51 61.36 62.67 131 61.32 62.18 0.86
snow 3.0 44.48 45.42 0.94 46.91 47.17 0.26 445 45.87 1.37
5.0 28.60 29.48 0.88 30.09 29.71 -0.38 30.09 30.75 0.66
frost 3.0 42.40 43.10 0.70 44.87 44.69 -0.18 45.10 45.28 0.18
5.0 37.80 39.47 1.67 39.26 39.97 0.71 41.24 4059 -0.65
. . 3.0 33.23 3232 -091 33.05 33.99 0.94 34.80 35.63 0.83
jpeg_compression
5.0 20.75 21.32 0.57 20.29 20.86 0.57 21.55 22.29 0.74
. 3.0 62.77 64.68 191 64.48 64.63 0.15 62.90 64.01 1.11
brightness
5.0 54.11 54.56 0.45 55.34 55.46 0.12 54.47 55.71 1.24
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Figure 7: Image corruption operation. We choose 6 representative image corruption operations with
different severity (1.0, 3.0, 5.0) and visualized images come from the CIFAR-100 test set.

A.9 PERFORMANCE OF SPACED KD AFTER ADVERSARIAL ATTACK

Table 12: Performance of Spaced KD on CIFAR-100 after an adversarial attack called BIM (Kurakin|
2017). Spaced KD is more robust than online KD.

Network  ResNet-18 ResNet-50  ResNet-101

w/o 31.33 31.32 31.70
w/l.5 31.44 31.70 33.69
A +0.11 +0.38 +1.99

A.10 PSEUDO CODE OF ONLINE KD, SELF KD AND SPACED KD

Algorithm 1 Training Algorithm of Online KD

Require: student fy, teacher g, dataset Dy,in, KD loss weight v, epoch number £
Ensure: train both teacher and student using online knowledge distillation

1: forl1 <e< FE do

2: for (x;, yi) € Dirain do

3: Update teacher ¢ <— ¢ — Vlusk (94 (2:), vi)

4: Update student 6 < 6 — Vg [adkp(fo(2:), 9o (x:)) + (1 — a)lusk(fo(xs), yi)]
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Algorithm 2 Training Algorithm of Online KD with Spaced KD

Require: student fy, teacher g, dataset Dyin, KD loss weight «, epoch number F, space interval s
Ensure: train both teacher and student using spaced knowledge distillation
1: Initialize data index set: R <+ ()
2: forl1 <e<FE do
3 for (:Civ yz) € Diain do
R+ RU{i}
Update teacher ¢ < ¢ — Vgliask (94(2:), ¥s)
if |R| == s then
for j € R do
Retrieve (x,y;) from Dygin
Update student 6 <— 0 — Vg [alkp(fo(x;), go(2;)) + (1 — @)lask(fo(x;), y;)]
Clear index set: R < ()

S YIS

Algorithm 3 Training Algorithm of Self KD

Require: network fg = fp, o--- o fy,_ consisting of m blocks, dataset Dy, KD loss weight «,
epoch number £
Ensure: train fy by distilling logits from the last block to the shallower blocks

1: forl1 <e< FE do

2: for (z;,y;) € Dyain do

3: Calculate loss L = lysk (fo (), yi)

4: forl1 <k <mdo

5: L < L+ algp(fe, 0o fo,(x:), fo(x:)) + (1 — @)liask(fo, © -+~ © fo, (:),Yi)
6: Update network 6 <— 6 — VoL

Algorithm 4 Training Algorithm of Self KD with Spaced KD
Require: network fg = fg, o--- o fp, consisting of m blocks, dataset Dy,in, KD loss weight a,
epoch number F, space interval s
Ensure: train fy by distilling logits from the last block to shallower blocks in a spaced manner
1: Initialize data index set: R <+ ()
2: forl1 <e<FE do

3: for (z;,y;) € Dyain do

4: R+ RU{i}

5: Calculate loss L = losk (fo(2:), yi)

6: Update network 6 <— 6 — VoL

7: if |R| == s then

8: for j € R do

9: Retrieve (x;,y;) from Diin

10: Calculate loss L' = lask(fo(25), y;5)
11: for1 <k <mdo
12: L' L'+alkp(fo, 0 - -0 fo, (25), fo(2))+(1—a)lask (fo, 0 - -0 fo, (x;), y5)
13: Update network 6 < 6 — VL'
14: Clear index set: R < ()
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